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§ Problem 1

Problem. Prove that each of the following exists as a Lebesgue integral.

(a)
∫ 1
0

x log x
(1+x)2

dx,

(b)
∫ 1
0

xp−1
log x dx (p > −1),

(c)
∫ 1
0 log x log(1 + x) dx,

(d)
∫ 1
0

log(1−x)√
1−x

dx

Solution. Before proving the existence of the Lebesgue integrals we will state and prove a lemma,

§ Lemma: If f is a function continuous on (0, 1) and |f | ≤ g almost everywhere on [0, 1], where g is a
non-negative Lebesgue integrable function then, f ∈ L1[0, 1].

Proof of the Lemma. Since, f is continuous on (0, 1) it is measurable on the open set (0, 1). In the set [0, 1],
the sub-set {0, 1} is measure zero. So, f is a measurable function on [0, 1]. Absolute value of it is uniformly
bounded by a non-negative Lebesgue integrable function g. So by 5 we can say f is Lebesgue integrable on
[0, 1]. □

(a) Note that on the interval (0, 1),∣∣∣∣ x log x

(1 + x)2

∣∣∣∣ = −x log x

(1 + x)2
=

x log 1
x

(1 + x)2
≤ 1

(1 + x)2

Here, we have used the fact log x ≤ x. Also note that g(x) = 1
(1+x)2

is continuous on [0, 1] and hence Riemann

integrable, thus it is Lebesgue integrable. Now by applying above lemma 1, we get the given function is Lebesgue
integrable.

(b) At first note that,

lim
x↗1

xp − 1

log x

(1)
= lim

x↗1
pxp = p

Now consider,

f(x) =


0 x = 0
xp−1
log x x ∈ (0, 1)

p x = 1

It is enough to show f(x) is Lebesgue integrable as the given function is same with f(x) almost everywhere
on [0, 1]. The interval [0, 1] can be split into two parts, [0, 1e ] ∪ [1e , 1]. We can see f(x) is continuous on the
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interval [1e , 1] and hence it is Riemann integrable i.e. Lebesgue integrable. We are remained to show that f(x)
is Lebesgue integrable on [0, 1e ]. In this interval 0 < 1

|log x| ≤ 1, thus we can say,∣∣∣∣xp − 1

log x

∣∣∣∣ ≤ |xp − 1| ≤ xp + 1

By lemma 2, we can say xp + 1 is Lebesgue integrable on [0, 1e ] as p > −1. Again by lemma 1 we can conclude
xp−1
log x is Lebesgue integrable on [0, 1e ]. So the given function is Lebesgue integrable on [0, 1].

(c) In this case note that log(1 + x) is continuous on [0, 1] thus it must be bounded on the compact interval,
let |log(x+ 1)| ≤ M now note that,

|log(1 + x) log(x)| = − log x|log(1 + x)| ≤ M log
1

x
≤ 2M√

x

Here also we have used the fact, log 1√
x
≤ 1√

x
.Again by lemma 2 we have g(x) = 2M√

x
is Lebesgue integrable,

using lemma 1 we get the given function is Lebesgue integrable on [0, 1].

(d) Let f(x) = log(1−x)√
1−x

, we clearly have f is continuous everywhere on [0, 1] except at x = 0. Now observe that

∣∣∣∣ log(1− x)√
1− x

∣∣∣∣ = − log(1− x)√
1− x

=

3 log

((
1

1−x

) 1
3

)
√
1− x

≤ 3

(1− x)
1
3
+ 1

2

=
3

(1− x)5/6
,

But note that 1

(1−x)
5
6
is Lebesgue integrable using lemma 2, therefore using lemma 1, we get f(x) is Lebesgue

integrable on [0, 1].

§ Problem 2

Problem. Assume that f is continuous on [0, 1], f(0) = 0, f ′(0) exists. Prove that the Lebesgue integral∫ 1

0
f(x)x−

3
2 dx

exists.

