Assignment-IIA

Galois Theory

Trishan Mondal

(1) Let $\sigma_a \in \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ denote the automorphism of the cyclotomic field of nth roots of unity which maps ζ_n to ζ_n^a , where (a, n) = 1, ζ_n being a primitive nth root of unity. Show that $\sigma_a(\zeta) = \zeta^a$ for every nth root of unity.

Let, In be the set of all nth roots of unity. In is a multiplicative Subgroup of the field $Q(T_n)$. Thus In is cyclic (as it is finite). Since, T_n is posimitive nth root of unity In Should be generated by T_n . So any nth root of unity T_n can be written as, $T_n = T_n^k$ (for Suitable choice of k)

Thus,
$$\sigma_a(\tau) = \sigma_a(\tau_n^k) = \sigma_a(\tau_n)^k = \tau_n^{ak} = (\tau_n^k)^a = \tau_n^a$$

(2) Let p be a prime and ϵ_i , $1 \le i \le p-1$ denote the primitive pth roots of unity. Let $p_n = \sum_{i=1}^{p-1} \epsilon_i^n$. Prove that $p_n = -1$ if p does not divide n, and that $p_n = p-1$ if p divides n.

We know that if \mathcal{T} is a primitive p^{th} root of unity, \mathcal{T}^a is alo primitive p^{th} root of unity iff $gcd(a_1p)=1$. Since, P:G a prime We can say \mathcal{T}^a is primitive p-th root of unity for $1 \le a \le p-1$. Where f is f is f is f is f is f is f if f is f if f in f in f if f in f if f in f

- (3) Prove that the primitive n-th roots of unity form a basis over \mathbb{Q} for the cyclotomic field of n-th roots of unity iff n is squarefree (ie. n is not divisible by the square of any prime).
- Let, Primitive nth roots Forms a basis of $\mathbb{Q}(7)$.

 Over \mathbb{Q} . (where \mathbb{Q} is n-th primitive root of unity). Let p be a prime with $p^2 | n$. Let $k = \sqrt[n]{p}$. $w = \mathbb{Z}^k$ satisfy $w^k = 1$ and obviously $w \neq 1$. If $\mathbb{Q}(x)$ is Cyclotomic polynomial for p,

Note that, $\gcd(\frac{n}{p}j+1,n)=1$ for $0 \le j \le p-1$. Thus each terms in the above sum is primitive roots of unity (n^{th}) . Thus the Set of primitive elements is not linearly idependent. But by assumption it is not possible. So $\not\equiv$ prime $\not\models$ such the $\not\models$ 1n. So, $\not\vdash$ 1 Squarefree.

Let, n is Square-free. We can write $n=P_1P_2\cdots P_r$. Let $n_i=P_1\cdots P_{i-1}$. We will induct on i to Show n_i^{th} -pointive roots of unity forms a basis for the extension $\mathbb{Q}(\mathcal{L}_{ni})|\mathbb{Q}$. For i=1, $n_i=P_r$. Note that the extension $\mathbb{Q}(\mathcal{L}_{p_i})|\mathbb{Q}$ is simple so, $\{1/\mathcal{L}_{p_i},\dots,\mathcal{L}_{p_i}^{p_i}\}$ is basis of $\mathbb{Q}(\mathcal{L}_{p_i})|\mathbb{Q}$. Since, $1=-(\mathcal{L}_{p_i}+\dots+\mathcal{L}_{p_i}^{p_i})$, we can say the Set: $\{\mathcal{L}_{p_i},\dots,\mathcal{L}_{p_i}^{p_i}\}$ is basis of $\mathbb{Q}(\mathcal{L}_{p_i})|\mathbb{Q}$.

