
Assignment-8
Functional Spaces

Trishan Mondal

§ Problem 1

Problem. Let f ∈ L1(R). For r > 0, let fr : R → R be the function defined by,

fr(x) =
1

2r

∫ x+r

x−r
f(x)dx

(a) (5 points) Show that fr is continuous for every r > 0 and ∥fr∥1 ≤ ∥f∥1.

(b) (5 points) Show that limr→0 ∥fr − f∥1 = 0.

Solution. Part(a) Fix r > 0. Let φr : R → R be defined as φr = 1
2rχ[−r,r]. Since φr is a constant multiple

of a characteristic function, it is measurable. Additionally, φr is bounded, making it integrable, and therefore,
φr ∈ L1(R). Now, consider ϵ > 0. Since the set of all continuous functions with compact support Cc(R) is
dense in L1(R), there exists g ∈ Cc(R) such that ∥g − f∥ < ϵ

3 . Define gr : R → R as follows,

gr(x) =
1

2r

∫ x+r

x−r
g(t) dt

= (g ∗ φr)(x)

For h ∈ R, we have,

|fr(x+ h)− fr(x)| ≤ |fr(x+ h)− gr(x+ h)|
+ |gr(x+ h)− gr(x)|+ |gr(x)− fr(x)|

Now, |fr(x+ h)− gr(x+ h)| = |((f − g) ∗ φr) (x+ h)| and |gr(x)− fr(x)| = |((f − g) ∗ φr) (x)|. As g is contin-
uous, gr is continuous (as convolution of a continuous function with a L2 function is a continuous function).
Therefore, choosing sufficently small h, we get

|gr(x+ h)− gr(x)| <
ϵ

3

Moreover,

|((f − g) ∗ φr) (x)| ≤
∫
R
|(f − g)(x− t)φr(t)|dt

≤ 1

2r

∫
R
|(f − g)(x− t)|dt

=
1

2r
∥f − g∥1 <

ϵ

3

Similarly, |((f − g) ∗ φr) (x+ h)| < ϵ
3 . Therefore,

|fr(x+ h)− fr(x)| < ϵ

Thus, fr is continuous for every r > 0. Since fr = f ∗ φr, we deduce that ∥fr∥1 ≤ ∥f∥1∥φr∥1 ≤ ∥f∥1 (as L1

norm of φr is 1).
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Part (b) We will begin with proving the statement for a function g ∈ Cc(R). Let, K = support(g), which is
compact by definition of g and hence Vol(K) is finite. So for r > 0 we have,

∥gr − g∥1 =
∫
K
|g ∗ ϕr(x)− g(x)| dx

≤ 1

2r

∫
K

∫ r

−r
|g(x− t)− g(x)|dtdx

From continuity of g we can say there exist r > 0 such that, |g(x− t)− g(x)| < ε/2Vol(K) for t ∈ (−r, r). For
those r we have,

∥gr − g∥1 <
1

2r

∫
K

∫ r

−r

ϵ

2 vol(K)
dt dx =

∫
K
ϵ/2 vol(u) dx = ϵ/2

Now we will again use the fact that, “set of continuous functions in R with compact support Cc(R) is dense in
L1(R)” to prove the statement for f ∈ L1(R). Hence, for f ∈ L1(R), we will find squence gn ∈ CC(R) such that
∥f − gn∥ → 0. In other words, ∀ε > 0 there exists g ∈ Cc(R) such that ∥f − g∥ < ε/4. For r > 0 we have,

∥fr − f∥1 ⩽ ∥fr − gr∥1 + ∥gr − g∥1 + ∥g − f∥1
= ∥(f − g) ∗ ϕr∥1 + ∥gr − g∥1 + ∥g − f∥1
⩽ ∥f − g∥1 + ∥gr − g∥1 + ∥g − f∥1
= 2∥f − g∥1 + ∥gr − g∥1

Thus by previous part, for sufficiently small r,

∥fr − f∥1 ≤ 2∥f − g∥1 + ∥gr − g∥1
< ϵ/2 + ϵ/2 = ϵ

Thus, limr→0 ∥fr − f∥1 = 0. ■

§ Problem 2

Problem. Let f ∈ L1(R) and x ∈ R such that f(x) ̸= ±∞. Then x is called a Lebesgue point for f if

lim
r→0

1

r

∫ x+r

x
|f(t)− f(x)|dt = 0

(a) (5 points) Show that if x is a Lebesgue point for f , then the function x 7→
∫ x
−∞ f(t)dt is differentiable

at x, and its derivative at x is f(x).
(b) (5 points) Show that each point of continuity of f is a Lebesgue point for f .

