
Assignment-1
Design and Analysis of algorithm

Trishan Mondal

§ Problem 1

Let’s rewrite the algorithm for extended Euclid. 1

1 def extended_Euclid(a,b):

2 """

3 a,b are non -negative integers

4 The function returns(u,v,d)such that d=gcd(a,b)

5 and d=ua+vb

6 """

7 if b==0: return(1,0,a)

8 (u,v,d)=extended_Euclid(b,a%b)

9 return(v,u-v*(a//b),d)

10

(a) The problem, asked to prove is wrong. Just for counter-example take 199, 3 we can see that gcd(199, 3) = 1
but then 199u+3v = 1 if |v| ≤ 3 it is not possible to find such u, v. Rather we can prove, |ui| ≤ bi

d , |vi| ≤
ai
d . For

the base case we will take (t− 1)-th step. It is given that, (ut, vt) = (1, 0), so (ut−1, vt−1) = (0, 1) corresponding
at−1 = dqt and bt−1 = d, it is satisfying the hypothesis. Let, the hypothesis is true for vi, ui. We have ai = bi−1

and ai−1 = qai + bi and hence,

|ui−1| = |vi| ≤
ai
d

=
bi−1

d

We have, ai−1 = qiai + bi, this will give us,

ai−1 = qiai + bi

≥ dqi|vi|+ d|ui|
≥ d|ui − qivi|
= d|vi−1|

Induction step is complete and hence we are done.

(b) To get the total bit operation needed for extended Euclid we need to find out the worst case, which can
be found from the following computations.(

ai−1

bi−1

)
=

(
qi 1
1 0

)(
ai
bi

)
(
a0
b0

)
=

(
q1 1
1 0

)(
q2 1
1 0

)
· · ·
(
qt 1
1 0

)(
at
bt

)
≥
(
1 1
1 0

)(
1 1
1 0

)(
1 1
1 0

)
· · ·
(
1 1
1 0

)(
at
bt

)
=

(
Ft Ft−1

Ft−1 Ft−2

)(
d
0

)
1** Every algorithm written in this assignment is not syntax of any specific language they are just an algorithm.

1

From the above calculation we get, ao ≥ Ftd, in other words Ft ≤ a0
d . The following computations will help us

to approximate t.

Ft ≤
a0
d

⇒

(
1 +

√
5

2

)t

−

(
1−

√
5

2

)t

≤ a0
d

⇒

(
1 +

√
5

2

)t

≤ a0
d

+ 1

⇒ t ≤ log(1+
√
5

2

) (a0
d

+ 1
)

Since, a0 and d are n-bit so, t ∼ O(n) will give us the worst case. We will calculate the number of bit
operation for this case. Recall that, qi = ⌊ai−1

bi−1
⌋, ai = bi−1 and bi = ai−1 − qibi−1. The ai−1, bi−1 are O(n)-bit

number, to determine ai and bi we need ∼ O(n2) bit operations (O(n2) for multiplication and O(n) for addition).
For the worst case we took a0 = Fnd and b0 = Fn−1d, so the extended Euclid will be called ∼ n times. So the
total bit operation needed for this case is O(n3). ■

§ Problem 2

Let’s re-write the given algorithm.

1 def modified_Euclid(a,b):

2 """ a,b are non -negative integers.

3 The function returns d such that d=gcd(a,b)

4 """

5 if b==0: return a

6 r=a%b

7 if r<b/2:

8 return modified_Euclid(b,r)

9 else:

10 return modified_Euclid(b,b-r)

11

(a) Let, a > b > 0 be the given integers. Let, a = bq + r where, 0 ≤ r ≤ b − 1, then we have to show
gcd(a, b) = gcd(b, r). Let, d = gcd(a, b), since d divides both a and b it must divide r, in other words d | gcd(b, r).
Also, gcd(b, r) | r, b hence gcd(b, r) | a, which gives gcd(b, r) | gcd(a, b) = d and hence d = gcd(b, r).

We remain to show that, d = gcd(b, b − r). We have shown, gcd(b, r) = d, we will show that, gcd(b, r) =
gcd(b, b−r). By the similar argument we have, gcd(b, r) | gcd(b, b−r) and also gcd(b, b−r) | gcd(b, r), which gives
us gcd(b, b− r) = gcd(b, r). The above calculation shows us if the algorithm terminates it will return gcd(a, b).
For any input a > b > 0, the algorithm calls modified Euclid(b,r) if r < b

2 and calls modified Euclid(b,b-r)

otherwise. Here, b is decreasing by a factor of half at each calling. So it will terminate to 0 at some time. Hence,
the algorithm returns gcd(a, b).

(b) We will do the calculation for two separate cases. One for t is even and other is t is odd. We know, Ft+1 =
Ft+Ft−1 and Ft = Ft−1+Ft−2 ≤ 2Ft−1, so, modified Euclid(Ft+1, Ft) will call modified Euclid(Ft, Ft−2) as,
Ft−Ft−1 = Ft−2. Since, Ft = 2Ft−2+Ft−3 and Ft ≤ 2Ft−3 the algorithm will call modified Euclid(Ft−2, Ft−4)

and from here modified Euclid(Ft−2k, Ft−2k−2) will be called at k-th step. At the end the code will reach to
(F2, F0) = (1, 0) if t is even. So, the total number of tile the function is called is, 1 +

(
t
2 − 1

)
, which is t

2 .
If t is odd then the code will reach at the pair (F3, F1) and then it will call modified Euclid(1,0), so we

need to call the function t−1
2 + 1 = t+1

2 times. ■

2

§ Problem 3

The following perf.pow(N) will return 1 or 0 according to N is perfect power or not.