Suppose We have proved it for the case i=k, the n_k^{th} primitive roots of unity forms a basis for the extension $\mathbb{Q}(\mathfrak{T}_{n_k})|_{\mathbb{Q}}$. We know, $n_{kn}=n_k R_{kn}$. Since $\gcd(n_k, P_{kn})=1$, $\mathbb{Q}(\mathfrak{T}_{n_k}, \mathfrak{T}_{kn})=\mathbb{Q}(\mathfrak{T}_{n_{kn}})$ (This was proved in class).

We also know $B_{nk} = \{ \mathcal{T}_{nk}^{a} : \gcd(\alpha_{i}n_{k}) = 1 \}$ and $\mathbb{Q}(\mathcal{E}_{nk}, \mathcal{T}_{kn})$ $B_{p_{k+1}} = \{ \mathcal{T}_{p_{k+1}}^{a} : |\gcd(\alpha_{i}p_{k}) = 1 \} \text{ are basis of the extensions} \qquad \mathbb{Q}(\mathcal{E}_{p_{k+1}}) = \mathbb{Q}(\mathcal{E}_{p_{k+1$

Theorem: Let, L and k are finite galois extension over F. Let, {ki} be the basis of klf and {l;} is basis of Llf. If LNK=F
Then Lklf has basis {kilj}.

With the above Setup I claim that,

Claim –
$$\mathbb{Q}(\mathcal{G}_{n_k}) \cap \mathbb{Q}(\mathcal{G}_{P_{k_H}}) = \mathbb{Q}$$

Note that,

$$\begin{split} \left[\mathbb{Q}\left(\mathcal{I}_{n_{k},R_{k+1}}\right);\mathbb{Q}\right] &= \left[\mathbb{Q}\left(\mathcal{I}_{n_{k}},\mathcal{I}_{R_{k+1}}\right);\mathbb{Q}\right] \\ &= \left[\mathbb{Q}\left(\mathcal{I}_{n_{k}},\mathcal{I}_{R_{k+1}}\right);\mathbb{Q}\left(\mathcal{I}_{R_{k+1}}\right)\right] \left[\mathbb{Q}\left(\mathcal{I}_{R_{k+1}}\right);\mathbb{Q}\right] \\ &\Rightarrow \left[\mathbb{Q}\left(\mathcal{I}_{n_{k}},\mathcal{I}_{R_{k+1}}\right);\mathbb{Q}\left(\mathcal{I}_{R_{k+1}}\right)\right] &= \left. \phi(n_{k},R_{k+1}) \middle/ \phi(R_{k+1}) \right] &= \left. \phi(n_{k}) \right[\text{as gcd is } 1] \end{split}$$

If $\mathbb{Q}(\zeta_{n_k}) \cap \mathbb{Q}(\zeta_{p_{k+1}}) \neq \mathbb{Q}$ We must have,

$$\begin{split} & \left[\mathbb{Q} \left(\mathcal{E}_{n_{k}} \right) \colon \mathbb{Q} \right] = \left[\mathbb{Q} \left(\mathcal{E}_{n_{k}} \right) \colon \mathbb{Q} \left(\mathcal{E}_{n_{k}} \right) \cap \mathbb{Q} \left(\mathcal{E}_{p_{k+1}} \right) \right] \\ & = \phi(n_{k}) \cdot \mathbb{Q} \left(\mathcal{E}_{n_{k}} \right) \cap \mathbb{Q} \left(\mathcal{E}_{p_{k+1}} \right) : \mathbb{Q} \right] \\ & \Rightarrow \left[\mathbb{Q} \left(\mathcal{E}_{n_{k}} \right) \colon \mathbb{Q} \left(\mathcal{E}_{n_{k}} \right) \cap \mathbb{Q} \left(\mathcal{E}_{p_{k+1}} \right) \right] < \phi(n_{k}) \end{split}$$

 $A|_{SO}, \quad \phi(n_k) = \left[\mathbb{Q}(\mathcal{I}_{n_k}, \mathcal{I}_{P_{k+1}}): \mathbb{Q}(\mathcal{I}_{P_{k+1}})\right] \leqslant \left[\mathbb{Q}(\mathcal{I}_{n_k}): \mathbb{Q}(\mathcal{I}_{n_k}) \cap \mathbb{Q}(\mathcal{I}_{P_{k+1}})\right]$ Which is a Contradiction.

