Assignment-8

Functional Spaces

TRISHAN MONDAL

§ Problem 1

Problem. Let $f \in L^1(\mathbb{R})$. For r > 0, let $f_r : \mathbb{R} \to \mathbb{R}$ be the function defined by, $f_r(x) = \frac{1}{2r} \int_{x-r}^{x+r} f(x) dx$ (a) (5 points) Show that f_r is continuous for every r > 0 and $||f_r||_1 \le ||f||_1$. (b) (5 points) Show that $\lim_{r \to 0} ||f_r - f||_1 = 0$.

$$f_r(x) = \frac{1}{2r} \int_{x-r}^{x+r} f(x) dx$$

Solution. Part(a) Fix r > 0. Let $\varphi_r : \mathbb{R} \to \mathbb{R}$ be defined as $\varphi_r = \frac{1}{2r}\chi_{[-r,r]}$. Since φ_r is a constant multiple of a characteristic function, it is measurable. Additionally, φ_r is bounded, making it integrable, and therefore, $\varphi_r \in L^1(\mathbb{R})$. Now, consider $\epsilon > 0$. Since the set of all continuous functions with compact support $C_c(\mathbb{R})$ is dense in $L^1(\mathbb{R})$, there exists $g \in C_c(\mathbb{R})$ such that $\|g - f\| < \frac{\epsilon}{3}$. Define $g_r : \mathbb{R} \to \mathbb{R}$ as follows,

$$g_r(x) = \frac{1}{2r} \int_{x-r}^{x+r} g(t) dt$$
$$= (g * \varphi_r)(x)$$

For $h \in \mathbb{R}$, we have,

$$|f_r(x+h) - f_r(x)| \le |f_r(x+h) - g_r(x+h)| + |g_r(x+h) - g_r(x)| + |g_r(x) - f_r(x)|$$

Now, $|f_r(x+h) - g_r(x+h)| = |((f-g) * \varphi_r) (x+h)|$ and $|g_r(x) - f_r(x)| = |((f-g) * \varphi_r) (x)|$. As g is continuous, g_r is continuous (as convolution of a continuous function with a L^2 function is a continuous function). Therefore, choosing sufficiently small h, we get

$$|g_r(x+h) - g_r(x)| < \frac{\epsilon}{3}$$

Moreover,

$$\begin{aligned} |((f-g)*\varphi_r)(x)| &\leq \int_{\mathbb{R}} |(f-g)(x-t)\varphi_r(t)| \,\mathrm{d}t \\ &\leq \frac{1}{2r} \int_{\mathbb{R}} |(f-g)(x-t)| \,\mathrm{d}t \\ &= \frac{1}{2r} ||f-g||_1 < \frac{\epsilon}{3} \end{aligned}$$

Similarly, $|((f-g) * \varphi_r) (x+h)| < \frac{\epsilon}{3}$. Therefore,

$$|f_r(x+h) - f_r(x)| < \epsilon$$

Thus, f_r is continuous for every r > 0. Since $f_r = f * \varphi_r$, we deduce that $||f_r||_1 \le ||f||_1 ||\varphi_r||_1 \le ||f||_1$ (as L^1 norm of φ_r is 1).

Part (b) We will begin with proving the statement for a function $g \in C_c(\mathbb{R})$. Let, K = support(g), which is compact by definition of g and hence Vol(K) is finite. So for r > 0 we have,

$$\begin{split} \|g_r - g\|_1 &= \int_K |g * \phi_r(x) - g(x)| \, dx \\ &\leq \frac{1}{2r} \int_K \int_{-r}^r |g(x - t) - g(x)| \, dt \, dx \end{split}$$

From continuity of g we can say there exist r > 0 such that, $|g(x-t) - g(x)| < \varepsilon/2 \operatorname{Vol}(K)$ for $t \in (-r, r)$. For those r we have,

$$\|g_r - g\|_1 < \frac{1}{2r} \int_K \int_{-r}^r \frac{\epsilon}{2\operatorname{vol}(K)} \, dt \, dx = \int_K \epsilon/2\operatorname{vol}(u) \, dx = \epsilon/2$$

