
Field theory and Galois theory - Briefly !

B.Sury

Field theory happens to be the language in which a number of classical
problems can be rephrased and solved. This includes the famous Greek
problems of ruler and compass constructions which are more than 2000 years
old. This represents a big success story for modern algebra as it also solves
completely the problem of solvability by radicals.

• Splitting fields and algebraic closure
If L ⊃ K are fields, L is called a field extension of K. L can be regarded as
a K-vector space. The dimension of this vector space is called the degree of
L over K and denoted by [L : K].
A basic property that is ubiquitous in field theory is the simple observation
that any field homomorphism from a field K to a field L is injective unless
it is the zero map.
If L ⊃ K is a field extension, an element α ∈ L is said to be algebraic over
K if it satisfies a non-zero polynomial (in one variable) over K. If α is not
algebraic over K, it is said to be transcendental over K. If K = Q, L = C,
the algebraic elements and transcendental elements are simply called the al-
gebraic numbers and the transcendental numbers.
One calls L an algebraic extension of K if each element of L is algebraic over
K. It follows from the division algorithm in K[X] that if α ∈ L is algebraic
over K, then it satisfies a unique monic, irreducible polynomial (called its
minimal polynomial).
If α ∈ L, one denotes by K[α] and K(α), respectively, the subring and the
subfield of L generated by K and α. Explicitly, these are K[α] = { all finite
sums

∑
aiα

i : ai ∈ K} and K(α) is the quotient field of K[α]. Similarly, for
any subset S of L :, the subring K[S] and the subfield K(S) are defined.
The first important (and easy to prove) result is:
If L ⊃ K is a field extension and α ∈ K, then the following are equivalent:
(i) α is algebraic over K, (ii) K[α] = K(α) i.e., K[α] is a field and, (iii)
[K(α) : K] <∞.
Here is the proof. Suppose (i) holds and let α satisfy a nonconstant poly-
nomial f over K. Now, the ring homomorphism θ : K[X] → K[α] which
evaluates every polynomial at α is surjective. As f is in the kernel, the kernel
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is a non-zero ideal. Also, since K[α] ⊂ L, it is a domain and so, Ker(θ) is a
non-zero prime ideal. As K[X] is a PID, Ker(θ) is also a maximal ideal i.e,
Im(θ) = K[α] must be a field. This shows (ii) holds if (i) holds.
Assume that (ii) holds and we shall prove (iii). Once again, let us look at
the evaluation-at-α homomorphism θ : K[X]→ K[α]. As we are given that
K[α] is a field, the kernel of θ must be a non-zero maximal ideal. Write
Ker(θ) = (f) say. If deg(f) = n, we shall show that 1, α, · · · , αn−1 span
K(α) (in fact, they form a basis but we do not need it here). But, this
is clear from the division algorithm in K[X] because for any g ∈ K[X],
θ(g) = θ(h) for some h ∈ K[X] of degree < n. Thus, we have proved that
(ii) implies (iii).
Finally, suppose (iii) holds, say [K(α) : K] = n. Then, the infinitely many
elements 1, α, α2, · · · cannot be linearly independent over K. Any nontrivial
linear relation shows that α is algebraic over K. This completes the proof.
Moreover, repeated applications of the above criterion yields:
If K ⊂ L ⊂ M , then (i) [M : K] = [M : L][L : K] and, (ii) M is algebraic
over K if, and only if, M is algebraic over L and L is algebraic over K.
The first part is proved trivially by verifying that any K-basis {vi} of L and
L-basis {wj} of M give rise to the K-basis {viwj} of M .
For the second part, start with any x ∈ M . As x is algebraic over L, it
satisfies a nonconstant polynomial f =

∑n
i=0 aiX

i ∈ L[X]. Thus, x is alge-
braic over the field K(a0, · · · , an). Hence [K(x) : K(a0, · · · , an)] <∞. Since
ai are algebraic over K, one has [K(ai) : K] < ∞ for all i. Inductively,
it is easy to see that [K(a0, · · · , an) : K] ≤

∏n
i=0[K(ai) : K] < ∞. But,

[K(x) : K] = [K(x) : K(a0, · · · , an)][K(a0, · · · , an) : K] < ∞. Hence, x is
algebraic over K. This proves (ii).
As a consequence, it follows that if L ⊃ K is a field extension, then Lalg =
{α ∈ L : α is algebraic over K}, is a subfield of L.
The reason is that if x, y ∈ Lalg, then all the elements x±y, xy, x/y (if y 6= 0)
are in K(x, y) which is a finite extension of K.
Let K be a field and f ∈ K[X] be of positive degree n. Let g be any irre-
ducible factor of f in K[X]. Then, the ideal (g) is maximal in K[X] and
the quotient field K0 = K[X]/(g) is a finite extension of K of degree ≤ n in
which g (and so f) has a root α viz., X + (g). Thus, using the remainder
theorem (this is a consequence of the division algorithm) in K0[X], one has
f = (X − α)f1 where f1 ∈ K0[X] has degree n− 1. Continuing with f1 and
repeating this procedure, it follows that there is a finite extension L of K of
degree at most n! such that f splits into linear factors in L[X].
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In the above situation, if α1, · · · , αn are all the roots of f (in L), then the
field K(α1, · · · , αn) is said to be a splitting field for f .
Any two splitting fields are isomorphic.
We shall prove this soon. First, we show:
If σ : K → K ′ is an isomorphism of fields and f =

∑n
i=0 aiX

i ∈ K[X]
is monic, irreducible, then fσ =

∑n
i=0 a

σ
iX

i ∈ K ′[X] is monic, irreducible.
Further, if L,L′ are field extensions of K,K ′ respectively and α, α′ are roots
of f, fσ in L,L′, then there is an isomorphism τ : K[α]→ K ′[α′] which sends
α to α′ and restricts to σ on K.
The proof is as follows. The field K[X]/(f) is isomorphic to K[α] under the
map θ which is the evaluation of a polynomial at α. Similarly, K ′[X]/(fσ)
is isomorphic to K ′[α′] under the map θ′ which evaluates at α′. Then, the
isomorphism τ = θ′ ◦ σ ◦ θ−1 does the job.
Every field K has a unique algebraic closure Ω i.e., Ω is algebraic over K
and all nonconstant polynomials in Ω[X] have roots in Ω. More generally,
if σ : K → K ′ is an isomorphism of fields and Ω,Ω′ are algebraic closures
of K,K ′ respectively, there exists an isomorphism τ : Ω → Ω′ such that τ
extends σ.
The proof follows by using the result quoted just before this along with an
application of Zorn’s lemma.
In fact, we prove:
Let L/K be an algebraic extension and let σ : K → E be an embedding of
K into an algebraically closed E. Then, there exists an extension of σ to an
embedding of L into E. Further, if L is algebraically closed and E is algebraic
over σ(K), then each extension of σ to L is an isomorphism onto E.
Proof.
Consider the set S of all pairs (M, τ) of intermediate fields between L ⊃
M ⊃ K and extensions τ : M → E of σ. This is non-empty as (K, σ) ∈ S.
Clearly, there is a partial order (M1, τ1) ≤ (M2, τ2) if and only if M1 ⊂ M2

