ASSIGNMENT-3

Algebraic Topology

TRISHAN MONDAL

§ Problem 1

Problem. Consider a commutative diagram of abelian groups:

A, fn B, —2 C, 6">An_1*>~~

of bl e

A/ f’l{L B/ g;r, C/ a;z N A/ .
n n n T An—1

where the rows are long exact sequences and ¢, is an isomorphism for all n € Z. Verify that the associated
“algebraic Mayer-Vietoris” sequence:

ny—Jn 7/1 bn 8'r]zwv
A, ety ictbe) pr A s

Al @ B,

is exact, where OMV := 9, 0, o gl,.

!/
Solution. Let ¢, = (an,—fn) and let ¢, = <£”> To show that the algebraic Mayer-Vietoris sequence is

exact its enough to show that Im1, = ker ¢,,, Im ¢, = ker MV and Im oMY = ker ¢, 1.

e Im, = ker ¢,. Let x € A,,, we have

On(Yn(x)) = fhan(x)) — bn(fu(x)) = 0.

Thus Im,, C ker ¢,,. For opposite inclusion suppose (2, y) € ker ¢,,, then we get that f] (z') = —b,(y),
but then we get

0= gp(fn(@") +bn(y)) = g(bn(y)) = cnlgn(y)) = gn(y) =0,
since ¢, is an isomorphism. Thus we get that y € ker g, = Im f,,, let y = f,,(a). Then we get that

Hence an(a) + 2" € ker f;, =Im ), let ay(a) + 2’ = 0, (2’). Now since ¢,41 is an isomorphism we get
there exists z € Cj,11 such that

an(a) + 2’ = 0,1 (2) = 011 (en41(2)) = an(9n11(2)).

Let @ = Op41(2) — a, then we get that a,(a) = 2’ and f,,(a@) = f,(On+1(2)) — fu(a) = —y. Hence we get
that ¢, (a) = (2/,y). Therefore we have shown that Im,, = ker ¢,.



e Im ¢y, = ker OMV. Let (2/,y) € A/, ® B, then we get that
o'V (dn(a’ ) = "V (£, (") + 03"V (ba(y))
= On(c g (fa(@))) + 0n(cy 91 (bn (1))
= 871(6;1(0)) + 9n(gn(y)) = 0.

Thus we get that Im ¢,, C ker 8,11\/[ V. Conversely suppose ' € ker 8,11\/[ V' then we get

On(cn ' (9,(1))) = 0= ¢, (g,,(¥)) € ker d,, = Tm g,,.
Thus there exists y € B,, such that

cn (90 (W) = 9n(y) = 9n(¥) = cal9n(v)) = g0 (bu(y)).
Hence y' — by (y) € ker g}, = Im f, thus there exists #’ € A/, such that

Y = baly) = fol@) =y = fi(@) + ba(y).
Hence we get that ker MV C Im ¢,,, therefore we have shown that Im ¢,, = ker 9MV.

e ImOMV =ker¢, 1. Let ¥/ € B, then we get that

Yu-10" (y) = (an—1(0n(e, (9 (W)))s —Fu1(nler (90 (4))))
= (0(9n(¥), 0) = (0,0).

Thus Im MY C kert,_1. Conversely let = € ker v, 1, then we get that a,_1(z) = 0 and f,,_1(z) = 0.
But then we get x € ker f,_1 = Im 0, thus x = 9,,(2) for some z € C,,. Now observe that

0=an_1(2) = an—1(0,(2)) = 0, (cn(2)) = 0= c,(2) Ekerd), =Img,,.

But then we get c,(2) = ¢4(y') = 2z = ;' (¢4(v')) and hence we get x = 0,(c,; (g5 (v"))) € ImoMV.
Therefore have shown that ker,_1 C Im ajyv = Im MV = ker),,_1.

Therefore we have proved that the algebraic Mayer-Vietoris sequence is exact. |

§ Problem 2

Problem. Compute the homology groups of the surfaces ¥, for all g > 0. Compute their Betti numbers.

