ASSIGNMENT-1B

Galois Theory

TRISHAN MONDAL

§ Problem 1

[ Problem. Determine the automorphism of the extension Q(+/2) over Q(v/2). Give proper justifications.

Proof. We claim that M5 0(v3) = z2 — /2. To prove this, observe that v/2 is a root of 22 — /2. Thus,

it suffices to show that 22 — /2 is irreducible over Q(v/2). Assuming the contrary would imply that it factors
into linear terms over @(\/5), leading to a contradiction. Therefore, m Y3.0(v2) = 2 — /2.

Since 22 — V2 = (x — v/2)(x + v/2), we conclude that Q(v/2) = Q(v/2, v/2) is the splitting field of 22 — /2.
To compute the group Aut(Q(+v/2) | Q(v/2)), we can focus on where the generator v/2 is mapped. Let o €
Aut(Q(v/2) | Q(+v/2)). Since o(+/2) must be a root of 22 — /2, we have o(v/2) = ++v/2. This implies that the
order of the group Aut(Q(v/2) | Q(v/2)) is at most 2. By the Isomorphism Extension Theorem, we can find o
such that o(v/2) = v/2 and 0(v/2) = —v/2. Hence, Aut(Q(v/2) | Q(v/2)) = Z/27Z. [

§ Problem 2

Problem. (a) Prove that any o € Aut(R | Q) takes squares to squares and takes positive real numbers to
positive real numbers.

(b) Prove that any o € Aut(R | Q) is, thus, order preserving, i.e., if a < b, then o(a) < o(b) for every
a,beR

(c) Prove that —X < a—b < L implies —1 < o(a) —o(b) < . Hence prove that ¢ is a continuous map
on R.

(d) Prove that any continuous map on R which is identity on Q is the identity map, hence Aut (R | Q)
is the trivial group.

Proof. (a) For any o € Aut(R | Q), we have o(2?) = o(z)?, which implies that ¢ maps squares to squares.
Take any positive real number a > 0, then o(a) = (o(y/a))? > 0. Since ¢ is an automorphism and its kernel is
{0}, we conclude that o(a) > 0 for all a > 0.

(b) If a < b, then b—a > 0, and consequently, 0 < o(b—a) = o(b) —o(a). This shows that o is order-preserving.

(c) Observe that o(1) = 1 as 0 € Aut(R/Q). We also have, o (1) = L. Now, let —L < a—b< L. Using part
(b), we find:
1 1 1 1
—— =0 (—> <o(a)—o(b) <o () = —.
m m m m
for any € > 0, we can find ng € N such that % < ¢ for all n > ng. Take § = nio. Then, for all |z — y| < 4, using

the result above, we have |o(y) — o(z)| < e. Thus, ¢ is uniformly continuous.

(d) Consider a continuous function f : R — R such that f|g = idg. For x € R\ Q, there exists a sequence of
rational numbers {r, },en C Q converging to x. Therefore, we have:



)= 1 (Jim ) = Jim £(r) = Jim 1o =

This shows that f = idg. Consequently, if o € Aut(R | Q), then, as shown in part (c), o is continuous and
equal to the identity on the rational numbers. Therefore, ¢ = idg. Thus, Aut (R | Q) is the trivial group. W

§ Problem 3

Problem. actor the polynomial 2* — 2 into irreducible factors over each of the fields Q,Q(v/2),
Q(v2,1),Q(+/2),Q(v/2,i), where v/2 is the positive real fourth root of 2.

Solution. Let’s analyze the irreducibility of the polynomial 2* — 2 over various fields:

e Over Q: By Eisenstein’s criteria for the prime p = 2, we can conclude that z* — 2 is irreducible over Z.
Since Q is the field of fractions of Z, by Gauss’ Lemma, we deduce that 2* — 2 is irreducible over Q.

e Over Q(v2): We factor z* — 2 as (22 — v/2)(z% + v/2). We've previously established that 22 — v/2 is
irreducible over Q(+/2). Additionally, since a? + /2 > 0 for all @ € R (which includes Q(v/2)), we can
infer that 22 + v/2 does not split into linear factors over Q(\@) Thus, 2 + v/2 is also irreducible over