and τ2|M1 = τ1. Each chain has an upper bound (union and the obvious
extension). So, by Zorn’s lemma, there is a maximal element (L0, σ0). If
α ∈ L − L0, then look at L0(α). There is an extension of σ0 to L(α) which
contradicts the maximality of L0. Hence L = L0.
Now, if L is algebraically closed, then so is σ(L). If E is algebraic over σ(K),
it is algebraic over σ(L) also which means E = σ(L).
The algebraic numbers form an algebraic closure of Q. They form a countable
set.
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• Separable extensions and normal extensions
If L is an extension of K, an isomorphism of L onto itself which is the identity
map on K, is called a K-isomorphism of L.
Denote by G(L/K), the group of all K-isomorphisms of L.
If Ω is an algebraic closure of a field K, then elements α, β ∈ Ω are said to
be conjugates if β = σ(α) for some σ ∈ G(Ω/K).
Let K be a field and Ω an algebraic closure. Then, α, β ∈ Ω are conjugates if,
and only if, they have the same minimal polynomial over K. In particular,
an element has only finitely many conjugates.
To see this, first let β = σ(α) for some σ ∈ G(Ω/K). If f is min(α,K),
then 0 = σ(f(α)) = f(β) which means f = min(β,K) since f is monic
and irreducible over K. Conversely, suppose α, β have the same minimal
polynomial f . Then, we know that there are isomorphismsK[X]/(f) ∼= K(α)
and K[X]/(f) ∼= K(β) which are given by the evaluation maps at α and β.
Thus, there is an isomorphism σ : K(α)→ K(β) which sends α to β and is
the identity map on K. As Ω is also an algebraic closure for both K(α) and
K(β), the isomorphism σ extends to an automorphism of Ω i.e., an element
of G(Ω/K). This proves that α and β are conjugates.
If Ω is an algebraic closure of K and K ⊂ L ⊂ Ω, then L is said to be a
normal extension of K if, σ(L) = L for all σ ∈ G(Ω/K). This definition
depends only on L and K and not on the choice of Ω. For, if Ω′ is another
algebraic closure of L, look at an L-isomorphism θ : Ω→ Ω′. Then, for any
τ ∈ G(Ω′/K), the element σ = θ−1 ◦ τ ◦ θ ∈ G(Ω/K) preserves L. Since
θ(L) = L, this gives τ(L) = L i.e., L is normal over K considered as an
algebraic extension contained in Ω′.
The crucial property which characterises normal extensions is:
Let K ⊂ L ⊂ Ω be as above. Then, L is normal over K if, and only if, for
any α ∈ L, all roots of its minimal polynomial f over K are in L.
To prove this, first let us assume that L is normal over K. Let β ∈ Ω be
another root of f . Then, the field extensions K(α) and K(β) are isomorphic
under an isomorphism which carries α to β and is the identity on K. As
Ω is an algebraic closure of both these fields, the isomorphism extends to
an element σ ∈ G(Ω/K). As σ(L) = L, σ(α) = β ∈ L. For the converse,
suppose that all roots of f are also in L. But, any element of G(Ω/K) must
take α into another root of f and thus G(Ω/K) preserves L i.e., L is normal
over K.
Splitting field of a polynomial is a normal extension. Conversely, any finite
normal extension is the splitting field of a polynomial.
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The proof goes as follows. Suppose f ∈ K[X] has a splitting field L in
an algebraic closure Ω. Without loss of generality, let us take f monic.
Let α1, · · · , αn be the roots of f in L. Then, f =

∏n
i=1(X − αi) in Ω[X].

If σ ∈ G(Ω/K), then 0 = σ(f(αi)) = fσ(σ(αi)) = f(σ(αi)). So, σ(αi).
Thus, σ(αi) is a root of f in Ω i.e., σ(αi) = αj for some j ≤ n. Therefore,
G(Ω/K)(L) ⊂ L i.e., L is normal over K. Conversely, suppose L is a finite,
normal extension of K. Now, let x1, · · · , xn be a K-basis of L. If fi ∈ K[X]
is the minimal polynomial of xi over K for any i, then the fact that L is
normal shows that all the roots of all the fi’s are in L. Evidently, L is the
splitting field of f1 · · · fn over K.
Clearly, if K ⊂ L ⊂M ⊂ Ω where Ω is an algebraic closure of K, then since
G(Ω/L) is a subgroup of G(Ω/K), we have:
If M is normal over K, then M is normal over L.
It can happen that L is normal over K and M is normal over L but M is
not normal over K.
Normal extensions are the origin of the notion of normal subgroups. We say
more on this soon while discussing Galois theory.
Now, let us prove a statement we made earlier without proof viz.:
Any two splitting fields of a polynomial are isomorphic.
Let f ∈ K[X] have two splitting fields L,L′ in algebraic closures Ω,Ω′.
Now, there is a K-isomorphism σ : Ω → Ω′. Also, in L[X], we have f =∏n

i=1(X − αi) where αi ∈ L and L = K(α1, · · · , αn). Similarly, in L′[X],
f =

∏n
i=1(X − α′i) with L′ = K(α′1, · · · , α′n). But, in the field σ(L) =

K(σ(α1), · · · , σ(αn)), we have f = fσ =
∏n

i=1(X − σ(αi)). As the last two
product expressions for f in L′ and σ(L) are in Ω′, it follows that σi’s and
α′j are permutations of each other. Thus, σ gives a K-isomorphism from L
to L′.

An element α ∈ Ω is said to be separable over K if it is a simple root of
its minimal polynomial. An algebraic extension of K is said to be separable
over K if each of its elements is separable.
In this context, it is useful to note:
If f is a monic, irreducible polynomial in K[X], then all roots of f in any
algebraic closure of K have the same multiplicity.
To see this and, indeed, to check the separability of any algebraic element,
there is a very useful criterion. To check the separability of an element α, it
suffices to check p′(α) 6= 0 where p =

∑n
i=0 aiX

i is the minimal polynomial
of α over K and p′ is the ‘formal derivative’

∑n
i=1 iaiX

i−1 ∈ K[X]. This
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is sometimes called the derivative test for separability. Let us apply this to
prove the above assertion. Let α, β be any two roots of f in an algebraic
closure Ω of K. Now, σ(α) = β for some σ ∈ G(Ω/K). Then, writing
f = (X − α)rg with g(α) 6= 0, we get f = fσ = (X − β)rgσ. As g(α) 6= 0,
we have 0 6= σ(g(α)) = gσ(σ(α)) = gσ(β). Thus, β also has multiplicity r in
f . This proves the assertion made.
Another application of the derivative test is:
Let K ⊂ L ⊂ M be algebraic extensions. Then, if α ∈ M is separable over
K, it is separable over L also.
For, if f = min(α,K) , g = min(α,L), then f = gh for some h ∈ M [X].
So, f ′ = g′h+ gh′ so that f ′(α) = g′(α)h(α) 6= 0. So, g′(α) 6= 0.
If L,M are extensions of K, one calls a field homomorphism σ : L → M
a K-algebra homomorphism if it is the identity on K. Note that the latter
property implies that such a map is not the zero map. Further, note that
the set HomK(L,M) of K-vector space homomorphisms from L to M forms
an M -vector space. If L is finite over K, then dimMHomK(L,M) = [L : K].
(Dedekind’s independence theorem)
Let G be any group, E any field and θ1, · · · θn ∈ Hom(G,E∗) be distinct.
Then, the θi’s are K-linearly independent.
In particular, with K,L,M as above, the set S of all K-algebra homomor-
phisms from L into M is linearly independent over L. Thus, if L is a finite
extension, then this set has at the most [L : K] elements.
We prove the special case as the proof is the same any way. The idea of
the proof is to show that given any dependence relation, one can get one
of smaller length. Therefore, let us suppose, if possible, that S is a lin-
early dependent subset of HomK(L,M) over M . Let m1, · · · ,mn ∈ M and
φ1, · · · , φn ∈ S such that

∑n
i=1miφi = 0 in HomK(L,M) and n is minimal

possible. Then, obviously n ≥ 2 as 0 6∈ S. Thus, for any a, b ∈ L, then
0 =

∑n
i=1miφi(ab) =

∑n
i=1miφi(a)φi(b). Thus, for any a ∈ L, the element∑n

i=1miφi(a)φi ∈ HomK(L,M) is the zero element. We shall choose a ∈ L
suitably to get a relation of length smaller than n. Multiplying the original
relation by φ1(a), we have

∑n
i=1miφ1(a)φi = 0.

