
Assignment-1A
Galois Theory

Trishan Mondal
(Bmat 2144)

§ Problem 1

Problem. Let K be an extension of F , and α ∈ K be algebraic over F . Show that the minimal polynomial
of α over F is same as the minimal polynomial of the F -linear transformation Tα : K → K defined by
Tα(v) = αv for all v ∈ K.

Proof. Let, mF,α(x) be the minimal polynomial of α over F and mTα(x) be the minimal polynomial of the
linear transformation Tα. Since, α is the eigenvalue of the linear transformation Tα we can say, mTα(α) = 0.
Since, mF,α is the monic, irreducible polynomial of minimal degree which has root α, mF,α(x) | mTα(x). For
any v ∈ K we can write,

mF,α(Tα)(v) = mF,α(α)(v) = 0

and hence, mTα |mF,α. From here we can conclude that, mTα(x) = mF,α(x). ■

§ Problem 2

Problem. Determine whether or not you can construct the following n-gons using straightedge and
compass:

(i) 5 -gon
(ii) 9 -gon.

Solution. (i) Regular 5-gon is constractible. It is equivalent to show that, cos 2π
5 is constractible. Let,

α = 2 cos 2π
5 , then we have,

α2 + α− 1 = 4 cos2
2π

5
+ 2 cos

2π

5
− 1

= 4 sin2
π

10
+ 2 sin

π

10
− 1

= 4
(
1− cos2

π

10

)
+ 2 sin

π

10
− 1

=
cos π

10

cos π
10

(
4
(
1− cos2

π

10

)
+ 2 sin

π

10
− 1

)
=

sin 2π
10 − cos 3π

10

cos 2π
10

= 0

Now we know, α = −1+
√
5

2 (as α > 0) which is constructible.

(ii) Regular 9-gon is not constractible. It is equivalent to show cos 2π
9 is constractible. Since

cos 2π
3 = −1

2 . We can easily see cos 2π
9 satisfies the following polynomial,

8x3 − 6x+ 1 = 0
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Which means 2 cos 2π
9 satisfy x3 − 3x + 1. If the above polynomial was redicible over Q it must have a linear

factor. If the cubic polynomial has a rational solution p
q then by rational root theorem, |p| = 1 and |q| = 1. we

can easily see that ±1 is not root of the cubic polynomial. So, x3 − 3x + 1 is irreducible over Q, this means
2 cos 2π

9 lies in degree 3 extension over Q i.e it is not constractible. ■

§ Problem 3

Problem. Decide if the following constructions are possible. If yes, show the methods of construction. If
no, state reasons.

(i) Construct a square whose area is equal to that of a given triangle.
(ii) Construct a square whose area is same as the area of a circle of unit radius.
(iii) Construct side length of a cube of volume 2.

Solution. (i) We can do such construction. Let ABC is a triangle with ∠A being the largest and hence
BCC is the largest side. We can drop a perpendicular AH to BC now the area of ∆ABC = 1

2BC.AH. Since
BC is already constructed we can construct BC

2 and AH is also constructed. So we can construct their product

by the method discussed in class. We also can construct a line of length
√

1
2BC.AH, since square root of a

constructed number is also constructible.

Construction. Let a triangle ABC be given in the plane. We first construct a rectangle with area equal to that
of ABC using the following steps:

i) Construct the line parallel to AB through C. ii) Construct the line perpendicular to AB at A. Let the
two lines above intersect at C ′. iii) Construct the midpoint M of AC ′. iv) Construct the fourth vertex D of
the rectangle determined by the vertices A,B,M as the intersection of the perpendicular to AB through B and
the line parallel to AB through M . Extend AB to AB′ where |BB′| = |BM |, by constructing a circle of radius

BM centered at B. v) Construct the midpoint of AB′ and a circle of radius |AB′|
2 centered at this point. vi)

Construct the perpendicular to AB′ through B, and let it intersect the circle at E. vii) Construct the square
BEFG with side length |BE|.

(ii) Such construction is not possible. If it was possible we can construct
√
π and hence we can construct

π and hence π must belong to some finite extension of Q of degree 2k but we know, π is not algebraic over Q.
Thus, it is not possible.

(ii) Such construction is not possible. It’s equivalent to construct 3
√
2. We know the minimal polynomial

of 3
√
2 over Q is x3 − 2 which means 3

√
2 lies in some degree 3 extension of Q which is not a power of two. ■

§ Problem 4

Problem. Let C be the field of constractible real numbers. Prove that C is the smallest subfield of R
with the property that if a ∈ C and a > 0, then

√
a ∈ C.

