ASSIGNMENT-11IB

Galois Theory
TRISHAN MONDAL

§ Problem 1

Determine the Galois groups of the following polynomials:

1. 23— 22 -4

2. 3+t —2x—1

(1) We can factorize the polynomial f(z) = 2> — 22 — 4 as following,
f(z) = (z—2)(2* + 2+ 2)
The quadratic factor is irreducible over @ so the Galois group of f is, Gal(f) ~ Z/2Z.

(2) The polynomial f(x) = 23 + 22 — 2z — 1 don’t have any factor over @ as by rational root test it don’t
have any root over Q. The reduced polynomial will be,

f is also irreducible (as f is) and discriminant is

o=+(5) () -5

This is not a square in Q. So Gal(f) = Ss.

§ Problem 2

Find the Galois groups of the following quartics:
1. z* + 3z% — 3z — 2
2. 2t 4+ 222+ 2 +3

3. 2444z -1

(1). Done is Assignment II(A).

(2). Let, f(z) = x4+ 222+ 2+ 3. Check this polynomial mod 2. f = z*+x+1. This polynomial is irreducible.
f don’t have any linear factor over Z/27Z. If it had quadratic factor (22 + a12 + b1)(2? + agz + be) = f
then, biby = 1 i.e. by = by = 1. From the coefficient of 23, 2! we get, a1 + as = 0 and a1bs + bias = 1.



But this is not possible (by putting by = be = 0). Thus f(x) is irreducible. The resolvent cubic of this
polynomial is,
h(z) = 2% —42? — 8z + 1

it is irreducible by rational root test, discriminant of the polynomial is 3877, it’s not a square in QQ. So
the Galois group Gal(f) =~ Sj.

. Let, f(z) = 2* + 42 — 1. By rational root test this polynomial don’t have any root over @ thus, f don’t

have any linear factor over @. Let’s check mod 3, f = % + 2 — 1. It doesn’t have linear factor mod
3, if it had two quadratic factors then (22 4 ajx + by)(2? 4+ agx + by) = f, then byby = —1 i.e (WLOG)
by = 1,bo = —1. asby + boay = 1 and a1 + a2 = 0 mod 3, which means we have as = 2 and a; = 1. From
the coefficient of 2 we can say

aras +by +b3 =0

but it’s not the case for the values we got for a;,b;. So f is irreducible (as f is). Now the resolvent
polynomial is,
h(z) =2 + 42 + 16 = (z + 2)(2? — 22+ 8)

discriminant of the quadratic factor is v/7i. It is not hard to see f(z) is irreducible over Q(v/7i), so
Gal(f) ~ Dg.x

§ Problem 3

1. Let a, —a, B, —3 denote the roots of the polynomial f(z) = 2* + az? + b € Z[x]. Prove that f(x)
is irreducible if and only if o, 4+ 8 and o — 3 are not elements of Q.

2. Suppose f(z) is irreducible and let G be the Galois group of f(x). Prove that

(a) G = Vy, if and only if b is a square in @ if and only if a3 is rational.
(b) G = Zy4, if and only if b(a? — 4b) is a square in @ if and only if Q(aB) = Q(a?).
(c) G = Dg, if and only if b and b(a? — 4b) are not squares in @ if and only if a3 ¢ Q(a?).

. If the polynomial f = 2% 4 ax? + b is irreducible over @, then it can’t have any linear factor so none of

a, B € Q. It also can’t have any quadratic factor over Q. Only possible quadratic factorization of f are
(22 — a?) (2% — B?), (2?2 £ (a + B)z + aB) (2% £ (a — B)xr — af). Irreducibility of f implies a? ¢ Q.

Conversely, if a? € Q then f(z) = (x2 — a2) (x2 — B2), and if « + 8 € Q then o? + 82 £ af € Q, but
since a? + 32 = —a € Q this implies a3 € Q and so f(z) = (.1‘2 +(a—pB) — 046) (1‘2 +(—a+p8)— 046) or
f(@) = (2% — (a+ B) + aB) (z? + (a + B) + ap) is a factorization in Q[z].

. The resolvent cubic of f(z) is r(z) = (z — a) (z* — 4b) and it is reducible by the algorithm of the Galois

group of a quartic the Galois group G of f(z) is either V' = Zgy x Zy,7Z4 or Ds.
(a) Note that r splits completely over Q if and only if v/b € Q, if and only if a8 € Q (since b = a?5? ).
Therefore G =2 V} if and only if b is a square in Q if and only if af € Q.

