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§ Problem 1

Problem. Determine the automorphism of the extension Q( 4
√
2) over Q(

√
2). Give proper justifications.

Proof. We claim that m 4√2,Q(
√
2) = x2 −

√
2. To prove this, observe that 4

√
2 is a root of x2 −

√
2. Thus,

it suffices to show that x2 −
√
2 is irreducible over Q(

√
2). Assuming the contrary would imply that it factors

into linear terms over Q(
√
2), leading to a contradiction. Therefore, m 4√2,Q(

√
2) = x2 −

√
2.

Since x2 −
√
2 = (x− 4

√
2)(x+ 4

√
2), we conclude that Q( 4

√
2) = Q(

√
2, 4

√
2) is the splitting field of x2 −

√
2.

To compute the group Aut(Q( 4
√
2) | Q(

√
2)), we can focus on where the generator 4

√
2 is mapped. Let σ ∈

Aut(Q( 4
√
2) | Q(

√
2)). Since σ( 4

√
2) must be a root of x2 −

√
2, we have σ(

√
2) = ± 4

√
2. This implies that the

order of the group Aut(Q( 4
√
2) | Q(

√
2)) is at most 2. By the Isomorphism Extension Theorem, we can find σ

such that σ( 4
√
2) = 4

√
2 and σ(

√
2) = − 4

√
2. Hence, Aut(Q( 4

√
2) | Q(

√
2)) ∼= Z/2Z. ■

§ Problem 2

Problem. (a) Prove that any σ ∈ Aut(R | Q) takes squares to squares and takes positive real numbers to
positive real numbers.

(b) Prove that any σ ∈ Aut(R | Q) is, thus, order preserving, i.e., if a < b, then σ(a) < σ(b) for every
a, b ∈ R
(c) Prove that − 1

m < a− b < 1
m implies − 1

m < σ(a)−σ(b) < 1
m . Hence prove that σ is a continuous map

on R.
(d) Prove that any continuous map on R which is identity on Q is the identity map, hence Aut (R | Q)
is the trivial group.

Proof. (a) For any σ ∈ Aut(R | Q), we have σ(x2) = σ(x)2, which implies that σ maps squares to squares.
Take any positive real number a > 0, then σ(a) = (σ(

√
a))2 ≥ 0. Since σ is an automorphism and its kernel is

{0}, we conclude that σ(a) > 0 for all a > 0.

(b) If a < b, then b−a > 0, and consequently, 0 < σ(b−a) = σ(b)−σ(a). This shows that σ is order-preserving.

(c) Observe that σ(1) = 1 as σ ∈ Aut(R/Q). We also have, σ
(
1
m

)
= 1

m . Now, let − 1
m < a− b < 1

m . Using part
(b), we find:

− 1

m
= σ

(
− 1

m

)
< σ(a)− σ(b) < σ

(
1

m

)
=

1

m
.

for any ε > 0, we can find n0 ∈ N such that 1
n < ε for all n ≥ n0. Take δ = 1

n0
. Then, for all |x− y| < δ, using

the result above, we have |σ(y)− σ(x)| < ε. Thus, σ is uniformly continuous.

(d) Consider a continuous function f : R → R such that f |Q = idQ. For x ∈ R \ Q, there exists a sequence of
rational numbers {rn}n∈N ⊆ Q converging to x. Therefore, we have:
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f(x) = f
(
lim
n→∞

rn

)
= lim

n→∞
f(rn) = lim

n→∞
rn = x.

This shows that f = idR. Consequently, if σ ∈ Aut(R | Q), then, as shown in part (c), σ is continuous and
equal to the identity on the rational numbers. Therefore, σ = idR. Thus, Aut (R | Q) is the trivial group. ■

§ Problem 3

Problem. actor the polynomial x4 − 2 into irreducible factors over each of the fields Q,Q(
√
2),

Q(
√
2, i),Q( 4

√
2),Q( 4

√
2, i), where 4

√
2 is the positive real fourth root of 2.