Proof. We know Q is constructible, if r1 is constructible then every elements of Q(
√
r1) = F1 is also

constructible, we can continue this arguement and construct fields Fi such that Fi = Fi−1(
√
ri) and all these

fields are constructible. By Zorn’s lemma there exist a maximal element C such that all element here is
constructible. If for any s ∈ C,

√
s /∈ C then, C(

√
s) is the bigger field than C and here all elements are

constructible, this contradicts the maximality of C and hence
√
r ∈ C. Let, F be a subfield of R which has the

property, ‘a ∈ F ⇒
√
a ∈ F ’. Since, Q is prime field Q ⊂ F , by the construction shows above each Fi are also

contained in F and hence by Zorn’s lemma C is also contained in F . Thus, C is the minimal with the property,
‘a ∈ F ⇒

√
a ∈ F ’. ■
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§ Problem 5

Problem. Determine the splitting field of x4 + 2 over Q, and its degree over Q. Is this field same as the
splitting field of the polynomial x4 − 2 over Q ?

Proof. x4 +2 is irreducible over Q. If we assume 4
√
2 is the one root to x4 − 2 in the field Q[x]/(x4 − 2),and

ζ8 be the 8-th root of unity, we can see, (
4
√
2 ζk8

)4
= −2

for k = 1, 3, 5, 7. So the splitting field of x4 + 2 over Q is Q( 4
√
2, ζ8). Now notice that,(

4
√
2 i

)4
= 2

and hence Q( 4
√
2, i) is splitting field of x4− 2. These fields are isomorphic. If we assume Q is already contained

in C then we can write,

ζ8 =
1√
2
+ i

1√
2

, thus ζ8 is already contained in Q( 4
√
2, i) and i = ζ28 thus i ∈ Q( 4

√
2, ζ8) and hence Q( 4

√
2, ζ8) = Q( 4

√
2, i). ■

§ Problem 6

Problem. Find an algebraic closure of the finite field Fp, where p is a prime.

Solution. Recall the construction of Fpn from Fp. We know Fpn is a field containing Fp with [Fpn : Fp] = n
and is the splitting filed of the polynomial xp

n − x. Also Fpn is unique up-to isomorphism. Now I claim that
F = ∪∞

n=1Fpn is algebraic closure of Fp. It is not hard to see F is algebraic over Fp as any element α ∈ F must
lie in some Fpn and thus it will satisfy the polynomial xp

n − x.

Let, f(x) be a polynomial in Fp[x], it will split in some field K = Fp(α1, · · · , αk). Which is a finite extension
over Fp. We know any finite extension over Fp are unique and of the form Fpj , for some j ∈ N. WLOG we
may write K = Fpℓ is the splitting field of f(x). So, all the root of f(x) lie in Fpℓ ⊆ F . Thus accoding to the
definition of algebraic closure in Dummit-Foote or class notes, F is algebraic closure of Fp. ■

§ Problem 7

Problem. Give a proof of the fact that any two algebraic closures of a field are isomorphic. (You may
learn a proof, and reproduce it here after understanding.)

Proof. For this we will use the isomorphism extension theorem for any arbitrary collection of polynomials
(Reference: Fields and Galois Theory- Patrick Morandi).

Theorem. (Isomorphism Extension Theorem) Let, F, F ′ be fields and σ : F → F ′ be an isomorphism.
Let, S be a set of polynomial of F [x] with K being the splitting field of polynomials of S. Assume that S′ be the
set in F ′[x], corresponding to the set S i.e S′ = {σ(f) : f ∈ S}, K ′ be the splitting field of S′ over F ′. Then σ
can be extended to an isomorphism σ̃ : K → K ′.

We will use this theorem to prove uniqueness of algebraic closure. If we take S = F [x] then the algebraic closure
of F , F1 is the splitting field for the set S. If F2 is another algebraic closure of F then, it is also splitting field
for the set S. We already have Id : F → F an isomorphism, by the above theorem we can extend this to an
isomorphic σ : F1 → F2. Thus algebraic closure of a field is unique up to isomorphism. ■
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§ Problem 8

Problem. Prove that a finite field can never be algebraically closed.

Solution. Let, a1, · · · , an are elements of a finite field F then the polynomial f(x) = (x−a1) · · · (x−an)+ak
(ak ̸= 0) do not have any root within the field F . ■

§ Problem 9

Problem. Factor the polynomial x16 − x in the fields
(i) F4

(ii) F8.