Q(v2).
e Over Q(v/2,i): We can observe that z* — 2 factors as (22 — v/2)(z% + v/2) over Q(v/2,1).

e Over Q(v/2): We claim that 2% — 2 factors as (z° + v2)(z — v/2)(z + v/2) over Q(+/2). To establish this,
it suffices to show that 2 + /2 is irreducible over Q({L/ﬁ). For any real number a, we have a?+v2 > 0,
ensuring that 2 + /2 cannot be factored into linear terms over Q({l/i), which is a subset of R. Thus,
22 + /2 remains irreducible over Q(+/2).

e Over Q(+v/2,i): We observe that z* — 2 splits into linear factors over Q(v/2,i) as z* —2 = (z — v/2)(x +
V2)(z — V/2i)(z + V/26). u

§ Problem 4

Problem. Let p be a prime. Determine the elements of the Galois group of 2P — 2 over Q. Prove that

this Galois group is isomorphic to the group of matrices < 8 Ii ) where a,b € ), a # 0, a subgroup of

GLy (F,).

Proof. We assert that the splitting field of 2?7 — 2 over Q is Q({/2, (), where  is a primitive p-th root of
unity. All the roots of P — 2 are contained in the set {{’@CZ |i=0,1,...,p— 1}, smallest field containg this set
is by definitionQ(%/2, ¢). Consequently, F = Q({/2,(), solidifying it as the splitting field of 27 — 2 and thereby
a normal extension. By Eisenstein’s criteria, P — 2 is irreducible over Z, and Gauss’ Lemma implies that
it’s irreducible over Q. As any irreducible polynomial over a characteristic-zero field is separable, Q(/2,¢) is
both normal and separable, establishing it as a Galois extension.

Note that |Gal(Q(%/2,¢)/Q)| = [Q(¥/2,¢) : Q] = p(p—1). Any o € Gal(Q(¥/2,¢) | Q) is defined by its action on
the generators ¥/2 and ¢. Thus o({/2) must be a root of 2 — 2, we have o(¥/2) € {¥/2¢* |i=0,1,...,p—1}.

Additionally, o(¢) must be a root of min¢ g(x) = f:_ol 2!, implying o(¢) = ¢* for some a € 1,2,...,p — 1.

We’ll now show that there exist o;; such that o;;({/2) = ¥/2¢7 and 0;;(¢) = (¢, where i € F) and j € F,. By
the Isomorphism Extension Theorem, there exists an extension o, of Idg such that 04(¢) = ¢*. Using the same
theorem again, there exists an extension oy, of o, such that o, (¥/2) = ¢/2¢°.
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which is a subgroup of GL2(F,). We define a mapping ¢ as:

p:Gal(QV2,0) |Q) = G, o5 < 8 i )

It can be shown that ¢ is a group homomorphism, surjective, and has ker(y¢) = idg, implying its injectiveness.
Therefore, ¢ is an isomorphism, and we conclude that Gal(Q(%/2,¢) | Q) is isomorphic to G. [

§ Problem 5

Problem. Suppose that K is a Galois extension of F' of degree p™ for some prime p and some n > 1.
Show there are Galois extensions of F' contained in K of degrees p and p" 1.

Proof. Let G = Gal(K/F) be the Galois group of the extension K/F. Since K/F is a Galois extension of
degree p™, we have |G| = p™. Now, let’s consider the subgroups of G. By Lagrange’s theorem, the order of any
subgroup of G must divide the order of G, which is p™. Since p is prime, the possible orders of subgroups are
1,p,p%, ...,p"

We are interested in finding Galois extensions of F' contained in K. FEach subgroup of G corresponds to a field
fixed by that subgroup. Now, we want to find subgroups H such that F(H)/F has a certain degree. We are
looking for two subgroups with degrees p and p™ !, respectively.

e Normal subgroup of degree p: Consider the center of group G, Z(G). By the class equation we can
notice, order of Z(G) must be divisable by p. Since it is a subgroup of a p-group it must have order p" for
some 1 < r < n, it has a sub group H; of order p and H; € Z(G), i.e. H; < G. The extension F(H1)|r
is Galois and it has degree p"~! by the Galois correspondence theorem.

e Normal subgroup of degree p"~!': We have noticed H; < G, G/H; is also a p-group it also have a
normal subgroup of order p call it Hyo/H;. By fourth isomorphism theorem we can say Hy < G and it
has order p?. Continuing this way we can get a subgroup H < G of order p"~!. The extension F(H)|F is
Galois and it has degree p. |

§ Problem 6

[ Problem. Show that Q(1/2 + v/2) is a cyclic extension of degree 4 over Q.