Subtracting from this the relation
∑n

i=1miφi(a)φi = 0,
we get

∑n
i=2mi(φ1(a)− φi(a))φi = 0.

Choosing a ∈ L so that φ1(a) 6= φ2(a) (which is possible as φ1, φ2 are two
different elements), we get a dependence relation of length less than n. This
contradicts the minimality of n and proves that S is a linearly independent
subset of HomK(L,M) over M .
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Let Ω be an algebraic closure of K and L, a finite extension of K contained
in Ω. Then, the index [G(Ω/K) : G(Ω/L)] = |S| where S is the set of all
K-algebra homomorphisms of L into Ω.
To prove this, consider the restriction map η : HomK(Ω,Ω)→ HomK(L,Ω).
Using the extendability of isomorphisms, it is easy to see that η(G(Ω/K)) =
S. Further, note that η(σ) = η(τ) ⇔ σ−1τ ∈ G(Ω/L). This proves the
result.
The cardinality |S| (which is at the most [L : K]), is denoted by [L : K]sep
and is called the separability degree of L over K. The fact that subgroup
index multiplies in towers implies that the separability degree multiplies in
towers. The nomenclature of separability degree is justified by:
An algebraic element α over K is separable over K if, and only if, [K(α) :
K] = [K(α) : K]sep. More generally, a finite extension L of K is separable
if, and only if, its separability degree equals [L : K].
Let us prove the first statement first. Let Ω be an algebraic closure of K(α)
and let f be min(α,K). We consider the map α 7→ σ(α) from G(Ω/K) to
the set of conjugates of α. This is onto and two elements σ, τ ∈ G(Ω/K)
give the same conjugate of α if, and only if, σ−1τ fixes α i.e., belongs to
G(Ω/K(α)). In other words, the number of different conjugates of α equals
the index G(Ω/K) : G(Ω/K(α))] = [K(α) : K]sep. Now, recalling that an
irreducible polynomial has all its roots to be of the same multiplicity, it fol-
lows that α is separable over K if, and only if, all roots of f are simple i.e.,
α has deg(f) number of conjugates. As deg(f) = [K(α) : K], it follows that
α is separable if, and only if, the separability degree and the full degree of
K(α) over K coincide.
Now, let us prove the second statement by the multiplicativity of the usual
degree on using induction and the upper bound [L : K]sep ≤ [L : K].
If [L : K] = 1, then L = K and there is nothing to prove. Assume
[L : K] > 1 and that the assertion holds for smaller degree extensions.
Let α ∈ L, α 6∈ K. Then, [L : K(α)] < [L : K]. If L is separable
over K, then α is separable over K and L is separable over K(α). So,
by the induction hypothesis and the first assertion proved above, we have
[L : K] = [L : K(α)][K(α) : K] = [L : K(α)]sep[K(α) : K]sep = [L : K]sep.
Conversely, suppose these two degrees coincide. Then, [L : K] = [L :
K(α)][K(α) : K] ≥ [L : K(α)]sep[K(α) : K]sep = [L : K]sep = [L : K]
which shows that equality holds in the intermediate step too. Hence, [K(α) :
K] = [K(α) : K]sep i.e., α is separable over K. As α was an arbitrary element
of L outside K, it follows that L is separable over K.
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Unlike normal extensions, separable extensions have the following property:
If K ⊂ L ⊂ M are algebraic extensions, then M is separable over K if, and
only if, M is separable over L and L is separable over K.
It has already been observed that ifM is separable overK, then it is separable
over L and also L is separable over K. Assume now that both L/K and M/L
are separable extensions. Let α ∈M and f =

∑n
i=0 aiX

i = min(α,L). Then,
evidently, f = min(α,K0) where K0 = K(a0, · · · , an−1). Now, α is separable
over K0, being a simple root of f . Thus, [K0(α) : K0] = [K0(α) : K0]sep.
On the other hand, K0 ⊂ L implies that K0 is separable over K. It is also
evidently, a finite extension of K. Thus, [K0 : K] = [K0 : K]sep. By mul-
tiplicativity of both the usual degree and the separability degree, it follows
that K0(α) is separable over K. In particular, α is separable over K.

For a finite extension L/K, there is a notion of trace and one of norm. For
any a ∈ L, one can regard the map Ta : L→ L which sends b to ab. This is
clearly a K-linear transformation of L. Its trace and determinant are called,
respectively, the trace and the norm of a over K and denoted by TrL/K(a)
and NL/K(a). For a finite extension L/K, the bilinear form

L× L→ K ; (x, y) 7→ TrL/K(xy)

is called the trace form and if L is also separable, this form is non-degenerate.
This result is very useful in number theory. We briefly discuss the trace and
norm maps in the next section.

Let L0, L1 be extensions of K contained in a field L. Define L0, L1 to be
linearly disjoint over K if a subset of Li is K-linearly independent if and
only if it is L1−i-linearly independent for i = 0, 1.
Two linearly disjoint extensions L0, L1 over K must intersect only in K
clearly, However, the converse is not true (because of the result below which
says that linear disjointness implies degree multiplies).
Indeed, if L0, L1 are pure cubic extensions of K = Q generated by two cube
roots of 2, then the composite has degree 6 while the intersection of the fields
is Q.

We have:
L0, L1 are linearly disjoint over K if, and only if, the canonical map of K-
vector spaces θ : L0 ⊗K L1 → L0L1 is an isomorphism.
Proof.
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Indeed, if {vi} is any K-basis of L0, then each element of the tensor product
is uniquely expressible as

∑
finite vi ⊗ wi with wi ∈ L1. If L0, L1 are linearly

disjoint over K, then any element of Ker θ is a sum as above which is zero,
must already be zero (as all wi’s must be zero).
Conversely, if θ is an isomorphism, then look at any K-basis {vi} of L0 such
that

∑
finite vi⊗wi = 0 for some wi ∈ L1. By the fact that θ is injective, the

above sum is non-zero unless each wi = 0.
As a consequence of the above result, we have:
The composite of two extensions L0, L1 of K has degree equal to the product
of the degrees if, and only if, L0, L1 are linearly disjoint over K.