Solution. We are given that f ′(0) exists. From the definition of derivative and the given condition f(0) = 0
we can write,

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

f(x)

x
= f ′(0)

For a given ε > 0, there exists δ > 0, such that for all x ∈ (0, δ) we have∣∣∣∣f(x)x
− f ′(0)

∣∣∣∣ < ε ⇒ |f(x)|
x

< M

where M = f ′(0) + ε, and hence we get that for all x ∈ (0, δ),

|f(x)|x−
3
2 <

M√
x
.

Now note that both f and x−
3
2 are continuous on (0, δ), thus they are measurable on (0, δ), and since measurable

functions forms an algebra we get that f(x)x−
3
2 is measurable on (0, δ) and hence it is measurable on [0, δ)

(as {0} being a singleton set, it has measure zero). But then Mx−
1
2 is Lebesgue integrable on [0, δ) as x−

1
2 is

Lebesgue integrable on [0, 1] by the following lemma proved in class,
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§ Lemma: Let, f(x) be a function defined on [0, a] as f(x) = xs when x > 0 and 0 when x = 0, then
the Lebesgue integral

∫ a
0 f(x) dx exists is s > −1.

Now by the theorem 5 we can say f(x)x−
3
2 is Lebesgue integrable. Finally notice that f(x)x−

3
2 is continuous

on x ∈ [δ, 1], and hence is Riemann integrable on [δ, 1], and thus it is Lebesgue integrable on [δ, 1]. Now since

[0, 1] = [0, δ) ∪ [δ, 1] we can conclude that f(x)x−
3
2 is Lebesgue integrable on [0, 1]. Therefore the Lebesgue

integral ∫ 1

0
f(x)x−

3
2dx

exists. ■

§ Problem 3

Problem. Let f ∈ L1([0, 1]; dx). Show that for each ε > 0, there exist δ > 0 (depending on ε) such that
for any relatively open subset E of [0, 1] with |E| < δ, we have∣∣∣∣∫

E
f dx

∣∣∣∣ := ∣∣∣∣∫ 1

0
χEf dx

∣∣∣∣ < ε

(In other words, the integral of a function in L1([0, 1]; dx) is uniformly small on small sets.)

Solution. Before proving the solution we would like to state the following theorem proved in class,

Theorem. 3 Assume f is a Lebesgue integrable on I, then for every given ε > 0 there exist a step
function s and a Lebesgue integrable function g such that, f = g + s and

∫
I |g| < ε.

Using the theorem, for every ε > 0 we can write f = g + s, where s is a step function, g ∈ L1[0, 1] and∫ 1
0 |g|dx < ε

2 . Now, let M be the maximum value that |s| attains on an interval not of measure 0 and define
δ = ε

2M . We then get, for E open in [0, 1] with |E| < δ,∫
E
|s|dx ≤

∫
E
M dx = M |E| < Mδ =

ε

2

Then, using the triangle inequality we get,∣∣∣∣∫
E
f dx

∣∣∣∣ ≤ ∫
E
|s| dx+

∫
E
|g|dx < ε

§ Problem 4

Problem. Let φ be a differentiable function on R with bounded derivative. If f ∈ L1([0, 1]; dx), show that
the function Ψ : [0, 1] → R defined by

Ψ(t) =

∫ 1

0
φ(tx)f(x) dx,

is differential, and

Ψ′(t) =

∫ 1

0
φ′(tx)xf(x) dx.
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Solution. Let us define f(x, t) = φ(tx)f(x) for all (x, t) ∈ [0, 1] × R. We first show that the function
ft : [0, 1] → R defined ft(x) = f(x, t) is measurable for all t ∈ R.

Let t ∈ [0, 1], since φ(tx) is differentiable, it is continuous and hence measurable on [0, 1], and we are given
that f is Lebesgue integrable, hence f is also measurable. We know the set of measurable functions forms an
algebra. With this we get φ(tx)f(x) is also measurable, thus ft is measurable for all t ∈ [0, 1]. Also notice that
f0 = φ(0)f , and since f is Lebesgue integrable, we get that f0 is Lebesgue integrable.

Now since φ is differentiable, by the chain rule of differentiation we get, ∂
∂tf(x, t) = φ′(tx)xf(x). Now since the

derivative of φ is bounded we get that there exists M > 0 such that |φ′(x)| < M for all x ∈ R. In this case
|x| ≤ 1 so we have, ∣∣∣∣ ∂∂tf(x, t)

∣∣∣∣ = |φ′(tx)||x||f(x)| ≤ M |f(x)|.