Proof. We assert that minimal polynomial of v/2 + v/2 over Q to be z* — 422 + 2. Notably, /2 + /2 is a
root of z* — 422 + 2, which can be observed from the following,

x4—4x2+2:(w2—2)2—2,



From this expression, it becomes evident that v/2 + v/2 is indeed a root of z* — 422 + 2. Hence, it suffices to
establish the irreducibility of z* — 422 4+ 2 over Q. Employing Eisenstein’s criterion with p = 2, we conclude
that 2% — 422 + 2 is irreducible over Z. Consequently, by Gauss’ Lemma, it is also irreducible over Q. Thus,
z* — 422 + 2 indeed represents the minimal polynomial of v/2 + v/2 over Q.

Subsequently, we ascertain [Q(v/2 + v/2) : Q] = 4. To complete the proof, it remains to demonstrate the
existence of an element of order 4 within Aut(Q(v/2 + v/2)/Q). We establish that v/2 € Q(v2 ++/2), as it

follows from v/2 = (v/2 4+ v/2)? — 2 € Q(v/2 + v/2). Consequently, we also deduce that
2
2—\/5:\/%6@(\/2+\f2).

As a result,

et —da? 2= (x+\/2+V2)(zr — 2+ V2)(x+ 2 - V2)(z — /2 - V2),

splits over Q(v/2 + v/2). Thus, Q(v/2 + v/2) functions as the splitting field of 2* — 422 + 2. Since z* — 422 4 2
possesses all distinct roots within its splitting field, we deduce that Q(v/2 + v/2) is a Galois extension over Q.

Applying the Isomorphism Extension Theorem, we conclude the existence of a o € Gal(Q(v/2 + v/2) | Q) such
that (/2 +v/2) = /2 — /2. We assert that the order of o is 4. Observe that

a(\@)zo—<(\/2+\f2)2—2) —o(\/24+V2)?—2=(\/2-V2)?—2=—V2.

H(?HC(), we deduC()

Thus, o(o) > 2, and o(o) | ‘Gal(@(\/2+ﬂ)/(@)‘ = 4. Consequently, o(c) = 4. As a result, we have

demonstrated that Gal(Q(v/2 + v/2) | Q) = Z/47Z, establishing that Q(v/2 4 v/2) represents a cyclic extension
over Q. |

§ Problem 7

Problem. Let K be a Galois extension of a field F' such that Gal(K | F') = Z/27Z x Z/12Z. How many
intermediate fields L are there such that

(a) [L: F] =4,

(b) [L: F] =9,

(c) Gal(K | L) = Z/AZ.

Proof. Given that K is a Galois extension over F' with Gal(K | F') = Z/27Z x Z/12Z, implying [K : F] =
| Gal(K | F')| = 24, we proceed to analyze the intermediate fields:

(a) When [L : F| =4, we find that [K : L| = [K : F]/[L : F] = 6. By the Galois Correspondence Theorem,
the number of such intermediate fields L corresponds to the number of order 6 subgroups of Z/2Z x Z/12Z. To
count these, we note that any subgroup of Z/27Z x 7Z/127 is abelian, and the only abelian group of order 6 is
isomorphic to Z/6Z. The elements of order 6 in Z/27Z x 7 /127 are:

{(0,2),(0,10), (1,2), (1,10), (1,4), (1,8)}.



Since (0,10) € ((0,2)) and (1,10) € ((1,2)), there are 4 distinct subgroups of order 6 in Z/2Z x Z/12Z,
namely, ((0,2)), ((1,2)), ((1,4)), and ((1,8)). Therefore, there are 4 distinct intermediate fields F* C L C K
such that [L: F] = 4.

(b) Since 9 does not divide 24, it follows that [L : F] 1 [K : F]. Consequently, there are no intermediate
fields F € L C K with [L: F] = 9.

