
Assignment-3
Design and Analysis of Algorithms

Trishan Mondal

—————————————

Disclaimer. Consider the following set of students

P =

{
Aaratrick Basu, Deepta Basak, Priyatosh Jana,

Shubhrojyoti Dhara, Soumya Dasgupta, Trishan Mondal

}
Discussion of solutions to the assignment problems are limited to the people of set P only. Most of the problems
in this assignment has general solution. If any other person have same solution as mine is not my fault.

§ Problem 10

Problem. Suppose G = (V,E) is an undirected unweighted graph with n vertices and m edges. Suppose
s, t ∈ V are vertices of G whose distance in G is strictly greater than n/2. Show that there is a vertex
(other than s and t) whose deletion disconnects s from t. Describe an algorithm (assume that adjacency
lists are available) running in time O(m+ n).

Solution. Consider a BFS tree T of G with s as the root. We know in a BFS tree, a vertex v lies on a
level which is equal to the length of shortest path (distance) from s to v. It is given that distance between s
and t is at least ⌊n2 ⌋+ 1. In the BFS tree where, s is root, t occurs at the level ≥ ⌊n2 ⌋+ 1. So, there is at-most
n− 2 nodes (vertices) between the level 1 and ⌊n2 ⌋. It must happen that, one level 1 ≤ ℓ ≤ ⌊n2 ⌋ exists so that,
it has only one node. Otherwise, if each level has ≥ 2 nodes the total number of nodes must be ≥ n but it is
not possible.

Once we got the singleton node at some ℓ-th level of BFS tree starting at s, where 1 ≤ ℓ ≤ ⌊n2 ⌋. Call one of this
node is w. I claim that, deletion of this vertex will disconnect s from t. If deletion of w does not disconnects s
from t, there must exist an edge {w, p}, with dist(s,p)>dist(s,w) and {w, q} with dist(s,w)>dist(s,q).
Then the distance between p, q will be less than the distance between them via the BFS tree. It is a contradiction.
So there is a vertex by removing which we can disconnect s from t.

Algorithm

Input: G = (V,E) undirected and unweighted graph with n vertices and m edges and s, t such that distance
b/w s and t is strictly greater than n

2 .

Output: A vertex v, removing which s and t will disconnects.

• Step 1: Do a BFS on G starting at s.

• Step 2: For each 1 ≤ i ≤ ⌊n2 ⌋, let L[i] be the list of vertex at level i.

• Step 3: Check L[i] which has only one node (vertex), for 1 ≤ i ≤ ⌊n2 ⌋. Return that vertex.

Correctness. By the first paragraph of previous part we can see there exist such vertex w. So the
algorithm will terminate. Let, w be the vertex returned by the algorithm. We will show that deletion of w will

1

disconnect s and t. If not, Then the distance between p, q will be less than the distance between them via the
BFS tree. It is a contradiction. It proves the correctness of the algorithm.

Time complexity. For doing BFS tree we need ∼ O(m + n) time. For listing the vertices in step 2 we
need ∼ O(n) time and at the last step we need ∼ O(n) comparison to get the required result. So the time
complexity of algorithm is O(m+ n). ■

§ Problem 11

Problem. Suppose G = (V,E) is a connected undirected graph. Suppose DFS starting at a vertex v and
BFS starting at the same vertex v produce the same tree. Then, show that G is a tree.

Solution. Let’s denote the trees produced by BFS and DFS as T . Assume that G is not a tree. This
implies the existence of an edge e = {p, q} ∈ G such that {p, q} /∈ T . In this scenario, within the DFS tree,
either vertex p or q must serve as an ancestor of the other (resulting in a back edge). This arises from the fact
that if, for instance, q is first discovered by DFS, our traversal must encounter p while still exploring q, or it
would utilize the edge from p to q. Simultaneously, in the BFS tree, the levels of p and q can differ by only one.

Since both BFS and DFS trees are identical, it logically follows that one of the vertices, either p or q, must
function as the ancestor of the other, with just a one-level difference. Consequently, the edge connecting them
must be present in T . This leads us to a contradiction, which means G is a tree. ■

§ Problem 12

Problem. Suppose G is a directed graph with n vertices and m edges. Describe an algorithm (assuming
adjacency lists are available) running in time O(m+n), if G has a vertex v from which every other vertex
is reachable.

