Assignment-2

Algebraic Topology

Trishan Mondal

§ Problem 1

Problem. The goal of this exercise is to prove that the homotopy groups π_n are abelian for $n \geq 2$.

(a) Let S be a set equipped with two binary operations * and \circ . Suppose that they have a common neutral element $e \in S$ and satisfy the interchange law

$$(a*b) \circ (c*d) = (a \circ c) * (b \circ d).$$

Show that $* = \circ$ and that a * b = b * a. This is called the Eckmann-Hilton argument.

- (b) Let (X, x_0) be a pointed topological space and $\mu: X \times X \to X$ a pointed map such that $\mu(x_0, -) \simeq_* \operatorname{id}_X \simeq_* \mu(-, x_0)$. Show that the group $\pi_1(X, x_0)$ is abelian.
- (c) Recall that $\pi_n(X, x_0)$ is the set of pointed homotopy classes of maps $I_n/\partial I_n \to (X, x_0)$. For each $1 \le i \le n$, there is a group operation $*_i$ on $\pi_n(X, x_0)$ induced by concatenating the *i*th direction:

$$\alpha *_{i} \beta(s_{1}, \dots, s_{n}) = \begin{cases} \alpha(s_{1}, \dots, 2s_{i}, \dots, s_{n}) & \text{if } s_{i} \in [0, 1/2] \\ \beta(s_{1}, \dots, 2s_{i} - 1, \dots, s_{n}) & \text{if } s_{i} \in [1/2, 1]. \end{cases}$$

If $n \geq 2$, show that all these group operations on $\pi_n(X, x_0)$ coincide and are abelian.

Solution. Homotopy groups, π_n are abelian for $n \geq 2$ is proved in the following steps which are solution to the consequent questions.

(a) Both binary operation * and \circ has same neutral element. Call it e. Take b = e and c = e to get the following,

$$(a * e) \circ (e * d) = (a \circ e) * (e \circ d)$$
$$\Rightarrow a \circ d = a * d$$

Since a, d are aribitrary element of S the operations * and \circ are same. Now take, a = e and d = e to get,

$$(e * b) \circ (c * e) = (e \circ c) * (b \circ e)$$

$$\Rightarrow b \circ c = c * b$$

$$\Rightarrow b * c = c * b$$

Here also b and c are aribitrary elements of S, we can say a * b = b * a for all $a, b \in S$.

(b) We will define an operation \circ on $\pi_1(X, x_0)$. Let, $[\gamma]$, $[\eta]$ are two elements of the fundamental group, define $[\gamma] \circ [\eta] = [\mu(\gamma, \eta)]$. Let, * be the common product defined on $\pi_1(X, x_0)$, which concatenates two loops

in X. At the first hand we will show * and \circ has same neutral (identity) elements. We know $[c_{x_0}]$, the homotopy class of the constant map to x_0 is identity in $\pi_1(X, x_0)$. From the given condition we can say,

$$[c_{x_0}] \circ [\gamma] = [\mu(c_{x_0}, \gamma)] = [\gamma] = \mu[(\gamma, c_{x_0})] = [\gamma] \circ [c_{x_0}]$$

The second and third equality follows from the fact $\mu(x_0, -) \simeq_* \mathrm{id}_X \simeq_* \mu(-, x_0)$. Let, [f], [g], [h], [k] are four elements of $\pi_1(X, x_0)$,

$$\mu(f * g, h * k) = \begin{cases} \mu(f(2t), h(2t)) & \text{if } t \in [0, \frac{1}{2}] \\ \mu(g(2t-1), k(2t-1)) & \text{if } t \in [\frac{1}{2}, 1] \end{cases}$$
$$= \mu(f, h) * \mu(g, k)$$

Thus we have $([f] * [g]) \circ ([h] * [k]) = ([f] \circ [h]) * ([g] \circ [k])$. From the previous part we can say * and \circ defines same operation on $\pi_1(X, x_0)$ and they are abelian and hence $\pi_1(X, x_0)$ is abelian.