(b) Suppose r has a unique root in Q, which in particular we know is a, also note that the splitting field
of r(z) over Q is Q(vb). Then consider the polynomial h(z) = z? (z? — ax +b). If h splits over

Q(vb), then we would have va2 — 4b € Q(v/b). Now
9 9 9 a2—4b+y2b—:ﬁ2
Va2 —4b = z+yVb = (a® — 4b)+y*b—2y~/b (a® — 4b) = * = /b (a® — 4b) = € Q.
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Conversely if /b (a2 — 4b) € Q then we get /b (a2 — 4b) = z € Q = Va2 — 4b € Q(\/b), and hence
h will split completely over Q(v/b). Therefore G = Z/4Z if and only /b (a® — 4b) € Q, if and only if

Q (Va? =) = Q(vb).
Note that a? — 4b = (a2 + %) — 4a28% = (a2 — 32)%. Thus va? — 4b = o2 — 2. While Q(v/b) =
Q(aB). Then o® — 5% € Q(ap) if and only if a? = L [(a? - B2) + (a* + B?)] € Q(aB) (since
o+ B2 ¢ Q)) But clearly o? ¢ Q, since f is irreducible, thus we must have Q (aQ) = Q(ap).
Conversely if Q (a2) = Q(ap) then we get that a® — 2 € Q(a3). Therefore from our previous
observation we can say that G = Z/47 if and only if \/b (a2 — 4b) € Q and Vb ¢ Q, if and only if
Q (a?) = Q(aB).

(c) Tt is evident from Case (b) that h does not split over Q(v/d) if and only if /b (a2 — 4b) ¢ Q. Thus

G = Dy if and only if 1/b(a? — 4b) ¢ Q and v/b ¢ Q. And from our previous observation this can
happen if and only if a5 ¢ Q (a2).

§ Problem 4

Prove that the polynomial 2% 4 px + p over @ is irreducible for every prime p and for p # 3,5, the Galois
group is S4. Prove that the Galois group for p = 3 is Dg, and for p = 5 it is Ds.

Solution. Done in Assignment II(A).

§ Problem 5

Let f(z) be a monic polynomial of degree n with roots a1, ...,a,. Let s; be the elementary symmetric
function of degree i in the roots and define s; = 0 for i > n. Let p; = a% +--- +al,i > 0, be the sum of
the i*® powers of the roots of f(z). Show that:

p1—51=0
P2 —81p1+ 259 =10
p3 — S1p2 + s2p1 — 353 =0

Pi — $1Pic1 + S2pica — -+ + (1) tsiipy + (=1)%is; = 0

Solution. Let’s denote ey (a1, g, - ,a,) as the elementary symmetric polynomial and pg(aq, a9, -, ap,)
as the power-sum symmetric polynomial, represented by:

6k(0[1,0[2,"' ,Oén) - g Oy Qg =+ Oy,
1<i1 <<, <n

k
prlar,ag, - o) = § a;
1<i<n

With these, the function f(z) is defined as:

fz) =

—
_
|
Q
E,

1<i<n

Vieta’s formulas state that this expansion is given by:



Upon differentiation with respect to x and then multiplying by x, we obtain:

n

xf'(z) = Z(—l)kekkxk

k=1

The above identity can also be written as:

x

f'(z) i j
Expanding the polynomials on the right side gives:

j=1

=0 k=0 \i+j=k

The summation extends from 0 < ¢ < n, with ¢; = 0 for ¢ > n to avoid unnecessary summands. By equating
the equations involving x’s, we derive:

n oo
Z(—l)kekk‘xk = Z Z (—I)H_leipj .ka.
k=1 k=0 \i+j=k

Equating the coefficients of " on both sides yields:
(—1)err = Y (=1)" e,
i+j=r
Upon dividing both sides by (—1)", the equation becomes:

rer = Z (—1)j+16ipj

i+j=r



§ Problem 6

1. Let f(x) be a monic polynomial of degree n with roots ay, ..., a,. Show that the discriminant D
of f(z) is the square of the determinant of the Vandermonde matrix

1 ag of - o7t
1 ag a3 - ot
1 ap, a2 - ot

which is [[;5 (i — ).

2. Using the Vandermonde matrix above, multiplying on the left by its transpose and taking the
determinant show that we obtain

bo P1 D2 o Pn—1
D_ p.1 1?.2 p's : pn
Pn—1 Pn DPn+l1 - DP2n—2

where p; = Z?:l oz;'- can be computed in terms of the coefficients of f(x) using Newton’s formulas
above.

