
Assignment-4
Design and Analysis of Algorithms

Trishan Mondal

—————————————

▲! Disclaimer. Consider the following set of students

P =
{
Deepta Basak, Aaratrick Basu, Soumya Dasgupta, Priyatosh Jana

}
Discussion of solutions to the assignment problems are limited to the people of set P only. I have shared some
of my solutions to vedanta. Most of the problems in this assignment has general solution. If any other person
have same solution as mine is not my fault.

§ Problem 15

Problem. Consider the Bellman-Ford algorithm (see the code below) for determining the shortest distance
in a weighted graph from a source vertex s to all other vertices. For all vertices v, the algorithm maintains
v.dist and v.parent. Assume the graph has no negative-weight cycle. Prove or disprove (to disprove
provide a counter example) the following statements:
(a) at every point in the execution of the algorithm, for every vertex v with v.dist< ∞, the directed
path (written backwards here):

v← v.parent ← v.parent.parent ← · · ·

leads from s to v;
(b) the cost of this path is v.dist.

Solution. (a) Let G = (V,E) be the directed graph and s is the source. We will prove this part by induction
on the number of iteration step. For the base case we will consider the 1-st iteration. In this step only the
vertices v ∈ V with {s→ v} ∈ E can have v.dist <∞. All such vertices satisfy v.parent = s. Thus the base
case is true. Let, the statement is true at n-th iteration step. We will look at the (n+ 1)-th iteration.

� Take v ∈ V such that v.dist < ∞. Let v ← v.parent ← v.parent.parent ← · · · be the path at n-th
iteration. If no vertex of it get updated at (n + 1)-th iteration step, by the induction hypothesis we can
say this will leads us to a path from s→ v.

� Any vertex of the path v ← v.parent ← v.parent.parent ← · · · get updated at (n + 1)-th iteration.
Let u be the first vertex from left in the above path get updated at this iteration. We have the path
P : v ← v.parent ← · · · ← u so that u.parent.dist <∞. This u.parent is updated at some iteration
step m ≤ n. So there is a path u ← u.parent ← u.parent.parent ← · · · , which is path from s → u. If
we concatenate this path with P. We will get the following path give us a path from s→ v,

v← v.parent ← v.parent.parent ← · · ·u← u.parent ← u.parent.parent ← · · ·

Thus our induction step is complete. ■
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(b) For every outer loop iteration the cost will be equal to the distance but at every update it
may not be equal. Consider the following directed graph,

s
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v41
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At first iteration (we will consider only this updates): (considering the vertex set V = {s, v1, v2, v3, v4})

� (s, v1) gets updated, v1.dist= 1, parent.v1 =s.

� (s, v2) get updated, v2.dist= 4, parent.v2 =s

� (v2, v3) get updated, v3.dist= 7, parent.v3 =v2

� (v1, v2) get updated, v2.dist= 3, parent.v2 =v1

Here, v3.dist= 7 but, v3.parent = v2 and v2.parent = v1, v1.parent = s, corresponding path s→ v1 → v2 → v3
has cost 6.

For outer loop iteration/ each iteration step: By the part(a), we can say at every step every vertex v with
v.dist <∞, there is a path from s→ v given by,

P : v← v.parent ← v.parent.parent ← · · ·

We will induct on the vertices on the path, for the base case we have s.dist = 0. Let, v1 be the vertex in
this path so that v 1.parent = s, we have cost(v1 ← s) = v 1.dist. Let vk be the k-th vertex in the path P
which satisfy

cost(vk ← vk.parent← · · · s) = v k.dist

vk+1 be the vertex in P with v (k+1).parent = vk. When vk+1 was updated for the last time we must have,

vk+1.dist = vk+1.parent.dist + ℓ(vk+1, vk+1.parent)

= vk.dist + ℓ(vk+1, vk)

= cost(vk ← vk.parent← · · · s) + ℓ(vk+1, vk)

= cost(vk+1 ← vk+1.parent← · · · s)

By induction we can say cost of such path is v.dist. ■

§ Problem 16

Problem. In the Bellman-Ford algorithm, one picks an edge (u,v) such that

u.dist + ℓ(u, v) < v.dist,

and sets v.dist = u.dist +ℓ(u, v). (If no such edges exist, we stop.) To locate the next edge to perform
this update operation, the algorithm scans the edges in a fixed order in each iteration. Could we have
picked the next edge to update arbitrarily? Show that for all large n, there is an acyclic weighted graph
with n vertices and an order of updates (each update should reduce v.dist for some vertex v) so that the
algorithm performs 2Ω(n) updates before it terminates.

