Exercise set I

Subject: Topology I

- (1) Show that the space $\mathbb{R}^2/\mathbb{Z}^2$ is homeomorphic to the space $S^1 \times S^1$.
- (2) Find an action of C_2 on the torus whose orbit space is homeomorphic to a cylinder.
- (3) Describe the orbit space of the action of SO(n) on \mathbb{R}^n .
- (4) With respect to the usual inclusion $\mathbb{C}P^{n-1}$ in $\mathbb{C}P^n$, prove that $\mathbb{C}P^n/\mathbb{C}P^{n-1}$ is homeomorphic to S^{2n} .
- (5) Write down a S^1 -action on $\mathbb{R}P^{2n+1}$ whose quotient space is homeomorphic to $\mathbb{C}P^n$.
- (6) Prove that $\mathbb{R}P^1$ is homeomorphic to S^1 . Prove that $\mathbb{C}P^1$ is homeomorphic to S^2 .
- (7) Prove that $S^2 \times S^2$ is obtained by attaching a 4-cell to $S^2 \vee S^2$.
- (8) Suppose X is a topological space. We define X_+ to be the based space whose underlying space is $X \sqcup *$ and * is the basepoint. Prove that $S^n_+ \land S^1$ is homeomorphic to the space obtained by identifying the north and the south poles of S^{n+1} .
- (9) Prove that $C(\Delta^n)$ is homeomorphic to Δ^{n+1} .