Solution. We have proved the polygonal presentation ¥, in Assignment 2. Consider the 4g-gon (call

it P) whose edges are identified with the following identification as shown in figure. Let, D be a point at the
center of the 4g-gon. Take the open set P\ D, let V' be the open set corresponding open set in ¥, and U be
the open set containing D in P, it will remain same in the quotient space ;. We can see U C V, thus we can
use Mayer-Vietoris sequence on the open cover U U V. It’s not hard to see ¥y =U UV, UNV = U \ D,which
deformation retracts on to a circle S!.
Since this space do not have any 3-dimensional simplex structure, H3(3,) = 0. Also note that U is contractible
and V deformation retracts on to the boundary 0P of P, which is wedge of 2g-circle in the quotient space. By
homotopy invariance property of H, we can say, He(V) = Ho(\/, g S'). From Mayer-Vietoris sequence we will
have,

Hy(UNV) 2 Hy(U) @ Ho(V) —Ls Hy(%,)

lﬁ 1



Now we will show ¢; is a trivial map. This map is induced by the inclusions iy : UNV — U and iy : UNV — V.
By our construction of U and V we know, U is contractible, thus Hj (iy) is trivial map. So we are left with the
map Hi(iy) which is 4;. This map corresponds to the map ¢ : S! — \/29 S! which is taken according to the

relation ajbya;!- --by ', It will induce a map in Hi(SY) — Eﬁ(\/gg S!). If ¢ is a generator in Hy(S'), then it
will maps to (i1(0), - ,iy,(0)) in ﬁl(\/Qg SY), where i is inclusion of St in j-th circle of Vay, St. Let o; is the
generator of homology group of i-th circle in \/29 S'. Then z; (0) = ajo; — ajo; = 0. Thus z; are trivial map
and hence 4y is trivial map. So we will have the following exact sequence.

HUnv) 2% 722 2 s, 20

from the above exact sequence we can say Hi(X,) = Z%9. Also Ho(X,) = Z as jo and i1 are trivial map. Thus
we have :

Z ifn=20,2
H,(Z,) =27% ifn=1
0 ifn>3
Betti numbers are 1 for n = 0,2, 2g for n = 1 and 0 otherwise. |
§ Problem 3

Problem. Compute the homology groups of the surfaces Ny, for all h > 1.

Solution. We know, N, = D? Uy, (v?zlgl), which is the following pushout diagram,

1 ¥ h 1
St— % Vb S

L

D? —2 N, =DU, (v Sh.

Consider U := N \ {0} and let V = D2 C D? where 0 < e < 1 and D is the closed ball of radius 5. Then we
get that UNV = D2 \ {0}. Now observe that U NV has a deformation retract onto S and U has a deformatlon

retract onto \/?:181 We also have the following commutative diagram, (second one is obtained after passing
the first diagram over homology groups)

st —— V5 St H(SY) L), Ho(V,SY)
j T H'(”l Tﬂ.m
Unv ——— U H(UﬂV)ﬁH(U)



Now since (34;U, V) is an excisive triad, i.e., N, = U° U V°, we get the following relative Mayer-Vietoris
sequence (where xg estcUnNV,ig:UNV = U,iyv:UNV < Vand jy : U = Ny, jv : V — N, are
inclusions and all the relative homologies are taken with respect to the point {z¢}),

H(UNV) =25 Hy(U) @ Hy(V) —2L— 5(Ny)

|

Hy(UNV) «——— Hi(Ny) —— H(U)® H(V) o H{UNV)~Z
Jdo . —— 1

~7Zh

Here, iy = (H,(iy), —Hi(iv)) and j; = Hi(iy) ® Hy(iv), where Hy(iy) is trivial map. It’s not hard to see
Hy(Ny,) is trivial for n > 3. Note that, the map ¢ : S' — \/, S! which is taken according to the relation
ajaagas - - - apay. Tt will induce a map in Hy(S') — Hy(V, SY). If o is a generator in Hy(S'), then it will maps
to (i) (a),--- i} (o)) in Hi(\/,S"), where i’; is inclusion of St in j-th circle of \/, St. The maps i;(c’) maps to
20 (we can see it from the relation given by ¢). So, Im(i1) = 2Z (here Z is generated by (0,0, --)). From the
previous description of ¢; we can see it is an injective map. So, ker¢; = 0 and by exactness of Mayer-Vietoris
sequence we get, E[Q(Nh) = 0 as jo is a trivial map. We basically have the following SES,

0% (U NV) S BU) @ B (V) 25 BNy 250

So, ji is surjective and ker j; = Imiy, this means Hy(Ny,) ~ (®,Z)/(2(1,1,--- ,1)) ~ Z" ' @ Z/2Z. Thus we
have,

7 ifn=0
H,(Np) =~ 7ZM1e7/2Z ifn=1
0 otherwise
[ |
§ Problem 4

Problem. Compute the homology groups of S™ x S™ for all m,n > 0.