By the above theorem we can say $\{E_{n_k}^i E_{f_{k+1}}^j : gcd(i, n_k) = gcd(i, f_{k+1}) = i\}$ is basis of $\mathbb{Q}(\{E_{n_k+1}\}) = \mathbb{Q}(\{E_{n_k+1}\}) = i\}$ and $E_{f_{k+1}}^j$ are primite roots of respective order. $E_{n_k}^i E_{f_{k+1}}^j$ is $n_{k+1} - th$ primite root. The above

Set has $\Phi(n_k) \Phi(n_{k+1}) = \Phi(n_{k+1})$ condinability and no two elements are all equal. So, the Set is equal to the Set of all n_{k+1} -th primitive roots of 1. Thus our induction Step is done and hence for n=n- n=n. The Set of all primitive n-th roots forms a basis for the extension $\mathbb{Q}(\tau_n)|_{\mathbb{Q}}$.

- (4) Find the Galois groups (over \mathbb{Q}) of: (i) $x^4 + 2x^2 + 5$ (ii) $x^4 + 3x^3 - 3x - 2$ (iii) $x^4 + 8x + 12$.
- (i) $\chi^{l_1} + 2\chi^2 + 5 = f(x)$. Roots of F(x) are $\pm \sqrt{-1 \pm 2i}$. Thus, $\mathbb{Q}(\sqrt{1+2i}, \sqrt{1-2i})$ is splitting field of F(x). Note that $\sqrt{1-2i} \in \mathbb{Q}(\sqrt{1+2i}, \sqrt{5}) \subseteq \mathbb{Q}(\sqrt{1+2i}, \sqrt{1-2i}) \Rightarrow \mathbb{Q}(\sqrt{1+2i}, \sqrt{1-2i}) = \mathbb{Q}(\sqrt{5}, \sqrt{1+2i})$ Let, $\alpha = \sqrt{-1+2i}$. The polynomial F(x) is irreducible and it is satisfied by α . Thus F(x) is minimal polynomial of α over α . So the extension $\mathbb{Q}(\alpha)$ in the has degree 4. Also note that $\sqrt{5} \notin \mathbb{Q}(\alpha)$ so, $\mathbb{Q}(\alpha/2)$ in the degree α . Thus $|G_{\alpha}|(\alpha/2)| = \alpha$. We also know $G_{\alpha}|(\alpha/2) \hookrightarrow \alpha$. The only order α subgroup of α is α if α is α is α in α in α is α in α . Subgroup of α is α is α in α in α in α in α in α .
- (ii) $x^4+3x^3-3x-2=F(x)$, This polynomial don't have any root over Q by rational root theorem. By Checking the case of quadratic factor we See, F(x) is irreducible over Q. In order to find the Gal(f), we need to find the resolvent cubic

$$h(x) = x^{3} + \frac{27}{4}x^{2} + \frac{275}{32}x + \frac{9}{64}$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 432x^{2} + 550x + 9}{64} \right)$$

$$= \frac{1}{64} \left(\frac{64x^{9} + 43$$

∴ g(x) is irreducible over \mathbb{Q} , hence h(x) is. Thus 12 | Gal(f) \Rightarrow Gal(f)=A4

Now the discriminant of f(x) = discriminant of h(x) = -20183, not a square in $\mathbb{Q} \Rightarrow Gal(f) \not = A_{ij} \Rightarrow Gal(f) = S_{ij}$.