Now we will again use the fact that, "set of continuous functions in \mathbb{R} with compact support $C_c(\mathbb{R})$ is dense in $L^1(\mathbb{R})$ " to prove the statement for $f \in L^1(\mathbb{R})$. Hence, for $f \in L^1(\mathbb{R})$, we will find squence $g_n \in C_C(\mathbb{R})$ such that $||f - g_n|| \to 0$. In other words, $\forall \varepsilon > 0$ there exists $g \in C_c(\mathbb{R})$ such that $||f - g|| < \varepsilon/4$. For r > 0 we have,

$$\begin{split} \|f_r - f\|_1 &\leq \|f_r - g_r\|_1 + \|g_r - g\|_1 + \|g - f\|_1 \\ &= \|(f - g) * \phi_r\|_1 + \|g_r - g\|_1 + \|g - f\|_1 \\ &\leq \|f - g\|_1 + \|g_r - g\|_1 + \|g - f\|_1 \\ &= 2\|f - g\|_1 + \|g_r - g\|_1 \end{split}$$

Thus by previous part, for sufficiently small r,

$$\begin{aligned} \|f_r - f\|_1 &\leq 2\|f - g\|_1 + \|g_r - g\|_1 \\ &< \epsilon/2 + \epsilon/2 = \epsilon \end{aligned}$$

Thus, $\lim_{r \to 0} ||f_r - f||_1 = 0.$

§ Problem 2

Problem. Let $f \in L^1(\mathbb{R})$ and $x \in \mathbb{R}$ such that $f(x) \neq \pm \infty$. Then x is called a Lebesgue point for f if

$$\lim_{r \to 0} \frac{1}{r} \int_{x}^{x+r} |f(t) - f(x)| dt = 0$$

(a) (5 points) Show that if x is a Lebesgue point for f, then the function $x \mapsto \int_{-\infty}^{x} f(t)dt$ is differentiable at x, and its derivative at x is f(x).

(b) (5 points) Show that each point of continuity of f is a Lebesgue point for f.

Solution. Part (a) Let \mathcal{L}_f denote the set of all Lebesgue points for f. Define, $g : \mathbb{R} \to \mathbb{R}$ as,

$$g(x) = \int_{-\infty}^{x} f(t) \, \mathrm{d}t$$

For $h \in \mathbb{R}$ and $x \in \mathcal{L}_f$ we have,

$$\left|\frac{g(x+h) - g(x)}{h} - f(x)\right| = \left|\frac{1}{h}\int_{x}^{x+h} f(t) \, \mathrm{d}t - \frac{1}{h}\int_{x}^{x+h} f(x) \, \mathrm{d}t\right|$$
$$\leq \frac{1}{|h|}\int_{x}^{x+h} |f(t) - f(x)| \, \mathrm{d}t$$

As $x \in \mathcal{L}_f$, we have,

$$\lim_{h \to 0} \frac{1}{|h|} \int_{x}^{x+h} |f(t) - f(x)| \, \mathrm{d}t = 0$$

The above equality achieved just by taking absolute value in the expression given in the definition. So,

$$\lim_{h \to 0} \left| \frac{g(x+h) - g(x)}{h} - f(x) \right| = 0$$

and hence, $x \mapsto \int_{-\infty}^{x} f(t) dt$ is differentiable at x with derivative f(x).

Part (b) Let x be a contunuity point of f. Fix $\epsilon > 0$, then there exists $\delta > 0$ such that for $|t - x| < \delta$ we have, $|f(t) - f(x)| < \epsilon$. Now, for $0 < |r| < \delta$,

$$\left|\frac{1}{r}\int_{x}^{x+r}|f(t) - f(x)| \, \mathrm{d}t\right| < \frac{1}{|r|}\int_{x}^{x+r} \epsilon \, \mathrm{d}t = \epsilon$$

From the definition of limit we can say $\lim_{r\to 0} \frac{1}{r} \int_x^{x+r} |f(t) - f(x)| dt = 0$. So, $x \in \mathcal{L}_f$.

§ Problem 3

Problem. Let $f \in L^1[-\pi, \pi]$. (a) (5 points) If $f \in L^2[-\pi, \pi]$, show that the series

$$\sum_{N=1}^{\infty} \frac{|a_N| + |b_N|}{N}$$

converges.