Solution. We will prove the following lemma before computing the singular homology of S™ x S™.

§ Lemma 4.1: Let (X, A) be a pair such that A is retract of X. Then,
HX)=2HA)@® H(X,A)

Proof. Let, r be a retraction r : X — A and j : (X,0) — (X, A). We have r.i, = 14y where, i : A — X. So,
i, is injective and r, is surjective. We have the following exact sequence of chain complex,

0—C(A)—-CX)—C(X)/C(A) =0

We will have a exact sequence of homology groups, where keri, = Imd, = {0}. Also, there is a split r, in the
short exact sequence. We can write, H(X) = H(A) ® H(X, A) (notice the following SES carefully)

Hy(A)

Yy -~
// *

K’

0~ H,(A) = H (X) —2 H (X, 4) &0



Note that we have the retraction r: S™ x S” — S™ x {z¢} (it is homeomorphic to S™), where zo € S™. By the

above lemma we can say,
Hi(S™ x S") = Hi(S™) & Hp(S™ x S",S™)

Let’s assume N, S are north and south poles of S™ respectively. Let, U =S™\ {N} and V =S"\ {S}. It’s not
hard to see Uy = S™ x U and V; = S™ x V covers S™ x S". Also note that, Uy NV} = S™ x (UNV) which
deformation retracts on to S™ x S"~!. We can also note, U and V are homeomorphic to R" (stereographic
projection). So We can apply Mayer-Vietoris sequence to get,

Hy(Uy,S™) ® Hp(V1,S™) —— Hp(U1 U V1, S") ——— Hp_1(UynV1,S™) ——— Hp1(U1,S™) @ Hip—1(V1,S™)

| : ; ]

Hi(S™,S™) = {0} ——— Hp(S™ x S",S™) —— Hj_1(S" x S* 1, §") ——— Hp(S™,S™) = {0}
which gives us Hp(S™ x S*,S™) ~ H_1(S™ x S*~1,S™). Inductively we get,

Hy(S™ x S*,§™) ~ Hy_,(S™ x S°,§™)

s™uS™, S™)

= Hy(S™ x S") = Hy(S™) @ Hy_, (S™)

7 if k=0,n,m,m+n (m+#n%0)and m=n #0k-0,2n
_JzZeZ if k=0,n(#0),m=0ork=0,m(#0),n=0or m=n#0 and k=n,
)zt if k=0, m=n=0
0 otherwise
|
§ Problem 5

Problem. Compute the homology groups of the Klein bottle.

Solution. We know Klein bottle is connected sum of two projective plane RP2. In other words Klein bottle
is Ny (non-oriented surface). From Problem 3 we know,

Z ifn=20
H,(No) 2 (ZDZJ2Z ifn=1
0 otherwise
§ Problem 6

Problem. Show that for the subspace Q C R, the relative homology group H;(R, Q) is free abelian and
find a basis.

Solution. Consider the LES (of reduced homology) of pairs (R, Q) as follows,
- Hi(R) = H1(R,Q) — Hy(Q) — Ho(R)

since R is contractible, by the Homotopy Axiom and Dimension Axiom for singular homology, we can say
Hi(R) = {0}. We know, Hyp(Q) is free abelian group with the basis having the cardinality same as cardinality



of path component of Q. We know every points of Q are only path component of it, so Hy(Q) = ©geZ. Since
R is path-connected we can say Ho(R) = Z and thus Hy(R) = {0}. We know, reduced homology H,, are same
with homology H, except for n = 0. Thus we have,