(c) Notice that, $*_i$ is a group operation. This can be shown in the same way we have proved concatenation of loops gives a group operation in Fundamental group. We will begin with showing, $([f]*_1[g])*_2([h]*_1[k]) = ([f]*_2[h])*_1([g]*_2[k])$ and then we will show that $*_1$ and $*_2$ has same neutral element. Then by part (a) we can conclude $*_1 = *_2$ and $\pi_n(X, x_0)$ is abelian. The left-hand side is defined to be the homotopy class of

$$(f *_1 g) *_2 (h *_1 k) (t_1, \dots, t_n) = \begin{cases} f (2t_1, 2t_2, t_3 \dots, t_n) & t_1 \le 1/2, t_2 \le 1/2 \\ g (2t_1, 2t_2 - 1, t_3, \dots, t_n) & t_1 \le 1/2, t_2 \ge 1/2 \\ h (2t_1 - 1, 2t_2, t_3 \dots, t_n) & t_1 \ge 1/2, t_2 \le 1/2 \\ k (2t_1 - 1, 2t_2 - 1, t_3, \dots, t_n) & t_1 \ge 1/2, t_2 \ge 1/2. \end{cases}$$

The right hand side is the homotopy class of

$$(f *_2 h) *_1 (g *_2 k) (t_1, \dots, t_n) = \begin{cases} f (2t_1, 2t_2, t_3 \dots, t_n) & t_1 \le 1/2, t_2 \le 1/2 \\ h (2t_1 - 1, 2t_2, t_3 \dots, t_n) & t_1 \ge 1/2, t_2 \le 1/2 \\ g (2t_1, 2t_2 - 1, t_3, \dots, t_n) & t_1 \le 1/2, t_2 \ge 1/2 \\ k (2t_1 - 1, 2t_2 - 1, t_3, \dots, t_n) & t_1 \ge 1/2, t_2 \ge 1/2. \end{cases}$$

Thus we have shown $([f] *_1 [g]) *_2 ([h] *_1 [k]) = ([f] *_2 [h]) *_1 ([g] *_2 [k])$. Let, c_{x_0} be the constant map $c_{x_0} : (I^n, \partial I^n) \to (X, x_0)$. Note that,

$$f *_{1} c_{x_{0}} = \begin{cases} f(2t_{1}, t_{2}, \cdots, t_{n}) & t_{1} \leq \frac{1}{2} \\ c_{x_{0}} & t_{1} \geq \frac{1}{2} \end{cases}$$
$$f *_{2} c_{x_{0}} = \begin{cases} f(t_{1}, 2t_{2}, \cdots, t_{n}) & t_{2} \leq \frac{1}{2} \\ c_{x_{0}} & t_{2} \geq \frac{1}{2} \end{cases}$$

We can show, $[f *_1 c_{x_0}] = [f]$ and $[f *_2 c_{x_0}] = [f]$, in the same way we proved constant map is identity for the fundamental group. Thus both $*_1$ and $*_2$ has same neutral element. Thus $*_1$ and $*_2$ are same operation. In the same way we can prove $*_i$ and $*_j$ are same operation for $i \neq j$. And hence $\pi_n(X, x_0)$ is abelian.

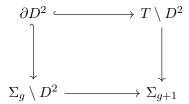
Problem. Every closed connected surface is homeomorphic to Σ_g for some some $g \geq 0$ or to N_h for some $h \geq 1$, where Σ_g (respectively N_h) is obtained from a sphere by attaching g copies of the torus $\mathbb{S}^1 \times \mathbb{S}^1$. (respectively h copies of the real projective plane $\mathbb{R}P^2$). For each of the following surfaces, give a presentation of the fundamental group and compute its abelianization as a direct sum of groups of the form $\mathbb{Z}/n\mathbb{Z}$ (recall that the abelianization of a group G is the abelian group $G^{ab} = G/[G, G]$).

- (a) The genus 2 surfaces Σ_2 .
- (b) The Klein bottle N_2 .
- (c) The remaining closed surfaces Σ_g and N_h for $g, h \geq 3$.

Solution. We will try to derive the presentation of fundamental group for Σ_g and N_g , as a corollary to that we will give the presentation of Σ_2 and N_2 . We will start with proving the following lemmas regarding polygonal presentation of the surfaces Σ_g and N_g .

§ **Lemma** 2.1: The space Σ_g has the polygonal presentation given by a 4g-gon, with sides labelled as $a_1, b_1, a_1^{-1}, b_1^{-1}, \dots, a_g, b_g, a_g^{-1}, b_g^{-1}$.