Solution. Part (a) Let Lf denote the set of all Lebesgue points for f . Define, g : R → R as,

g(x) =

∫ x

−∞
f(t) dt

For h ∈ R and x ∈ Lf we have,∣∣∣∣g(x+ h)− g(x)

h
− f(x)

∣∣∣∣ = ∣∣∣∣1h
∫ x+h

x
f(t) dt− 1

h

∫ x+h

x
f(x) dt

∣∣∣∣
≤ 1

|h|

∫ x+h

x
|f(t)− f(x)| dt

As x ∈ Lf , we have,

lim
h→0

1

|h|

∫ x+h

x
|f(t)− f(x)| dt = 0
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The above equality achieved just by taking absolute value in the expression given in the definition. So,

lim
h→0

∣∣∣∣g(x+ h)− g(x)

h
− f(x)

∣∣∣∣ = 0

and hence, x 7→
∫ x

−∞
f(t) dt is differentiable at x with derivative f(x).

Part (b) Let x be a contunuity point of f . Fix ϵ > 0, then there exists δ > 0 such that for |t− x| < δ we have,
|f(t)− f(x)| < ϵ. Now, for 0 < |r| < δ,∣∣∣∣1r

∫ x+r

x
|f(t)− f(x)| dt

∣∣∣∣ < 1

|r|

∫ x+r

x
ϵ dt = ϵ

From the definition of limit we can say limr→0
1
r

∫ x+r
x |f(t)− f(x)| dt = 0. So, x ∈ Lf . ■

§ Problem 3

Problem. Let f ∈ L1[−π, π].
(a) (5 points) If f ∈ L2[−π, π], show that the series

∞∑
N=1

|aN |+ |bN |
N

converges.
(b) (10 points) If f is a 2π-periodic function in C1(R), then show that

∥f − sN∥∞ = o

(
1√
N

)
(In other words, the error term for uniform approximation of f via sN declines like ”little oh” of 1√

N
.)

(c) (5 points) If f is bounded, show that |sN (x)| = O(lnN). (Hint:
∫ x
1

1
t dt = lnx and use estimates for

the Dirichlet kernel.)

Solution. Part (a) For k ∈ N, we use Cauchy-Schwarz inequality to get,∣∣∣∣∣
k∑

N=m

|aN |+ |bN |
N

∣∣∣∣∣ ≤
(

k∑
N=m

|aN |2 + |bN |2
) 1

2
(

k∑
N=m

1

N2
+

1

N2

) 1
2

Since f ∈ L2[−π, π], we get
∑∞

N=1 |aN |2 + |bN |2 converges and we also know
∑ 2

n2 converges. Thus for every

ε > 0 there is N such that for all m,n ≥ N ′ we have,
∑n

N=m |aN |2 + |bN |2 < ε and
∑n

N=m
2
N2 < ε. By the

Cauchy Schwarz inequality shown as above we can say,

n∑
N=m

|aN |+ |bN |
N

<
√
ε
√
ε = ε

Thus we can conclude
∑∞

N=1
|aN |+|bN |

N converges.

Part (b) For this problem we will consider the other kind of Fourier series expansion done in class (where the
orthogonal basis is

{
einx

}
). The Fourier coefficients are given by,

cn(f) =
1

2π

∫ π

−π
f(x)e−ιnx dx
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Note that,

cn(f) =
1

2π

∫ π

−π
f(x)e−inx dx

=
1

2π

(
f(x)e−inx

−in

∣∣∣∣π
−π

+
1

in

∫ π

−π
f ′(x)e−inx dx

)
=

cn(f
′)

in

The above calculation tells us, |cn(f)| = |cn(f ′)|/n. Now since f is a 2π-periodic C1 function and hence a L2

function. Thus by Parsevals theorem, f(x) =
∑∞

n=−∞ einxcn(f) holds pointwise. For every point x, we must
have the following calculation.

