ASSIGNMENT-8

Functional Spaces

TRISHAN MONDAL

§ Problem 1
Problem. Let f € L'(R). Forr >0, let f. : R — R be the function defined by,

x+r
fola) = 2 / @)

B 2771 r—r
(a) (5 points) Show that f, is continuous for every r > 0 and || f-||; < || f|-

(b) (5 points) Show that lim,_,¢ || f — f|l; = 0.

Solution. Part(a) Fix r > 0. Let ¢, : R — R be defined as ¢, = %X[—r,r]- Since ¢, is a constant multiple
of a characteristic function, it is measurable. Additionally, ¢, is bounded, making it integrable, and therefore,
¢ € LY(R). Now, consider ¢ > 0. Since the set of all continuous functions with compact support C.(R) is
dense in L'(R), there exists g € C.(R) such that ||g — f|| < §. Define g, : R — R as follows,
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For h € R, we have,

[fr(@+h) = fr(2)] < |fr(@+ h) — gr(x+ )|
+ |gr(x + h) - gr($)| + |gr(x) - fr(x)’

Now, |fr(z +h) = gr(z + h)| = [((f = g) * ¢r) (x + h)| and g, (z) = fr(2)] = [((f = g) * ;) (x)]. As g is contin-
uous, g, is continuous (as convolution of a continuous function with a L? function is a continuous function).
Therefore, choosing sufficently small h, we get

90 (x + h) = gi(@)] < 3

Moreover,
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Similarly, [((f — g) * ¢r) (x + h)| < §. Therefore,
|fr($ + h) - fr(x)| <€

Thus, f, is continuous for every r > 0. Since f, = f * ¢, we deduce that ||f|l; < | fllillerlly < [If]ly (as L
norm of ¢, is 1).



Part (b) We will begin with proving the statement for a function g € C.(R). Let, K = support(g), which is
compact by definition of g and hence Vol(K) is finite. So for r > 0 we have,

lgr — gll, = /K 19 % 60 () — 9(2)| da
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From continuity of g we can say there exist r > 0 such that, |g(x —t) — g(z)| < €/2Vol(K) for t € (—r,r). For

those r we have,
1 " €
- — — ————dtdx = 2vol(u)dr = €/2
lor=all < 5 [ | gedtde = [ e/2voltuyde =

Now we will again use the fact that, “set of continuous functions in R with compact support C.(R) is dense in
LY(R)” to prove the statement for f € L!(R). Hence, for f € L'(R), we will find squence g, € Cc(R) such that
| f — gnll = 0. In other words, Ve > 0 there exists g € C.(R) such that ||f — g|| < /4. For r > 0 we have,

1fr = flly < lfr = gelly + llgr — gll; +llg = fln
=I(f —9) *¢rlly + llgr = glly + lg = flla
<f =gl +llgr —glly +llg = fl
=2|f —glli + llgr — gl

Thus by previous part, for sufficiently small r,

I = £l <20 = gl + llgr — gl
<€/2+¢€/2=c¢

Thus, lim, o || fr — f]l; = 0. [

§ Problem 2

Problem. Let f € L'(R) and z € R such that f(x) # 4o0o. Then z is called a Lebesgue point for f if

1 x+r
im = [ 1£() — f)ldt =0
r=>0T1 J,
a) (5 points) Show that if z is a Lebesgue point for f, then the function z — [* t)dt is differentiable
oo
at z, and its derivative at x is f(z).
(b) (5 points) Show that each point of continuity of f is a Lebesgue point for f.

Solution. Part (a) Let £ denote the set of all Lebesgue points for f. Define, g : R — R as,

o(z) = / ") dt

For h € R and = € L we have,

g(x—i—h) _g(x) B 1 z+h 1 x+h
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1 z+h
< . |f(t) — f(z)| dt
As x € Ly, we have,
z+h
}L%W |f(t) = f(z)| dt =0



The above equality achieved just by taking absolute value in the expression given in the definition. So,

|9+ k) — g(a)
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and hence, z — / f(t) dt is differentiable at x with derivative f(x).
—00

Part (b) Let = be a contunuity point of f. Fix e > 0, then there exists 6 > 0 such that for |t — z| < § we have,
|f(t) — f(z)| <e. Now, for 0 < |r| <4,

xT+r T+r
1/ \f(t)—f<x)ydt’<|i‘/ e dt =

r

From the definition of limit we can say lim,_,q & ff” |f(t) — f(x)|dt =0. So, x € Ly. [ |
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§ Problem 3

