ASSIGNMENT-6

Functional Spaces

TRISHAN MONDAL

§ Problem 1

Problem. Compute the Fourier series of the following functions appropriately defining them on [—7, 7]
assuming they have period 2.

(a) (5 points) f(z) = = on [0, 27]
(b) (5 points) f(z) = 22 on [0, 2x];
(c) (5 points) f(z) =z on [—m,7];
(d) (5 points) f(x) = 22 on [, 7];
(e) (5 points) f(z) = cos £ on [0, 2n];
(f) (5 points) f(z) = sin £ on [0, 27].

Solution. Through out the solution we will use the fact cosnm = (—1)" and integration of an odd function
over [—a,al is 0 (where, a > 0).

(a) The given function f(x) = x on [0, 27] can be redefined on the interval [—7, 7] assuming they have period
27 as following,

. x for = € [0, ]
z+2r for z€[-m0)

This function is continuous on [—m, 7] except for one point 0 and also this function is bounded on [—m, 7].
This is Riemann integrable. Now sinnx, cosnz is also Riemann integrable on [—, 71| thus the functions
f(x)sinnx, f(r)cosnx are Riemann integrable. We can compute ay, b, as following,
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By the condition given we can say ag = 27 and b, =
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(b) The given function f(x) = 22 on [0, 27] can be redefined on the interval [—m, ] assuming they have period

27 as following,

- 2
flw) = {(x +2m)?

for x € [0, 7]
for z € [-m,0)

This function is continuous on [—m, 7| except for one point 0 and also this function is bounded on [—m, 7].
This is Riemann integrable. Now sinnx,cosnz is also Riemann integrable on [—m, 7] thus the functions
f(x)sinnx, f(x) cosnx are Riemann integrable. We can compute ay, b, as following,
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We can see ap = L [ f(z)dz, which is equal to 1 [T 2%dz + %f?ﬂ(m +2m)2 =

computed as following,
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So we must have f ~ % +>07, % cosnz — A sinn.
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(¢) The give function f(x) = x on [—m,w]. The function is continuous on the given compact interval so
it is Riemann integrable. Again cosnx,sinnz is also Riemann integrable on [—m, 7], so we can say
xrsinnzx, x cosnz is also Riemann integrable. a,,, b,, are calculated as following,

by, = /7T f(z)sinnz dx

Note that ag = %ffﬂ xdr = 0 and for n > 1 we have,
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We again have, f ~ > > | % sin nz.
(d) The give function f(z) = 22 on [—7,7]. The function is continuous on the given compact interval
so it is Riemann integrable. Again cosnx,sinnz is also Riemann integrable on [—m, 7], so we can say
22 sin nz, £ cosne is also Riemann integrable. a,, b, are calculated as following,
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Note that ag = 1 [T 2?dz = % and for n > 1 we have,
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We again have, f ~ T 4377, (n2) cos nz.

(e) The given function f(x) = cos 3 on [0,27] can be redefined on the interval [—7, 7] assuming they have

period 27 as following,

Fa) = {Cos‘g for z € [0, 7]

—cosy for x€[-m,0)



This function is continuous on [—m, 7] except for one point 0 and also this function is bounded on [—m, 7].
This is Riemann integrable. Now sinnx,cosnz is also Riemann integrable on [—m, 7] thus the functions
f(x)sinnx, f(z) cosnx are Riemann integrable. We can compute ay, b, as following,
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Note that ag = %ffﬂ f(x) dx = 0 and for n > 1 we have,
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So we must have f ~ > >° 1 4n82’11 sinna.

(f) The given function f(x) = sin§ on [0, 27] can be redefined on the interval [—m, 7] assuming they have
period 27 as following,
sin § for x € [0, ]
() =9 .
—sing for z € [-7,0)

This function is continuous on [—m, 7] except for one point 0 and also this function is bounded on [—m, 7].
This is Riemann integrable. Now sinnz,cosnz is also Riemann integrable on [, 7] thus the functions
f(z)sinnz, f(z) cosnx are Riemann integrable. We can compute a,, b, as following,
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Note that ag = L [T f(z)dx = 2 and for n > 1 we have,
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§ Problem 2

Problem. Show that if f,g € L'[—7, 7] have the same Fourier series, then f = g a.e. on [—7,7].

Solution. Let, h = f — g. It is given that Fourier coefficients of f and g are same, i.e ¢, (f) = ¢,(g) which
means ¢, (h) = ¢,(f) — en(h) = 0. Thus it’s enough to show that if h € L!([—7,7]) such that c,(h) = 0 for all
n then h(x) = 0 almost everywhere on [—, 7].