(iii) $x^4+8x+12=F(x)$, This polynomial don't have any root over Q by retional root theorem. This polynomial is irreducible mod 5. Thus f(x) is irreducible over Q. The resolvent cubic of this polynomial is,

This polynomial is $h(x) = x^3 + 2x - 1$ mod 5. This do not have root modulo 5. Thus h(x) is irreducible in \mathbb{Q} . So, |2| Gal $(f) \Rightarrow Gal(f) \cong A_4$ or S_4 . The discriminant of f(x) is 576^2 . So, $Gal(f) \cong A_4$.

(5) Prove that every finite group occurs as the Galois group of a field extension of the form $F(x_1, x_2, ..., x_n)/K$.

Every finite group G is a Sub-group of Sn for some n. Let, F be a field then $F(x_1,...,x_n)|_{F(s_1,...,s_n)}$ is a galois extension with Galois group Sn. (This was proved in class). Let K=F(G), fixed field of the Subgroup $G \leq S_n \simeq Gal(F(x_1,...,x_n)|F(s_1,...,s_n))$. By Galois Correspondence theorem.

Gal($F(x_1,...,x_n)|K\rangle = G$.

* S_1, \dots, S_n are Symmetric polynomials of X_1, \dots, X_n : $S_1 = \sum_i X_i$, $S_2 = \sum_i x_i x_j, \dots S_n = x_1 \dots x_n$

(6) Prove that the polynomial $x^4 - px^2 + q \in \mathbb{Q}[x]$ is irreducible for any distinct odd primes p and q and has Galois group D_8 .

Let, $f(x) = x^4 - px^2 + q$. This polynomial has roots $\pm \alpha$, $\pm \beta$ where, $\alpha = \sqrt{\frac{p + \sqrt{p^2 - 4q}}{2}}$, $\beta = \sqrt{\frac{p - \sqrt{p^2 - 4q}}{2}}$

The polynomial don't have any linear factor as $F(q) \neq 0$, $F(q) \neq 0$. By rational root theorem F(x) don't have any linear factor.

fix) can have two quadratic factor only following factorisation is possible,

$$(\chi^2-\alpha^2)(\chi^2-\beta^2), (\chi^2-(\alpha-\beta)\chi-\alpha\beta)(\chi^2+(\alpha-\beta)\chi-\alpha\beta), (\chi^2-(\alpha+\beta)\chi+\alpha\beta)$$

$$(\chi^2+(\alpha+\beta)\chi+\alpha\beta)$$

In the first case α^2 and $\beta^2 \in \mathbb{Q}$.

This means $\sqrt{P^2-49} \in \mathbb{Q} \Rightarrow \sqrt{P^2-49} \in \mathbb{N} \Rightarrow P^2-49=\mathbb{Z}^2$, for some $\mathbb{Z} \in \mathbb{N}$. But then, $P^2-\mathbb{Z}^2=49 \Rightarrow (P+\mathbb{Z})(P-\mathbb{Z})=2^2\cdot 9$, look at the following cases,

P+7	P-Z	P	Z	
9	2 ²	9.74	_	→ Not possible
29	2	9-1	-	—→ IJ
49_	1	<u>49.+1</u> 2	-	→ 11

Thus the first factorisation is not possible. For other cases, $\alpha\beta\in\mathbb{Q}$ but then $\sqrt{9}$ $\in\mathbb{Q}$. Not possible. So $F(\alpha)$ is irreducible over \mathbb{Q} .

Note that, $\mathbb{Q}(\alpha, \sqrt{2})$ is Splitting field of polynomial $F(\alpha)$. Also, $\sqrt{2} \notin \mathbb{Q}(\alpha)$, thus $\mathbb{Q}(\alpha, \sqrt{2}) : \mathbb{Q} = 8$. Now resolvant cubic of $F(\alpha)$ is,

$$h(x) = x^{3} + 2px^{2} + (p^{2} - 49)x$$

$$= x (x^{2} + 2px + (p^{2} - 49))$$
Roots one $-p \pm 2\sqrt{9}$ Q

Thus Gal(f) can be \cong D8 or $\mathbb{Z}/4\mathbb{Z}$. The later case isn't possible as |Gal(f)|=8 So. We can conclude Gal(f) \cong D8.