|(f − sN ) (x)| =

∣∣∣∣∣∣
∑

|n|>N

eιnxcn(f)

∣∣∣∣∣∣
≤
∑

|n|>N

∣∣∣∣cn(f ′)

n

∣∣∣∣
≤

 ∑
|n|>N

∣∣cn(f ′)
∣∣2 1

2
 ∑

|n|>N

1

n2

 1
2

The last inequality follows from Cauchy-Schwarz inequality. Since f ′ is continuous and 2π-periodic it’s a L2

function and thus by Parsevals theorem,
∑

|cn(f ′)|2 converges, thus for large enough N , the sum
∑

|n|>N cn(f
′)

converges to 0. Thus we can bound that sum by a M > 0. The other sum can be bounded in the following
manner,

∑
|n|>N

1

n2
= 2

∞∑
k=1

1

(N + k)2

<

∞∑
k=1

1

(N + k − 1)(N + k)

=
∞∑
k=1

1

N + k − 1
− 1

N + k
=

1

N

The last line follows from the telescopic sum method. So, |(f − sN )(x)| < M√
N
. Also note that,

√
N |(f − sN )(x)|

goes to 0 for N → ∞ (the calculation is shown as follows)

√
N |(f − sN )(x)| < M

√
N

 ∑
|n|>N

1

n2

 1
2

= M

(
2

∞∑
k=1

N

(N + k)2

)1/2

⇒ lim
N→∞

√
N |(f − sN )(x)| = 0

Thus for all point x we have the above inequality. Hence we can say ∥f − sN∥∞ ≤ M√
N

with lim
√
N∥f − sN∥∞ →

0. We can conclude, ∥f − sN∥ = o(1/
√
N).

Part (c) As f is bounded, let M = supx∈[−π,π] |f(x)|, using the fact sN = 1
πf ∗DN (here DN is Dirichlet kernal)
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we can write

|sN (x)| =
∣∣∣∣ 1π
∫ π

−π
f(x− t)DN (t) dt

∣∣∣∣ ≤ 1

π

∫ π

−π
|f(x− t)DN (t)| dt

≤ M

π

∫ π

−π
|DN (t)| dt

Now we will try to bound the integral of DN by O(logN). The calculation as follows,∫ π

−π
|DN (t)| dt = 2

∫ π

0

∣∣∣∣∣sin
(
N + 1

2

)
t

2 sin t
2

∣∣∣∣∣ dt
we know for x ∈ [0, π/2], sinx ≤ 2

πx. using this in the above integral we get,∫ π

−π
|DN (t)| dt ≤ 2

∫ π

0

∣∣∣∣∣sin
(
N + 1

2

)
t

2. 2π
t
2

∣∣∣∣∣ = π

∫ π

0

∣∣sin (N + 1
2

)
t
∣∣

t
dt

Now by substituting u = (N + 1/2)t we get,∫ π

−π
|DN (t)| dt ≤ π

∫ (N+ 1
2)π

0

|sin t|
t

dt

≤ π

∫ (N+1)π

0

|sin t|
t

dt

= π

(
N∑
k=1

∫ (k+1)π

kπ

|sin t|
t

dt+

∫ π

0

|sin t|
t

)

Note that,
∫ π
0

|sin t|
t =

∫ π
0

sin t
t . The function f(x) = sin t

t for t ∈ (o, π] and 1 for t = 0 is continuous and hence
Riemann integrable on [0, π]. So we can put a constant value I in place of this integral. Thus we have,∫ π

−π
|DN (t)| dt ≤ πI + π

N∑
k=1

∫ (k+1)π

kπ

|sin t|
t

dt

≤ πI +

N∑
k=1

∫ (k+1)π

kπ

|sin t|
k

dt

= πI +
N∑
k=1

2

k

≤ πI + 2 log(N)

Thus |sN (x)| ≤ 2M
π (πI + 2 logN). Thus by definition of “Big oh” we can say, |sN (x)| = O(logN). ■

§ Problem 4

Problem. Prove the Féjer theorem: Let f be a 2π-periodic function on R and f ∈ L1[−π, π]. For
x ∈ [−π, π), assume that the limits f (x−) , f (x+)exist. Then show that

lim
N→∞

σN (x) =
f (x+) + f (x−)