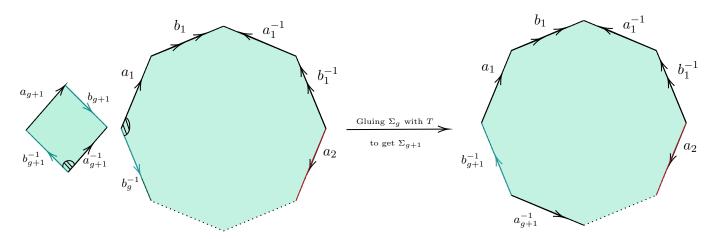
Proof. We prove this statement using mathematical induction on the variable g. Initially, we establish the base case for g=1 based on the standard definition of the torus. For the induction step, we assume the statement holds true for some $g \geq 1$. Now, let's consider the pus-out square that generates Σ_{g+1} from Σ_g , depicted below:



When we remove a disk from Σ_g , and torus T, then adjoin them along their boundary we will get Σ_{g+1} . This process is equivalent to adding an edge to the polygonal representation. Notably, this new edge becomes identified with the edge added to the polygonal representation of T. As a result, the polygonal presentation of Σ_{g+1} consists of a 4(g+1)-gon with sides labeled as follows:

$$a_1, b_1, a_1^{-1}, b_1^{-1}, \dots, a_g, b_g, a_g^{-1}, b_g^{-1}, a, b, a^{-1}, b^{-1}$$

Consequently, we can conclude that the statement holds true for all $g \geq 1$ by induction.



§ **Lemma** 2.2: The space N_h has the polygonal presentation given by a 2g-gon, with sides labelled as $a_1, a_1, \ldots, a_g, a_g$.

Proof. The proof is essentially same as above and by the same arguments as above and the fact that $N_1 \simeq \mathbb{R}P^2$ has the polygonal presentation given by a 2-gon with sides labelled as a_1, a_1 .

Using the polygonal presentation in Lemma 2.1, we get Σ_g is also a result of the following pushout,

$$\mathbb{S}^{1} \stackrel{\varphi}{\longrightarrow} \bigvee_{i=1}^{2g} \mathbb{S}^{1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^{2} \longrightarrow \Sigma_{q}$$

where φ induces the word $a_1b_1a_1^{-1}b_1^{-1}\cdots a_gb_ga_g^{-1}b_g^{-1}$, if a_1,b_1,\ldots,a_g,b_g are the generators of the fundamental group $\pi_1(\bigvee_{i=1}^{2g}\mathbb{S}^1)$. Hence, using the result of Problem 8 of Assignment 1 (attaching of cells), we get

$$\pi_1(\Sigma_g) \simeq \pi_1 \left(\bigvee_{i=1}^{2g} \mathbb{S}^1\right) / N \simeq \langle a_1, b_1, \dots, a_g, b_g \mid [a_1, b_1] \cdots [a_g, b_g] \rangle$$

Let's consider the commutator $[x,y] = xyx^{-1}y^{-1}$, where N represents the normal subgroup of $\pi_1(\bigvee_{i=1}^{2g})\mathbb{S}^1$ generated by the elements $\{[a_1,b_1],\ldots,[a_g,b_g]\}$. When we take the abelianization, we obtain $\pi_1(\Sigma_g)^{ab} \simeq \mathbb{Z}^{2g}$, because all commutators become trivial in an abelian group.

Part(a) In particular, for g = 2, we have:

$$\pi_1(\Sigma_2) \simeq \langle a_1, b_1, a_2, b_2 \mid a_1 b_1 a_1^{-1} b_1^{-1} a_2 b_2 a_2^{-1} b_2^{-1} \rangle$$

 $\implies \pi_1(\Sigma_2)^{\text{ab}} \simeq \mathbb{Z}^4$

Utilizing the polygonal representation as outlined in Lemma 2.2, we can deduce that N_h also takes the form of the following pushout:

$$\mathbb{S}^{1} \stackrel{\psi}{\longrightarrow} \bigvee_{i=1}^{h} \mathbb{S}^{1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^{2} \stackrel{\psi}{\longrightarrow} N_{h}$$

Here, ψ induces the word $a_1^2 \cdots a_h^2$, provided that a_1, \ldots, a_h represent the generators of the fundamental group $\pi_1(\bigvee_{i=1}^h \mathbb{S}^1)$. Consequently, by leveraging the outcome of Problem 8 from Assignment 1 (pertaining to cell attachments), we obtain,

$$\pi_1(N_h) \simeq \pi_1 \left(\bigvee_{i=1}^h \mathbb{S}^1\right) / M \simeq \left\langle a_1, \dots, a_h \mid a_1^2 \cdots a_h^2 \right\rangle$$

where M is the normal subgroup of $\pi_1(\bigvee_{i=1}^h \mathbb{S}^1)$ generated by $\{a_1^2 \cdots a_h^2\}$. Taking the abelianization, we get $\pi_1(N_h)^{\text{ab}} \simeq \mathbb{Z}^h / \langle 2(a_1 + \cdots + a_h) = 0 \rangle$.