Define an algebraic element of L/K to be purely inseparable if char K = p > 0
and αp

n ∈ K for some n ≥ 0.
We have:
Let L/K be a finite extension, where char K = p > 0. Then, [L : K]sep = 1
if, and only if, each α ∈ L is purely inseparable over K. These happen if,
and only if, for each α ∈ L, min (α,K) = Xpn − a for some a ∈ K.
Proof.
Suppose [L : K]sep = 1. Let α ∈ L. Then, [K(α) : K]sep = 1 as it divides
the former. Thus, the minimal polynomial of α over K has only one distinct
root. So, min(α,K) = (X − α)r for some r. Writing r = pnt, we have

min(α,K) = (Xpn − αpn)t = Xpn − tαpnXpn(t−1) + · · ·

So tαp
n ∈ K which gives since (t, p) = 1, that αp

n
= a ∈ K for some a. Thus,

the first property of the statement implies the second.
But then Xpn − a has α as a root which means this must be the minimal
polynomial of α over K. Thus, the second statement implies the third.
Finally, the third statement implies that there is only one K-embedding of
K(α) into an algebraic closure, as it must send α to a root of the minimal
polynomial of α which has only one root. As this is true for each α ∈ L, we
have only one K-embedding of L; that is, [L : K]sep = 1.

• Trace and norm
The definitions have been given above. The basic properties which follow
immediately from their definitions are :
K ⊆ L ⊆M ⇒ NM/K = NL/K ◦NM/l.
NE/F is multiplicative.
A useful result is :
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Let [L : K] = n. If a ∈ L has Min(a,K) = p(X) = Xm + am−1X
m−1 + · · ·+

a0, then

NL/K(a) = (−1)na
n/m
0 , trL/K(a) = − n

m
am−1.

In particular, if L is purely inseparable over K, the trace map is the zero
map.
The last statement follows from the first one since the minimal polynomial
in the purely inseparable case is of the form Xpn − c. The first statement is
proved as follows. The map a 7→ La from L to EndK(L) which defines the
norm and trace, is a ring homomorphism. It is injective. Therefore, p(X),
the minimal polynomial of a, is also the minimal polynomial of the linear
transformation La. But, the minimal polynomial of any linear transformation
divides its characteristic polynomial and has the same irreducible factors.
Since p(X) is irreducible, this means that χ(La, X) = p(X)n/m. Compare
coefficients to get the result.
One can also prove:
Let L/K be finite and let σ1, · · · , σr be the distinct K-embeddings of L in K̄.
Then

NL/K(a) = (
r∏
i=1

σi(a))[L;K]insep ,

trL/K(a) = [L : K]insep

r∑
i=1

σi(a).

In particular, if L/K is separable, the trace map is not the zero map. Further,
in particular, if L/K is Galois with Galois group G, the above expressions
become

NL/K(a) =
∏
g∈G

g(a) , trL/K(a) =
∑
g∈G

g(a).

• Finite fields
Any finite field has cardinality the power of a prime.
The reason is, it has to be of finite degree over the field Zp for some prime
p. Regarded as a field, Zp is usually denoted by Fp.
The multiplicative group F ∗ = F \ {0} is a cyclic group.
This follows from the group-theoretic fact that a finite group in which for
every d, there are at the most d elements satisfying gd = 1, must be cyclic.
Any two finite fields of the same cardinality are isomorphic.
To see why, observe first that in an algebraic closure Ω of Fp, the subset
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F = {α : αp
n

= α} is clearly a field of cardinality pn since the roots of
the polynomial Xpn − X are distinct. Thus, F is the splitting field of this
polynomial. Conversely, in any field of cardinality pn, all the elements satisfy
this polynomial. Thus, we have proved the stronger statement:
Up to isomorphism, the unique field with pn elements is the splitting field
over Fp of the polynomial Xpn −X.

Here is an observation:
The norm and trace maps on finite extensions of finite fields are surjective.
Indeed, E = Fpnd ⊃ F = Fpn have respective generators α and α|E

∗|/|F ∗|.
Clearly, the norm of α is

α1+pn+p2n+···+pn(d−1)

which is α|E
∗|/|F ∗|.

The following provides a nice way to count of the number Nk of monic irre-
ducible polynomials of a given degree k over a finite field Fq.
As Fq[X] is a UFD, we have∑

f monic

T deg(f) =
∏

g monic irred

1

1− T deg(g)

So, ∑
n

qnT n =
∏
k

(1− T k)−Nk

Adding 1 and taking log, we get∑
n

qnT n

n
=

∑
k

Nk(
∑
r

T rk

r
=

∑
d

(
∑
kr=d

Nk

r
)T d

Comparing like powers, we get

qn =
∑
k|n

kNk.

• Simple extensions
An extension L of K is said to be simple (or primitive) if there is some α ∈ L
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such that L = K(α). One of the beautiful results proved by Galois is:
(Primitive element theorem)
Any finite, separable extension is simple.
The proof over a finite field is a consequence of the fact that the multiplicative
group of such a field is cyclic. Over infinite fields, the proof is as follows.
Let L be a finite, separable extension of K. Consider the set S of all the K-
homomorphisms from L into an algebraic closure Ω. Write S = {σ1, · · · , σn}.
Look at the vector K-subspaces Vij = {x ∈ L : σi(x) = σj(x)} for all i 6= j.
Obviously, n = [L : K] by separability and so Vij is a proper subspace of L.
Since K is an infinite field, the fact that the finite-dimensional vector space L
cannot be the union of finitely many proper subspaces Vij proves that there
is some α ∈ L outside each Vij. In other words, α has n different conjugates
in Ω. Therefore, [K(α) : K] = n = [L : K]. So L = K(α). This proves the
theorem.

Corollary. If L/K is separable algebraic, and if [K(α) : K] ≤ n for each
α ∈ L, then L/K is finite (and hence simple) of degree ≤ n.
Here is the proof. If α ∈ L has the largest degree m, then if K(α) 6= L,
we would have some β ∈ L − K(α). But, then K(α, β) would be a finite
(therefore, simple) extension of degree > m over K, a contradiction.

Here is another criterion for simplicity of a finite extension.
Let L be a finite extension of K. Then, L is a simple extension if, and only
if, there are only finitely many intermediate fields.
To prove this, we first suppose that L is a simple extension, say, L = K(α).
If f is the minimal polynomial of α over K, then for any intermediate field
K0, the minimal polynomial of α over K0 will be a divisor of f . As L[X]
is a UFD, the set S of irreducible factors of f is finite. Consider the map
from the set S ′ of intermediate fields to the set S given by sending any K0 to
min(α,K0). We claim that this is a 1-1 map. This would establish that S ′

is finite. Suppose min(α,K1) = min(α,K2) = g say. If g =
∑n

i=0 aiX
i, then

evidently, g = min(α,K0) where K0 = K(a0, · · · , an). As K0 is contained
in K1 and in K2 and the degree of L over each of these fields is n, they are
equal i.e., K1 = K2 = K0.
Conversely, suppose that there are only finitely many intermediate fields. We
may assume that K is infinite. Now L = K(x1, · · · , xn) for some elements xi.
We prove by induction on n that L is simple. It suffices to show for n = 2.
Look at the extensions K(x1 + tx2) as t varies over K. As K is infinite, the

12



finiteness assumption forces the existence of two (indeed, infinitely many)
distinct elements a, b ∈ K such that K(x1 + ax2) = K(x1 + bx2) = K0 say.
Thus, both x1 + ax2, x1 + bx2 belong to K0. So, does their difference, which
shows that both x1, x2 do too. Hence, K(x1, x2) = K0 which is a simple
extension.