Solution. (i) F16 is the field where f(x) = x16−x splits completely in-fact all elements of F16 are root of the
above polynomial. Since F2 is subfield of F16, it has 0, 1 as it’s root and two more elements of F4 are roots of the
above polynomial. Since [F16 : F4] = 2, f(x) will have quadratic irreducible factors over F4. If t ∈ F4 and it is
non-zero and F4 =

{
0, 1, t, t+ 1 = t2

}
, we will have x, (x−1), (x−t), (x−t−1) as linear factor. Possible quadratic

irreducible factors are, x2+x+ t, x2+ tx+1, x2+(t+1)x+1, x2+x+(t+1), x2+ tx+ t, x2+(t+1)x+(t+1).
These are irreducible over F4 as these don’t have any root in F4.

x16−x = x(x−1)(x−t)(x−t−1)(x2+x+t)(x2+tx+1)(x2+(t+1)x+1)(x2+x+(t+1))(x2+tx+t)(x2+(t+1)x+(t+1))

(ii) F8 is not an intermediate subfield of F16 and F2, it also don’t contain F4. No quadratic factor of f in F2

will get split over F8, neither any higher degree irreducible terms will get factord in F8. Thus f over F8 will
have same factorization of F2. The following fact, *

xp
n − x =

∏
d|n

∏
deg π=d

π(x)

where π(x) is irreducible (this is factorization in Fp), will tell us that factorization of f over F2 will have 2,
factor of degree 1,x, (x − 1) one factor of degree 2, x2 + x + 1 and 3 factor of degree 4, x4 + x3 + 1, x4 + x +
1, x4 + x3 + x2 + x+ 1, ■

Proof of *: We will prove the following result first. Let f(x) ∈ Fp[x] be an irreducible polynomial of degree d.
For n ≥ 0,

f(x) | xpn − x ⇐⇒ d | n

If f is irreducible in Fp[x] of degree d, Fp[x]/(f) ∼= Fpd and all elements α ∈ Fpd satisfy αpd = α. Therefore,

f(x) | xpd − x and, by induction, d | n =⇒ f | xpn − x. Conversely, assume f(x) | xpn − x and n = dq + r
for some 0 < r < d. As d | dq we get f(x) | xpr − x. But any g ∈ Fp[x] satisfies g(xp

r
) = (g(x))p

r
and so,

f(x) | g(x)pr − g(x) for all g ∈ Fp[x]. Therefore, the polynomial tp
r − t has all pd elements of Fp[x]/(f) as roots

and so, pd ≤ pr =⇒ d ≤ r, a contradiction. Hence, r = 0 and so d | n.

Now we will prove the main statement. Let n ≥ 1. In Fp[x],

xp
n − x =

∏
d|n

∏
deg f=d
f monic
irreducible

f(x)

By the previous lemma, the irreducible factors of xp
n −x in Fp[x] are exactly the irreducible polynomials whose

degree divides n. We now show that no such polynomial appears more than once in the factorization.

4



Let f(x) | xpn − x for some irreducible f ∈ Fp[x]. If α is a root of f in a field F ⊃ Fp, then αpn = α in F .
Therefore, in F [x],

xp
n − x = xp

n − x− (αpn − α)

= (x− α)p
n − (x− α) (F has characteristic p)

=⇒ xp
n − x = (x− α)((x− α)p

n−1 − 1)

As the second factor in the last line above does not vanish at α, α cannot be a multiple root of xp
n −x. Hence,

(f(x))2 ∤ xpn − x and so we are done. □

§ Problem 10

Problem.
Find the splitting field of the polynomial x4 + x2 + 1 over Q, and its degree over Q.

Solution. Factorizing x4 + x2 + 1 will give us (x2 + x+ 1)(x2 − x+ 1), let ω be 3-rd root of unity and it is
not equal to 1. We can verify ω, ω2 are root of x2 + x+ 1 and −ω,−ω2 are root of x2 − x+ 1. Thus, the given
polynomial splits in the field Q(ω). The degree of the extension Q(ω)|Q is 2. ■

§ Problem 11

Problem. Let K be a finite extension of F . Prove that K is a splitting field (of some collection of
polynomials) over F iff every irreducible polynomial in F [x] that has a root in K splits completely in
K[x].

Solution. (⇒) Let, K be a splitting field for f(x) ∈ F [x] (taking collection of only one polynomial as for
finite extension we can consider K as splitting field of finite collection of polynomial. But then taking product
of those polynomial will work). Let, p(x) be an irreducible polynomial over F and it has a root α ∈ K.
Let, β be a root of p(x). Now, it is clear that K(α) is the splitting field of f(x) over F (α). To see this,
note that f(x) splits completely over K ⊆ K(α). Furthermore, suppose L is a field over which f(x) splits
completely, and F (α) ⊆ L ⊆ K(α). Then α ∈ L, and since K is the splitting field of f(x) over F , we have
K ⊆ L. Thus, K(α) ⊆ L and L = K(α) are equal. Likewise, K(β) is the splitting field of f(x) over F (β). By
isomorphism extension theorem, we can get an isomorphism between K(α) and K(β). Since, α ∈ K we can say
K ∼= K(α) ∼= K(β), so the degree of extension K(β)|K is one. And hence β ∈ K. All roots of p(x) lines in K if
one root of p(x) lies in K.