Part(b) For h = 2 we get

$$\pi_1(N_2) \simeq \langle a_1, a_2 \mid a_1^2 a_2^2 \rangle = \langle a, b \mid aba^{-1}b \rangle$$

where the last equality is obtained by putting $a = a_1, b = a_1 a_2$. Taking the abelianization we get,

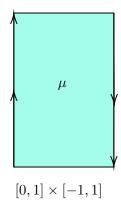
$$\pi_1(N_2)^{\mathrm{ab}} \simeq \langle a, b \mid b^2 = 1, ab = ba \rangle \simeq \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$

Problem. Describe upto isomorphism all path connected 2-sheeted covering spaces of:

- (a) the Möbius strip μ
- (b) the torus $\mathbb{S}^1 \times \mathbb{S}^1$
- (c) the figure eight $\mathbb{S}^1 \vee \mathbb{S}^1$.

Solution.

(a) Consider the action of \mathbb{Z} on $X = \mathbb{R} \times [-1, 1]$, defined by $n \cdot (x, y) \mapsto (x + n, (-1)^n y)$. This is well-defined action of \mathbb{Z} on X. This action is properly discontinuous. For every point (x, y) after action of $g \in \mathbb{Z}$ on it, x co-ordinate is translated |g| distance, so the action is not free. Now take an open ball centered at (x, y) of $\frac{1}{2}$ radius, call it U. Note that, $U \cup g.U = \emptyset$. So the action is properly discontinuous. The projection map $\pi: X \to X/\mathbb{Z}$ is a covering map. Since, X is simply connected $\pi_1(X/\mathbb{Z}) = \mathbb{Z}$. We will show this orbit-space is actually a Mobius strip.



Note that, for any point (x,y), action of $-\lfloor x \rfloor$ on (x,y) will give us, $(x-\lfloor x \rfloor, (-1)^{\lfloor x \rfloor}y)$, which lies in the rectangle $[0,1] \times [-1,1]$. Thus we can treat $[0,1] \times [-1,1]$ as fundamental domain of the above action. Note that, action of 1 on (0,y) will move it to (1,-y). So, (0,y) and (1,-y) will lie in same orbit in X/\mathbb{Z} . Action of \mathbb{Z} on the fundamental domain will give us Mobius step μ as the orbit space. So, X/\mathbb{Z} and μ are homeomorphic. Thus, we get $\pi_1(M) = \pi_1(X/\mathbb{Z}) = \mathbb{Z}$.

To get, 2-sheeted covering of μ , by classification of covering space we need to look at 2-index subgroup of \mathbb{Z} . Only $2\mathbb{Z}$ is the unique subgroup of \mathbb{Z} having index 2. It's enough to look at the same action of \mathbb{Z} on X by restricting to the subgroup $2\mathbb{Z}$. In this case, we have $2n \cdot (x,y) = (x+2n,y)$. For the action $2\mathbb{Z} \curvearrowright X$, consider the fundamental domain $[-1,1] \times [-1,1]$. In this case (-1,y) and (1,y) lie in same orbit of $X/2\mathbb{Z}$. Thus the orbit space is a cylinder C. Hence, $C \to \mu$ is the 2-sheeted covering of Mobius strip.