(b) (10 points) If f is a 2π -periodic function in $C^1(\mathbb{R})$, then show that

$$\|f - s_N\|_{\infty} = o\left(\frac{1}{\sqrt{N}}\right)$$

(In other words, the error term for uniform approximation of f via s_N declines like "little oh" of $\frac{1}{\sqrt{N}}$.) (c) (5 points) If f is bounded, show that $|s_N(x)| = O(\ln N)$. (Hint: $\int_1^x \frac{1}{t} dt = \ln x$ and use estimates for the Dirichlet kernel.)

Solution. Part (a) For $k \in \mathbb{N}$, we use Cauchy-Schwarz inequality to get,

$$\left|\sum_{N=m}^{k} \frac{|a_{N}| + |b_{N}|}{N}\right| \le \left(\sum_{N=m}^{k} |a_{N}|^{2} + |b_{N}|^{2}\right)^{\frac{1}{2}} \left(\sum_{N=m}^{k} \frac{1}{N^{2}} + \frac{1}{N^{2}}\right)^{\frac{1}{2}}$$

Since $f \in L^2[-\pi,\pi]$, we get $\sum_{N=1}^{\infty} |a_N|^2 + |b_N|^2$ converges and we also know $\sum \frac{2}{n^2}$ converges. Thus for every $\varepsilon > 0$ there is N such that for all $m, n \ge N'$ we have, $\sum_{N=m}^{n} |a_N|^2 + |b_N|^2 < \varepsilon$ and $\sum_{N=m}^{n} \frac{2}{N^2} < \varepsilon$. By the Cauchy Schwarz inequality shown as above we can say,

$$\sum_{N=m}^{n} \frac{|a_N| + |b_N|}{N} < \sqrt{\varepsilon}\sqrt{\varepsilon} = \varepsilon$$

Thus we can conclude $\sum_{N=1}^{\infty} \frac{|a_N| + |b_N|}{N}$ converges.

Part (b) For this problem we will consider the other kind of Fourier series expansion done in class (where the orthogonal basis is $\{e^{inx}\}$). The Fourier coefficients are given by,

$$c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-\iota nx} \, \mathrm{d}x$$

Note that,

$$c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

= $\frac{1}{2\pi} \left(\frac{f(x) e^{-inx}}{-in} \Big|_{-\pi}^{\pi} + \frac{1}{in} \int_{-\pi}^{\pi} f'(x) e^{-inx} dx \right) = \frac{c_n(f')}{in}$

The above calculation tells us, $|c_n(f)| = |c_n(f')|/n$. Now since f is a 2π -periodic C^1 function and hence a L^2 function. Thus by Parsevals theorem, $f(x) = \sum_{n=-\infty}^{\infty} e^{inx}c_n(f)$ holds pointwise. For every point x, we must have the following calculation.

$$|(f - s_N)(x)| = \left| \sum_{|n| > N} e^{inx} c_n(f) \right|$$

$$\leq \sum_{|n| > N} \left| \frac{c_n(f')}{n} \right|$$

$$\leq \left(\sum_{|n| > N} \left| c_n(f') \right|^2 \right)^{\frac{1}{2}} \left(\sum_{|n| > N} \frac{1}{n^2} \right)^{\frac{1}{2}}$$

The last inequality follows from Cauchy-Schwarz inequality. Since f' is continuous and 2π -periodic it's a L^2 function and thus by Parsevals theorem, $\sum |c_n(f')|^2$ converges, thus for large enough N, the sum $\sum_{|n|>N} c_n(f')$ converges to 0. Thus we can bound that sum by a M > 0. The other sum can be bounded in the following manner,

$$\begin{split} \sum_{|n|>N} \frac{1}{n^2} &= 2\sum_{k=1}^{\infty} \frac{1}{(N+k)^2} \\ &< \sum_{k=1}^{\infty} \frac{1}{(N+k-1)(N+k)} \\ &= \sum_{k=1}^{\infty} \frac{1}{N+k-1} - \frac{1}{N+k} = \frac{1}{N} \end{split}$$