(7) Prove that the polynomial $x^4 + px + p \in \mathbb{Q}[x]$ is irreducible for every prime p, and for $p \neq 3, 5$ has Galois group S_4 . Prove that the Galois group for p = 3 is D_8 and for p = 5 is cyclic of order 4.

Let, $f(x) = x^4 + px + p$ By Eisenstine Critation modulo p we can say f(x) is irreducible. The resolvent Cubic is,

$$h(x) = x^3 - 4Px + P^2$$

By rational root theorem h(z) don't have root in Q unless P=3.5. For $P \neq 3.5$, h(z) is irreducible. The discrimnent,

D= 256
$$\not\models^3$$
- 27 $\not\models^4$ = (256-27P)P. P²

For P=2 it's not a Square

For P \neq 2, (256-27P) P is not a Square

as $\not\models^{1}_{1256-27P}$
 $\Rightarrow \not\uparrow D \notin \Box$

So, Gal(f) \square S4.

• For P=3, $h(x) = x^3 - 12x + 9 = (x-3)(x^2 + 3x - 3)$ and discriminat $D = 3^3 \cdot 5^2 \cdot 7 \Rightarrow \mathbb{Q}(\sqrt{12}) = \mathbb{Q}(\sqrt{12})$

 $f(x) = x^4 + 3x + 3$ is not reducible in $\mathbb{Q}(\sqrt{121}) \Rightarrow Gal(f) \simeq D_8$

• For p=3, $h(x)=x^3-20x+25=(x+5)(x^2-5x+5)$ and discriminant $D=5^3\cdot ||^2 \Rightarrow \mathbb{Q}(\sqrt{D})=\mathbb{Q}(\sqrt{21}).$

 $f(x) = x^4 + 5x + 5 = (x^2 - \sqrt{5}x + \sqrt{5} + 5)(x^2 + \sqrt{5}x - \sqrt{5} + 5)$ in $Q(\sqrt{5})$. So, $Gal(f) = \mathbb{Z}/4\mathbb{Z}$

(8) Find the Galois group over \mathbb{Q} of the polynomial $x^4 + 8x^2 + 8x + 4$. Find which subfields of the splitting field are Galois over \mathbb{Q} , and for these, determine a polynomial for each over \mathbb{Q} for which they are the splitting fields.

Let, $f(x) = x^4 + 8x^2 + 8x + 4$. By rational most theorem $x = \pm 1, \pm 2, \pm 4$ one only possible rational roots But $f(\pm 1)$, $f(\pm 2)$, $f(\pm 4) \neq 0$. So, f(x) don't have any linear factor over \mathbb{Q} . Let see if f has two quadratic factor. Let,

$$f(x) = (x^{2} + a_{1}x + a_{2})(x^{2} + b_{1}x + b_{2}) = x^{4} + \underbrace{(a_{1} + b_{1})}_{=0} x^{3} + \underbrace{(a_{1} + a_{2} + b_{2})}_{=8} x^{2} + \underbrace{(a_{1} + a_{2} + b_{2})}_{=4} x^{2} + \underbrace{(a_{1} + a_{2} + b_{2})}_{=4} x^{2} + \underbrace{(a_{1} + a_{2} + b_{2})}_{=4} x^{2} + \underbrace{(a_{1} + a_{2} + b_{2})}_{=6} x^{2} + \underbrace{(a_{1} + a_{2} + b_{2})}$$

Ы	$ a_1 $	a ₂ -b ₂	a ₂ tb ₂	a_{2}	b2	Possible?
1	-1	8	4	6	-2	×
2	-2	4	4	4	0	×
4	-4	2	4	3	1	×
8	-8	1	Y	5/2	3/2	×
		, 		-	/2	×
Sim	ilarly for	c -1,-2,-4,-8.				