Solution. Let’s look at the meta-graph of the given directed graph G = (V, E⃗), which is made of treating
the SCC’s as a vertex. We know that this meta-graph G′ is acyclic. In a DAG (directed acyclic graph) there is
always a source and a sink. Let, S be the source of G′. If there is a vertex v from where we can travel every
other vertex, define it by good vertex, it must lie in S of the meta-graph G′. If it lie in any other component S′

then we can’t travel to the source, as there is no edge coming in at the source vertex.

Observation 1: If there are more than one source in the meta-graph then it is not possible to get a ‘good
vertex’. As we have seen previously the good vertex must lie in a source of G′ but then we can’t get back to
other source as there is no edge coming inwards to source.

Observation 2: If there is only one source component S in the meta-graph G′, every v ∈ S is a good vertex.
Let, u be a vertex in other SSC. Call this component T1. Now define a sequence of component’s (vertices in
G′) {Ti}, such that, there is an edge from Ti+1 to Ti. For example T2 is the component such that there is an
edge from T2 and T1. Since the directed graph is finite this sequence will stop at some stage. If the sequence
ends at Tn, then Tn must be the source S (by uniqueness of source) as there is no inwards edge to S. G′ is the
meta-graph and it is DAG, so T1 ← T2 ← · · ·S is a path where no component (or vertex of G′) is visited again.
This will give us a path to reach u from v. Thus v is a ‘good vertex’.

Algorithm

Input: A directed graph G = (V, E⃗)

Output: NULL if there is no such ‘good vertex’ v. Return v if v is a ‘good vertex’.

• Step 1: Choose any v ∈ V and do a dfs(G,v). Take a vertex u with maximum post visit number in this

2

dfs.

• Step 2: Again do the dfs with the vertex u, i.e. dfs(G,u). If the maximum post visit number of this new
dfs is greater than post-visit number of u. Then return NULL. Otherwise, return v.

Correctness. At-first we perform dfs on G with respect to some vertex v. Then the vertex with highest
post-visit u, will lie in the source S of the meta graph G′ (this was proved in class while doing Kosaraju’s
algorithm). Now perform dfs again with respect to u. If the maximum of post visit number in this dfs not equal
to the post visit number of u, then there is another source component in this directed graph G. By Observation
1 we can’t have a good vertex. That’s why this algorithm will return NULL. Else if the post visit number of u
is equal to the maximum post-visit number, there is only one source component. By Observation 2, v is good
vertex. Since the graph is finite, dfs will terminate and hence our algorithm will terminate. Thus our algorithm
is correct.

Time complexity. We are running dfs two times, so we need ∼ O(m+ n) time to run the algorithm. ■

§ Problem 13

Problem. In the 2SAT problem, you are given a set of clauses, where each clause is the disjunction (OR)
of two literals (a literal is a Boolean variable or the negation of a Boolean variable). You are looking for
a way to assign a value true or false to each of the variables so that all clauses are satisfied - that is,
there is at least one true literal in each clause. For example, here’s an instance of 2SAT:

(x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) ∧ (x1 ∨ x2) ∧ (x̄3 ∨ x4) ∧ (x̄1 ∨ x4).

This instance has a satisfying assignment: set x1, x2, x3 and x4 to true, false, false, and true, respec-
tively.

(a) Are there other satisfying truth assignments of this 2SAT formula? If so, find them all.

(b) Give an instance of 2SAT with four variables, and with no satisfying assignment.

The purpose of this problem is to lead you to a way of solving 2SAT efficiently by reducing it to the
problem of finding the strongly connected components of a directed graph. Given an instance I of 2SAT
with n variables and m clauses, construct a directed graph GI = (V,E) as follows.

� GI has 2n nodes, one for each variable and its negation.

� GI has 2m edges: for each clause (α ∨ β) of I (where α, β are literals), GI has an edge from the
negation of α to β, and one from the negation of β to α.

Note that the clause (α∨β) is equivalent to either of the implications ᾱ⇒ β or β̄ ⇒ α. In this sence, GI

records all implications in I.

(c) Carry out this construction for the instance of 2SAT given above, and for the instance you con-
structed in (b).