The last line follows from the telescopic sum method. So, $|(f - s_N)(x)| < \frac{M}{\sqrt{N}}$. Also note that, $\sqrt{N}|(f - s_N)(x)|$ goes to 0 for $N \to \infty$ (the calculation is shown as follows)

$$\begin{split} \sqrt{N}|(f-s_N)(x)| &< M\sqrt{N} \left(\sum_{|n|>N} \frac{1}{n^2}\right)^{\frac{1}{2}} \\ &= M \left(2\sum_{k=1}^{\infty} \frac{N}{(N+k)^2}\right)^{1/2} \\ &\Rightarrow \lim_{N \to \infty} \sqrt{N}|(f-s_N)(x)| = 0 \end{split}$$

Thus for all point x we have the above inequality. Hence we can say $||f - s_N||_{\infty} \leq \frac{M}{\sqrt{N}}$ with $\lim \sqrt{N} ||f - s_N||_{\infty} \to 0$. We can conclude, $||f - s_N|| = o(1/\sqrt{N})$.

Part (c) As f is bounded, let $M = \sup_{x \in [-\pi,\pi]} |f(x)|$, using the fact $s_N = \frac{1}{\pi} f * D_N$ (here D_N is Dirichlet kernal)

we can write

$$|s_N(x)| = \left|\frac{1}{\pi} \int_{-\pi}^{\pi} f(x-t) D_N(t) \, \mathrm{d}t\right| \le \frac{1}{\pi} \int_{-\pi}^{\pi} |f(x-t) D_N(t)| \, \mathrm{d}t$$
$$\le \frac{M}{\pi} \int_{-\pi}^{\pi} |D_N(t)| \, \mathrm{d}t$$

Now we will try to bound the integral of D_N by $O(\log N)$. The calculation as follows,

$$\int_{-\pi}^{\pi} |D_N(t)| \, dt = 2 \int_0^{\pi} \left| \frac{\sin\left(N + \frac{1}{2}\right)t}{2\sin\frac{t}{2}} \right| \, dt$$

we know for $x \in [0, \pi/2]$, $\sin x \leq \frac{2}{\pi}x$. using this in the above integral we get,

$$\int_{-\pi}^{\pi} |D_N(t)| \, dt \le 2 \int_0^{\pi} \left| \frac{\sin\left(N + \frac{1}{2}\right)t}{2 \cdot \frac{2}{\pi} \frac{t}{2}} \right| = \pi \int_0^{\pi} \frac{\left|\sin\left(N + \frac{1}{2}\right)t\right|}{t} \, dt$$

Now by substituting u = (N + 1/2)t we get,

$$\int_{-\pi}^{\pi} |D_N(t)| \, dt \le \pi \int_0^{(N+\frac{1}{2})\pi} \frac{|\sin t|}{t} \, \mathrm{d}t$$
$$\le \pi \int_0^{(N+1)\pi} \frac{|\sin t|}{t} \, \mathrm{d}t$$
$$= \pi \left(\sum_{k=1}^N \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{t} \, \mathrm{d}t + \int_0^{\pi} \frac{|\sin t|}{t} \right)$$

Note that, $\int_0^{\pi} \frac{|\sin t|}{t} = \int_0^{\pi} \frac{\sin t}{t}$. The function $f(x) = \frac{\sin t}{t}$ for $t \in (o, \pi]$ and 1 for t = 0 is continuous and hence Riemann integrable on $[0, \pi]$. So we can put a constant value I in place of this integral. Thus we have,

$$\int_{-\pi}^{\pi} |D_N(t)| \, dt \le \pi I + \pi \sum_{k=1}^{N} \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{t} \, dt$$
$$\le \pi I + \sum_{k=1}^{N} \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{k} \, dt$$
$$= \pi I + \sum_{k=1}^{N} \frac{2}{k}$$
$$\le \pi I + 2\log(N)$$

Thus $|s_N(x)| \leq \frac{2M}{\pi} (\pi I + 2\log N)$. Thus by definition of "Big oh" we can say, $|s_N(x)| = O(\log N)$.