Solution. (1). We will prove this by induction on n. For the base case take n = 1, there is nothing to prove
in that case. We are given transpose of the following matrix :

1 1 e 1 1
aq a2 T (079 An+1
n—1 n—1 n—1 n—1

Qg ) Oy Xpt1

n n n n

041 a2 Oén an+1

By subtracting o times the i-th row to the ¢ + 1-th row, we get

1 1 e 1 1
0 g — o — O Qpyl —
0 af — alag_l A — ! ap g — alaZH
Expanding by the first column and factoring «; — a; from the i-th column for ¢ = 2,...,n + 1, you get the
determinant is,
1 1 . 1
n+1 o .
2 as On41
= H(aj—al)det )
=2 n-1  n-1 n—1
Qg Qs X+l

By applying inductive hypothesis we get:

n+1
=[[(j—a) ] (@j-a)= T (-
j=2

2<i<j<n+1 1<i<j<n+1



and the inductive step is complete. Thus the discriminant of the polynomial is square of the determinant of the

Vandermonde matrix. [ ]

(2) Call the given matrix Vandermonde matrix A. Note that,

[AT A] = Z ApiArj

Thus determinant of the given matrix is det (A7 A) = det(A)? = D. |

§ Problem 7

Prove that the discriminant of the cyclotomic polynomial ®,(x) of the P roots of unity for an odd prime

pis (=1)@-1/2pp=2,

Solutzon Note that, D = (—1)®~D/2 ], ](w —w’), where i, j varies over n (here D is discriminant) where

w is ptM root of unity. We know,
p—1
o,(X) =[] (X - o)
i=1
and hence ®,(X) = > "7~ HJ#( —wl), & (WF) = H#k(wk — w). Thus, D = (1P~ 122} @/ (w"). Note
that,

(X —1)®,(X) = XP —1
= O, (X) + (X — P (X) = pXP!
= (WP = 1)), (wF) = pur=

p—1 —
= (- 2D =[] @, (") =

wk —1
k=1 k=1
(- lngpl(f) _ 2oy

= D = (—1)P~1/2pp2

And hence we are done.

§ Problem 8

Prove that Q(/(—1)®=1/2p) C Q((,) for p an odd prime.

Solution. We know square root of a discriminant lies in the splitting field. So by the previous problem we
can say Q( (—1)p_1/2pp—2> = Q( (—1)1"_1/2;0) contained in splitting field of ®,(X), which is Q((,). [



§ Problem 9

Use the previous problem to prove that every quadratic extension of @) is contained in a cyclotomic
extension.

Solution. We know any quadratic extension over field QQ can be written as Q(\/&) for some square free
integer d € Z. Let, d = £p1---p, i.ed = \/E\/pT\/pT, if all the primes are odd prime, then vd €
Q(C4,Cpyy -+, Cp,)- This follows from the previous result that Vd or \/—=d is in the field, depending on the
primes p1, - - - ,py. Since ¢4 is v/—1 we can multiply it with the product so that we get v/d. Since 4, p1,--- ,pr
are pairwise coprime we can say, Q(Ca, Cpy, -+, Cp,) = Q(Capyop,.)-

If any of the prime is 2 (WLOG p; = 2), then we can see, V2/Epa - pr € Q(V2,1,(pys -+ ,Cp, ). We know,
Q(Gs) = Q4 v2) thus we have Q(V2,i,Gp, -+ 5 Gp,) = Q(Csprp,)- So any quadratic extension is always

contained in a cyclotomic extension. |

§ Problem 10

Let K = TF,,(t) be the field of rational functions, f(z) = 2P —x —t € K[z] and let E/K be the splitting
field of f(z). Prove that Gal(E/K) = Z, but that f(z) is not solvable by radicals.

Solution. By a result in Assignment I(A). We can see 2P — x — t is irreducible over K = Fy(t). If E is
the splitting field of the polynomial then it contains a root « of f such that f(a) = 0, it was also shown in
Assignment I(A) that, a+1,--- ,a+p—1 are also roots of f. Thus F = K(«) and f’ = —1, thus the extension
is separable and hence a Galois extension. So we have |Gal(f)| = p and o : E — E the automorphism o — a+1
is an element of Gal(f) with degree p. So, Gal(f) is cyclic group of order p i.e Gal(f) ~ Z,.