Solution. Let’s analyze the irreducibility of the polynomial x4 − 2 over various fields:

� Over Q: By Eisenstein’s criteria for the prime p = 2, we can conclude that x4 − 2 is irreducible over Z.
Since Q is the field of fractions of Z, by Gauss’ Lemma, we deduce that x4 − 2 is irreducible over Q.

� Over Q(
√
2): We factor x4 − 2 as (x2 −

√
2)(x2 +

√
2). We’ve previously established that x2 −

√
2 is

irreducible over Q(
√
2). Additionally, since a2 +

√
2 > 0 for all a ∈ R (which includes Q(

√
2)), we can

infer that x2 +
√
2 does not split into linear factors over Q(

√
2). Thus, x2 +

√
2 is also irreducible over

Q(
√
2).

� Over Q(
√
2, i): We can observe that x4 − 2 factors as (x2 −

√
2)(x2 +

√
2) over Q(

√
2, i).

� Over Q( 4
√
2): We claim that x4− 2 factors as (x2+

√
2)(x− 4

√
2)(x+ 4

√
2) over Q( 4

√
2). To establish this,

it suffices to show that x2 +
√
2 is irreducible over Q( 4

√
2). For any real number a, we have a2 +

√
2 > 0,

ensuring that x2 +
√
2 cannot be factored into linear terms over Q( 4

√
2), which is a subset of R. Thus,

x2 +
√
2 remains irreducible over Q( 4

√
2).

� Over Q( 4
√
2, i): We observe that x4 − 2 splits into linear factors over Q( 4

√
2, i) as x4 − 2 = (x− 4

√
2)(x+

4
√
2)(x− 4

√
2i)(x+ 4

√
2i). ■

§ Problem 4

Problem. Let p be a prime. Determine the elements of the Galois group of xp − 2 over Q. Prove that

this Galois group is isomorphic to the group of matrices

(
a b
0 1

)
where a, b ∈ Fp, a ̸= 0, a subgroup of

GL2 (Fp).

Proof. We assert that the splitting field of xp − 2 over Q is Q( p
√
2, ζ), where ζ is a primitive p-th root of

unity. All the roots of xp−2 are contained in the set
{

p
√
2ζi | i = 0, 1, . . . , p− 1

}
, smallest field containg this set

is by definitionQ( p
√
2, ζ). Consequently, F = Q( p

√
2, ζ), solidifying it as the splitting field of xp − 2 and thereby

a normal extension. By Eisenstein’s criteria, xp − 2 is irreducible over Z, and Gauss’ Lemma implies that
it’s irreducible over Q. As any irreducible polynomial over a characteristic-zero field is separable, Q( p

√
2, ζ) is

both normal and separable, establishing it as a Galois extension.

Note that
∣∣Gal(Q( p

√
2, ζ)/Q)

∣∣ = [Q( p
√
2, ζ) : Q] = p(p−1). Any σ ∈ Gal(Q( p

√
2, ζ) | Q) is defined by its action on

the generators p
√
2 and ζ. Thus σ( p

√
2) must be a root of xp − 2, we have σ( p

√
2) ∈

{
p
√
2ζi | i = 0, 1, . . . , p− 1

}
.

Additionally, σ(ζ) must be a root of minζ,Q(x) =
∑p−1

i=0 xi, implying σ(ζ) = ζa for some a ∈ 1, 2, . . . , p− 1.

