Exercise set IV

Subject: Topology I

- (1) Suppose $X \simeq Y$ (this means homotopy equivalent). Suppose X is path-connected. Does this imply Y is path-connected?
- (2) Suppose $X \simeq Y$. Suppose that X is compact. Does this imply Y is compact?
- (3) Let A ∈ GL_nℝ.
 a) Prove that the induced map λ(A) from ℝⁿ to ℝⁿ corresponding to the associated linear transformation is a proper map.
 b) Prove that λ(A)⁺ : Sⁿ → Sⁿ (the map induced on one-point compactifications) is homotopic to identity if det(A) > 0.
- (4) Let $A \in SO(n+1)$ and write $\tau(A)$ for the induced map $S^n \to S^n$. Prove that $\tau(A) \simeq id$.
- (5) For $v \in S^n$ define $\rho(v)$ to be the reflection along the subspace generated by v. Prove that ρ induces a continuous function from $S^n \to O(n+1)$ and therefore from $\mathbb{R}P^n \to O(n+1)$.
- (6) a) Let p, q be two points in ℝPⁿ. Prove that there is a homeomorphism φ : ℝPⁿ → ℝPⁿ such that φ(p) = q.
 b) Prove that for any point p ∈ ℝPⁿ, ℝPⁿ p ≃ Sⁿ⁻¹.
 c) What is the analogous result for ℂPⁿ?
- (7) Let p be a point in the torus T. Prove that $T p \simeq S^1 \vee S^1$.
- (8) Give examples of two C_2 actions on S^n such that the orbit spaces are not homotopy equivalent.
- (9) Give examples of locally compact Hausdorff spaces X and Y such that $X \simeq Y$ but X^+ is not homotopy equivalent to Y^+ .
- (10) Let CX be the cone on X and * be the cone point. Prove that $CX * \simeq X$.
- (11) Let $i: A \to X$ be an injective map and $r: X \to A$ be such that $r \circ i = id_A$. Prove that i_* is injective and r_* is surjective on fundamental groups.
- (12) Suppose a map $f: X \to Y$ can be written as a composite $g_1 \circ g_2$ where $g_1: Z \to Y$ and $g_2: X \to Z$. Suppose that Z is contractible. Prove that $f_* = 0$.
- (13) Let $\pi_1(X; x_0 \to x_1)$ be the set of homotopy classes of paths from x_0 to x_1 (preserving end points). Prove that there is a bijective correspondence between $\pi_1(X, x_0)$ and $\pi_1(X; x_0 \to x_1)$.
- (14) Prove that $\mathbb{R} \times \mathbb{R} \to S^1 \times S^1$ given by $(x, y) \mapsto (e^{2\pi i x}, e^{2\pi i y})$ is a covering space.
- (15) Recall that $\mathbb{R}P^n = S^n/(x \sim -x)$. Prove that the quotient map $S^n \to \mathbb{R}P^n$ is a covering space.
- (16) Let $Z = \{(x, y) \in \mathbb{R}^2 | x^2 y^2 = \pm 1\}$ be a topological space equipped with the subspace topology from \mathbb{R}^2 . Verify whether $\pi : Z \to \mathbb{R}$ given by $\pi(x, y) = x$ is a covering space.
- (17) Suppose X, Y are two simply connected spaces. Let $x_0 \in X, y_0 \in Y$ be such that there is a contractible neighbourhood containing x_0 in X (respectively, y_0 in Y). Construct the space $X \vee Y := (X \sqcup Y)/x_0 = y_0$. Prove that $X \vee Y$ is simply connected.
- (18) Let $q: S^{2n+1} \to \mathbb{C}P^n$ be the usual quotient map. Is q a covering space?
- (19) Write the group C_2 as $\{1, \sigma\}$ such that $\sigma^2 = 1$. Consider the C_2 action on $\mathbb{C}P^2 \times S^2$ given by

$$\sigma([z_0, z_1, z_2], x) = ([\bar{z_0}, \bar{z_1}, \bar{z_2}], -x)$$

Define P as the space $\mathbb{C}P^2 \times S^2/C_2$.

- a) Show that P is path-connected.
- b) Prove that the quotient map $\mathbb{C}P^2 \times S^2 \to P$ is a covering space.
- c) Compute $\pi_1(P, p)$ for any point p.