2

Solution. For each x ∈ [−π, π) we define, gx : [−π, π] → R as follows,

gx(t) =
f(x+ t) + f(x− t)

2
− f(x+) + f(x−)

2
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Note that, limt→0 gx(t) = 0 for every x ∈ [−π, π) where the limit f(x+) and f(x−) exists. So for every ϵ > 0,
we can find a δ > 0 such that for t ∈ (0, δ), we have |gx(t)| < ϵ

2 . From the integral representation of Fejer kernal
we know:

σn(x) =
1

n

n∑
k=0

sk(x)

=
1

nπ

∫ π

0

f(x+ t) + f(x− t)

2

sin2 nt
2

sin2 t
2

dt

Note that,∣∣∣∣σn(x) − f(x+) + f(x−)

2

∣∣∣∣ =
∣∣∣∣∣ 1nπ

∫ π

0

f(x+ t) + f(x− t)

2

sin2 nt
2

sin2 t
2

dt− f(x+) + f(x−)

2

∣∣∣∣∣
=

∣∣∣∣∣ 1nπ
∫ π

0

(
f(x+ t) + f(x− t)

2
− f(x+) + f(x−)

2

)
sin2 nt

2

sin2 t
2

dt

∣∣∣∣∣
=

∣∣∣∣∣ 1nπ
∫ π

0
gx(t)

sin2 nt
2

sin2 t
2

dt

∣∣∣∣∣
≤

∣∣∣∣∣ 1nπ
∫ δ

0
gx(t)

sin2 nt
2

sin2 t
2

dt

∣∣∣∣∣︸ ︷︷ ︸
I1

+

∣∣∣∣∣ 1nπ
∫ π

δ
gx(t)

sin2 nt
2

sin2 t
2

dt

∣∣∣∣∣︸ ︷︷ ︸
I2

For I1 we will get the following computations,

I1 ≤
1

nπ

∫ δ

0
|gx(t)|

sin2 nt
2

sin2 t
2

dt

<
1

nπ

∫ δ

0

ϵ

2
·
sin2 nt

2

sin2 t
2

dt

≤ ϵ

2
· 1

nπ

∫ π

0

sin2 nt
2

sin2 t
2

dt︸ ︷︷ ︸
=1(property of Fejer kernal)

=
ϵ

2

and for I2 we have the following computation,

I2 ≤
1

nπ

∫ π

δ
|gx(t)|

sin2 nt
2

sin2 t
2

dt

≤ 1

nπ sin2 δ
2

∫ π

δ
|gx(t)| dt

where the last line follows form the fact that, sin2 nt
2 ≤ 1 and sin2 δ

2 ≥ sin2 t
2 for t

2 ∈
[
δ
2 ,

π
2

)
. We also have,∫ π

δ
|gx(t)| dt ≤

∫ π

0
|gx(t)| dt

As, f ∈ L1[−π, π], we get
∫ π
0 |gx(t)| dt exists. Hence, we can find a N ∈ N such that for n ≥ N , we have,

|I2| < ϵ
2 . Thus, for n ≥ N , we have,

∣∣∣σn(x)− f(x+t)+f(x−t)
2

∣∣∣ < ϵ for all t ∈ (0, δ). Hence the following holds for

all x ∈ [−π, π) where the limits f(x+) and f(x−) exists,

lim
n→∞

σn(x) =
f(x+) + f(x−)

2
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§ Problem 5

Problem. (10 points) Let f ∈ L1[−π, π] and x be a Lebesgue point for f (as defined in Problem 2 above).
Show that

lim
N→∞

σN (x) = f(x)

Solution. Let’s assume Lf be the set of all Lebesgue points of f . Recall the integral representation of cesaro
sum,

σn(x) =
1

nπ

∫ π

0

f(x+ t) + f(x− t)

2

sin2 1
2nt

sin2 1
2 t

dt

Let’s call 1
nπ

sin2 1
2
nt

sin2 1
2
t
= Fn(t). We also know,

∫ π
0 Fn(t) = 1. Thus we can write,

|σn(x)− f(x)| =
∣∣∣∣∫ π

0

f(x+ t) + f(x− t)