(d) Show that if GI has a strongly connected component containing both x and x̄ for some variable x,
then I has no satisfying assignment.

(e) Now show the converse of (d): namely, that if none of GI ’s strongly connected components contain
both a literal and its negation, then the instance I must be satisfiable.

(f) Conclude that there is a linear-time algorithm for solving 2SAT.

3

Solution. !The solution to this problem is more or less everyone must have done in same way. Please don’t
cut marks for plagiarism!

(a) It is given that, (x1∨ x̄2)∧ (x̄1∨ x̄3)∧ (x1∨x2)∧ (x̄3∨x4)∧ (x̄1∨x4) is true. So, each (x1∨ x̄2), (x̄1∨ x̄3),
(x1∨x2), (x̄3∨x4), (x̄1∨x4) will be ture. Since, (x1∨ x̄2) and (x1∨x2) are true, we must have x1 = ture.
Now, (x̄1 ∨ x̄3) = true will tell us that, x3 = false. From the fact, (x̄1 ∨ x4), (x̄3 ∨ x4) = ture we will
get, x4 = true. We only have freedom for x2 and x1, x3, x4 are derived as above.

(b) Consider the following 2SAT, which don’t have any satisfying assignment as it will always give flase,

(x1 ∨ x2) ∧ (x1 ∨ x̄2) ∧ (x3 ∨ x4) ∧ (x̄3 ∨ x4) ∧ (x̄1 ∨ x̄4)

If the above was true in some case, then x1 = true and x4 = true but then x̄1 ∨ x̄2 is flase.

(c) Here the following graphs GI′ constructed for the instance I ′ = (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) ∧ (x1 ∨ x2) ∧ (x̄3 ∨
x4)∧ (x̄1 ∨ x4) and GI is constructed for I = (x1 ∨ x2)∧ (x1 ∨ x̄2)∧ (x3 ∨ x4)∧ (x̄3 ∨ x4)∧ (x̄1 ∨ x̄4) which
is the thing we constructed in part (b).

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x4

GIGI′

(d) We begin by observing that an edge (p, q) exists in GI if and only if the clause (p∨q) is present in I. Now,
let’s consider the presence of a strongly connected component in GI that includes both x and x. According
to its definition, this implies the existence of directed paths (x, x1, . . . , xn, x) and (x, y1, . . . , ym, x) in GI .
Consequently, we deduce that I must contain the following sub-instance:

(x ∨ x1) ∧ (x1 ∨ x2) · · · (xn ∨ x̄) ∧ (x ∨ y1) ∧ (y1 ∨ y2) · · · (ym ∨ x)

Let’s consider the case when x = true. The first clause above implies that x1 = true, the second
one x2 = true, and so forth, until xn = true. This in turn leads to the conclusion that x = true,
which contradicts our initial assumption. Now, let’s consider the case when x = false. In this scenario,
x = true, and consequently, y1 = true. This then implies y2 = true, and so on, until ym = true,
eventually leading to x = true, which once again contradicts our initial assumption.

Therefore, as this sub-instance of I does not have any satisfying assignments in either case, we can conclude
that I itself does not have any satisfying assignments. This completes the proof.

(e) Let there are no strongly connected components in GI that contain both a variable and its negation. We
assert that if we iteratively select a sink strongly connected component, set all the literals represented as
vertices to true, and then remove them, we will eventually obtain a satisfying assignment.

We will prove this assertion through induction on the number n of literals involved in I. The statement
holds true when n = 1 because GI must contain two isolated vertices representing the literal and its
negation. Consequently, I is satisfied by the assignments x = true and x = true, and these are the only
assignments produced by the described procedure.

4

Now, assume the assertion holds for some n, and let GI be the graph corresponding to an instance I
involving n + 1 literals. First, we identify any sink strongly connected component S. Since S is a sink
component, there are no edges (u, v) in the graph where u ∈ S and v /∈ S. Also, the clause u ∨ v is
not present in I for u ∈ S and v /∈ S. In other words, for u ∈ S, the clause u ∨ v exists in I only if
v ∈ S. Similarly, an edge (v, u) in GI corresponds to the clause v ∨ u. Therefore, by setting all literals
in S to true, any clause involving such literals or their negations must evaluate to true. Consequently,
whether I has a satisfying assignment depends totally on the literals not in S. Therefore, we examine
GI after removing all vertices (including negations) corresponding to literals occurring in S. This results
in a graph representing an instance with at most n literals and satisfies the assumption that no strongly
connected component contains both a literal and its negation. Hence, by induction, any instance I where
GI satisfies this assumption must have a satisfying assignment.