- (b) Let, $T = \mathbb{S}^1 \times \mathbb{S}^1$ We know, $\pi_1(T) = \mathbb{Z} \times \mathbb{Z}$. In order to get a 2-sheeted covering of T, We need to find 2-index subgroups of $\mathbb{Z} \times \mathbb{Z}$. From the 'Ring theory course' we know, 2-index subgroups of $\mathbb{Z} \times \mathbb{Z}$ are in one-one correspondence with the images of the linear transformation $T_{a,b,c,d}:(x,y)\mapsto (ax+by,cx+dy)$ with ad-bc=2. In other words 2-index subgroups of $\mathbb{Z} \times \mathbb{Z}$ is the image of $T_{a,b,c,d}$ with ad-bc=2. Upto 'Rational canonnical forms' it can be shown there is only three such subgroups. One is $2\mathbb{Z} \times \mathbb{Z}$, $\mathbb{Z} \times 2\mathbb{Z}$ and $\{(x,y)|x+y=0 \pmod{2}\}$. Corresponding to each such subgroup H (mentioned above) we must have, a two sheeted covering of $\mathbb{S}^1 \times \mathbb{S}^1$ by classification of **covering spaces**.
- (c) We know fundamental group of $X = \mathbb{S} \vee \mathbb{S}$ is $\mathbb{Z} * \mathbb{Z}$. In order to find the 2-sheeted covering, we need to check 2-index subgroups of $\mathbb{Z} * \mathbb{Z}$. Let, a and b are the generators of $\mathbb{Z} * \mathbb{Z}$. Consider the following

homomorphisms,

$$A: \mathbb{Z} * \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$$

$$a \mapsto 1, b \mapsto 0$$

$$B: \mathbb{Z} * \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$$

$$a \mapsto 0, b \mapsto 1$$

$$AB: \mathbb{Z} * \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$$

$$a \mapsto 1, b \mapsto 1$$

Each of the homomorphisms are surjective and kernal of these maps are index-2 subgroup of $\mathbb{Z} * \mathbb{Z}$. Notice that, these are the only index 2 subgroups of $\mathbb{Z} * \mathbb{Z}$. We can write them down explicitly by,

$$\ker A = \langle a^2, b, aba^{-1} \rangle$$
, $\ker B = \langle b^2, a, bab^{-1} \rangle$, $\ker AB = \langle a^2, ab, b^2 \rangle$

Let, $p: \tilde{X} \to X$ be the universal cover of X. There is an action of $\pi_1(X) \curvearrowright \tilde{X}$ such that, the orbit space of this action is X. Now by restricting this action to the subgroups $\ker A$, $\ker B$, $\ker AB$, we will get three different 2-sheeted covering-spaces upto isomorphism.

§ Problem 4

Problem. Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation $\varphi(x,y) = (2x,y/2)$. This generates an action of \mathbb{Z} on $X = \mathbb{R}^2 \setminus \{0\}$. Show that this action is a covering space action and compute $\pi_1(X/\mathbb{Z})$. Show that the orbit space is not Hausdorff and describe how it is a union of four subsapces homeomorphic to $\mathbb{S}^1 \times \mathbb{R}$, coming from the complementary components of the x-axis and the y-axis.

Solution.

• In order to show the given action $\mathbb{Z} \curvearrowright \mathbb{R}^2 \setminus \{0\}$ is a covering space action, we will show this action is properly discontinuous. Let, $(x,y) \in \mathbb{R}^2 \setminus \{0\}$, $U_{(x,y)}$ be the open ball centered at (x,y) and of radius, $\frac{\sqrt{x^2+y^2}}{4}$. Note that, $d((x,y),\varphi(x,y)) = \sqrt{x^2+y^2/4}$ and $d((x,y),\varphi^n(x,y)) > \sqrt{x^2+y^2/4}$, for $n \in \mathbb{N}$. It's not hard to see, $d((x,y),\varphi^n(x,y)) > \frac{\sqrt{x^2+y^2}}{4}$. Similarly, $d((x,y),\varphi^{-1}(x,y)) = \sqrt{x^2/4+y^2} > \frac{\sqrt{x^2+y^2}}{4}$ and $d((x,y),\varphi^{-n}(x,y)) > \sqrt{x^2/4+y^2} > \frac{\sqrt{x^2+y^2}}{4}$. Which means,

$$U_{(x,y)} \cap \varphi^n(U_{(x,y)}) = \emptyset$$
, where $n \in \mathbb{Z}$

Thus the action is properly discontinuous, hence it is a covering space action.