13



Q 8, P. 216 from Jacobson’s Basic Algebra I.
Let K(t) ⊃ L ⊃ K where L 6= K. We claim that t is algebraic over L. More
precisely, if a ∈ L − K, we write a = f(t)/g(t) in reduced form and show
that [K(t) : K(a)] = max(deg(f), deg(g)).
Now, the polynomial h(X) := f(X)−ag(X) ∈ K(a)[X] has t as a root. This
is not the zero polynomial; otherwise, a would be in K.
Indeed, the degree of the polynomial h(X) is max(deg(f),deg(g)); otherwise,
again we would have deg(f) = deg(g) and abn = an with an, bn top coeffi-
cients of g, f respectively. This again gives a contradiction as a 6∈ K. So, we
have shown that t is algebraic over K(a) (and hence over L ≥ K(a) also).
Note that a is not algebraic over K; otherwise, the degree of K(t) over K
would be finite which is absurd.
So, K[a] is isomorphic to the polynomial ring.
Now, h(X) = f(X)− ag(X) ∈ K[X][a] ⊂ K(X)[a] is a degree 1 polynomial
(in a) over K(X). So, it is irreducible over K(X).
As f, g are relatively prime in K[X], h = f − ag is primitive in K[X][a] and,
therefore, irreducible over K[X].
So, h = f − ag ∈ K[a][X] = K[X][a] is irreducible over K[a] as a poly-
nomial in X. Therefore, h is irreducible over K(a). In other words, h =
min(t,K(a)).

Q 10, P.14 of Morandi.
Let L/K be an extension and let a ∈ L have [K(a) : K] odd. Then, we claim
that K(a) = K(a2). Indeed,

[K(a) : K] = [K(a) : K(a2)][K(a2) : K]

is odd while the first degree is 1 or 2. This implies the first degree is 1.

Q 11, P.14 of Morandi.
If L/K is algebraic and K ⊂ A ⊂ L is a subring, then we claim that A is
a field. If 0 6= a ∈ A, then a ∈ L and so, it is algebraic over K. Thus,
K(a) = K[a] is a field so that a has an inverse in K[a] ⊂ A.

Q 12, P.14 of Morandi.
If m 6= n are square-free positive integers, then we claim that neither of the
two fields Q(

√
±m) is isomorphic to either of the two fields Q(

√
±n).

This is clear because any non-zero homomorphism of fields is injective and
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none of the four fields contains a square-root of any of one of the other three
integers.

Q 19, P.14 of Morandi.
Consider L1 = Q(

√
2) and L2 = Q(ζ8) = Q(eiπ/4). Then, L1, L2 have degrees

2 and 4 over Q. However, L1 ⊂ L2 because
√

2 = ζ8 + ζ−18

Q 20, P.14 of Morandi.
We claim that there exist cubic extensions K of Q which are not pure cubic;
that is, K 6= Q([3]

√
n) for any integer n.

By the way, we note that unlike quadratic fields, pure cubic fields do not
determine a cube-free n as above - cube-free integers ab2 and a2b give the
same pure cubic field.
There are many examples of non-pure cubic fields but we give one example
first.
If K = Q(α) where α is a root of X3 − 3X + 1 = 0. It is easy to see that
it has three real roots in the intervals (−2, 0), (0,

√
2), (
√

2,
√

3). In fact, if
θ < 0 is the negative root, then the other roots are

α = θ2 − 2 , β = 2− θ − θ2.

This is gotten from the equalities

α + β = −θ , αβ = θ2 − 3.

Therefore, K is a normal extension being the splitting field of X3 − 3X + 1
over Q. Note that a pure cubic field cannot be a normal extension. This
gives our example.
More generally, we will prove later that the field automorphisms of a split-
ting field of an irreducible polynomial of degree n over Q is a subgroup of Sn
which is contained in An if and only if, the discriminant of the polynomial is
a perfect square.
A class of examples when this automorphism group is A3 (that is, irreducible
cubics for which discriminant is a square) is X3 − aX − a where a is an odd
integer of the form r2 + r + 7.
In fact, discriminant of X3 − aX − a is 4a3 − 27a2 = a2(4a− 27). This is a
square if 4a− 27 = b2; that is, b2 = 4(r2 + r + 7)− 27 = (2r + 1)2.
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Q 1, P.24 of Morandi.
If σ is an automorphism of Q it is clearly identity on Z. So, for n > 0,

nσ(m/n) = σ(m) = m⇒ σ(m/n) = m/n.

Q 2, P.24 of Morandi.
If σ is an automorphism of R, then it is identity on Q. Also, for any t ∈ R,

σ(t2) = σ(t)2

which implies σ(x− y) > 0 whenever x > y.
Thus, σ is an order-preserving map on R. But, then it is continuous - indeed,
if c is real and ε > 0 is given, choose δ ∈ Q such that 0 < δ < ε; then for
each c− δ < x < c+ δ, we have

σ(c)− ε < σ(c)− δ = σ(c)− σ(δ) < σ(x) < σ(c) + σ(δ) < σ(c) + δ < σ(c) + ε

Thus, σ is continuous and is the identity on the rationals. So, it is the iden-
tity map on the whole of reals.

Q 6,7 of P.37 of Morandi.
Clearly, the assertion of problem 6 implies that of 7. Let us prove 6.
Let L = K(a) be of degree n over K and let F/K be of degree m coprime
to n. We claim that min(a,K) is irreducible over F . Equivalently, we claim
that [F (a) : F ] = n. Consider the composite F (a) of F and K(a). Then,

[F (a) : K] = [F (a) : K(a)][K(a) : K] = n[F (a) : K(a)]

= [F (a) : F ][F : K] = m[F (a) : F ].

So, n divides [F (a) : F ]. However, a satisfies a polynomial of degree n over
F (the minimal polynomial over K); so, the degree equals n.

Q 12 of P.38 of Morandi.
We show that if G is any subgroup of Aut(L) for any field L and K = LG,
then K is a subfield and either L is not algebraic over K or, it is algebraic
and normal over K.
Clearly, K is a subfield. If L/K is not algebraic, there is nothing to prove.
Assume that L/K is algebraic. To prove that L is normal, we prove the
equivalent property that whenever an irreducible polynomial f ∈ K[X] has
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a root in L, it splits completely in L[X].
Consider any a ∈ L. We look at the orbit G.a of a under G. Since elements of
G act as the identity on K, the minimal polynomial min(a,K) =

∑n
i=0 ciXi

is fixed by any element g ∈ G and so, we have:

0 = g(
n∑
i=0

cia
i) =

n∑
i=0

cig(ai) =
n∑
i=0

cig(a)i.

Thus, each element g(a) of the orbit of G.a is a root of min(a,K) inside L.
Thus, the orbits are finite. Write G.a = {σ1(a), · · · , σr(a)} say. Then, the
r symmetric polynomials in σ1(a), · · · , σr(a) are fixed by G. But, then the
polynomial

r∏
i=1

(X − σi(a))

has coefficients which are fixed by G which means it is in K[X]. Therefore,
the minimal polynomial min(a,K) divides the above polynomial in K[X];
in particular, all its roots are in L.