We’ll now show that there exist σij such that σij(
p
√
2) = p

√
2ζj and σij(ζ) = ζi, where i ∈ F×

p and j ∈ Fp. By
the Isomorphism Extension Theorem, there exists an extension σa of IdQ such that σa(ζ) = ζa. Using the same
theorem again, there exists an extension σab of σa such that σab(

p
√
2) = p

√
2ζb.
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Q(ζ, p
√
2) Q(ζ, p

√
2)

Q(ζ) Q(ζ)

Q QId

ζ 7→ζi

p√27→ p√2ζj

Now we will show, the Galois group Gal(Q( p
√
2, ζ)/Q) is isomorphic to the groupG =

{(
a b
0 1

)
| a ∈ F×

p , b ∈ Fp

}
,

which is a subgroup of GL2(Fp). We define a mapping φ as:

φ : Gal(Q(
p
√
2, ζ) | Q) → G, σij 7→

(
i j
0 1

)
It can be shown that φ is a group homomorphism, surjective, and has ker(φ) = idQ, implying its injectiveness.

Therefore, φ is an isomorphism, and we conclude that Gal(Q( p
√
2, ζ) | Q) is isomorphic to G. ■

§ Problem 5

Problem. Suppose that K is a Galois extension of F of degree pn for some prime p and some n ≥ 1.
Show there are Galois extensions of F contained in K of degrees p and pn−1.

Proof. Let G = Gal(K/F ) be the Galois group of the extension K/F . Since K/F is a Galois extension of
degree pn, we have |G| = pn. Now, let’s consider the subgroups of G. By Lagrange’s theorem, the order of any
subgroup of G must divide the order of G, which is pn. Since p is prime, the possible orders of subgroups are
1, p, p2, . . . , pn.

We are interested in finding Galois extensions of F contained in K. Each subgroup of G corresponds to a field
fixed by that subgroup. Now, we want to find subgroups H such that F(H)/F has a certain degree. We are
looking for two subgroups with degrees p and pn−1, respectively.

� Normal subgroup of degree p: Consider the center of group G, Z(G). By the class equation we can
notice, order of Z(G) must be divisable by p. Since it is a subgroup of a p-group it must have order pr for
some 1 ≤ r ≤ n, it has a sub group H1 of order p and H1 ∈ Z(G), i.e. H1 ⊴ G. The extension F(H1)|F
is Galois and it has degree pn−1 by the Galois correspondence theorem.

� Normal subgroup of degree pn−1: We have noticed H1 ⊴ G, G/H1 is also a p-group it also have a
normal subgroup of order p call it H2/H1. By fourth isomorphism theorem we can say H2 ⊴ G and it
has order p2. Continuing this way we can get a subgroup H ⊴ G of order pn−1. The extension F(H)|F is
Galois and it has degree p. ■

§ Problem 6

Problem. Show that Q(
√

2 +
√
2) is a cyclic extension of degree 4 over Q.

Proof. We assert that minimal polynomial of
√

2 +
√
2 over Q to be x4 − 4x2 + 2. Notably,

√
2 +

√
2 is a

root of x4 − 4x2 + 2, which can be observed from the following,

x4 − 4x2 + 2 =
(
x2 − 2

)2 − 2,
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From this expression, it becomes evident that
√
2 +

√
2 is indeed a root of x4 − 4x2 + 2. Hence, it suffices to

establish the irreducibility of x4 − 4x2 + 2 over Q. Employing Eisenstein’s criterion with p = 2, we conclude
that x4 − 4x2 + 2 is irreducible over Z. Consequently, by Gauss’ Lemma, it is also irreducible over Q. Thus,

x4 − 4x2 + 2 indeed represents the minimal polynomial of
√

2 +
√
2 over Q.

Subsequently, we ascertain [Q(
√

2 +
√
2) : Q] = 4. To complete the proof, it remains to demonstrate the

existence of an element of order 4 within Aut(Q(
√

2 +
√
2)/Q). We establish that

√
2 ∈ Q(

√
2 +

√
2), as it

follows from
√
2 = (

√
2 +

√
2)2 − 2 ∈ Q(

√
2 +

√
2). Consequently, we also deduce that√

2−
√
2 =

√
2√

2 +
√
2
∈ Q(

√
2 +

√
2).