At first we will show that the result is true if h € C([—7, 7]). By Stone-Weierstrass theorem we know that the set
of trigonometry polynomials is dense in C([—m,7]). Thus there for any € > 0, there exists T'(x) a trigonometry
polynomial such that |7 —hl|o < &/M where M = SUP[_r ] |1()] (Which exists as h is continuous on a compact
set, hence f is bounded). But then since ¢,(h) = 0 for all n, we get that

' f(z)T(z)dr =0

And therefore we get that

/W |h(z)|*dz = /7r h(z)h(z)dzx

—Tr —Tr
™

<M |T(x) — h(z)| dx
<e€

The above integrable has lower bound 0 as |h(z)| is always non-negative and the upper bound holds for any
e > 0. Hence ["_|h(z)[*dz = 0 therefore |h(z)| = 0 for all z € [—, 7] thus we have h(z) = 0 for all z € [-7, ].

Now we will show that if h € L!([—7, 7]) with ¢, (h) = 0 for all n, then h(x) = 0 almost everywhere on [—, 7].
Consider, ¢ defined as following,

ft+m)
ft+m)+ f(t —m)

0 t<0 B
ft) = { Ut t50 from here define ¢(t) =



It was proved in class that, ¢ : [-7, 7] — R is bump function and let ¢.(t) = L¢(t/c). Then . is a continuous
function with compact support. The following lemma was proved in class.

§ Lemma: If ¢ is a continuous function with compact support such that [7 ¢(x)dz = 1. Let ¢ (t) =

%gp(t/&). Then if f € L'([—m,7]) then f x ¢, is continuous and we further have || f * ¢, — f||; — 0 as
e —0.

Now we know that h x . (as convolution of a continuous function with a Legbesgue integrable function is
continuous. This was proved in class) is continuous and ¢, (h * &.) = ¢, (h)cy, (p-) = 0. Hence by our previous
claim we get that (h * ¢.) () = 0. Hence we get that

|7 % pe = hlly = 0 = [|AllL = O,

as ¢ — 0. Hence we get that |h(x)| = 0 almost everywhere on [—m, 7] and therefore we get that h(z) = 0 almost
everywhere on [—,7]. And in the given problem we are given f,g € L![—n, 7] have same Fourier series that is
cn(f) = cn(g). So consider h = f — g € LY([—m,7]) and ¢, (h) = cn(f) — ca(g) = 0, therefore h(z) = 0 almost
everywhere, hence f(z) = g(z) almost everywhere on [—7, 7]. |

§ Problem 3

Problem.

(a) (5 points) Provide a simple description of a continuous function on [—m, 7] which generates the
Fourier series,

n=1

6

(b) (5 points) Use Parseval’s formula to conclude that ((6) = gis.

Solution. (a) We will prove the following lemma which will immediately give us the description of a
continuous function that generates the given Fourier series.

§ Lemma: The function f(z) = %x (:1:2 — 772) generates the Fourier series

Z(—l)n sinT(Lng)
n=1

Note that the function f is odd hence a, = 1 [ f(z) cos(na)dz = 0 for all n > 0. So we only need to compute

7
the coefficients b, for that its enough to compute the integrals

/ 23 sin(nz)dz and / xsin(nz)dz.
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Next we have,
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Therefore b, = (7”#, and hence the corresponding Fourier series is

Z by, sin(nz) = Z(—l)"sm(nm).
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n
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(b) Note that f is continuous on [—m, 7| and hence f is Riemann integrable. We have the following theorem,

Theorem 3.1: (Parseval’'s Theorem) Let f be a Riemann integrable function and let

oo
f ~ § : Cn eine
n=0

Then
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The above theorem was proved in class (in fact a more general version was proved, for refernce one can look at
“Principles of Mathematical Analysis”-Rudin chapter 8). It’s not hard to see f(z) = 75(2? — 7%)z is Riemann

integrable on compact interval [—m, 7]. Applying the above theorem we can say,
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2 _ _ 2
Sl =3 5= 1 [ @
n=1 n

=1

Now,

Thus we can conclude that ((6) = .



§ Problem 4

Problem. Suppose that f is a 27-periodic function that satisfied the Lipschitz condition of order a(0 <
a < 1); that is |f(x 4+ h) — f(z)| < C|h|* for C' > 0 independent of x. Show that if a,,b, are Fourier
coefficients of f, then

anp =0 (n_a) ,bp, =0 (n_a) .
Solution. Take n sufficiently large so that
‘f (ZL‘ + %) — f(x)‘ < Cm%n~ .

We have e
by, = — f(z) sin(nz)dx
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where (1) follows from the fact that f(x)sin(nz) is 2m-periodic. Hence we get that

bn| = o= ‘/_W f(z +7/n)) sin(nz)dx
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< Crm%n™“. (since |sin(nzx)| < 1)

<o [ 1@ = St e

Therefore b, = O (n™%). Similarly we get,
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where (2) follows from the fact that f(z)cos(nz) is 2m-periodic. Hence we get that,

|an| = 5= ‘/ f(z+7/n)) cos(nx)dx
S |f(37) fl@+m/n)|dz (since | cos(nz)| < 1)
< Crn%n O‘.

Therefore a,, = O (n™¢).
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