Miscellaneous problem.
If L is an algebraically closed extension of a field K, then we claim that the
algebraic closure of K in L is algebraically closed.
Indeed, if Lalg denotes the algebraic closure of K in L, then consider any
monic, irreducible f ∈ Lalg[X]. As L is algebraically closed and as f can be
regarded as a polynomial over L, it has a root a ∈ L. So, a is algebraic over
Lalg. But then a is algebraic overK itself. So, a ∈ Lalg. Hence, f(X) = X−a.

Miscellaneous problem.
If K is an infinite field, then we claim that the additive subgroup of K is not
finitely generated.
Indeed, if K is any field for which the additive subgroup K+ is isomorphic
to Zn × T for some finite abelian group T , then 2K+ is an ideal in K which
means it must be 0 or K. If n > 0, clearly 2K+ is a proper, non-zero ideal
of K. Hence, K+ = T in case it is finitely generated and, hence K is finite.

Miscellaneous problem.
Let f = X4 − 5X2 − 6X + 3 and g = X5 − 8X3 + 9X − 3. We claim that
there is a unique quadratic field over which f, g have a common root. We
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want to determine that field and the common roots there.
By the Euclidean algorithm, we can obtain (f, g) = (X2 − 3X + 1) in Q[X].
The GCD polynomial has two roots (3±

√
5)/2 in Q(

√
5).

Miscellaneous problem.
We wish to determine the characteristics of the field for which the polynomial
X4 +X + 1 can have multiple roots. In that case, we wish to determine the
multiple roots also.
If θ is a multiple root, then

θ4 + θ + 1 = 0

4θ3 + 1 = 0

So 4θ4 + θ = 0 and 4θ4 + 4θ + 4 = 0; these give

3θ + 4 = 0.

So, characteristic is 6= 3 and θ = −4/3.
Putting this value in 4θ3 + 1 = 0, we have 229 = 0. As 229 is a prime, this
is the characteristic. Moreover, the second derivative 12θ2 6= 0, So, the char-
acteristic is 229, the multiple root is −4/3 = 4×76 = 304; it is a double root.

Miscellaneous problem.
Let char K = p > 0. Then, we claim that E = K(X, Y ) is a non-simple
extension of degree p2 over F = K(Xp, Y p). In fact, we can show that
Ei = F (X ip+1 + Y ) are distinct intermediate subfields. Note that for a
simple extension of degree n, there are at the most 2n intermediate fields.
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• Galois theory
A finite extension L of K is said to be Galois over K if it is separable and
normal over K. Let us denote by G(L/K), the K-automorphisms of L. It
follows from the above discussion that:
If L is a Galois extension of degree n over K, then |G(L/K)| = n.
For, if Ω is an algebraic closure of L, then any σ ∈ G(Ω/K) leaves L stable
and thus there is a well-defined homomorphism from G(Ω/K) to G(L/K)
viz., the restriction of an automorphism. Evidently, it is surjective and has
kernel G(Ω/L). Thus, |G(L/K)| = [G(Ω/K) : G(Ω/L)] = [L : K]sep = [L :
K] = n.
In this case, the group G(L/K) is called the Galois group of the Galois
extension L of K.

Here is an equivalent definition due to Emil Artin of a finite extension to be
Galois:
(i) A finite extension L/K is Galois if, and only if, LG(L/K) = K.
(ii) Let L be any field and G be a finite group of automorphisms of L. Then,
L is Galois over LG with Galois group G.
Here is the proof of (i).
For (i), first assume that L/K is Galois. Now, K ⊆ LG(L/K) evidently. If
α ∈ L−K, we will show there exists σ ∈ G(L/K) such that σ(α) 6= α (which
would imply α 6∈ LG(L/K)). Now, α 6∈ K implies its minimal polynomial over
K has another root β 6= α. The map σ : α 7→ β clearly extends to an element
of G(Ω/K); this σ ∈ G(L/K) as L is normal.
Conversely, now suppose that LG(L/K) = K. Let α ∈ L and let σ1(α), · · · , σr(α)
be the distinct elements of the G(L/K)-orbit of α. Then, the polynomial

f =
r∏
i=1

(X − σi(α))

satisfies σ(f) = f for each σ ∈ G(L/K). This is because σσi(α) are distinct
for i = 1, · · · , r and are among the σi(α). So f ∈ K[X] by the hypothesis.
So, min (α,K) divides f . As f has distinct roots, so does min (α,K) and
hence α is separable. So, L is separable. Also, the conjugates of α are among
σi(α)(1 ≤ i ≤ r); so, they are in L. Thus, we have shown that L is normal
also. So, L is a Galois extension. Thus, (i) is proved.
The proof of (ii) is exactly the same excepting the last assertion thatG(L/LG) =
G. To see this, we put K = LG and note that the proof above shows for each
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α ∈ L that [K(α) : K] ≤ O(G). An earlier corollary shows then that L itself
has degree ≤ O(G) and can be expressed as K(β) for some β. But, clearly
O(G) is at the most the number of conjugates of β which is the degree of
L = K(β) over K. Hence, we have equality O(G) = [L : K]. As the latter
has order |G(L/K)| and as G ≤ G(L/K), we must have equality of groups.

Now, we can prove:
(Fundamental theorem of finite Galois theory)
Let L be a finite Galois extension of K with Galois group G(L/K). Then,
there is a bijection :

{E : K ⊂ E ⊂ L} ↔ {H : H ≤ G}

given by φ : E 7→ G(L/E) whose inverse is ψ : H 7→ LH . Here LH denotes
the fixed subfield under H.
Furthermore, an intermediate field E is Galois over K if, and only if, the
subgroup H := G(L/E) of G := G(L/K) is normal; in this case the Galois
group of E over K is isomorphic to the quotient group G/H.
The proof goes as follows. First, we show that ψ ◦ φ is the identity map on
the set S of intermediate fields. Let E ∈ S and write H for G(L/E) = φ(E).
Then, ψ◦φ(E) = ψ(H) = LH . Now, obviously, since H fixes E, we have E ⊂
LH . Thus, H = G(L/E) ⊃ G(L/LH). But, by definition, H ⊂ G(L/LH);
hence we must have H = G(L/LH). On the other hand, L is a Galois exten-
sion of LH as well as of E and the corresponding Galois groups G(L/LH) and
G(L/E) have orders equal to the corresponding degrees [L : LH ] and [L : E]
respectively. Thus, [L : LH ] = |G(L/LH)| = |H| = |G(L/E)| = [L : E].
Since E ⊂ LH , we must have E = LH i.e., ψ ◦ φ = IdS.

Conversely, let H be any subgroup of G and write E for ψ(H) = LH . Then,
H ⊂ G(L/E). As L is separable over K, we may write L = K(α). Look
at the polynomial f(X) =

∏
h∈H(X − h(α)). This is a monic polynomial

of degree |H| such that f(α) = 0. Furthermore, ∀σ ∈ H, fσ(X) = f(X).
Therefore, f ∈ E[X]. Since L = K(α) = E(α), we have [L : E] ≤ deg(f) =
|H| ≤ |G(L/E)| = [L : E]. Thus, all these are equalities and we have
H = G(L/E) = φ(E) = φ(LH) = φ ◦ ψ(H). This proves the converse.