(c) To determine the number of intermediate fields F* C L C K such that Gal(K | L) = Z/4Z, we employ
the Galois Correspondence Theorem once more. The count is equivalent to the number of cyclic subgroups of
order 4 in Z/27 x Z/12Z. Elements of order 4 in Z/27 x Z/127 are:

{(0,3),(0,9),(1,3), (1,9)}.

Since (0,9) € ((0,3)) and (1,9) € ((1,3)), there are 2 distinct cyclic subgroups of order 4 in Z/27 x Z/12Z,
which are ((0,3)) and ((1,3)). Hence, there exist 2 distinct intermediate fields F C L C K such that Gal(K |
L) = 7,/4Z. n

§ Problem 8

Problem. Let f(x) = 2* +bx? + ¢ be over F and let K be the splitting field of f. Prove that Gal(K | F)
is contained in Dg (the dihedral group with 8 elements).

Proof. We will deal with two separate cases. First when c is 0. Then the splitting filed of f(z) = z* + bx?
will depend on the roots of 2% 4+ b. Splitting field K of it has degree 2 then the automorphism group Aut(K/F)
will have order at-most 2 hence it is subgroup of Z/2Z. Since there is a copy of Z/27 in Dg, Aut(K/F) is
subgroup of Dg.

If ¢ # 0 we shall show that the automorphism group, Aut(K/F') cannot contain an element of order 3. In this
case none of the roots are zero. Let, «, 3, —a, —f are the roots of f(x). Any order 3 element of Aut(K/F') can
be treated as a 3-cycle (a,b,c)(d) so o can fix exactly one root of f(x). But this is not possible as if the element
fixes o it must fix —a. We know Aut(K/F) < S4. Now |S4| = 24 = 3 x 23, elements of automorphism group
must lie in the 2-sylow subgroups of S;. We know S4 has three 2-sylow subgroup which are isomorphic to Ds.
Thus Aut(K/F) < Dg. [

§ Problem 9

Problem. Let K |r be a field extension of characteristic p # 0, and let a be a root in K of an irreducible
polynomial f(x) = 2P —x —a over F.

(a) Prove that ao + 1 is also a root of f(x).

(b) Prove that the Galois group of f over F' is cyclic of order p.

Solution. (a) Consider « as a root of f, which implies f(«) = a? — a —a = 0. Now, take a closer look:

fla+tl)=(a+1)! —(a+1)—a
=aof +1— (a+1) —a( as it a characteristic p field)
= —a—a
=0.
As a result, if « serves as a root of f, it follows that a4+ 1 is also a root of f.
(b) Let’s consider K as the splitting field of f over F. It’s worth noting that f is separable since it’s
irreducible, and f(x) ¢ F [zP]. Now, as demonstrated in part (a), if a is a root of f, then so is v 4+ 1. Assume

a € K is a root of f. This implies that {a, e+ 1,...,a+ (p — 1)} are all within K and are distinct roots of
f. Consequently, K = F(a). To complete the proof, we need to show that f(z) is the minimal polynomial



of o over F', this is true as f(z) is irreducible in F'. Using the Extension Isomorphism Theorem, we conclude
that there exists a o € Gal(K/F) such that o(a) = a + 1. Consequently, we have o(c) = p. However,
|Gal(K/F)| = [F(«a) : F| = deg(f) = p. Therefore, Gal(K/F') is a cyclic group of order p. [

§ Problem 10

[ Problem. Prove or disprove: Normal extensions of normal extensions is normal.

Solution. We present a counterexample to illustrate that a normal extension of a normal extension may
not necessarily be normal. Consider the following extension sequence: Q C Q(v/2) C Q(v/2). Firstly, Q(v/2) is
the splitting field of the separable and irreducible polynomial 22 — 2 over Q, and consequently, it qualifies as a
normal extension.

Similarly, we have previously established that Q(+/2) is also a normal extension of Q(v/2). However, it’s
important to note that Q(+/2) is not normal over Q. This can be discerned from the fact that the splitting
field of the minimal polynomial z* — 2 is Q(+v/2,), which extends beyond Q(+/2). Therefore, we have a case
where a normal extension Q({lﬁ)h@( v3) of a normal extension Q(v2)|g does not maintain its normality when
considered over the original field Q. |
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