Hl(Ru Q) = I:IO(Q)
We have already shown, Hy(Q) ~ ©,cqZ ~ I:IO(Q) @ Z. Thus we can say, ffo((@) ~ Dpeq\{q} L, Where ¢ € Q is
a point. This is free abelian group. In order to find the basis for H; (R, Q) let’s look at cycles. If o is a cycle, by
definition of relative homology we can say 010 € Q which means, Im(o : Al — R) = [a,b] with b — a € Q. Let
b # 0 is the boundary in C;(R, Q) so there is a 2-simplex o2 such that ds0? = b'. Note that dp0? : IA? — R is
a continuous map and the domain is connected, compact so Im(9y0? : 9A% — R) must be a close interval [a, b].
Since 010209 = 0, we must have b —a € Q and if b — a = 0 theb a,b ¢ Q. So by definition of homology groups
we have,
Hl(R, Q) = ker81/1m82

_ {oeCi(R) : Im(0 : A’ - R) = [a,b], withb—a € Q}

~ {la,b] with b —a € Q and if b= a, then a = b ¢ Q}

=(ccCi(R):Im(c: A' 5 R)=a € Q)

~Q
Take any Z-basis of Q, call it B. So the basis for H1(R, Q) is {o € C1(R) : Im(c : A’ - R) = a € B}. [ |

§ Problem 7

Problem. Show that Hi(X,A) is not isomorphic to H;(X/A) if X = [0,1] and A is the sequence
1,1/2,1/3,--- together with its limit 0.

Solution. We have the following LES of reduced homology groups for pair (X, A),

where, Hy(X) = {0} and Hy(X) = {0} as X is path-connected. We know, Ho(A) ~ (Gnumber of path componentZ)/Z,
which is countable direct sum of Z .i.e this homology group is countable.

It’s not hard to see X/A is wedge sum of circle with radius {x; > -+ > x,, - - - } along with the limit point (0, 0),
all the circles based at point (0,0). Thus we can see X/A is homeomorphic to Hawaiian Ring (Homeomorphism
can be achieved by sending a circle of radius x,, to a circle of radius % and using gluing lemma we can say the
combined map is continuous and bijection is clear from the construction. Inverse is the map sending a circle of
radius % to @, it’s again continuous and bijective by same argument). Recall Hawaiian Ring H can be written
as,

1\? 12
H = UCn,WhereCn:{(x,y)ER2: (az—n> +y2=E }

neN
We will figure out the description of the homology group of H. Define, r,, be the retraction, r,, : H — C,, which
is identity on C,, and every other C;(i # n) are maps to origin. By gluing Property of continuous maps, we can
show that 7, is Continuous map. Since, r, is retraction Hy (r,) : H1(H) — H; (C,) = Z is surjection. Now
define,
R:=(Hy(r),Hi(ry),....): Hy (H) — [] Z
N

Let, {kn},en € [IyZ. Let, oy, : A" — H be the map such that, it winds C,, k,, times according to the sign and
thus Hy(ry)([ok,]) will be identified as ky, in H1(Cy,) ~ Z and Hy(r;)([ok,]) = {0} ( for ¢ # n). Now concatenate
the maps oy, to get a map o : A — H, such that r, oo : Al — C,, winds the circle C,, k, times (according to
sign). Thus the above map R is surjective. So, H1(H) is uncountable. We can conclude

Hi(X,A) 2 H(X/A)



§ Problem 8

Problem. Show that S! x S! and S! v S' v S? have isomorphic homology groups in all dimensions, but
their universal covering spaces do not.

Solution. It was proved in class that homology group of torus 7' = S x S! given by,

Z forn=20,2
H,(T)=Z®Z forn=1
0 otherwise

We also know for the wedge sum S' v S' v §2, the homology group will be
Ho(S'vS' v S?) ~ Ho(S') @ Ho(S") @ Ho(S?)

It can be seen Hi(S' VS' Vv S?) = Z @ Z and Ho(S' v S' v S?) ~ Z, since this space is path connected
Ho(S'VS'VS?) ~ Z and trivial for other homology groups. From the above description it’s evident H,,(S'xS!) ~
H,(S' v St v§?) for all n € N{0}.