Thus, f(x) is irreducible over Q. The resolvent cubic is,

$$h(x) = x^3 - 16x^2 + 48x + 64$$

By rational poot theorem this polynomial is irreducible. Now discriminant of this polynomial h(x) is, $D=200704=(7\cdot12^6)^2$. Thus, Gal(f)=A4.

• The normal Subgroup of Ay is fels, Vy, Ay. Note

that [Ay: Vy]=3, corresponding field is cubic. Splitting field of f

Contains splitting field of h. Note that, [1:Q]=3, where L=Split(h)

as JD∈Q (Shown above). So, L must correspond to f(Vy).

Hence, L is Splitting field of h∞.

(9) Let L/F be a root extension, and let M be an intermediate extension. Show that M/F need not be a root extension.

Solution. Let, $\omega = \zeta_7$, then the extension $\mathbb{Q}(\omega)|_{\mathbb{Q}}$ is a root extension. We know, ω will satisfy the quadratic $x^2 - 2\cos\frac{2\pi}{7}x + 1$ as $\cos\frac{2\pi}{7} = \frac{1}{2}(\omega + \omega^{-1})$. Since $\mathbb{Q}(\cos\frac{2\pi}{7}) \in \mathbb{R}$ we can say, the degree of the extension $\mathbb{Q}(\omega)/\mathbb{Q}(\cos\frac{2\pi}{7})$ is two. But then, $\mathbb{Q}(\cos\frac{2\pi}{7})/\mathbb{Q}$ has degree 3. Since $\operatorname{Gal}(\mathbb{Q}(\omega)|\mathbb{Q})$ is isomorphic to \mathbb{Z}_6 we can say any subgroup of this Galois group is normal thus $\mathbb{Q}(\cos\frac{2\pi}{7})/\mathbb{Q}$ is Galois extension of dgree 3. If $\mathbb{Q}(\cos\frac{2\pi}{7})/\mathbb{Q}$ was a root extension it must be an extension of type $\mathbb{Q}(\sqrt[3]{a})/\mathbb{Q}$ as 3 is a prime(here $a \in \mathbb{Q}$). But then $\mathbb{Q}(\cos\frac{2\pi}{7})$ and $\mathbb{Q}(\sqrt[3]{a})$ can't be equal as the former one is Galois extension but later one is not. So, $\mathbb{Q}(\omega)/\mathbb{Q}$ is a root extension but $\mathbb{Q}(\cos\frac{2\pi}{7})/\mathbb{Q}$ is not.

(10) Solve the equation

$$x^6+2x^5-5x^4+9x^3-5x^2+2x+1$$
 in terms of radicals. (Hint: Substitute $y=x+\frac{1}{x}$).

We have to solve the following equation.

$$\chi^{6} + 2\chi^{5} - 5\chi^{4} + 9\chi^{3} - 5\chi^{2} + 2\chi + 1 = 0$$

$$\Rightarrow \chi^{3} + \frac{1}{\chi_{3}} + 2(\chi^{2} + \frac{1}{\chi^{2}}) - 5(\chi + \frac{1}{\chi}) + 9 = 0 \qquad (\chi = 0 \text{ is not a Solution,}$$

$$\Rightarrow (\chi + \frac{1}{\chi}) (\chi^{2} + \frac{1}{\chi^{2} - 1}) + 2(\chi + \frac{1}{\chi})^{2} - 5(\chi + \frac{1}{\chi}) + 5 = 0 \qquad \text{so divide the equality}$$

$$\Rightarrow (\chi + \frac{1}{\chi}) (\chi^{2} + \frac{1}{\chi^{2} - 1}) + 2(\chi + \frac{1}{\chi})^{2} - 5(\chi + \frac{1}{\chi}) + 5 = 0 \qquad \text{so divide the equality}$$

$$\Rightarrow$$
 $y(y^2-3)+2y^2-5y+5=0$ [Here $y=x+\frac{1}{x}$]

$$\Rightarrow$$
 $y^3 + 2y^2 - 8y + 5 = 0$

$$\Rightarrow$$
 (y-1) (y² +3y-5)=0

$$\Rightarrow$$
 solution to the cubic in y is, $y=1$, $\frac{-3\pm\sqrt{29}}{2}$.