As a result,

x4 − 4x2 + 2 = (x+

√
2 +

√
2)(x−

√
2 +

√
2)(x+

√
2−

√
2)(x−

√
2−

√
2),

splits over Q(
√

2 +
√
2). Thus, Q(

√
2 +

√
2) functions as the splitting field of x4 − 4x2 + 2. Since x4 − 4x2 + 2

possesses all distinct roots within its splitting field, we deduce that Q(
√

2 +
√
2) is a Galois extension over Q.

Applying the Isomorphism Extension Theorem, we conclude the existence of a σ ∈ Gal(Q(
√

2 +
√
2) | Q) such

that σ(
√

2 +
√
2) =

√
2−

√
2. We assert that the order of σ is 4. Observe that

σ(
√
2) = σ

(
(

√
2 +

√
2)2 − 2

)
= σ(

√
2 +

√
2)2 − 2 = (

√
2−

√
2)2 − 2 = −

√
2.

Hence, we deduce

σ2(

√
2 +

√
2) = σ

( √
2√

2 +
√
2

)
=

σ(
√
2)

σ(
√
2 +

√
2)

= −
√
2√

2−
√
2
= −

√
2 +

√
2.

Thus, o(σ) > 2, and o(σ) |
∣∣∣Gal(Q(

√
2 +

√
2)/Q)

∣∣∣ = 4. Consequently, o(σ) = 4. As a result, we have

demonstrated that Gal(Q(
√

2 +
√
2) | Q) ∼= Z/4Z, establishing that Q(

√
2 +

√
2) represents a cyclic extension

over Q. ■

§ Problem 7

Problem. Let K be a Galois extension of a field F such that Gal(K | F ) ∼= Z/2Z × Z/12Z. How many
intermediate fields L are there such that
(a) [L : F ] = 4,
(b) [L : F ] = 9,
(c) Gal(K | L) ∼= Z/4Z.

Proof. Given that K is a Galois extension over F with Gal(K | F ) ∼= Z/2Z × Z/12Z, implying [K : F ] =
|Gal(K | F )| = 24, we proceed to analyze the intermediate fields:

(a) When [L : F ] = 4, we find that [K : L] = [K : F ]/[L : F ] = 6. By the Galois Correspondence Theorem,
the number of such intermediate fields L corresponds to the number of order 6 subgroups of Z/2Z×Z/12Z. To
count these, we note that any subgroup of Z/2Z × Z/12Z is abelian, and the only abelian group of order 6 is
isomorphic to Z/6Z. The elements of order 6 in Z/2Z× Z/12Z are:

{(0, 2), (0, 10), (1, 2), (1, 10), (1, 4), (1, 8)}.
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Since (0, 10) ∈ ⟨(0, 2)⟩ and (1, 10) ∈ ⟨(1, 2)⟩, there are 4 distinct subgroups of order 6 in Z/2Z × Z/12Z,
namely, ⟨(0, 2)⟩, ⟨(1, 2)⟩, ⟨(1, 4)⟩, and ⟨(1, 8)⟩. Therefore, there are 4 distinct intermediate fields F ⊆ L ⊆ K
such that [L : F ] = 4.

(b) Since 9 does not divide 24, it follows that [L : F ] ∤ [K : F ]. Consequently, there are no intermediate
fields F ⊆ L ⊆ K with [L : F ] = 9.

(c) To determine the number of intermediate fields F ⊆ L ⊆ K such that Gal(K | L) ∼= Z/4Z, we employ
the Galois Correspondence Theorem once more. The count is equivalent to the number of cyclic subgroups of
order 4 in Z/2Z× Z/12Z. Elements of order 4 in Z/2Z× Z/12Z are:

{(0, 3), (0, 9), (1, 3), (1, 9)}.