2
Fn(t) dt− f(x)

∣∣∣∣
=

1

2

∣∣∣∣∫ π

0
[f(x+ t) + f(x− t)− 2f(x)]Fn(t) dt

∣∣∣∣
≤ 1

2

∫ π

0
|f(x+ t) + f(x− t)− 2f(x)|Fn(t) dt

Let us define the function, φx(t
′) = |f(x+ t′) + f(x− t′)− 2f(x)| and Ψx(t) =

∫ t
0 φx(t

′) dt′. Since x ∈ Lf we
can say,

lim
t→0

Ψx(t)

t
= lim

t→0

1

t

∫ t

0

∣∣f(x+ t′) + f(x− t′)− 2f(x)
∣∣ dt

≤ lim
t→0

1

t

∫ t

0

∣∣f(x+ t′)− f(x)
∣∣ dt′ + lim

t→0

1

t

∫ t

0

∣∣f(x− t′)− f(x)
∣∣ dt′ = 0

Thus we can say limt→0Ψx(t)/t = 0 if x is a Lebesgue point. For every ε > 0 we will get δ > 0 such that,
|Φx(t)/t| < ε for |t| < δ. Partition the interval [0, π] in to two parts [0, δ] and [δ, π]. In the later interval
ϕ(t)/ sin2 1

2 t is Riemann integrable so by Riemann Lebesgue lemma, integral of φx(t)Fn(t) goes to 0 as n →
infty. Thus there exist N1 such that,

∫ π
δ φx(t)Fn(t) dt < ε for all n > N1.

Now we will split the interval [0, δ] into two part. For every δ we must get Nδ ∈ N such that, 1
n < δ for

n > Nδ. Choose this n and split the interval [0, δ] into two parts [0, 1
n ] and [ 1n , δ]. Let, I1 =

∫ 1
n
0 φx(t)Fn(t) dt

and I2 =
∫ δ

1
n
φx(t)Fn(t) dt. Now,

I1 =

∫ 1
n

0
φx(t)Fn(t) dt

=
1

nπ

∫ 1
n

0
φx(t)

sin2 1
2nt

sin2 t
2

dt

≤ 1

nπ

∫ 1
n

0
φx(t)

(nt/2)2

(t/π)2
dt

=
π

4
nΨ(

1

n
)

The last inequality follows from the fact |sinx| ≤ x and 2
πx ≤ sinx for x ∈ [0, π/2]. Since limt→0Ψ(t)/t = 0 we

will get N2 ∈ N such that I1 < ε for n > N2. For I2, we can proceed in the following way:

I2 =

∫ δ

1
n

φx(t)Fn(t) dt =
1

nπ

∫ δ

1
n

φx(t)
sin2 1

2nt

sin2 t
2

dt ≤ 1

nπ

∫ δ

1
n

φx(t)
1

(t/π)2
dt
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We have used the inequality sin2 x ≤ 1 and sin t/2 ≤ t/π as δ < π we have used the inequality 2/πx ≤ sinx for
x ∈ [0, π/2]. Using further computations we get,

I2 ≤
π

n

∫ δ

1
n

φx(t)

t2
dt

=
π

n

(
Ψx(t)

t2

∣∣∣∣δ
1/n

+ 2

∫ δ

1
n

Ψx(t)

t3
dt

)

There are two term in the above expression. For the second term we will use the bound Ψx(t)/t < ε for 0 < t < δ
(this we get from the limit condition discussed above). So,∫ δ

1
n

Ψx(t)

t3
<

∫ δ

1
n

ε

t2
dt = ε

(
n− 1

δ

)
< εn

Also for the first term,

Ψx(t)

t2

∣∣∣∣δ
1/n

<
Ψx(δ)

δ2
<

ε

δ
(using the limit condition again)

Thus we get, I2 ≤ π
n

(
ε
δ + 2εn

)
< π( ε

nδ + 2ε). Since 1
n < δ we can say, I2 < 3πε. Thus

|σn(x)− f(x)| ≤ ε+ ε+ 3πε

2
=

2 + 3π

2
ε

holds for all n > max {N1, N2, Nδ}. Thus limn→∞ σn(x) = f(x) holds pointwise and ourr proof is complete. ■

8


	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