Solution. Consider the graph G = (V,E) with the vertices are labeled with numbers {1, · · · , n} and let E
contains the edges k → ℓ, whenever k ≤ ℓ and let w(k, ℓ) = 2ℓ are the weights of the corresponding edges. So,
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s = 1 be the source vertex. For every vertex m ∈ {1, · · ·n} consider the set M = {1, · · · ,m}. Every subset of
M containing 1 and m gives us a path between 1 and m. Let us define the order of updates as following,

order(S) =
∑
x∈S

2x , S ⊆ {1, · · · , n}

Consider all the subsets S1, · · · , S2m−2 of M containg 1 and m, they are labeled in a way such that,

order(S1) < · · · < order(S2m−2)

Consider the following sequence of subsets,

S2m−2 , S2m−2−1, · · · , S1

Let Pi be the path from 1 to m corresponding to the subset Si. If we take ordering of the updates according to
the above sequence of vertices, we can note the weight of the paths Pi decreases in each step and hence it’s a
valid update. For each 1 < m ≤ n thus we need 2m−2 updates.

#total updates =
n∑

m=2

2m−2

= 2n−1 − 1

≥ 2
n
2

⇒ log2(2
n−1 − 1) ∼ Ω(n)

So in this case we need 2Ω(n) updates to find the shortest path between 1 to n. ■

§ Problem 17

Problem. Consider the following part of the code for the Bellman-Ford algorithm.

1 s.dist = 0

2 s.parent = None

3 for i = 1, 2, ..., T: # the outer for loop

4 for v in V:

5 for (w, ℓ) in adj[v]:

6 if v.dist + ℓ < w.dist:

7 w.dist = v.dist + ell # update distance

8 w.parent = v # update parent

9

Show the following (when appropriate, use induction; state the induction hypothesis precisely):

(a) At all times, for all vertices v, if u = v.parent is not None, then u.dist+ ℓ(u, v) ≤ v.dist.

(b) If v.dist was updated in iteration k of the outer for loop, then the first k + 1 elements of the
sequence

v, v.parent, v.parent.parent, . . . (1)

are not None.

(c) Suppose T = |V | and v.dist was updated in the last iteration. Argue that the path described in eq.
(1) ends in a cycle, and the sum of the lengths of the edges of that cycle is negative (beware of ∞).

(d) Suppose there is a negative-weight cycle C reachable from vertex s. Argue that for some vertex v
in C, v.dist will be updated in iteration |V | of the outer for loop.

Solution.
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(a) Let, u = v.parent which is not None. At the iteration step where we updated v.parent to u, we must
have u.dist+ℓ(u, v) < v.dist (before this iteration this inequality was mentained). After it get updated
we must have u.dist+ℓ(u, v) = v.dist. If at any further iteration, u.parent got updated or u.dist got
updated, it can be the case that v.dist didn’t get updated. At each such update u.dist must decrease.
And hence the given inequality hold at each time.

(b) We establish this through induction on k. Our induction hypothesis asserts that if v.dist is updated
in the kth iteration of the outer loop, then the first k + 1 elements of the sequence (v, v.parent, . . . )
are not None. To initiate the induction, let’s consider k = 1 and assume v.dist is updated in the first
iteration. Such an update can only occur if there exists a vertex u such that u.dist + ℓ(u, v) is finite
because v.dist =∞ before this iteration. Consequently, v.parent = u is not None,” and thus, the first
2 elements of (v, v.parent, . . . ) are not None. This demonstrates the validity of the hypothesis for the
base case k = 1. Now, we assume the hypothesis holds for some k ≥ 1 and consider the scenario in which
v.dist is updated in the (k + 1)th iteration.

This event occurs if and only if there exists a vertex u such that u.dist+ ℓ(u, v) < d, where d represents
the value of v.dist at the conclusion of the kth iteration. Due to the sequence of loop executions, it must
be the case that u.dist is updated in the kth iteration either after v or in the (k + 1)th iteration before v.

If the update to u occurred in the kth iteration, the induction hypothesis is applicable. If it did not, we
examine u and u.parent and apply the same reasoning. The absence of updates in the kth iteration implies
a similar lack of updates in the (k + 1)th iteration. Thus, it is impossible that none of the vertices in the
sequence (v, v.parent, . . . ) were updated in the kth iteration. Consequently, we find a vertex w updated
in the kth iteration that is present in the sequence (v, v.parent, . . . ). By the induction hypothesis, the
first k + 1 terms of the sequence (w,w.parent, . . . ) are not None. Thus, the first k + 2 terms of the
sequence (v, v.parent, . . . ) are not None , as w follows v. Consequently, through induction, we establish
the validity of the statement for all k ≥ 1.