§ Problem 4

Problem. Prove the Féjer theorem: Let f be a 2π -periodic function on \mathbb{R} and $f \in L^1[-\pi,\pi]$. For $x \in [-\pi,\pi)$, assume that the limits $f(x^-), f(x^+)$ exist. Then show that $f(x^+) + f(x^-)$

$$\lim_{N \to \infty} \sigma_N(x) = \frac{f(x^+) + f(x^-)}{2}$$

Solution. For each $x \in [-\pi, \pi)$ we define, $g_x : [-\pi, \pi] \to \mathbb{R}$ as follows,

$$g_x(t) = \frac{f(x+t) + f(x-t)}{2} - \frac{f(x^+) + f(x^-)}{2}$$

Note that, $\lim_{t\to 0} g_x(t) = 0$ for every $x \in [-\pi, \pi)$ where the limit $f(x^+)$ and $f(x^-)$ exists. So for every $\epsilon > 0$, we can find a $\delta > 0$ such that for $t \in (0, \delta)$, we have $|g_x(t)| < \frac{\epsilon}{2}$. From the integral representation of Fejer kernal we know:

$$\sigma_n(x) = \frac{1}{n} \sum_{k=0}^n s_k(x)$$

= $\frac{1}{n\pi} \int_0^\pi \frac{f(x+t) + f(x-t)}{2} \frac{\sin^2 \frac{nt}{2}}{\sin^2 \frac{t}{2}} dt$

Note that,

$$\begin{aligned} \left| \sigma_n(x) - \frac{f(x^+) + f(x^-)}{2} \right| &= \left| \frac{1}{n\pi} \int_0^\pi \frac{f(x+t) + f(x-t)}{2} \frac{\sin^2 \frac{nt}{2}}{\sin^2 \frac{t}{2}} \, \mathrm{d}t - \frac{f(x^+) + f(x^-)}{2} \right| \\ &= \left| \frac{1}{n\pi} \int_0^\pi \left(\frac{f(x+t) + f(x-t)}{2} - \frac{f(x^+) + f(x^-)}{2} \right) \frac{\sin^2 \frac{nt}{2}}{\sin^2 \frac{t}{2}} \, \mathrm{d}t \right| \\ &= \left| \frac{1}{n\pi} \int_0^\pi g_x(t) \frac{\sin^2 \frac{nt}{2}}{\sin^2 \frac{t}{2}} \, \mathrm{d}t \right| \\ &\leq \underbrace{\left| \frac{1}{n\pi} \int_0^\delta g_x(t) \frac{\sin^2 \frac{nt}{2}}{\sin^2 \frac{t}{2}} \, \mathrm{d}t \right|}_{I_1} + \underbrace{\left| \frac{1}{n\pi} \int_\delta^\pi g_x(t) \frac{\sin^2 \frac{nt}{2}}{\sin^2 \frac{t}{2}} \, \mathrm{d}t \right|}_{I_2} \end{aligned}$$

For I_1 we will get the following computations,

$$I_{1} \leq \frac{1}{n\pi} \int_{0}^{\delta} |g_{x}(t)| \frac{\sin^{2} \frac{nt}{2}}{\sin^{2} \frac{t}{2}} dt$$
$$< \frac{1}{n\pi} \int_{0}^{\delta} \frac{\epsilon}{2} \cdot \frac{\sin^{2} \frac{nt}{2}}{\sin^{2} \frac{t}{2}} dt$$
$$\leq \frac{\epsilon}{2} \cdot \underbrace{\frac{1}{n\pi} \int_{0}^{\pi} \frac{\sin^{2} \frac{nt}{2}}{\sin^{2} \frac{t}{2}} dt}_{=1(\text{property of Fejer kernal})} = \frac{\epsilon}{2}$$

and for I_2 we have the following computation,

$$I_2 \leq \frac{1}{n\pi} \int_{\delta}^{\pi} |g_x(t)| \frac{\sin^2 \frac{nt}{2}}{\sin^2 \frac{t}{2}} dt$$
$$\leq \frac{1}{n\pi \sin^2 \frac{\delta}{2}} \int_{\delta}^{\pi} |g_x(t)| dt$$

where the last line follows form the fact that, $\sin^2 \frac{nt}{2} \leq 1$ and $\sin^2 \frac{\delta}{2} \geq \sin^2 \frac{t}{2}$ for $\frac{t}{2} \in \left[\frac{\delta}{2}, \frac{\pi}{2}\right)$. We also have,

$$\int_{\delta}^{\pi} |g_x(t)| \, \mathrm{d}t \le \int_{0}^{\pi} |g_x(t)| \, \mathrm{d}t$$