(f) We will take the idea of Kosaraju’s algorithm and we will find all the SCC and assignment of corresponding
literals. The algorithm described as follows,

– Step 1: At first create directed graph GI , from the given instance I. Now consider the reveresd
graph GR

I . Run DFS on it and record the post-visit numbers and get the SCC of GI by running DFS
on the vertices in increasing order of post number.

– Step 2: If any strongly connected component of GI has both literal and it’s negation (We can do
this by checking their SCC number) then by part (d) and part (e), we can say I do not have any
satisfying assignment.

– Step 3: For the component of I containing sink, set all literals on the same SCC of source as true.
Then delete all the vertices in this SCC as well as the negation of the literals in this SCC.

– Step 4: Continue doing the above steps till there is no SCC left and then return assignment of each
literals.

� Correctness. The correctness of this algorithm follows from part(d) and part(e) of the question.

� Time complexity. For creating a graph GI = (V,E) we need ∼ 2n + 2m time, then we are doing
Kosaraju’s algorithm to get SCC’s in some topological order. This will take |V |+ |E| ∼ O(n+m) time.
So step 1 takes ∼ O(n + m) time. In step 2 we are looking at the SCC number of vertex v and v̄.
If they are same, it will take ∼ O(n) time. Step 3 does everything in constant time. Finally step 4
executes step 3, #{SCC in GI} times, which can be atmost the number of vertices, i.e. 2n. So total time
complexity is ∼ O(m+ n). ■

§ Problem 14

Problem. Generalized shortest-paths problem. In Internet routing, there are delays on lines but also, more
significantly, delays at routers. This motivates a generalized shortest-paths problem. Suppose that in
addition to having edge lengths {le : e ∈ E}, a graph also has vertex costs {cv : v ∈ V }. Now define the
cost of a path to be the sum of its edge lengths, plus the costs of all vertices on the path (including the
endpoints). Give an efficient algorithm for the following problem.

� Input: A directed graph G = (V,E); positive edge lengths le and positive vertex costs cv; a starting
vertex s ∈ V .

� Output: An array cost[·] such that for every vertex u, cost[u] is the least cost of any path from
s to u (i.e. the cost of the cheapest path), under the definition above.

Notice that cost[s] = cs.

5

Solution. This problem is similar to the problem of solving for the shortest path from a source, where the
weights of edges are positive. We will try to retrace the Dijkstra’s algorithm but in place of length-weights we
will consider vertex-weights. The algorithm is given as following (in terms of pseudocode),

1 def gen_short_path(G,l,c,s)

2 # G = (V,E) is the graph given in terms of adjacency list

3 # ℓ is the set of edge lengths

4 # c is the set of vertex costs

5 # s is the starting vertex

6 for all v ∈ V
7 cost[v] = ∞
8 prev(v) = nil

9 cost[s] = cs
10

11 H = makequeue (V)
12 while H is not empty:

13 u = deletemin(H)

14 for all edges (u, v) ∈ E:

15 if cost[v] > cost[u] + ℓ{u,v} + cv :

16 cost[v] = cost[u] + ℓ{u,v} + cv
17 prev(v) = u

18 decreasekey(H, v)

Here we have just modified the Dijkstra’s algorithm done in class and also written in DPV page.115.

Correctness and Time complexity. The Correctness of the algorithm follows from the correctness of the
Dijkstra’s algorithm, which was done in class. In this case time complexity is, |V | × deletemin+ (|V |+ |E|)×
decreasekey. In this case we are using Binary heap for priority queue implementatiom. So, deletemin =
log |V | = decreasekey. And hence time complexity is ∼ O((m + n) log n). This is same as the complexity of
Dijkstra’s algorithm. ■

6

	Problem 10
	Problem 11
	Problem 12
	Problem 13
	Problem 14