(⇐) Let, K|F is finite extension and every irreducible polynomial with a root in K splits completely. Let,
K = F (α1, · · · , αn). Let, mi(x) be the minimal polynomial of αi over F . All the minimal polynomial mi(x)
will split completely by the hypothesis. Consider the product, f(x) = m1(x) · · ·mn(x). We can seeK is splitting
field of f(x) over F . ■

§ Problem 12

Problem. Let K1 and K2 be finite extensions of F contained in the field K, and assume both are splitting
fields over F .

(a) Prove that their composite K1K2 is a splitting field over F .
(b) Prove that K1 ∩K2 is a splitting field over F .

Proof. (a) Consider two finite extensions of the field F , denoted as K1 and K2, both contained within the
larger field K. Let’s assume that both K1 and K2 are splitting fields over F . Since K1 is a finite extension, it
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can be expressed as the splitting field for a finite number of polynomials, specifically, the minimal polynomials
of its field generators. By taking the product of these polynomials, we can establish that K1 is indeed the
splitting field for a specific polynomial, denoted as f1(x). Similarly, K2 serves as the splitting field for another
polynomial, f2(x).

Now, let’s consider the composite field K1K2. It’s important to note that the polynomial f1(x)f2(x) completely
factorizes within K1K2. Consequently, K1K2 contains the splitting field. On the other hand, the splitting field
of f1(x)f2(x) is generated by the roots of these two polynomials. The roots of f1(x) are elements of K1, which
is a subset of K1K2, and similarly, the roots of f2(x) are elements of K2, also a subset of K1K2. As a result,
the splitting field must be contained within K1K2. In conclusion, we can establish that K1K2 serves as the
splitting field.

(b) Let K1 and K2 be finite extensions, both acting as splitting fields over F . Now, consider the field
K1 ∩K2. Our goal is to demonstrate that any irreducible polynomial having a root in K1 ∩K2 also has all its
roots within this same intersection. This proof will establish that K1∩K2 qualifies as a splitting field. Suppose
we have an irreducible polynomial p(x) with a root in K1 ∩K2. This particular root belongs to both K1 and
K2. However, since K1 and K2 are both splitting fields, it follows that all the other roots of p(x) must also
reside in K1 and K2. Consequently, every root of p(x) is within K1 ∩K2. As a result of Problem 11, we can
confirm that K1 ∩K2 serves as a splitting field. ■

§ Problem 13

Problem. For any prime p and any nonzero a ∈ Fp prove that xp−x+a is irreducible and separable over
Fp.

Proof. For any element t ∈ Fp, t
p − t = 0 and hence f(x) = tp − t + a has no root in Fp as a ̸= 0. Let, α

be a root of t is some extended field F (α), the following calculation shows, α+ j is root of f(x) for all j ∈ Fp.

f(α+ 1) = (α+ 1)p − (α+ 1) + a

= αp + 1− α− 1 + a

= f(α) = 0

If f is redicible over Fp then we can write, f = gh where, g, h ∈ Fp[x], so α+j will be roots of g in F (α) for some
j ∈ Fp, hence the sum of roots of g is (deg g)α+k where, k ∈ Fp. So, g(x) = xdeg g−((deg g)α+k)xdeg g−1+ · · · ,
but then (deg g)α+ k ∈ Fp and hence α ∈ Fp. ■

§ Problem 14

Problem. Prove that xp
n−1 − 1 = Πα∈F×

pn
(x − α). Derive that the product of the nonzero elements

of a finite field is +1 if p = 2 and is -1 if p is odd. For p odd and n = 1 derive Wilson’s theorem:
(p− 1)! ≡ −1(modp).

Proof. Let, f(x) = xp
n − x, and α is a non-zero, non-unit element of Fpn then, αpn − α = 0 (as Fpn is a

finite field and hence perfect). We can also notice f(x) has roots 0 and 1. Thus we can write,

f(x) =
∏

a∈Fpn

(x− a)

and hence xp
n−1 − 1 = Πa∈F×

pn
(x− a). From here we get

∏
a ∈ F×

pna = (−1)

∣∣∣F×
pn

∣∣∣−1
, which is 1 is p = 1 and −1

if p in odd prime. We know, Fp
∼= Z/pZ, so 1 · 2 · · · (p− 1) = (−1) in Z/pZ, i.e. (p− 1)! ≡ −1 (mod p) (if p is

2 then 1 = −1 in F2). ■
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