Let,
$$\alpha = \frac{-3 + \sqrt{29}}{2}$$
, $\beta = \frac{-3 - \sqrt{29}}{2}$.

We have to solve the following eqns:-

•
$$x+\frac{1}{x}=1 \Rightarrow x^2-x+1=0$$
, $x=-w,-w^2(w:= wbe rost of unity)$

•
$$\chi + \frac{1}{\chi} = \alpha \Rightarrow \chi^2 - \alpha \chi + 1 = 0$$
, $\chi = \frac{\alpha \pm \sqrt{\alpha^2 - 4}}{2}$

- · Similar for 2+ = B.
- Solution to the given 6 degree polynomial ore, $-\omega_1 \omega_2^2 = \frac{\alpha \pm \sqrt{\alpha^2 4}}{2}$. Where, $\alpha = -\frac{3 + \sqrt{14}}{2}$, $\beta = -\frac{3 \sqrt{29}}{2}$.

(11) Show that for each $n \in \mathbb{N}$, $x^n - 1$ is solvable by radicals over \mathbb{Q} .

Solution. Let, ζ_n be n-th primitive roots of unity and μ_n be the group of all n-th roots of unity. We know μ_n is isomorphic to the group $\mathbb{Z}/n\mathbb{Z}$ with it's generator ζ_n . Thus $\mathbb{Q}(\zeta_n)|_{\mathbb{Q}}$ is the Galois extension for $f(x) = x^n - 1$, as it contains all the roots of f and all the roots are distinct (by checking f'). Thus we have,

$$\operatorname{Gal}(f) \simeq \operatorname{Aut}(\mathbb{Q}(\zeta_n)|\mathbb{Q}) \simeq (\mathbb{Z}/n\mathbb{Z})^*$$

If $n = 2^{a_0} p_1^{a_1} \cdots p_k^{a_k}$, where p_i are odd primes, we must have

$$(\mathbb{Z}/n\mathbb{Z})^* \simeq (\mathbb{Z}/2^{a_0}\mathbb{Z})^* \times \cdots \times (\mathbb{Z}/p_k^{a_k}\mathbb{Z})^*$$

Now consider the following composition series,

$$\{e\} \leq (\mathbb{Z}/2^{a_0}\mathbb{Z})^* \leq (\mathbb{Z}/2^{a_0}\mathbb{Z})^* \times (\mathbb{Z}/p_1^{a_1}\mathbb{Z})^* \cdots \leq (\mathbb{Z}/n\mathbb{Z})^*$$

Except the first term quotient of consecutive terms are isomorphic to $(\mathbb{Z}/p_i^{a_i}\mathbb{Z})^{ast}$, for odd primes p_i this is a cyclic group. We also know from group theory $(\mathbb{Z}/2^t\mathbb{Z})^{ast}$ is solvable. Thus, the above composition series is solvable series. Hence, $(\mathbb{Z}/n\mathbb{Z})^*$ is solvable. Thus $\operatorname{Gal}(f)$ is solvable and hence $x^n - 1$ is solvable by radicals.

(12) Let $p(x) = x^6 - 3x^3 - 1$. Show that p(x) is solvable by radicals over \mathbb{Q} .

