Some problems on field and Galois theory B.Sury April 2010

Q 1.

Let K be any field and $a \in K$. Suppose m, n are relatively prime. Prove that $X^{mn} - a$ is irreducible over K if, and only if, both $X^m - a$ and $X^n - a$ are.

Q 2.

Find the splitting field over \mathbf{Q} of : (i) $X^4 - X^2 + 4$; what is its degree? (ii) $X^p - q$ where p, q are (not necessarily distinct) primes; deduce that $X^p - q$ is irreducible over $\mathbf{Q}(e^{2i\pi/p})$.

Hint for (ii) : p and p-1 are co-prime.

Q 3.

If L/K is an algebraic extension and A is a subring of L containing K, prove that A is a subfield.

Q 4.

Determine what the characteristic must be for the following polynomial to have a multiple root. In each case, determine the multiple roots and their multiplicities.

(i) $X^4 + X + 1$. (ii) $X^4 + 2X^3 + 3X^2 + 8X + 1$. *Hint* : For instance, in case (i), see what $\alpha^4 + \alpha + 1 = 0 = 4\alpha^3 + 1$ implies.

Q 5.

If $q = p^n$ and $\alpha \in \mathbf{F}_q$, show that

$$(X - \alpha)(X - \alpha^p)(X - \alpha^{p^2}) \cdots (X - \alpha^{p^{n-1}}) \in \mathbf{F}_p[X].$$

Q 6.

Let $F = Spl(X^{13} - 1, \mathbf{F}_3)$. Prove that $[F : \mathbf{F}_3] = 3$.

Q 7.

Determine the Galois group of $X^p - 2$ over **Q** for an odd prime p.

Q 8.

If K is any field and $f \in K[X]$ is irreducible, prove that all roots of f in any splitting field of f over K have the same multiplicity.

Q 9.

Describe (with brief explanations) the Galois group of $K = \mathbf{Q}(\sqrt{p_1}, \dots, \sqrt{p_n})$ over \mathbf{Q} where p_1, \dots, p_n are distinct primes. Compute, using the fundamental theorem of Galois theory, the number of intermediate fields between \mathbf{Q} and K.

Q 10.

Find the partial fraction decomposition of $\frac{1}{x^n-1}$ over **Q**. *Hint*: Think of the irreducible factorization of $x^n - 1$ over **Q**.

Q 11.

Find a Galois extension of \mathbf{Q} whose Galois group cyclic of order 13.

Q 12.

If $f \in \mathbf{F}_p[X]$ is a product of irreducible factors of degrees d_1, d_2, \dots, d_r , then show that the splitting field of f over \mathbf{F}_p has degree $\operatorname{LCM}(d_1, d_2, \dots, d_r)$.

Q 13.

Let $\alpha \in \overline{\mathbf{F}_p}$, the algebraic closure of \mathbf{F}_p . Prove that $[\mathbf{F}_p(\alpha) : \mathbf{F}_p] = \min \{n : \alpha^{\frac{p^n - 1}{p - 1}} \in \mathbf{F}_p\}.$

Q 14.

Let $f \in K[X]$ be irreducible, K any field. If α is a root of f, and deg f = 15, show that f cannot decompose over $K(\alpha)$ as

 $f = (\deg 1)(\deg 1)(\deg 1)(\deg 2)(\deg 2)(\deg 8)$ in $K(\alpha)[X]$.

Q 15.

Determine all the natural numbers n for which the angle of n° can be constructed using a ruler and a compass.

Q 16.

Let *n* be a natural number and Φ_n be the minimal polynomial of $e^{2i\pi/n}$ over **Q**; that is, the cyclotomic polynomial of degree $\phi(n)$. For any integer *a*, show that any prime factor *p* of $\Phi_n(a)$ with $p \not| n$ must satisfy $p \equiv 1 \mod n$.

Q 17.

Let Char. K = p > 0, and let $a \in K$. If the polynomial $X^p - X - a$ is reducible in K[X], prove that all its roots lie in K.

Q 18.

Let Char. K = p > 0. Suppose L/K is a finite extension such that $p \not| [L : K]$. Show that L/K is separable.

Q 19.

Prove that $K = Spl(X^3 - 3X + 1, \mathbf{Q})$ is not a radical extension of \mathbf{Q} .

Q 20.

(a) If $\mathbf{Q}(\alpha)$ and $\mathbf{Q}(\beta)$ are extensions of degrees m, n over \mathbf{Q} which are relatively prime, prove that $min(\alpha, \mathbf{Q})$ remains irreducible in $\mathbf{Q}(\beta)[X]$.

(b) Using (a), determine the number of irreducible factors of $1 + X + \cdots + X^{p-1}$ in $\mathbf{Q}(2^{1/n})$ where $n \ge p$ are both primes.

Q 21.

Let *n* be any natural number. Determine the degree of $\mathbf{Q}(\cos\frac{2\pi}{n})$ over \mathbf{Q} . Is this a Galois extension of \mathbf{Q} ? Justify. Find all the conjugates of $\cos\frac{2\pi}{n}$ over \mathbf{Q} .

Q 22.

If n > 1 is odd, then prove that $\mathbf{Q}(\zeta_d)$ cannot contain an *n*-th root of 2 for any *d*.

Q 23.

Let E/F be an extensions of finite fields. Prove that the norm map from E to F is surjective.

Q 24.

Let K be an algebraic extension of $\mathbf{Z}/p\mathbf{Z}$. Show that the map

 $Frob_p: K \to K; a \mapsto a^p$

is an automorphism of K onto itself. Deduce that all polynomials over K are separable.