Finally, let E be an intermediate field. Suppose E is Galois over K. Write
H for G(L/E).Then, for any σ ∈ G(L/K), we have σ(E) ⊂ E and hence
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we have a well-defined ‘restriction’ homomorphism θ : G(L/K)→ G(E/K).
It is evident that ker(θ) = G(L/E) = H and so H is normal. Now, let us
suppose that H is normal in G. Write E = LH . We need to show that E is
normal over K. Let x ∈ E and σ ∈ G(L/K). Then, we want to show that
σ(x) ∈ E = LH . So, suppose h ∈ H. Then, hσ(x) = σσ−1hσ(x) = σ(x)
since H is normal and fixes all of E. Thus, σ(x) ∈ LH = E i.e., E is normal
over K. Thus, E is a Galois extension of K. In this case, the restriction
map θ : G(L/K) → G(E/K) has kernel G(L/E) and is surjective because
we can extend any element of G(E/K) to an element of G(L/K). The proof
is complete.

It is not difficult to develop a little bit of group-theoretic machinery to prove
a more general version valid for infinite Galois extensions. In that case, the
Galois group which is an infinite group can be given a natural topology such
that the correspondence is between subfields and closed subgroups.

One can prove also the fundamental theorem of algebra using the fundamen-
tal theorem of Galois theory as follows.
Let L/C be any finite extension. Observe two facts: (i) R has no proper odd
degree extensions and (ii) C has no quadratic extension. The first follows
by using the mean-value theorem of real analysis to show that every odd
degree real polynomial has a real root. The second follows by our ability to
explicitly write the roots of a quadratic complex polynomial by completing
squares.
Now, let N be the normal closure of L over R. Write G = Gal(N/R). If
P is a 2-Sylow subgroup of G, then NP = R being an odd degree exten-
sion. Thus, by the fundamental theorem, P = G i.e., G is a 2-group. Write
O(G) = 2n with n ≥ 1. If n > 1, then H = Gal(N/C) would have order
2n−1 ≥ 2 and, subgroup of index 2 in it would give a quadratic extension of
C. Thus n = 1 i.e., H = e i.e., N = L = C.

Finally, here is a nice result using the fundamental theorem of Galois theory:
Let α ∈ C be an algebraic number and let K be a subfield of the algebraic
closure of Q which is maximal with respect to the property that α 6∈ K. (Such
a field exists by Zorn’s lemma). Then, any finite extension of K is a Galois
extension which is cyclic.
Proof.
Let L/K be any finite extension and let N be the normal closure of L over
K. Call G = Gal(N/K). Let g ∈ G. If the cyclic group < g >6= G, then its
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fixed field N g is a proper extension of K in N . By the definition of K, this
means that α ∈ N g i.e., g(α) = α. So, if every g is such that < g > 6= G, this
would give that g(α) = α for all g ∈ G. Thus, we would have α ∈ NG = K,
a contradiction. Hence, there does exist some g ∈ G so that < g >= G i.e.,
G is cyclic. Now, as L ⊆ N , we have L = NH for some subgroup H of G. As
G is cyclic (and therefore abelian), H is a normal subgroup. But this means
that L is Galois over K i.e. N = L. This proves that L/K is cyclic.

• Ruler and compass constructions
Two points are given on the plane as constructed. These are taken to be at
unit distance and the line is taken to be the X-axis. Given a ruler (which
cannot measure lengths but can only draw straight lines) and a compass
which can draw circles, one wants to know what other points on the plane
can be marked off and what figures can constructed by these implements
alone. Such points and such distances which can be marked off in a finite
number of steps are said to be constructible. The ancient Greeks asked :
(i) is it possible to trisect any given angle? (ii) given a cube is it possible to
construct another with double the volume? (iii) given a circle, is it possible
to construct a square with the same area? (iv) which regular polygons are
constructible?
It turns out that these 2000-year old problems were solved only after the
advent of field theory.
The following constructions can be recalled from high school geometry: (i)
drawing a perpendicular through a given point on a given line, (ii) drawing
a line through a given point parallel to a given line, (iii) given a segment,
marking off a segment of the same length starting at a given point on another
given line.
Thus, it is clear that a point (a, b) is constructible if, and only if, the distances
|a| and |b| can be constructed. Notice that we can draw a triangle similar to
a constructed triangle with two sides of already constructed lengths.
The main result is:
A real number α is constructible if, and only if, there is a tower of fields
Q = K0 ⊂ K1 ⊂ · · · ⊂ Kr with α ∈ Kr and [Ki : Ki−1] ≤ 2. In particular, if
a real number α is conctructible, then it is an algebraic number of degree a
power of 2.
The proof is as follows. Let α be a real number which has been constructed
after a finite number of steps. Then, |α| is the distance between two points
of which either one or both appear as a point of intersection of two lines,
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two circles or a circle and a line based at points which have been constructed
earlier and with radii which are numbers constructed earlier. A circle based
at a constructed point (a, b) and with a constructed radius r has an equation
of the form (x − a)2 + (y − b)2 = r2. A constructed line has an equation of
the form lx + my + n = 0 where l,m, n are already constructed numbers.
The points of intersection (which are either 0, 1 or 2) are obtained by solving
them simultaneously. Thus, the solutions are in a quadratic extension of a
field generated by already constructed numbers. Thus, inductively, it follows
that α is in a finite tower of quadratic extensions starting from Q, elements
of which are constructed numbers.
We need to prove the converse, viz., that for any finite tower of quadratic
extensions contained in the real field, any element is constructible. Once
again, by induction, it suffices to establish that if F ⊂ R is a field consisting
of constructible numbers, then the elements of any real quadratic extension
F (
√
d) are constructible too. It is clear that it amounts to showing that√

d is constructible whenever d is. Draw a circle with diameter 1 + d and
at a distance d draw a perpendicular to the diameter. The length of this
perpendicular segment within the circle is then

√
d. Thus, the result is

proved.
Let us now point out how the result at once solves all the four problems above.
The answer to the first three problems is ‘No’ in general. For example, the
angle of 60 degrees cannot be trisected as Cos20◦ is an algebraic number of
degree 3; its minimal polynomial over Q is X3 − 3

4
X − 1

8
. Duplication of a

cube is impossible as it is equivalent to the constructibility of 21/3. Finally,
squaring the circle is equivalent to constructing π which is impossible since
π is not even algebraic. The last problem is equivalent to finding all n
for which Cos2π/n can be constructed or, equivalently, the points on the
unit circle which correspond to the primitive n-th roots of unity can be
constructed. If ζ = e2iπ/n, then the degree [Q(ζ) : Q] = φ(n) and the degree
[Q(Cos2π/n) : Q] = φ(n)/2. But, φ(n) is a power of 2 if, and only if, n
is a power of 2 times a product of distinct Fermat primes. Thus, the easier
part follows viz., if an n-gon is constructible, then n is as asserted. For the
converse, one needs Galois theory. The extension Q(ζ) is a Galois extension
of Q and has an abelian Galois group viz., the group (Z/n)×. If n is a power
of 2 times a product of distinct Fermat primes, this extension is of degree
a power of 2 i.e., (Zn)× is a 2-group. By the theory of abelian groups, this
group has a filtration by successive subgroups of index 2 and this produces a
corresponding filtration of fields. So, the regular n-gon will be constructible.