(c) In part (b), we demonstrated that when v.dist is updated during the kth iteration, the initial k + 1
vertices within the sequence (v, v.parent, . . . ) cannot be None. Using the proof provided in 15, it follows
that these vertices define a path from some vertex u to v.

Consequently, if there exists a vertex v that gets updated during the final iteration, we establish the
existence of a path consisting of |V | + 1 vertices. Since the graph contains |V | distinct vertices, such a
path must contain a cycle. Let us denote the vertices present in this cycle as u1, . . . , ur, u1, in that order.
Since this cycle is part of the sequence (v, v.parent, . . . ), and v.dist receives an update during the last
iteration, it logically follows that the sum of the edge lengths within the cycle results in a reduction of
v.dist at the (|V | − 1)th iteration.

The path obtained by removing the vertices u2, . . . , ur, u1 from the sequence (v, v.parent, . . . ) must have
been previously discovered in an iteration before the final one. Consequently, the decrease in the value
of v.dist during the last iteration can only occur if the edge lengths within the cycle sum to a negative
value. Therefore, the presence of a vertex being updated in the last iteration indicates the existence of a
cycle within the graph, the edge lengths of which sum to a negative value.

(d) Let’s consider the vertices forming the cycle as u1, . . . , ur, u1 in that particular order, and focus on the
(|V | − 1)th iteration. For convenience, we can define u0 = ur. Our assertion is that there exists a vertex
uj , 1 ≤ j ≤ r, within the cycle, such that uj .dist > uj−1.dist+ ℓ(uj−1, uj).

Suppose for a moment that this is not the case. If so, for every 1 ≤ i ≤ r, we’d have ui.dist ≤
ui−1.dist + ℓ(ui−1, ui). Summing both sides of this inequality across 1 ≤ i ≤ r and taking into account
that

r−1∑
i=0

ui.dist =

r∑
i=1

ui−1.dist =

r∑
i=1

ui.dist

we deduce that the sum of the edge lengths within the cycle is non-negative, which leads to a contradiction.
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As a result, at the conclusion of the (|V | − 1)th iteration, we can conclude that there exists a value of
j, 1 ≤ j ≤ r, for which uj .dist > uj−1.dist + ℓ(uj−1, uj). In the |V |th iteration, if uj .dist is updated
before uj−1 is encountered, our objective is achieved. Alternatively, it must be updated when uj−1 is
encountered. Consequently, we can assert that there is indeed a vertex updated during the last iteration,
successfully concluding our argument. ■

§ Problem 18

Problem. Consider the following algorithm for finding a minimum weight spanning tree in a connected
undirected graph. Initially, let T consist of an arbitrary vertex v and no edges. Then, repeatedly add
to T the minimum weighted edge with exactly one vertex in T . (This algorithm, similar to Dijkstra’s
algorithm, is called Prim’s algorithm.)

(a) Based on the blue and red rules discussed in class, show that the algorithm is correct.

(b) Describe an implementation of the algorithm that runs in time O((m+n) log n). (Assume that you
have an implementation of a heap that supports find-min and delete-min in O(log s) steps, for a
heap of s elements, and can build a heap on n elements in O(n) steps.)

Solution. (a) Prim’s algorithm is written as following :

1 X = {} ( edges picked so far)

2 repeat until |X| = |V | − 1:
3 pick a set S ⊂ V for which X has no edges between S and V \ S.
4 e ∈ E be the minimum -weight edege between S and V \ S
5 X = X ∪ {e}

———————————————————————————————————————————————–
Correctness of Algorithm. Since the graph is finite the algorithm will surely terminate. We will prove the
correctness by induction. For the base case consider T0 = {v}, which is minimum spanning tree of one vertex.
Take the cut {v} ⊔ V \ {v}, take the minimum weight edge across this cut and colour it blue. If the edge is e0
it’s not hard to see T1 = {v} ∪ e0 is minimum spanning tree of 2 vertex.

For the hypothesis part, let’s assume Tn be the tree at n-th iteration and let Vn be the vertex set, then Tn is the
minimum spanning tree of the spanning subgraph of Vn. Also consider that the edges of Tn is coloured blue.
Let’s consider the cut of graph Vn ⊔ (V \ Vn). Let e be the minimum weight edge between Vn and V \ Vn, by
rule {e} must be coloured blue. If ẽ was an edge two vertices are from Vn, Tn∪ ẽ must contain in an cycle, color
it red (as it has maximum weight among the edges in the cycle). In this case we still have Tn is the minimum
weight spanning tree with n vertices.

