ASSIGNMENT-ITA

Galois Theory

TRISHAN MONDAL

(1) Let 04 € Gal(Q(¢n)/Q) denote the automorphism of the cyclotomic field of nth
roots of unity which maps (, to (%, where (a,n) = 1, (;, being a primitive nth root
of unity. Show that o,({) = (? for every nth root of unity.
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(3) Prove that the primitive n-th roots of unity form a basis over Q for the cyclotomic
field of n-th roots of unity iff n is squarefree (ie. n is not divisible by the square
of any prime).

(=) et Pimitive v vots dforms o basie of ©C)
over @ (Where T i i pimitve Tt of with) Let b be a
PJ‘(Lme With F’l[hv Ley k= %)- o\7='d,?L Satisfy w*=1 and obyiswely
wHl- T Qe Cyclotomic  pobnomial for P,
W) =o
? 26 wl=0
> 7ty ) =0
Note that, gcd(%j+l,n)=l for  045<P-)- TThus <ach fevms ™ the above  Sum
s pumitve Yoots of unity (). Thue the Ser of Plimitve clements & Mot lineanly
‘dependent - Budt b& assumption i is  mot possicles  So A prime P Suw th Pln- %,
AN Sc,uane-izr&-
© let, n s suare-free. We Gan wnite n=RRe B- Let W= R R
We wur mdwt ont  do Show ngh- primitive vovis of wni-y forms  a Yasis for
the  exdension @C&MMQ- for  t=1, n=F. Note that the  extension Q(‘iﬁ\[q
s Smple  So ‘{l,aﬁ,...,{;“f 6 bogis  of QCﬁﬂ)]Q- Snce, 1= ~CGpt-1El), we
Con Say the Set: {%{rv’i?% 6 basis of Q,CQP,))Q:
Supme  We have ?MQA. U for the case 1=K, the mM* puimitive
Tots of unity Hrms a  bass for e edension R(G,)| @ We knows Mun=MNkR

Bince ged (h, Pur)= 15 R(G G )= R CT%R (This was proved in class )



e ales  know 'BW”— %an . %cd (Q\-,m()"—lé and. @(’Q’MK,—QF)
4 o (¢ R)=! ¢ QUTE bast 0 e e Q ‘,l @ Qm
Fen Pt Z(A R I§ S £ 2XteNnSioMms S8 / s

Rlan) g and Q%)

Q W‘eSPecﬁvelj- We Wl nsg —the 'Eallcuomﬂ

Theorem Ho  Conclude i%%ﬂ %ed(,‘»,m) =gcdcz,ﬁ<ﬂ)=lg fs basis of QC’QWH”Q

Theorem: lLet, L and K ane Fnite aolois extension over . let, §K;$
oe the basis  of Klg and §4% 5 basis of Llp. IF LNK=F

Then  Lklg has  basts ki

With the above seiup T clalm Fhaty
lClau‘.m— &(%,) N Q“P.J.: ®

Note fhat
E@ (ﬁ-"nk E‘H') C Qj = [Q/(:(bnp —{ﬁ‘ﬂ); @j

=[Ol % ) 0l ) ] [ Q%) @]
> [, %): @) ] = xR gy = $ene) [os got »]
T4 QCE@/\ QC’QPKH) 3+ R  We must howe,

[RlE): @] <[ @) Qm)n Q)]
o [0 @) @]
+ [®): Qlean @E)] < diw)

Moo, Pw) = [Q (G, % ) @l )] <[ R @ @le)]
Whieh e o Corvrrodicon .- Done

By the aboe theorem We Can Saf 1 dg, ¢ FALLM) =3eGRA=)
s basis of QC‘ZWHQ- Ance ’Qw\; and 12?:;, ane .]yu‘.mZ\/e. vots  of

1

reSpective  order » Jm] i -t pimitve tov The  above



Ser |has CPC’“&) 43(%—'3: dPC“«ﬁ) Canoumlﬂ'j ond Yo two  elements ane
one Equad-  So the Set e equal fo the  Set of all  Mwn-th  primitive
voofe of L. Tus cur induction Step 15 dme ond henee  for n= kR
e et of al [mZmLh/a Yo vorts -ro'rms a |lasse %« the extension

R - ]

(4) Find the Galois groups (over Q) of:
(i) z*+22% +5
(ii) z* + 323 — 3z — 2
(iii) z* + 8z + 12.
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(6) Prove that the polynomial z* — pz? + ¢ € Q[z] is irreducible for any distinct odd
primes p and ¢ and has Galois group Dsg.
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(7) Prove that the polynomial * + pz + p € Q[z] is irreducible for every prime p, and
for p # 3,5 has Galois group S4. Prove that the Galois group for p = 3 is Dg and

for p = 5 is cyclic of order 4.
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(8) Find the Galois group over Q of the polynomial z* 4+ 822 + 8z + 4. Find which sub-
fields of the splitting field are Galois over Q, and for these, determine a polynomial
for each over Q for which they are the splitting fields.
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(9) Let L/F be a root extension, and let M be an intermediate extension. Show that M/F need not be
a root extension.