If we take g(x) = M |f(x)|, as f is Lebesgue integrable, so is |f |, thus g is Lebesgue integrable. From here,
we observe that f(x, t) satisfies all the conditions for Differentiation under integral sign theorem stated as
following,

Theorem. 4 (Differentiation under integral sign) Let, X and Y be two sub-intervals of R and let f
be a function defined on X × Y satisfying the following conditions,

� For each fixed y ∈ Y , the function fy = f(x, y) is measurable on X and fa(x) is Lebesgue integrable on
X for some a ∈ Y .

� The partial derivative ∂yf(x, y) exists for each interior point (x, y) ∈ X × Y .

� There is a non-negative function G ∈ L(X) such that, |∂yf(x, y)| ≤ G(x) for all interior points of X ×Y .

Then the Lebesgue integral
∫
X f(x, y) dx exists for every y ∈ Y and the function F (y) =

∫
X f(x, y) is differen-

tiable at each interior point Y , moreover it’s derivative is given by

F ′(y) =

∫
X
∂yf(x, y) dx

So by the above theorem Ψ(t) is differentiable and we further have,

Ψ′(t) =
d

dt

(∫ 1

0
φ(tx)f(x) dx

)
=

∫ 1

0

∂

∂t
(φ(tx)f(x)) dx =

∫ 1

0
φ′(tx)xf(x) dx.

■

§ Problem 5

Problem. Solve the following problems:

(a) Let χn : [0, 1] → C be the function χn(x) = exp(2πinx) and f : [0, 1] → C be a function. Prove that
if fχk ∈ L1([0, 1]; dx) for some k ∈ Z, then fχn ∈ L1([0, 1]; dx) for every n ∈ Z.

(b) Evaluate

lim
n→∞

∫ 1

0

n
3
2x

1 + n2x2
dx.

Solution. (a) We first note that χn(x) = e2πinx is a continuous function of x and is thus Riemann integrable
on [0, 1] (that is, both the real and imaginary parts of χn are Riemann integrable). As the interval [0, 1] is
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bounded, we get χn ∈ L1([0, 1]; dx), for all n ∈ Z. Now before going to the main proof, we would want to state
a theorem proved in clas,

Theorem. 5 If f is a measurable function on an interval I and if |f(x)| ≤ g(x) almost everywhere on
I for some non-negative g ∈ L(I), f ∈ L(I).

Now suppose fχk ∈ L1([0, 1]; dx) for some k. We then have f = fχkχ−k is measurable, as it is a product of
integrable functions. But |f | = |fχk| ∈ L1([0, 1]; dx) and as measurable functions bounded in absolute value by
integrable functions are integrable, by the theorem we get f ∈ L1([0, 1]; dx). As χn ∈ L1([0, 1]; dx) for all n ∈ Z,
we then get fχn is measurable for all n ∈ Z. But again |fχn| = |f | ∈ L1([0, 1]; dx) and so, fχn ∈ L1([0, 1]; dx)
for all n ∈ Z.

(b) We note the function n3/2x
1+n2x2 is continuous on [0, 1] and is hence Riemann integrable. It is thus also Lebesgue

integrable and has Lebesgue integral equal to its Riemann integral, and using the fundamental theorem of
calculus and the fact that

∫ a
1

1
x dx = log a we get the integral is:

∫ 1

0

n
3
2x

1 + n2x2
dx =

log
(
1 + n2

)
2
√
n

=
3 log

(
6
√
1 + n2

)
√
n

≤ 6 3
√
n√
n

The last inequality follows from the fact, log(x) ≤ x and 6
√
1 + n2 ≤ 2 3

√
n, thus we have,

0 ≤ lim
n→∞

∫ 1

0

n
3
2x

1 + n2x2
dx = lim

n→∞

log
(
1 + n2

)
2
√
n

≤ lim
n→∞

6 3
√
n√
n

= 0

Thus by sandwich theorem we get, limn→∞
∫ 1
0

n
3
2 x

1+n2x2 dx = 0. ■
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