23



• Solvability of radicals

This is probably the first and biggest success story of modern algebra. Poly-
nomial equations (in one variable) of degrees at the most 4 can be solved
for all their roots by explicitly finding a ‘closed expression’ in terms of the
coefficients. It is to be understood that the expression is independent of
the polynomial. This ‘formula’ involves taking square roots, cube roots and
fourth roots. It was an open question for a long time as to whether there is
such a formula valid for all fifth degree equations. It was proved by Ruffini
and Abel that such a formula cannot exist for all polynomials of a given de-
gree ≥ 5. The introduction by Galois of his theory completes demystifies the
problem. Using Galois theory, as we shall see, one can say which polynomials
can be solved by radicals i.e., by taking various higher roots and which ones
cannot be so solved.
Our definitions are slightly different from those of Morandi.

Definitions.
(i) A finite extension L/K is called a radical extension of K if L = K(u)
where either un ∈ K for some n with char K not dividing n or up − u ∈ K
with char K = p > 0.
(ii) A tower of radical extensions over K is a finite tower of extensions

K = K0 ⊆ K1 ⊆ · · · ⊆ Kr

with each Ki/Ki−1 a radical extension.
(iii) A finite extension L/K is said to be solvable by radicals over K if L ⊆ Kr

for some tower
K = K0 ⊆ K1 ⊆ · · · ⊆ Kr

of radical extensions.
(iv) A polynomial f ∈ K[X] is said to be solvable by radicals over K if its
splitting field over K is solvable by radicals over K (that is, contained in Kr

for a tower of radical extension of K as above).

Warning: We will see later that there exist polynomials which are solvable
by radicals but its splitting field may NOT be a part of a radical tower over
K.
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Galois’s theorem on solvability by radicals.
A finite extension M/K is solvable by radicals over K if, and only if, M
is contained in a finite, Galois extension N of K such that Gal(N/K) is
solvable.
In particular, a finite Galois extension M/K is solvable by radicals over K
if, and only if, its Galois group is solvable.

Corollary. A polynomial f ∈ Q[X] is solvable by radicals over Q if, and
only if, the splitting field N of f over Q has Galois group Gal(N/Q) to be
solvable. Since Sn is not solvable for n ≥ 5, the general polynomial of degree
n ≥ 5 over Q (which has Galois group Sn) is not solvable by radicals over Q.

Proof of Galois’s theorem.
First, suppose that M is contained in Kr where

K = K0 ⊆ K1 ⊆ · · · ⊆ Kr

where each Ki is a radical extension of Ki−1.
We write Kr = K(u1, · · · , ur); here, either char K does not divide ni and
uni
i ∈ K(u1, · · · , ui−1), or char K = p > 0 and upi − ui ∈ K(u1, · · · , ui−1).

We will show that the above tower can be refined to end in a normal exten-
sion N over K.
Let n be the product of all the ni’s that occur.
If ζ is a primitive n-th root of unity in some algebraic closure of Kr, then
Kr(ζ) is an abelian extension of Kr. We look at the tower of radical exten-
sions

K0(ζ) ⊆ K1(ζ) = K0(u1, ζ) ⊆ · · · ⊆ Kr(ζ) = K0(u1, · · · , ur, ζ).

Rename this tower as

L0 = K0(ζ) ⊆ L1 = L0(u1) ⊆ · · · ⊆ Lr = Lr−1(ur) = L(u1, · · · , ur)

where L0 = K0(ζ).
Due to L0 containing the primitive n-th roots of unity, and the fact that
each ni divides n, the advantage of the above tower is that each successive
extension is cyclic here!
If σ0 = Id, σ1, · · · , σn−1 are the K=embeddings of Kr = K(u1, · · · , ur) in an
algebraic closure, we know that the conjugates of u1, · · · , ur are the σj(ui)’s.
We continue the last tower

L0 ⊆ L1 = L0(u1) ⊆ · · · ⊆ Lr = L0(u1, · · · , ur)
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by adding to the right the tower

Lr+1 := Lr(σ1(u1)) ⊆ Lr+2 = Lr+1(σ1(u2)) · · · ⊆ L2r = L2r−1(σ1(ur)).

Note that the augmented tower is again a tower of radical extensions because
Lr+1 = Kr(σ1(u1), ζ) is radical over Lr = Kr(ζ).
To see this last assertion, consider two cases; first let un1 ∈ K when char K
does not divide n. Then, σ1(u1)

n = σ1(u
n
1 ) = un1 ∈ K ⊆ Lr which shows Lr+1

is radical over Lr. If char K = p > 0 and up1 − u1 ∈ K, then the conjugate
σ(u1) must be of the form u1 + i for some i < p and once again it follows
that Lr+1 is radical over Lr.
In this manner, for each of the K-embeddings σ0, σ1, σn−1 of Kr, we have a
radical tower of length r which, when out together, form a tower of length nr
ending in the extension Lnr = K(ζ, σj(ui)) where 0 ≤ j < n and 1 ≤ i ≤ r.
The tower makes it also clear that Lnr is separable over K as each successive
extension is so. Thus, Lnr is a Galois extension, and the tower

L0 ⊆ L1 · · · ⊆ Lnr

gives the chain of groups

{1} = Gal(Lnr/Lnr) ≤ Gal(Lnr/Lnr−1) ≤ · · ·

≤ Gal(Lnr/L0) = Gal(Lnr/K(ζ)) ≤ Gal(Lnr/K)

where each successive inclusion is as a normal subgroup, and each succes-
sive quotient is abelian - they are actually cyclic excepting the last one
Gal(K(ζ)/K). Therefore, Gal(Lnr/K) is solvable.
Finally, note that M ⊆ Kr ⊆ Lnr.
Therefore, when M is itself Galois, the Galois group Gal(M/K) is a quotient
of the solvable group Gal(Lnr/K) and is, itself thus solvable.

Conversely, if M is contained in a Galois extension N over K with Gal(M/K)
solvable, we have that the Galois closure M0 of M over K is also contained in
N . Hence, to show M is contained in the top term of a radical tower over K,
it suffices to M0 is contained in the top term of a radical tower. Therefore,
we may assume without loss of generality that M itself is Galois over K and
that M ⊆ N with N , a Galois extension of K with Gal(N/K) solvable.
Note that Gal(M/K) is solvable, being a quotient of the solvable group
Gal(N/K).
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Let n = [M : K]. If char K = p > 0 and N = pkn0 with p not dividing n0,
adjoin a primitive n0-th root of unity ζ to K; call L = K(ζ). If char K = 0,
then we take L = K(ζ) where ζ is a primitive n-th root of unity.
Now, ML is Galois over L with

Gal(ML/L) ∼= Gal(M/(M ∩ L)) ≤ Gal(M/K)

which shows that [ML : L] divides [M : K] = n.
Also, then Gal(ML/L) is solvable, and has a composition series

{1} = G0 ≤ G1 ≤ · · · ≤ Gk = Gal(ML/L);

that is, each Gi is normal in Gi+1 and the quotient is a cyclic group of prime
order.
The corresponding fixed fields of Gi’s in ML gives a tower of field extensions

L = Lk ⊆ Lk−1 ⊆ · · · ⊆ L0 = ML

where each successive extension is Galois with Galois group cyclic of prime
order (this is the reason we took ζ in L).
By our description of cyclic extensions using Hilbert 90, we have that the
tower above is a radical tower. Thus, ML = MK(ζ) is solvable by radicals
over L = K(ζ). From this, it is clear that M is solvable by radicals over K.

Example.
The polynomial f = X3 − 3X + 1 is solvable by radicals over Q (as its
discriminant is the square 81, its Galois group is A3). However, its splitting
field is not a radical extension (that is, it is not purely cubic).
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