Solution. We will explicitly write down the roots,

$$x^{6} - 3x^{3} - 1 = 0$$

$$x^{3} = \frac{3 \pm \sqrt{13}}{2}$$

$$x = \sqrt[3]{\frac{3 \pm \sqrt{13}}{2}}, \sqrt[3]{\frac{3 \pm \sqrt{13}}{2}}\omega, \sqrt[3]{\frac{3 \pm \sqrt{13}}{2}}\omega^{2}$$

where, $\omega = \frac{-1+i\sqrt{3}}{2}$ is the cube root of unity. Thus, all the roots of the polynomial are solvable by radicals.

(13) Show that $x^5 - x - 1$ is not solvable by radicals.

Solution. We will show, $f(x) = x^5 - x - 1$ is irreducible in \mathbb{Q} . To show this check this polynomial in $\mathbb{Z}/5\mathbb{Z}$. If this polynomial was reducible over \mathbb{Q} it must have been reducible over $\mathbb{Z}/5\mathbb{Z}$. We claim the following:

Claim— The polynomial $x^p - x - 1$ is irreducible over \mathbb{F}_p , for a prime p

Proof. This result was proved in Assignment-1A.

Using the above result we can say $x^5 - x - 1$ is irreducible over $\mathbb{Z}/5\mathbb{Z}$ and hence irreducible over \mathbb{Q} . This means Galois group of f contains a 5-cycle. We can write this polynomial as $(x^3 + x^2 + 1)(x^2 + x + 1)$ in $\mathbb{Z}/2\mathbb{Z}$. By Dedekind's theorem $\operatorname{Gal}(f)$ contains as (3,2)-cycle. By taking cube of this element we get a transposition. Thus $\operatorname{Gal}(f) \subseteq S_5$ contains a transposition and a 5-cycle, by the group structure of S_5 we know, $\operatorname{Gal}(f) = S_5$. We know a polynomial is solvable by radicals iff it's Galois group is solvable. But S_5 is not solvable. So the given polynomial is not solvable by radicals.

(14) Show that if K is a subfield of $\mathbb C$ and L/K is a root extension which is also normal, then the Galois group of L/K is solvable.

Solution. As L is a root extension of K, that is, it is obtained as a chain of simple radical extensions, and K is a subfield of \mathbb{C} , we get L is separable over K. Further, L is normal over K and hence, L/K is a Galois extension. Now, it is a result proved in Assignment 1, that an extension is normal iff it is a splitting field of a (single) polynomial f. Hence, we have a Galois extension L/K which is the splitting field of a polynomial $f \in K[x]$, and is given to be a root extension. By definition, this means all roots of f are expressible by radicals. We now use the result that a polynomial is solvable by radicals iff it has a solvable Galois group to conclude $\operatorname{Gal}(L/K)$ is a solvable group.

(15) Show that of n is an integer such that n > 1, and p is a prime then the quintic $x^5 - npx + p$ cannot be solved by radicals.

Solution. Let, $f(x) = x^5 - npx + p$. By Eisenstein criteria for p we get, this is irreducible. So, Gal(f) contains a 5-cycle. Now note that,

$$f(0) = p > 0, f(1) = 1 + p(1 - n) < 0 \text{ (as } n > 1)$$

 $\lim_{x \to \infty} f(x) \to \infty, \lim_{x \to -\infty} f(x) \to -\infty$

Thus f(x) has three roots in the region, $(-\infty,0),(0,1)$ and $(1,\infty)$ respectively. Also note, $f'(x) = 5x^4 - np$ has two real solutions and $f\left(\pm\sqrt[4]{\frac{np}{5}}\right)$ is non-zero. So these are the only real roots of f(x). Thus, f(x) has exactly two complex roots. Let α be a complex root of f, then $\bar{\alpha}$ is the other complex root. There is an element σ in $\mathrm{Gal}(f)$ such that $\sigma(\alpha) = \bar{\alpha}$ thus σ has order 2 in the Galois group. Thus $\mathrm{Gal}(f) \subseteq S_5$ contains a 5-cycle and a transposition and hence $\mathrm{Gal}(f) = S_5$. Again this group is not solvable. So f is not solvable by radicals.