If there is an edge ẽ across Vn and V \ Vn, which must added to Tn such that Tn ∪ ẽ is a minimum weight
spanning tree on n+ 1 vertices. By blue rule we can say ((Tn ∪ {ẽ}) \ {ẽ})∪ {e} is the minimum spanning tree
on n+ 1 edges. (This proof was similar to the proof of Blue rule theorem, which says if any graph G starting
with uncolored edges and blue rule, red rue are applied in an arbitrary order, then the final set of edges with
blue colour forms a minimum weight spanning tree.) Thus by induction we can say the algorithm is correct. ■

(b) An implementation of the above algorithm is given as following:

1 # Input: (G,W ) a graph G = (V,E) with W being the set of weights

2 # output: Minimum weight spanning tree T .

3 prim (G,W ):
4 for all u ∈ V :

5 cost(u)= ∞
6 prev(u) = NULL

7 arbitrarily choose v ∈ V
8 set cost(v)=0

9 H = makeHeap (V) # accordiing to the heam implementation mentioned

10 if H ̸= ∅ :

5



11 s = deletemin(H)

12 for all (s, t) ∈ E :

13 cost (t) > w(s,t)

14 cost(t) = w(s,t)

15 prev(t) = s

16 decreasekey(H,t)

—————————————————————————————————————————————————

This code is creating a heap to store the vertices according to the cost function defined by

cost(v) = min
u∈T

w(u, v), v /∈ V

At some k-th iteration step it picks a vertex v with minimum cost and an edge which has minimum weight, one
vertex of the edge is v. Which means the edge has exactly one vertex in T and it has minimum weight. This
code is working according to Prim’s algorithm.

Time complexity. If the graph has n vertices and m edges the heap implementation takes ∼ log n time to
perform decreasekey, deletemin and it takes ∼ n steps to build the heap. So the total time complexity is
given by (this is similar to the case of Dijkstra’s algorithm),

|V | × deletemin+ (|V |+ |E|)× insert

= n× log n+ (m+ n)× log(m+ n)

∼ O((m+ n) log n)

§ Problem 19

Problem. Let (S, I) be a matroid (S is finite).

(a) Suppose A,B ∈ I, such that |A| < |B|. Show that there is an element x ∈ B\A, such that A ∪ {x}
is independent.

(b) Let I be a maximal independent and let x /∈ I. Show that there is a unique cycle c contained in
I ∪ {x}. (A cycle is a minimal dependent set.)

Solution. (a) Let there do not exist any {x} ∈ B \ A, such that A ∪ {x} is independent. So for any
C ⊆ B \A, A∪C is not independent. This means A is maximal independent subset of A∪B. By definition of
Matroid, we can say all maximal independent sets of A ∪ B ⊆ S must have same cardinality. Let, M be the
maximal independent set of S containing B, then

|M | = |A| =⇒ |B| ≤ |A|

This is a contradiction. Thus there is an element x ∈ B\A, such that A ∪ {x} is independent.

(b) Let, I be a maximal independent set and x /∈ I, then I ∪ {x} is dependent set, so there must exist a cycle
c ⊆ I ∪ {x}. If there is two distinct cycle c1 and c2 contained in I ∪ {x}, clearly the cycles can’t be contained
in I, so x ∈ c1 ∩ c2. Let e ∈ c1 \ c2, see that, c1 \ {e} is independent set by minimality of of cycles. Note
that, |c1| < |I| + 1 and hence |c1 \ {e}| < |I|. Py part a we can say there is an element in I \ (c1 \ {e}) such
that it’s unioun with c1 \ {e} is an independent element. By this process we can get an maximal independent
element X ⊂ I ∪ {x} containing c1 \ {e}. By the matroid property we can say |I| = |X| as both are maximal
independent set of I ∩ x. From the construction we can see e /∈ X and x /∈ I thus,

X \ {x} = I \ {e} ⇒ X = (I ∪ {x}) \ {e}

Since c2 ⊂ I ∪ {x} and e /∈ c2 we can say, c2 ∈ (I ∪ {x}) \ {e} which is independent set. We know subset of any
independent set is also independent, thus c2 is independent set. This is a contradiction. So there is a unique
cycle c contained in I ∪ {x}. ■
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