Since (0, 9) ∈ ⟨(0, 3)⟩ and (1, 9) ∈ ⟨(1, 3)⟩, there are 2 distinct cyclic subgroups of order 4 in Z/2Z × Z/12Z,
which are ⟨(0, 3)⟩ and ⟨(1, 3)⟩. Hence, there exist 2 distinct intermediate fields F ⊆ L ⊆ K such that Gal(K |
L) ∼= Z/4Z. ■

§ Problem 8

Problem. Let f(x) = x4 + bx2 + c be over F and let K be the splitting field of f . Prove that Gal(K | F )
is contained in D8 (the dihedral group with 8 elements).

Proof. We will deal with two separate cases. First when c is 0. Then the splitting filed of f(x) = x4 + bx2

will depend on the roots of x2+ b. Splitting field K of it has degree 2 then the automorphism group Aut(K/F )
will have order at-most 2 hence it is subgroup of Z/2Z. Since there is a copy of Z/2Z in D8, Aut(K/F ) is
subgroup of D8.

If c ̸= 0 we shall show that the automorphism group, Aut(K/F ) cannot contain an element of order 3. In this
case none of the roots are zero. Let, α, β,−α,−β are the roots of f(x). Any order 3 element of Aut(K/F ) can
be treated as a 3-cycle (a, b, c)(d) so σ can fix exactly one root of f(x). But this is not possible as if the element
fixes α it must fix −α. We know Aut(K/F ) ≤ S4. Now |S4| = 24 = 3 × 23, elements of automorphism group
must lie in the 2-sylow subgroups of S4. We know S4 has three 2-sylow subgroup which are isomorphic to D8.
Thus Aut(K/F ) ≤ D8. ■

§ Problem 9

Problem. Let K |F be a field extension of characteristic p ̸= 0, and let α be a root in K of an irreducible
polynomial f(x) = xp − x− a over F .
(a) Prove that α+ 1 is also a root of f(x).
(b) Prove that the Galois group of f over F is cyclic of order p.

Solution. (a) Consider α as a root of f , which implies f(α) = αp − α− a = 0. Now, take a closer look:

f(α+ 1) = (α+ 1)p − (α+ 1)− a

= αp + 1− (α+ 1)− a( as it a characteristic p field)

= αp − α− a

= 0.

As a result, if α serves as a root of f , it follows that α+ 1 is also a root of f .
(b) Let’s consider K as the splitting field of f over F . It’s worth noting that f is separable since it’s

irreducible, and f(x) /∈ F [xp]. Now, as demonstrated in part (a), if α is a root of f , then so is α+ 1. Assume
α ∈ K is a root of f . This implies that {α, α + 1, . . . , α + (p − 1)} are all within K and are distinct roots of
f . Consequently, K = F (α). To complete the proof, we need to show that f(x) is the minimal polynomial
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of α over F , this is true as f(x) is irreducible in F . Using the Extension Isomorphism Theorem, we conclude
that there exists a σ ∈ Gal(K/F ) such that σ(α) = α + 1. Consequently, we have o(σ) = p. However,
|Gal(K/F )| = [F (α) : F ] = deg(f) = p. Therefore, Gal(K/F ) is a cyclic group of order p. ■

§ Problem 10

Problem. Prove or disprove: Normal extensions of normal extensions is normal.

Solution. We present a counterexample to illustrate that a normal extension of a normal extension may
not necessarily be normal. Consider the following extension sequence: Q ⊂ Q(

√
2) ⊂ Q( 4

√
2). Firstly, Q(

√
2) is

the splitting field of the separable and irreducible polynomial x2 − 2 over Q, and consequently, it qualifies as a
normal extension.

Similarly, we have previously established that Q( 4
√
2) is also a normal extension of Q(

√
2). However, it’s

important to note that Q( 4
√
2) is not normal over Q. This can be discerned from the fact that the splitting

field of the minimal polynomial x4 − 2 is Q( 4
√
2, i), which extends beyond Q( 4

√
2). Therefore, we have a case

where a normal extension Q( 4
√
2)|Q(

√
2) of a normal extension Q(

√
2)|Q does not maintain its normality when

considered over the original field Q. ■
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