1 def perf.pow(N):

2 for E in range (2,bit(N)) #This loops runs from 2 to bit(N) which is ~ log N = n

3 a = 1; b = bit(N) // E; A = pow(2,b) #we are taking A = 2^b

4 while A-a > 1

5 Q = (a+A)//2 # using the algorithm of bisection to closely approximate Q

6 x = modular_expo(Q,E,N+1)

7 if x == N return 1

8 if x< N return a = Q

9 else return A = Q

10 return 0

11

Description of The algorithm. There is two loop we used in the algorithm. The for loop at line 2

is running E from 2 to n = ⌈log2N⌉ then we are setting A = 2⌊
n
E
⌋, which is ⌊ n

E ⌋-bit number. Now we are
using bisection method to get integer closer to the solution of xE −N = 0. This is the reason we are defining
Q = ⌊a+A

2 ⌋, it is not hard to see that, QE ≤ N hence, if QE ≡ N (mod N + 1) it will be actually N otherwise
we are returning A = Q,a = Q according to x > N or x < N and finally if for all the range we can’t get any Q
then we are returning 0.

Correctness of the algorithm. Let, Ai, ai be the A and B at the i-th step, then observe,

|Ai − ai| =
1

2
|Ai−1 − ai−1| = · · · = 1

2i
|A0 − a0| <

N

2i

so the algorithm terminates after finite step. If N is not a perfect power then there do not exist any Q,E such
that QE = N . So line 7 will fail at each iteration step and after the loop is complete the algorithm will return
= 0.

If N = QE for some Q,E ≥ 2, E will be less than or equal to ⌊log2N⌋. We know for the bisection method
Q ∈ [ai, Ai] for every i ≥ 1. If Qi−1 = Q then line 7 will return 1 and otherwise QE

i−1 < N for every E in the
range 2, · · · , ⌈log2N⌉. Then Q ∈ (Qi−1, Ai−1) = (ai, Ai) so,

|Q−Qi| ≤ |Ai − ai| =
1

2i
|A0 − a0| <

N

2i

but for i = ⌈log2N⌉, |Q−Qi| < 1 and hence Qi = Q at the ⌈log2N⌉-th step. For suitable E, the algorithm
will return QE = N and hence, the algorithm will return 1. Thus our algorithm is correct.

Time complexity. Since N is n bit number, ⌈log2N⌉ ∼ n. Inside the while loop, line 6 will take ∼ O(n3)
time to calculate modular exponent. (line 4) At each step A− a is reducing by factor of 1

2 , the while loop will
run ⌊ n

E ⌋ time for each E and E will run from 2 to n. (line 3)The division ⌊ n
E ⌋ and calculation of A will take at

most O(n3) time. So the total time complexity is,

n∑
E=2

O(n3)⌊ n
E
⌋+O(n3)

∼ O(n4)

(
1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

n

)
∼ O(n4 log n)

§ Problem 4

We will define a function b l(x,y,l), which will give us ℓ-th decimal number of the binary expansion of x
y

whenever, x < y.

3

1 def b_l(x,y,l) :

2 """

3 whenever x < y is this function will

4 return l-th decimal term of the binary expansion of x/y

5 """

6 a = modular_expo (2,l-1,y) # this function calculates 2^(l-1) modulo y

7 r = a*x % y

8 return (2*r)//y #this is floor of 2r/y

9

The algorithm is taking input x, y, ℓ and give us bℓ (as required for the problem). From the following
calculates we can confirm that our algorithm is correct.

x

y
=
∑
k≥1

bk2
−k

2ℓ−1x

y
=

ℓ−1∑
i=0

bℓ−1−i2
i +
∑
k≥1

bℓ−1+k2
−k · · · (1)

since, 2ℓ−1x ≡ r (mod y), we have, 2ℓ−1x = qy + r which gives, x
y = q + r

y by comparing with (1) we get,∑
k≥1 bℓ−1+k2

−k − r
y is an integer since both the term is strictly less than 1, only possibility is

r

y
=
∑
k≥1

bℓ−1+k2
−k

which means, 2r
y = bℓ +

∑
k≥1 bℓ+k2

−k and hence ⌊2ry ⌋ = bℓ. Now we will calculate time complexity of the
algorithm.

Time complexity. The function modular expo(a,b,c) has time complexity O(n3) where a, b, c are n-bit
numbers. Modular multiplication ax (mod b) has time complexity O(n2), where a, b, x are n-bit numbers. The
operation a//b has time complexity O(n2), here a, b are n-bit number. So, the described algorithm has O(n3)
complexity. ■

4

	Problem 1
	Problem 2
	Problem 3
	Problem 4