- Consider the points (1,0) and (0,1) in $\mathbb{R}^2 \setminus \{0\}$. It is not possible to get, $\varphi^n(1,0) = (0,1)$ for any $n \in \mathbb{Z}$. Thus this two point will lie in two different orbits. Hence, [(0,1)] and [(1,0)] are two different points in X/\mathbb{Z} . Any open set U_1 and U_2 in X/\mathbb{Z} must have lift \tilde{U}_1 and \tilde{U}_2 which are open sets in X, contains (1,0) and (0,1) respectively. There must exist $n \in \mathbb{N}$ such that, $(1,\frac{1}{2^n}) \in \tilde{U}_1, (\frac{1}{2^n},1) \in \tilde{U}_2$. Note that, $\varphi^n(1/2^n,1) = (1,1/2^n)$. So, $[(1,1/2^n)] = [(1/2^n,1)] \in U_1 \cap U_2$. Thus we can't separate, [(1,0)],[(0,1)] by two open sets in X/\mathbb{Z} . Hence the space is **not Hausdorff**.
- Consider the first quandrant $Q = \{(x,y) : x,y > 0\}$. It consists of hyperbola xy = c for all c > 0. If (x,y) belong to the hyperbola, all points $\varphi^n(x,y)$ will also lie in the hyper bola. So basically we are acting $\mathbb Z$ on this hyperbola. So the hyperbola will be a circle in the orbit space. Thus we can write, $Q/\mathbb Z \simeq \mathbb S^1 \times \mathbb R_{>0} \simeq \mathbb S^1 \times \mathbb R$. Other three quadrant will be $\mathbb S^1 \times \mathbb R$ similarly. Hence $X/\mathbb Z$ is union of four cylinder.

• Calculation of fundamental group: Let, $Y = X/\mathbb{Z}$. From the covering $p: X \to X/\mathbb{Z}$ we have the following exact sequence of groups, into the exact sequence:

$$1 \to \pi_1(X) \xrightarrow{\pi(p)} \pi_1(Y) \to \underbrace{\pi_1(Y)/\pi_1(p)(\pi_1(X))}_{\simeq \mathbb{Z}} \to 1$$

Thus the above SES splits. Thus $\pi_1(Y) = \pi_1(X) \ltimes \pi_1(Y)/\pi_1(p)(\pi_1(X))$ which is isomorphic to $\mathbb{Z} \ltimes \mathbb{Z}$. If we can show the fundamental group of Y is abelian, we will have $\pi_1(Y) = \mathbb{Z} \oplus \mathbb{Z}$. It will be enough to check the generators of two copies of \mathbb{Z} to commute. Let, γ be a loop around 0 in \mathbb{R}^2 , based at (x_0, y_0) and α be a path connecting (x_0, y_0) to $(2x_0, y_0/2)$ (this should be homotopic to the line joining them). The images $[p \circ \gamma]$ and $[p \circ \alpha]$ will be loop in Y and they will generate two different copies of \mathbb{Z} shown as above. Let, $h: X \times I \to X$ be the homotopy between id and φ defined as follows,

$$h((x,y),t) = (1-t)(x,y) + t\varphi(x,y) = (1-t)(x,y) + t(2x,y/2)$$

[Note that (x, y) and (2x, y/2) lies in the smae quandrant so the line joining them is also in $\mathbb{R}^2 \setminus \{0\}$]. Let us define a map,

$$F: I \times I \xrightarrow{\gamma \times \mathrm{id}} X \times I \xrightarrow{h} X$$

This is a homotopy from γ to $\varphi(\gamma)$ (but this is important to note). Loot at the following things,

$$F(0,t) = h(\gamma(0),t) = (x_0, y_0)(1-t) + t(2x_0, y_0/2) \simeq \alpha$$

$$F(s,1) = h(\gamma(s),1) = \varphi(\gamma(s)) \simeq \gamma$$

$$F(s,0) = h(\gamma(s),0) = \gamma(s)$$

$$F(1,t) = h(\gamma(1),t) = (x_0, y_0)(1-t) + t(2x_0, y_0/2) \simeq \alpha$$

Thus by square law we can say, $[\alpha * \gamma] = [\gamma * \alpha]$. In other words we can say,

$$\begin{aligned} p[\alpha * \gamma] &= p[\gamma * \alpha] \\ [p(\alpha)] \cdot [p(\gamma)] &= [p(\gamma)] \cdot [p(\alpha)] \end{aligned}$$

Thus the commutators commute. Hence, $\pi_1(Y)$ is abelian and hence $\pi_1(Y) \simeq \mathbb{Z} \oplus \mathbb{Z}$.

