
Assignment-6
Functional Spaces

Trishan Mondal

§ Problem 1

Problem. Compute the Fourier series of the following functions appropriately defining them on [−π, π]
assuming they have period 2π.

(a) (5 points) f(x) = x on [0, 2π]

(b) (5 points) f(x) = x2 on [0, 2π];

(c) (5 points) f(x) = x on [−π, π];

(d) (5 points) f(x) = x2 on [−π, π];

(e) (5 points) f(x) = cos x
2 on [0, 2π];

(f) (5 points) f(x) = sin x
2 on [0, 2π].

Solution. Through out the solution we will use the fact cosnπ = (−1)n and integration of an odd function
over [−a, a] is 0 (where, a > 0).

(a) The given function f(x) = x on [0, 2π] can be redefined on the interval [−π, π] assuming they have period
2π as following,

f̃(x) =

{
x for x ∈ [0, π]

x+ 2π for x ∈ [−π, 0)

This function is continuous on [−π, π] except for one point 0 and also this function is bounded on [−π, π].
This is Riemann integrable. Now sinnx, cosnx is also Riemann integrable on [−π, π] thus the functions
f̃(x) sinnx, f̃(x) cosnx are Riemann integrable. We can compute an, bn as following,

bn =
1

π

∫ π

−π
f̃(x) sinnx dx

=
1

π

∫ π

0
x sinnx+

1

π

∫ 0

−π
(x+ 2π) sinnx dx

=
1

π

∫ π

−π
x sinnx dx+ 2

∫ 0

−π
sinnx dx

= − 2

n
(−1)n + 2

(
− 1

n
+

(−1)n

n

)
= − 2

n
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an =
1

π

∫ π

−π
f̃(x) cosnx dx

=
1

π

∫ π

0
x cosnx dx+

1

π

∫ 0

−π
(x+ 2π) cosnx dx

=
1

π

∫ π

−π
x cosnx dx+ 2

∫ 0

−π
cosnx dx

= 0 (as the first function is odd)

By the condition given we can say a0 = 2π and bn = − 2
n , for n ≥ 1. Thus we can say,

f̃ ∼ 2π +
∞∑
n=1

− 2

n
sinnx

(b) The given function f(x) = x2 on [0, 2π] can be redefined on the interval [−π, π] assuming they have period
2π as following,

f̃(x) =

{
x2 for x ∈ [0, π]

(x+ 2π)2 for x ∈ [−π, 0)

This function is continuous on [−π, π] except for one point 0 and also this function is bounded on [−π, π].
This is Riemann integrable. Now sinnx, cosnx is also Riemann integrable on [−π, π] thus the functions
f̃(x) sinnx, f̃(x) cosnx are Riemann integrable. We can compute an, bn as following,

bn =
1

π

∫ π

−π
f̃(x) sinnx dx

=
1

π

∫ π

0
x2 sinnx+

1

π

∫ 0

−π
(x+ 2π)2 sinnx dx

=
1

π

∫ π

−π
x2 sinnx dx+ 4

∫ 0

−π
x sinnx dx+ 4π

∫ 0

−π
sinnx dx

= 0− 4π
(−1)n

n
+ 4π

(
(−1)n

n
− 1

n

)
= −4π

n

We can see a0 = 1
π

∫ π
−π f̃(x) dx, which is equal to 1

π

∫ π
0 x2 dx + 1

π

∫ 0
−π(x + 2π)2 = 8π2

3 , for n ≥ 1, an are
computed as following,

an =
1

π

∫ π

−π
f̃(x) cosnx dx

=
1

π

∫ π

0
x2 cosnx dx+

1

π

∫ 0

−π
(x+ 2π)2 cosnx dx

=
1

π

∫ π

−π
x2 cosnx dx+ 4

∫ 0

−π
x cosnx dx+ 4π

∫ 0

−π
cosnx dx

=
1

π

(
2

n2
(π(−1)n + π(−1)n)

)
+

4

n2
(1− (−1)n) + 0

=
4(−1)n

n2
+

4

n2
(1− (−1)n) =

4

n2

So we must have f̃ ∼ 4π2

3 +
∑∞

n=1
4
n2 cosnx− 4π

n sinnx.
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(c) The give function f(x) = x on [−π, π]. The function is continuous on the given compact interval so
it is Riemann integrable. Again cosnx, sinnx is also Riemann integrable on [−π, π], so we can say
x sinnx, x cosnx is also Riemann integrable. an, bn are calculated as following,

bn =
1

π

∫ π

−π
f(x) sinnx dx

=
1

π

∫ π

−π
x sinnx dx

=
2

π

∫ π

0
x sinnx dx

=
−2

π
(π(−1)n)

=
2(−1)n+1

n

Note that a0 =
1
π

∫ π
−π x dx = 0 and for n ≥ 1 we have,

an =
1

π

∫ π

−π
f(x) cosnx dx

=
1

π

∫ π

−π
x cosnx dx

= 0 (as the above function is odd)

We again have, f ∼
∑∞

n=1
2(−1)n+1

n sinnx.