Problem. Let f € L[—m, 7.
(a) (5 points) If f € L?[—n, 7], show that the series

i lan| + |by]
N
N=1

converges.
(b) (10 points) If f is a 2w-periodic function in C'(R), then show that

17 =l =0 ()

(In other words, the error term for uniform approximation of f via sy declines like ”little oh” of ﬁ)

(c) (5 points) If f is bounded, show that [sy(z)| = O(In N). (Hint: ;" 1dt = Inz and use estimates for
the Dirichlet kernel.)

Solution. Part (a) For k € N, we use Cauchy-Schwarz inequality to get,
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Since f € L*[—m, 7], we get S, lan|* + |by|* converges and we also know 3 % converges. Thus for every
€ > 0 there is N such that for all m,n > N’ we have, > %_, |an|* + |bn|* < & and S 5 < e. By the
Cauchy Schwarz inequality shown as above we can say,
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Thus we can conclude > _; M]—G'Nl converges.

Part (b) For this problem we will consider the other kind of Fourier series expansion done in class (where the
orthogonal basis is {emm}). The Fourier coefficients are given by,
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Note that,
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The above calculation tells us, |c,(f)| = |cn(f")|/n. Now since f is a 2r-periodic C! function and hence a L?
function. Thus by Parsevals theorem, f(z) = > oo €™%¢,(f) holds pointwise. For every point x, we must

have the following calculation.
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The last inequality follows from Cauchy-Schwarz inequality. Since f’ is continuous and 27-periodic it’s a L2
function and thus by Parsevals theorem, 3" |e,, (f)|? converges, thus for large enough N, the sum 2 jnj> N Cnl )
converges to 0. Thus we can bound that sum by a M > 0. The other sum can be bounded in the following
manner,
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> wﬂzzg(NJrk)?
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The last line follows from the telescopic sum method. So, |(f — sn)(z)| < \/MN Also note that, vV N|(f — sy)(z)|
goes to 0 for N — oo (the calculation is shown as follows)

VNI~ sw)@)] < MVR | 3D -
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0o N 1/2
(2% )
= lim VN|(f = sy) ()| =0

Thus for all point & we have the above inequality. Hence we can say || f — sn||, < \/—]\/]fv with lim V' N|| f — sn||,, —
0. We can conclude, ||f — sy|| = o(1/V/N).

Part (c) As f is bounded, let M = supyc[_r A |f(2)], using the fact sy = 1 f« Dy (here Dy is Dirichlet kernal)



we can write

s ()| = '}T " e~ 0w () dt] <2 [Miste - noaeo)ar
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Now we will try to bound the integral of Dy by O(log N). The calculation as follows,

/_Z\DN(t)]dt:Q/Oﬂ

we know for z € [0,7/2], sinz < 2z. using this in the above integral we get,

T T ™ |sin (N + 1 ¢
/ \DN(t)|dt§2/ :77/ ‘Sm(—mdt
—r 0 0 t
Now by substituting u = (N + 1/2)t we get,

g (N+l)7r :
/ DN(t)|dt§7r/ T st g

sin (N + %)t

— de¢
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Note that, [ |Si?t‘ =/ %ﬂt The function f(z) = SlTnt for t € (o,7] and 1 for ¢t = 0 is continuous and hence

Riemann integrable on [0, 7]. So we can put a constant value I in place of this integral. Thus we have,

™ N (k+1D)m | ¢
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—m =1 kT
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Thus |sy(z)| < 2L (x] 4 2log N). Thus by definition of “Big oh” we can say, |sy(z)| = O(log N). [ |

§ Problem 4

Problem. Prove the Féjer theorem: Let f be a 2m-periodic function on R and f € L'|-m,x]. For
x € [—m, ), assume that the limits f (x7), f (z7)exist. Then show that

fEh)+f@)

Nim on(@) = 2
Solution. For each x € [—m, ) we define, g, : [-7, 7] — R as follows,
_fett)+f@—t)  flah)+fT)