As, $f \in L^1[-\pi,\pi]$, we get $\int_0^{\pi} |g_x(t)| dt$ exists. Hence, we can find a $N \in \mathbb{N}$ such that for $n \ge N$, we have, $|I_2| < \frac{\epsilon}{2}$. Thus, for $n \ge N$, we have, $\left|\sigma_n(x) - \frac{f(x+t)+f(x-t)}{2}\right| < \epsilon$ for all $t \in (0,\delta)$. Hence the following holds for all $x \in [-\pi,\pi)$ where the limits $f(x^+)$ and $f(x^-)$ exists,

$$\lim_{n \to \infty} \sigma_n(x) = \frac{f(x^+) + f(x^-)}{2}$$

§ Problem 5

Problem. (10 points) Let $f \in L^1[-\pi, \pi]$ and x be a Lebesgue point for f (as defined in Problem 2 above). Show that

$$\lim_{N \to \infty} \sigma_N(x) = f(x)$$

Solution. Let's assume \mathcal{L}_f be the set of all Lebesgue points of f. Recall the integral representation of cesaro sum,

$$\sigma_n(x) = \frac{1}{n\pi} \int_0^\pi \frac{f(x+t) + f(x-t)}{2} \frac{\sin^2 \frac{1}{2}nt}{\sin^2 \frac{1}{2}t} dt$$

Let's call $\frac{1}{n\pi} \frac{\sin^2 \frac{1}{2}nt}{\sin^2 \frac{1}{2}t} = F_n(t)$. We also know, $\int_0^{\pi} F_n(t) = 1$. Thus we can write,

$$\begin{aligned} |\sigma_n(x) - f(x)| &= \left| \int_0^\pi \frac{f(x+t) + f(x-t)}{2} F_n(t) \, dt - f(x) \right| \\ &= \frac{1}{2} \left| \int_0^\pi [f(x+t) + f(x-t) - 2f(x)] F_n(t) \, dt \right| \\ &\leq \frac{1}{2} \int_0^\pi |f(x+t) + f(x-t) - 2f(x)| F_n(t) \, dt \end{aligned}$$

Let us define the function, $\varphi_x(t') = |f(x+t') + f(x-t') - 2f(x)|$ and $\Psi_x(t) = \int_0^t \varphi_x(t') dt'$. Since $x \in \mathcal{L}_f$ we can say,

$$\lim_{t \to 0} \frac{\Psi_x(t)}{t} = \lim_{t \to 0} \frac{1}{t} \int_0^t \left| f(x+t') + f(x-t') - 2f(x) \right| dt$$
$$\leq \lim_{t \to 0} \frac{1}{t} \int_0^t \left| f(x+t') - f(x) \right| dt' + \lim_{t \to 0} \frac{1}{t} \int_0^t \left| f(x-t') - f(x) \right| dt' = 0$$

Thus we can say $\lim_{t\to 0} \Psi_x(t)/t = 0$ if x is a Lebesgue point. For every $\varepsilon > 0$ we will get $\delta > 0$ such that, $|\Phi_x(t)/t| < \varepsilon$ for $|t| < \delta$. Partition the interval $[0, \pi]$ in to two parts $[0, \delta]$ and $[\delta, \pi]$. In the later interval $\phi(t)/\sin^2 \frac{1}{2}t$ is Riemann integrable so by **Riemann Lebesgue lemma**, integral of $\varphi_x(t)F_n(t)$ goes to 0 as $n \to infty$. Thus there exist N_1 such that, $\int_{\delta}^{\pi} \varphi_x(t)F_n(t) dt < \varepsilon$ for all $n > N_1$.