Let K be the splitting field of f over F.K/F' is Galois with degree p. If K lies in a radical extension L of
F. Then we have
F=IKhchck...CF.=1L

where F; = F;_; (o) and a?i € F;_;. We may assume that «; ¢ F;_1 and n; are all primes. Let K; be
K (aq,...q;), then F; C K;. By induction, we can prove that K;/F; is Galois with degree p as follows. First,
K,/ Fy is Galois with degree p. We assume K;_1/F;_; is Galois with degree p.K; = K;_1 («;), F; = Fi—1 (o).
If o; € Ki—17 then Fl = Fi—l (al) = Kl = Ki—l (Oéz) == Ki—l and n; = p, since [Ki—l 2F7;_1] = pP. Because
a; & Fi_1,9 = (t — a;)’ = t? — oF is irreducible over F;_;. Then the minimal polynomial of a; over F;_; is g.
However, K;_1/F;_; is Galois, so «; is separable, but g = (t — a;)?, which shows that «a; is not separable.

This contradiction shows that «; ¢ K;_1. Note that a?" € F;_1 C K;_1 and all n; th roots of unity is in F.
Then we have g = t" — o is irreducible over K;_; and [K; : K;_1] = n;. Then we can conclude that K;/F; is

Galois with degree p. By induction, K;/F; is Galois with degree p for all 7. On the other hand, K, = F, = L,
so K, /F, is of degree 1 , which leads to a contradiction.

§ Problem 11

Prove that the Galois group of 27 + 7z 4+ 142 + 3 is A7.

Solution. Let, f(x) = 27+72x*+142+3. The discriminant of this polynomial is D(f) = 4202539929 which is
square of 64827. So the Galois group of f will be contained in A7. Check this polynomial mod 2, f = 27 +xz%+1.
This polynomial don’t have any root over Z/2Z, if it was reducible mod 2 it must have a quadratic factor or a
cubic factor, in the former case f must have a common factor with 2* —  but ged(z” +2* +1,2* +2) =1, in



later case it must have a common factor with the polynomial z® — z. But

ged(z” + 2t +1,2% —2) = ged(2” + 2 + 1,28 + 1)
=ged(@" + 2t + 1,27 +1) =1

So f is irreducible over @}. Note that f has the following factorization mod 5,
f=0+2)4+2)2+z+ 222+ 23+ 2°)

We claim that 2° + 22 4+ 222 + & + 2 is irreducible over Fs, it clearly does not have any linear factors. So
its enough to show that x% + 23 + 222 + 2 + 2 does not have any quadratic factor over F5[z]. For the sake of
contradiction suppose it has a quadratic factor over F5, then it would have a common factor with the polynomial
P —r =z (x12 — 1) (x12 + 1). Thus it will have a common factor with either 2'2 — 1 or z!? + 1, but direct
computation we get that

gcd(mu—l,x5+x3—|—2x2—|—aj—l—2) :gcd(ml2—|—1,x5—|—x3—|—2m2—l—x—|—2) =1.

so our claim is proved. Since 5 1 D(f) by Dedekind’s theorem we can say, Gal(f) contains a 5-cycle. From
group theory we know the only transitive subgroup of A7 containing a 5-cycle is A7. So Gal(f) ~ Ar. |

§ Problem 12

Prove that for each n € N there exist infinitely many polynomials f(x) € Z[x] with Galois group S,, over

Q.

Solution. Let p; and ps be two different primes. Let fi be a n-degree irreducible polynomial of Z/piZ[x],
and f be a (n — 1)-degree polynomial in Z/psZ[z] and f4 is an irreducible quadratic, f3 is 2| %5%] — 1 degree
irreducible polynomial over Z,,. By CRT we know there is a polynomial f of degree n statisfying the following
congruence relations :

f(@)=f1 (mod py)
flz)=xfo (mod ps)
fz) =207 fu(e) fa(e)  (mod py)

For the third case {"TH} means the fractional part. Not that 2{”7“} + 2L"T_1j +1 =n. We can see f is
irreducible over Z and hence over 3. By Dedikind’s theorem Gal(f) is a transitive subgroup of S,, containing
a n-cycle and (n — 1)-cycle and a transposition, i.e. Gal(f) ~ S,. Since we have infinitely many choices of
p1, P2, ps and corresponding choices of fi, fa, there are infinitely may polynomial f over Z having Galois group
over QQ as S,. [ |

Acknowledgement: While solving the Assignment I have discussed some problem with Soumya Dasgupta,
Priyatosh Jana, Aaratrick Basu. Any other coincidence with my Solution is not my fault !!!
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