(d) The give function f(x) = x2 on [−π, π]. The function is continuous on the given compact interval
so it is Riemann integrable. Again cosnx, sinnx is also Riemann integrable on [−π, π], so we can say
x2 sinnx, x2 cosnx is also Riemann integrable. an, bn are calculated as following,

bn =
1

π

∫ π

−π
f(x) sinnx dx

=
1

π

∫ π

−π
x2 sinnx dx

= 0 (as the above function is an odd function)

Note that a0 =
1
π

∫ π
−π x

2 dx = 2π2

3 and for n ≥ 1 we have,

an =
1

π

∫ π

−π
f(x) cosnx dx

=
1

π

∫ π

−π
x2 cosnx dx

=
2

π

(
x2

n
sinnx+

2x

n2
cosnx− 2

n3
sinnx

∣∣∣∣π
0

)
=

4

n2
(−1)n

We again have, f ∼ π2

3 +
∑∞

n=1
4(−1)n

n2 cosnx.

(e) The given function f(x) = cos x
2 on [0, 2π] can be redefined on the interval [−π, π] assuming they have

period 2π as following,

f̃(x) =

{
cos x

2 for x ∈ [0, π]

− cos x
2 for x ∈ [−π, 0)
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This function is continuous on [−π, π] except for one point 0 and also this function is bounded on [−π, π].
This is Riemann integrable. Now sinnx, cosnx is also Riemann integrable on [−π, π] thus the functions
f̃(x) sinnx, f̃(x) cosnx are Riemann integrable. We can compute an, bn as following,

bn =
1

π

∫ π

−π
f̃(x) sinnx dx

=
1

π

∫ π

0
cos

x

2
sinnx− 1

π

∫ 0

−π
cos

x

2
sinnx dx

=
1

π

∫ π

0
cos

x

2
sinnx− 1

π

∫ 0

π
cos

x

2
sinnx dx (by substituting t = −x)

=
2

π

∫ π

0
cos

x

2
sinnx dx

=
1

π

(∫ π

0
sin

(
nx+

x

2

)
+ sin

(
nx− x

2

))
=

1

π

8n

4n2 − 1

Note that a0 =
1
π

∫ π
−π f̃(x) dx = 0 and for n ≥ 1 we have,

an =
1

π

∫ π

−π
f̃(x) cosnx dx

=
1

π

∫ π

0
cos

x

2
cosnx− 1

π

∫ 0

−π
cos

x

2
cosnx dx

=
1

π

∫ π

0
cos

x

2
cosnx+

1

π

∫ 0

π
cos

x

2
cosnx dx (by substituting t = −x)

= 0

So we must have f ∼
∑∞

n=1
1
π

8n
4n2−1

sinnx.

(f) The given function f(x) = sin x
2 on [0, 2π] can be redefined on the interval [−π, π] assuming they have

period 2π as following,

f̃(x) =

{
sin x

2 for x ∈ [0, π]

− sin x
2 for x ∈ [−π, 0)

This function is continuous on [−π, π] except for one point 0 and also this function is bounded on [−π, π].
This is Riemann integrable. Now sinnx, cosnx is also Riemann integrable on [−π, π] thus the functions
f̃(x) sinnx, f̃(x) cosnx are Riemann integrable. We can compute an, bn as following,

bn =
1

π

∫ π

−π
f̃(x) cosnx dx

=
1

π

∫ π

0
sin

x

2
sinnx− 1

π

∫ 0

−π
sin

x

2
sinnx dx

=
1

π

∫ π

0
sin

x

2
sinnx+

1

π

∫ 0

π
sin

x

2
sinnx dx (by substituting t = −x)

= 0

4



Note that a0 =
1
π

∫ π
−π f̃(x) dx = 4

π and for n ≥ 1 we have,

an =
1

π

∫ π

−π
f̃(x) cosnx dx

=
1

π

∫ π

0
sin

x

2
cosnx− 1

π

∫ 0

−π
sin

x

2
cosnx dx

=
1

π

∫ π

0
sin

x

2
cosnx− 1

π

∫ 0

π
sin

x

2
cosnx dx (by substituting t = −x)

=
2

π

∫ π

0
sin

x

2
cosnx dx

=
−1

π

(∫ π

0
sin

(
nx+

x

2

)
− sin

(
nx− x

2

))
=

−1

π

4

4n2 − 1

So we must have f ∼ 4
π +

∑∞
n=1

−1
π

4
4n2−1

cosnx. ■

§ Problem 2

Problem. Show that if f, g ∈ L1[−π, π] have the same Fourier series, then f = g a.e. on [−π, π].