We know R? is universal cover of S' x S!. Since R? is contractible second homology group of R? will be trivial.
Consider the map f : S — S v S v §2, £(S?) lies on the S? part of S' v S v §? and f is the antipodal
map i.e ¥ — —x. This map will give a non-trivial map Ha(f) : H2(S?) — Ho(S' vV S! vV S§?) ~ Hy(S?). Let
p: X — SV S!VS? be the universal cover of S! v ! v S2. Since S? is simply-connected we can extend f to a
map f : S — X, such that the following diagram commutes,

X
7

s2 7, glystys?

By functoriality of H, we can say, Ha(p) o Ho(f) = Hy(f). Since Ho(f) is non-trivial so is Ha(p). Thus Ho(X)
can’t be trivial. Which means universal covering of S' x S! and S' vS' v S? have different 2-nd homology group.

§ Problem 9

Problem. Show that if A is a retract of X then the map H, (i) : H,(A) — H,(X) induced by the inclusion
i: A — X is injective.

Solution. Recall the definition of retraction. If r : X — Ais a retract, there is an inclusion 7 : A < Xsuch
that, 7 o i = Id4. By functoriality of H,, we can say, H,(r o) : H,(A) = H,(A) where, H,(r o) = Idy, 4
with

Hy,(r) o Hy(i) = Idg, (a)

If « € H,(A) such that, H,(i)(a) = 0, thus by the above formulation we can say, Hy(r) o H,(i)(a) =
Idg, 4y(a) =0,ie a=0in H,(A). So we have ker Hy, (i) = {0}, which implies H,,(7) is injective. [

§ Problem 10

Problem. Compute the homology groups of the triangular parachute obtained from the standard 2-simplex
A? by identifying its three vertices to a single point. Hence prove that it is not homotopy equivalent to
the dunce cap which is obtained from the standard 2-simplex A2 by identifying its three edges along their
standard orientation.



Solution. Homology of triangular parachute (P): We will compute the simpli- v
cial homology groups of the space P. By the equivalence of simplicial and singular o
homology we will get the singular groups of P. It has only one 0-simplex v, three €3
1-simplex ej, e2,e3 and one 2 simplex 7. So the terms of corresponding simplicial
chain complex are Ag(P) = Zv, A1(P) = Ze1 & Zex & Zez and Ao(T) = ZT. We have z = v
the following chain complex, Triangular parachute

02 77 2 Tey @ ey @ Zes 2 Zw — 0

It is not hard to see that, dy(e1) = v — v = Jp(e2) = do(es), so Im(Jp) = 0 and hence HS (P) =~ Z. Note that,
ker Oy = Zey @ Zes ® Zes and Im(01) = Z01(T) = Z(e2 + e3 — e1). Thus

HA(P) = Zey ® Zey ® Zes/L(ez +e3 —e1) ~ LD L

We have ker 9; = 0 as there is no way we can get 0 from es + e3 — e1. So, HQA(P) ~ 0. So,

Z ifn=0
H,(H)~ < Z? otherwise n =1
0 otherwise

Homology groups of Dunce cap (H): We will compute the simplicial homology

groups of the space H. By the equivalence of simplicial and singular homology we v
will get the singular groups of H. The 0-simplex of H is only v as it has only one
vertex. 1-simplex of H is the edges e (as all the edges in D? are identified to get H).
It has only one 2-simplex 7' that comes from D? and it has no other higher simplicial
structure. So the terms of simplicial chain complexes are, Ag(H) = Zv, A (H) = Ze 5 P v
and Aq(H) = ZT and A, (H) ~ 0, for n > 3. We have the following chain complex, Dunce cap

022 721 2 76 25 70 5 0

We have Im(dp) = do(e) = v —v = 0 so, H(H) ~ Z. So we have kerdy = Ze and Im(0;) = Zd\(T) = Ze.
Thus H{*(H) = 0. From the last part we can say ker &) = 0 and hence H$*(H) = 0. So,

Z ifn=0

0 otherwise

H,(H) ~ {

From the above two computations we can see 1-st homology group of the spaces H and P are different. so, H
and P can’t be homotopy equivalent. |



	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Problem 6
	Problem 7
	Problem 8
	Problem 9
	Problem 10