Note that, limy_,¢ g.(t) = 0 for every x € [—m,7) where the limit f(z") and f(z~) exists. So for every € > 0,
we can find a 0 > 0 such that for ¢ € (0,), we have |g.(t)| < §. From the integral representation of Fejer kernal

we know:

on(x) = %Zsk(l‘)
k=0
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t
2

"o 0 2 sin?
Note that,
fat) + f@0)| _ fatt)+fle—tsin®s - fat)+ @)
Jn(a:)_—_i .Qtdt_
2 nT Jo 2 sin® 5 2
RN G R e (B (Ca B (Ca N5
~nr J, 2 2 sin2%
I sin? 2t
= | = t 2 d
nw Jo 2(t) sin? ;
1 g sin? 2 ” sin? 2t
<|— gm(t>.2% dt+/ gﬂ?(t)-2%d
nm Jo sin® 5 nm Js sin® 5
4 I
For I} we will get the following computations
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and for Is we have the following computation,

51 %
I S ]g 5 dt
2

< / ga(8)] dt
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where the last line follows form the fact that, sin? ”t < 1 and sin? 5 > SlIl2 L for 1 5 € [g, g) We also have,

/5 gx(8)] dt < /0 g2(8)] dt

As, f € L'[—m, 7], we get [ [g.(t)| dt exists. Hence, we can find a N € N such that for n > N, we have,

[I2| < §. Thus, for n > N, we have, ’an(az) = w, < eforall t € (0,0). Hence the following holds for
all x € [—m, m) where the limits f(z1) and f(z™) exists,
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§ Problem 5

Problem. (10 points) Let f € L'[—, n] and = be a Lebesgue point for f (as defined in Problem 2 above).
Show that

lim on(z) = f(z)

N—oo

Solution. Let’s assume Ly be the set of all Lebesgue points of f. Recall the integral representation of cesaro
sum,

T f(x4t)+ f(z —t)sin? int @t

O-TL(:U) = % 0 9 Sin2 %t
Sln2 1n
Let’s call - Sm221 : = F,(t). We also know, [ F,,(t) = 1. Thus we can write,
flx+t)+ flz—1)
ou(i) — ()] = / F(t) dt — £ (z)
5| [0+ -0 - 2f@lF0 o
1 s
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Let us define the function, ¢, (') = |f(z +¢) + f(x —t') — 2f(z)| and U,( fo (') dt’. Since x € L we
can say,
. We(?)
lim - HO /\fx+t + flz—t') = 2f(x)| dt
<l _ r_
_%g% /‘f:v—i—t ‘dt—khm /|fa; ") — f(z)|dt' =0

Thus we can say limy_,o ¥, (t)/t = 0 if x is a Lebesgue point. For every ¢ > 0 we will get 6 > 0 such that,
|®,(t)/t] < e for |t|] < 0. Partition the interval [0, 7] in to two parts [0,0] and [, 7]. In the later interval
¢(t)/sin® 3¢ is Riemann integrable so by Riemann Lebesgue lemma, integral of ¢, (t)F,(t) goes to 0 as n —
infty. Thus there exist Ny such that, [J" ¢, (t)Fn(t)dt < e for all n > Ny.

Now we will split the interval [0,d] into two part. For every § we must get Ns € N such that, % < ¢ for

1
n > Ns. Choose this n and split the interval [0,6] into two parts [0, 2] and [L,6]. Let, Iy = [ ¢u(t)Fa(t) dt
and Iy = fl o (t t) dt. Now,
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The last inequality follows from the fact [sinz| < z and 2z < sinz for = € [0, 7/2]. Since limy_o ¥(t)/t = 0 we
will get Ny € N such that I} < e for n > No. For I, we can proceed in the following way:

5 5 21 5
1 sin“ snt 1
I, = O (t)Fp(t)dt = — pgz(t 2t < — Oz (t)——
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We have used the inequality sin?z < 1 and sint/2 < t/7 as § < m we have used the inequality 2/mz < sina for
x € [0,7/2]. Using further computations we get,
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There are two term in the above expression. For the second term we will use the bound W, (¢)/t < efor 0 <t < o
(this we get from the limit condition discussed above). So,
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Also for the first term,

(using the limit condition again)
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Thus we get, I < %(% + 2571) < m(;5 + 2¢). Since % < 6 we can say, Iy < 3me. Thus

2
(@) — F(@)] < €—|—€2+37T€ _ +23776

holds for all n > max { N1, Na, Ns}. Thus lim,,_, 0, (z) = f(z) holds pointwise and ourr proof is complete. W
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