Solution. Let, h = f − g. It is given that Fourier coefficients of f and g are same, i.e cn(f) = cn(g) which
means cn(h) = cn(f)− cn(h) = 0. Thus it’s enough to show that if h ∈ L1([−π, π]) such that cn(h) = 0 for all
n then h(x) = 0 almost everywhere on [−π, π].

At first we will show that the result is true if h ∈ C([−π, π]). By Stone-Weierstrass theorem we know that the set
of trigonometry polynomials is dense in C([−π, π]). Thus there for any ε > 0, there exists T (x) a trigonometry
polynomial such that ∥T−h̄∥∞ < ε/M where M = sup[−π,π] |h(x)| (which exists as h is continuous on a compact
set, hence f is bounded). But then since cn(h) = 0 for all n, we get that∫ π

−π
f(x)T (x)dx = 0

And therefore we get that

∫ π

−π
|h(x)|2dx =

∫ π

−π
h(x)h̄(x)dx

=

∫ π

−π
h(x)(h̄(x)− T (x))dx

≤
∫ π

−π
|h(x)|

∣∣T (x)− h̄(x)
∣∣ dx

≤ M

∫ π

−π

∣∣T (x)− h̄(x)
∣∣ dx

< ε

The above integrable has lower bound 0 as |h(x)| is always non-negative and the upper bound holds for any
ε > 0. Hence

∫ π
−π |h(x)|

2dx = 0 therefore |h(x)| = 0 for all x ∈ [−π, π] thus we have h(x) = 0 for all x ∈ [−π, π].

Now we will show that if h ∈ L1([−π, π]) with cn(h) = 0 for all n, then h(x) = 0 almost everywhere on [−π, π].
Consider, φ defined as following,

f(t) =

{
0 t ⩽ 0

e−1/t t > 0
from here define φ(t) =

f(t+ π)

f(t+ π) + f(t− π)
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It was proved in class that, φ : [−π, π] → R is bump function and let φε(t) =
1
εφ(t/ε). Then φε is a continuous

function with compact support. The following lemma was proved in class.

§ Lemma: If φ is a continuous function with compact support such that
∫ π
−π φ(x)dx = 1. Let φε(t) =

1
εφ(t/ε). Then if f ∈ L1([−π, π]) then f ∗ φε is continuous and we further have ∥f ∗ φε − f∥1 → 0 as
ε → 0.

Now we know that h ∗ φε (as convolution of a continuous function with a Legbesgue integrable function is
continuous. This was proved in class) is continuous and cn (h ∗ εε) = cn(h)cn (φε) = 0. Hence by our previous
claim we get that (h ∗ φε) (x) = 0. Hence we get that

∥h ∗ φε − h∥1 → 0 ⇒ ∥h∥1 → 0,

as ε → 0. Hence we get that |h(x)| = 0 almost everywhere on [−π, π] and therefore we get that h(x) = 0 almost
everywhere on [−π, π]. And in the given problem we are given f, g ∈ L1[−π, π] have same Fourier series that is
cn(f) = cn(g). So consider h = f − g ∈ L1([−π, π]) and cn(h) = cn(f) − cn(g) = 0, therefore h(x) = 0 almost
everywhere, hence f(x) = g(x) almost everywhere on [−π, π]. ■

§ Problem 3

Problem.

(a) (5 points) Provide a simple description of a continuous function on [−π, π] which generates the
Fourier series,

∞∑
n=1

(−1)n
sinnx

n3

(b) (5 points) Use Parseval’s formula to conclude that ζ(6) = π6

945 .

Solution. (a) We will prove the following lemma which will immediately give us the description of a
continuous function that generates the given Fourier series.

§ Lemma: The function f(x) = 1
12x

(
x2 − π2

)
generates the Fourier series

∞∑
n=1

(−1)n
sin(nx)

n3

Note that the function f is odd hence an = 1
π

∫ π
−π f(x) cos(nx)dx = 0 for all n ≥ 0. So we only need to compute

the coefficients bn, for that its enough to compute the integrals∫ π

−π
x3 sin(nx)dx and

∫ π

−π
x sin(nx)dx.