Solution. Let, w = (7, then the extension Q(w)|g is a root extension. We know, w will satisfy the
quadratic 22 — 2cos 27”:): + 1 as cos 27” = %(w +w‘1). Since Q(cos 27”) € R we can say, the degree of the
extension Q(w)/Q(cos 27”) is two. But then, Q(cos 27”)/(@ has degree 3. Since Gal(Q(w)|Q) is isomorphic to Zg
we can say any subgroup of this Galois group is normal thus Q(cos 27”) /Q is Galois extension of dgree 3. If
Q(cos %) /Q was a root extension it must be an extension of type Q(¢/a)/Q as 3 is a prime(here a € Q). But
then Q(cos 27”) and Q(/a) can’t be equal as the former one is Galois extension but later one is not. So, Q(w)/Q

is a root extension but Q(cos 27”)/ Q is not. [



(10) Solve the equation
28 + 225 — 52* + 923 — 522 + 22 + 1

in terms of radicals. (Hint: Substitute y =z + %)
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(11) Show that for each n € N, 2™ — 1 is solvable by radicals over Q.

Solution. Let, ¢, be n-th primitive roots of unity and g, be the group of all n-th roots of unity. We know g,
is isomorphic to the group Z/nZ with it’s generator ¢,. Thus Q((,)|g is the Galois extension for f(z) = 2™ — 1,
as it contains all the roots of f and all the roots are distinct (by checking f’). Thus we have,

Gal(f) ~ Aut(Q(¢n)|Q) = (Z/nZ)"
If n = 2%p{t... pzk, where p; are odd primes, we must have
(Z/nZ)* =~ (Z/2°Z)" x - x (Z/p*Z)"
Now consider the following composition series,
{e} 2 (2/22)" 2 (2/2°2)" x (Z/p\*Z)" - -+ S (Z/nZ)"

Except the first term quotient of consecutive terms are isomorphic to (Z/p?iZ)“st, for odd primes p; this is a

cyclic group. We also know from group theory (Z/ ZtZ) *! is solvable. Thus, the above composition series is
solvable series. Hence, (Z/nZ)" is solvable. Thus Gal(f) is solvable and hence 2™ — 1 is solvable by radicals. B

(12) Let p(x) = 2% — 32® — 1. Show that p(z) is solvable by radicals over Q.

Solution. We will explicitly write down the roots,

%323 —1=0

, 3+V13
x ZT

T_is/3:|:\/ﬁ :\f/3i\/ﬁw c/3:|:\/ﬁw2
o 2 2 2

3 is the cube root of unity. Thus, all the roots of the polynomial are solvable by radicals. W

where, w = _H;

(13) Show that z° — x — 1 is not solvable by radicals.

Solution. We will show, f(z) = 2° — x — 1 is irreducible in Q. To show this check this polynomial in Z/5Z.
If this polynomial was reducible over @ it must have been reducible over Z/5Z. We claim the following:

Claim— The polynomial 2P — x — 1 is irreducible over I, for a prime p

Proof. This result was proved in Assignment-1A.

Using the above result we can say 2° — 2 — 1 is irreducible over Z/5Z and hence irreducible over Q. This
means Galois group of f contains a 5-cycle. We can write this polynomial as (23 + 2%+ 1)(2? + x + 1) in Z/2Z.
By Dedekind’s theorem Gal(f) contains as (3, 2)-cycle. By taking cube of this element we get a transposition.
Thus Gal(f) C S5 contains a transposition and a 5-cycle, by the group structure of S; we know, Gal(f) = Ss.
We know a polynomial is solvable by radicals iff it’s Galois group is solvable. But S5 is not solvable. So the
given polynomial is not solvable by radicals. |



(14) Show that if K is a subfield of C and L/K is a root extension which is also normal, then the Galois
group of L/K is solvable.

Solution. As L is a root extension of K, that is, it is obtained as a chain of simple radical extensions, and
K is a subfield of C, we get L is separable over K. Further, L is normal over K and hence, L/K is a Galois
extension. Now, it is a result proved in Assignment 1, that an extension is normal iff it is a splitting field of
a (single) polynomial f. Hence, we have a Galois extension L/K which is the splitting field of a polynomial
f € K|z], and is given to be a root extension. By definition, this means all roots of f are expressible by radicals.
We now use the result that a polynomial is solvable by radicals iff it has a solvable Galois group to conclude
Gal(L/K) is a solvable group. |

(15) Show that of n is an integer such that n > 1, and p is a prime then the quintic 2% — npx + p cannot
be solved by radicals.

Solution. Let, f(x) = 2° —npz +p. By Eisenstein criteria for p we get, this is irreducible. So, Gal(f) contains
a 5-cycle. Now note that,

f0O)=p>0,f(1)=1+p(l—n)<0(asn>1)
lim f(z) - oo, lim f(z) — —o0
T—00 r—r—00
Thus f(x) has three roots in the region, (—o00,0),(0,1) and (1, 00) respectively. Also note, f’(z) = 52* —np has
two real solutions and f(+{/“ ) is non-zero. So these are the only real roots of f(z). Thus, f(z) has exactly

two complex roots. Let a be a complex root of f, then & is the other complex root. There is an element o in
Gal(f) such that o(«) = & thus o has order 2 in the Galois group. Thus Gal(f) C S5 contains a 5-cycle and a
transposition and hence Gal(f) = S5. Again this group is not solvable. So f is not solvable by radicals. |