Now we will split the interval $[0, \delta]$ into two part. For every δ we must get $N_{\delta} \in \mathbb{N}$ such that, $\frac{1}{n} < \delta$ for $n > N_{\delta}$. Choose this n and split the interval $[0, \delta]$ into two parts $[0, \frac{1}{n}]$ and $[\frac{1}{n}, \delta]$. Let, $I_1 = \int_0^{\frac{1}{n}} \varphi_x(t) F_n(t) dt$ and $I_2 = \int_{\frac{1}{n}}^{\frac{\delta}{n}} \varphi_x(t) F_n(t) dt$. Now,

$$I_1 = \int_0^{\frac{1}{n}} \varphi_x(t) F_n(t) dt$$
$$= \frac{1}{n\pi} \int_0^{\frac{1}{n}} \varphi_x(t) \frac{\sin^2 \frac{1}{2}nt}{\sin^2 \frac{t}{2}} dt$$
$$\leq \frac{1}{n\pi} \int_0^{\frac{1}{n}} \varphi_x(t) \frac{(nt/2)^2}{(t/\pi)^2} dt$$
$$= \frac{\pi}{4} n \Psi(\frac{1}{n})$$

The last inequality follows from the fact $|\sin x| \le x$ and $\frac{2}{\pi}x \le \sin x$ for $x \in [0, \pi/2]$. Since $\lim_{t\to 0} \Psi(t)/t = 0$ we will get $N_2 \in N$ such that $I_1 < \varepsilon$ for $n > N_2$. For I_2 , we can proceed in the following way:

$$I_{2} = \int_{\frac{1}{n}}^{\delta} \varphi_{x}(t) F_{n}(t) dt = \frac{1}{n\pi} \int_{\frac{1}{n}}^{\delta} \varphi_{x}(t) \frac{\sin^{2} \frac{1}{2} nt}{\sin^{2} \frac{t}{2}} dt \le \frac{1}{n\pi} \int_{\frac{1}{n}}^{\delta} \varphi_{x}(t) \frac{1}{(t/\pi)^{2}} dt$$

We have used the inequality $\sin^2 x \le 1$ and $\sin t/2 \le t/\pi$ as $\delta < \pi$ we have used the inequality $2/\pi x \le \sin x$ for $x \in [0, \pi/2]$. Using further computations we get,

$$I_2 \leq \frac{\pi}{n} \int_{\frac{1}{n}}^{\delta} \frac{\varphi_x(t)}{t^2} dt$$
$$= \frac{\pi}{n} \left(\frac{\Psi_x(t)}{t^2} \Big|_{1/n}^{\delta} + 2 \int_{\frac{1}{n}}^{\delta} \frac{\Psi_x(t)}{t^3} dt \right)$$

There are two term in the above expression. For the second term we will use the bound $\Psi_x(t)/t < \varepsilon$ for $0 < t < \delta$ (this we get from the limit condition discussed above). So,

$$\int_{\frac{1}{n}}^{\delta} \frac{\Psi_x(t)}{t^3} < \int_{\frac{1}{n}}^{\delta} \frac{\varepsilon}{t^2} dt = \varepsilon \left(n - \frac{1}{\delta} \right) < \varepsilon n$$

Also for the first term,

$$\frac{\Psi_x(t)}{t^2}\Big|_{1/n}^{\delta} < \frac{\Psi_x(\delta)}{\delta^2} < \frac{\varepsilon}{\delta}$$
 (using the limit condition again)

Thus we get, $I_2 \leq \frac{\pi}{n} \left(\frac{\varepsilon}{\delta} + 2\varepsilon n\right) < \pi \left(\frac{\varepsilon}{n\delta} + 2\varepsilon\right)$. Since $\frac{1}{n} < \delta$ we can say, $I_2 < 3\pi\varepsilon$. Thus

$$|\sigma_n(x) - f(x)| \le \frac{\varepsilon + \varepsilon + 3\pi\varepsilon}{2} = \frac{2 + 3\pi}{2}\varepsilon$$

holds for all $n > \max\{N_1, N_2, N_\delta\}$. Thus $\lim_{n\to\infty} \sigma_n(x) = f(x)$ holds pointwise and our proof is complete.