We have ∫ π

−π
x sin(nx)dx = 2

∫ π

0
x sin(nx)dx (as the function is even)

= − 2

n
x cos(nx)

∣∣∣∣π
0

+
2

n

∫ π

0
cos(nx)dx

=
2π

n
(−1)n−1
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Next we have,∫ π

−π
x3 sin(nx)dx = 2

∫ π

0
x3 sin(nx)dx (since the function is even)

= − 2

n
x3 cos(nx)

∣∣∣∣π
0

+
6

n

∫ π

0
x2 cos(nx)dx (integration by parts)

=
2π

n
(−1)n−1 +

6

n

(
1

n
x2 sin(nx)

∣∣∣∣π
0

− 2

n

∫ π

0
x sin(nx)dx

)
=

2π3

n
(−1)n−1 +

12π

n3
(−1)n

Hence we get, ∫ π

−π

1

12
x
(
x2 − π2

)
sin(nx)dx =

1

12

∫ π

−π
x3 sin(nx)dx− π2

12

∫ π

−π
x sin(nx)dx

=
π

n3
(−1)n

Therefore bn = (−1)n

n3 , and hence the corresponding Fourier series is

∞∑
n=1

bn sin(nx) =

∞∑
n=1

(−1)n
sin(nx)

n
.

(b) Note that f is continuous on [−π, π] and hence f is Riemann integrable. We have the following theorem,

Theorem 3.1: (Parseval’s Theorem) Let f be a Riemann integrable function and let

f ∼
∞∑
n=0

cne
inx

Then
1

π

∫ π

−π
|f(x)|2 dx =

∞∑
n=0

|cn|2

The above theorem was proved in class (in fact a more general version was proved, for refernce one can look at
“Principles of Mathematical Analysis”-Rudin chapter 8). It’s not hard to see f(x) = 1

12(x
2 − π2)x is Riemann

integrable on compact interval [−π, π]. Applying the above theorem we can say,

∞∑
n=1

|bn|2 =
∞∑
n=1

1

n6
=

1

π

∫ π

−π
|f(x)|2 dx

Now, ∫ π

−π
|f(x)|2 dx =

∫ π

−π

1

144

(
x6 − 2π2x4 + π4x4

)
=

2

144

(
1

7
x7 − 2π2

5
x5 +

π4

3
x3

)∣∣∣∣π
0

=
π7

72
.
8

105
=

π7

945

Thus we can conclude that ζ(6) = π6

945 . ■
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§ Problem 4

Problem. Suppose that f is a 2π-periodic function that satisfied the Lipschitz condition of order α(0 <
α ≤ 1); that is |f(x + h) − f(x)| ≤ C|h|α for C > 0 independent of x. Show that if an, bn are Fourier
coefficients of f , then

an = O
(
n−α

)
, bn = O

(
n−α

)
.

Solution. Take n sufficiently large so that∣∣∣f (
x+

π

n

)
− f(x)

∣∣∣ ≤ Cπαn−α.

We have

bn =
1

π

∫ π

−π
f(x) sin(nx)dx

=
1

π

∫ π−π
n

−π−π
n

f
(
x+

π

n

)
sin

(
n
(
x+

π

n

))
dx

(1)
=

1

π

∫ π

−π
f
(
x+

π

n

)
sin(nx+ π)dx

= − 1

π

∫ π

−π
f
(
x+

π

n

)
sin(nx)dx,

where (1) follows from the fact that f(x) sin(nx) is 2π-periodic. Hence we get that

|bn| =
1

2π

∣∣∣∣∫ π

−π
(f(x)− f(x+ π/n)) sin(nx)dx

∣∣∣∣
≤ 1

2π

∫ π

−π
|f(x)− f(x+ π/n)|dx

≤ Cπαn−α. (since | sin(nx)| ≤ 1)

Therefore bn = O (n−α). Similarly we get,

an =
1

π

∫ π

−π
f(x) cos(nx)dx

=
1

π

∫ π−π
n

−π−π
n

f
(
x+

π

n

)
cos

(
n
(
x+

π

n

))
dx

(2)
=

1

π

∫ π

−π
f
(
x+

π

n

)
cos(nx+ π)dx

= − 1

π

∫ π

−π
f
(
x+

π

n

)
cos(nx)dx,

where (2) follows from the fact that f(x) cos(nx) is 2π-periodic. Hence we get that,

|an| =
1

2π

∣∣∣∣∫ π

−π
(f(x)− f(x+ π/n)) cos(nx)dx

∣∣∣∣
≤ 1

2π

∫ π

−π
|f(x)− f(x+ π/n)|dx (since | cos(nx)| ≤ 1)

≤ Cπαn−α.

Therefore an = O (n−α). ■
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