Hint for the last statement : For an irreducible, inseparable polynomial f, one has $f(X) = g(X^p)$ for some g.

Q 25.

Let K be any field and let \mathcal{M} denote the set of all monic irreducible polynomials in K[X]. For each $f = c_n(f) + c_{n-1}(f)X + \cdots + c_1(f)X^{n-1} + X^n$, consider independent variables $X_i(f); 1 \leq i \leq n$ and the elements $s_1(f), \cdots, s_n(f)$ of the polynomial ring $A = K[X_i(f); f \in \mathcal{M}, i \leq deg(f)]$ defined by

$$s_n(f) + s_{n-1}(f)X + \dots + s_1(f)X^{n-1} + X^n = \prod_{i=1}^n (X - X_i(f))$$

If *I* denotes the ideal in *A* generated by all elements of the form $s_i(f) - c_i(f)$, verify :

(i) I is a proper ideal,

(ii) each $f \in \mathcal{M}$, considered as a polynomial over A/I, splits into linear factors.

Hint for (i): You may assume that for any finite set of polynomials over K, there is a field extension of K where all of them split.

Q 26.

Let K/\mathbf{Q} be a finite extension. Denote by $\sigma_1, \dots, \sigma_n$ all the \mathbf{Q} -embeddings of K in an algebraic closure $\bar{\mathbf{Q}}$ containing K. For any n-tuple (v_1, \dots, v_n) of elements of K, consider the $n \times n$ matrix $M(v_1, \dots, v_n)$ whose (i, j)-th entry is $\sigma_j(v_i)$. Define the discriminant $\operatorname{disc}(v_1, \dots, v_n)$ to be det $M(v_1, \dots, v_n)^2$. (i) Prove that $\operatorname{disc}(v_1 \dots, v_n) \neq 0$ if, and only if, the v_i 's form a \mathbf{Q} -basis of K and that, modulo squares, it is independent of the basis.

(ii) Prove disc (v_1, \dots, v_n) = det (tr_{K/**Q**} $(v_i v_j)$).

You may use the fact proved in class that for a finite separable extension, $\operatorname{tr}(x) = \sum_{i} \sigma_{i}(x)$.

(iii) If K is Galois over \mathbf{Q} , prove that there exists a normal basis that is, there exists $v \in K$ such that $\{\sigma(v) : \sigma \in \text{Gal}(K/\mathbf{Q})\}$ is a **Q**-basis of K.

Q 27. (Richard Brauer)

Let $p \ge 5$ be any prime. Let $n_1 < n_2 < \cdots < n_{p-2}$ be even integers. Let $n > \frac{\sum n_i^2}{2}$ be any even integer. Prove that the polynomial

$$f = (X^{2} + n)(X - n_{1})(X - n_{2}) \cdots (X - n_{p-2}) - 2$$

is irreducible over \mathbf{Q} and has exactly p-2 real roots. Deduce that the Galois group of f is S_p .

Q 28.

For $f \in \mathbf{Z}[X]$ monic, irreducible and any prime p not dividing disc f, the Galois group of $(f \mod p)$ over \mathbf{F}_p can be regarded as a subgroup of $\operatorname{Gal}_{\mathbf{Q}}(f)$. Use this to show that for any n, there exists f with $\operatorname{Gal}_{\mathbf{Q}}(f) \cong S_n$.

Hint : You may refer to some textbook (P.M.Cohn, Dummit-Foote etc.) if you want to.

Q 29.

Let $f \in K[X]$ be irreducible, K any field. Let α be any root of f in a splitting field. Define $r_K(f, \alpha)$ to be the number of roots of f in $K(\alpha)$. (i) Prove $r_K(f, \alpha)$ is independent of the choice of α .

(ii) Prove that $r_K(f, \alpha)$ divides the separability degree of $\text{Spl}_K(f)$ over K. (iii) If f is also taken to be separable, prove that $r_K(f, \alpha) = [N_G(H) : H]$ where G is the Galois group of f over K and H is the stabilizer of α .

(iv) If L/K is any field extension (not necessarily algebraic), prove that the number of roots of f in L is a multiple of $r_K(f)$.

(v) Use (iv) to show that of deg f = 15, then f cannot decompose over some $K(\alpha)$ as

 $f = (\text{degree 1})(\text{degree 1})(\text{degree 2})(\text{degree 2})(\text{degree 8}) \text{ in } K(\alpha)[X].$

Q 30.

Let K_1, K_2 be algebraically closed fields containing fields E_1, E_2 respectively. Suppose that S_1, S_2 are transcendence bases of K_1 and K_2 over E_1 and E_2 respectively. If S_1 and S_2 are in bijection, prove that every isomorphism from E_1 onto E_2 extends to an isomorphism from K_1 onto K_2 .

Deduce that ${\bf C}$ has uncountably many proper subfields which are isomorphic to it.

Q 31.

If E/F is a finitely generated field extension and E_0 is an intermediate field (that is, $E \supset E_0 \supset F$), prove that E_0 is also finitely generated over F.

Q 32.

Recall that a transcendence basis S of E over F is said to be a separating transcendence basis if E is separable (algebraic) over F(S).

Let char F = p > 0 and let t be a transcendental element (of some field extension of F) over F. Consider the field E generated over F by $\{t, a_1, a_2, a_3, \dots\}$ where a_i is a root of $X^{p^i} - t \in F(t)[X]$. Show that every finitely generated subfield of E containing F has a separating transcendence basis over F but that E itself does not. In other words, E is separable over F (in the general sense) but is not separably generated over F.

Hint : If need be, you may use Maclane's criterion which defines separability for a general extension by 3 equivalent properties.