§ Problem 5

Problem. Given a universal cover $p: \widetilde{X} \to X$ of a topological space we have two left actions of $\pi_1(X, x_0)$ on the fiber $p^{-1}(x_0)$, namely (the left action defined by) the monodromy action and the restriction of the deck transformation action to the fiber. Are these two actions the same for $\mathbb{S}^1 \vee \mathbb{S}^1$ or $\mathbb{S}^1 \times \mathbb{S}^1$? do the two actions always agree if $\pi_1(X, x_0)$ is abelian?

Solution. Description of Left action defined by Monodromy action. We know the elements of $\pi_1(X, x_0)$ are path homotopy classes of closed paths $\gamma:[0,1]\to X$ based at x_0 (i.e. $\gamma(0)=\gamma(1)=x_0$). Given $y\in p^{-1}(x_0)$ and a path γ based at x_0 , we find a unique lift $\tilde{\gamma}$ of γ such that $\tilde{\gamma}(0)=y$. The Monodromy action (it is a right action) $\pi_1(X,x_0)$ is defined by,

$$y \bullet [\gamma] = \tilde{\gamma}(1)$$

The well defineness, transitivity were proved in class. From here we will define a left action as following,

$$[\gamma] * y = y \bullet [\gamma]^{-1}.$$

The following will help us to show, this is a well defined group action,

$$([\gamma] \cdot [\delta]) * y = y \bullet ([\gamma] \cdot [\delta])^{-1} = y \bullet ([\delta]^{-1} \cdot [\gamma]^{-1}) = (y \bullet [\delta]^{-1}) \bullet [\gamma]^{-1} = ([\delta] * y) \bullet [\gamma]^{-1} = [\gamma] * ([\delta] * y)$$

- Since, $p: \tilde{X} \to X$ is universal covering, the deck transformation group $\operatorname{Deck}(p) \simeq \pi_1(X, x_0)$. Thus we can identify each elment of the deck group with $f_{[\gamma]}$, where $[\gamma] \in \pi_1(X, x_0)$. The action $\operatorname{Deck}(p) \curvearrowright \tilde{X}$ is a left action. If $g \in \operatorname{Deck}(p)$ we will denote the action as $g \circ x$, where $x \in p^{-1}(x_0)$.
- Let, $[\gamma] \in \pi_1(X, x_0)$, there exist unique deck transformation $f_{[\gamma]}$ such that, $f_{[\gamma]}(y) = y \bullet [\gamma]$ (where $y \in p^{-1}(x_0)$ is base point in \tilde{X}). So, we can see

$$f_{[\gamma]} \circ y = f_{[\gamma]}(y) = y \bullet [\gamma]$$

• If for any $[\gamma] \in \pi_1(X, x_0)$, $[\gamma] * y = f_{[\gamma]} \circ y$ (here again $y \in \tilde{X}$ is based point), we must have

$$y \bullet [\gamma]^{-1} = y \bullet [\gamma]$$

Which means $[\gamma]^2 \in \operatorname{Stab}_{\pi_1(X,x_0)}(p^{-1}(x_0)) = \pi_1(p)(\pi_1(\tilde{X},y)) = \{e\}$, where e is identity in the fundamental group. Thus $[\gamma]^2 = e$.

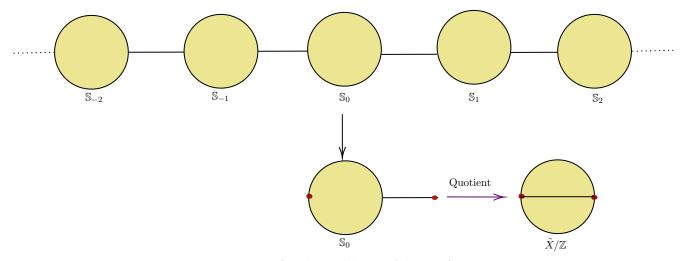
If the given left actions are equal on the fibre, the group $\pi_1(X, x_0)$ must have all elements of order 2. We know, $\pi_1(\mathbb{S}^1 \vee \mathbb{S}^1) = \mathbb{Z} * \mathbb{Z}$, and $\pi_1(\mathbb{S}^1 \times \mathbb{S}^1) = \mathbb{Z} \times \mathbb{Z}$, both the group has an element whose order is not 2. Thus the actions can't be same on the fibre. Even for abelian case it is **not true**, we can look at the fundamental group of $\mathbb{S}^1 \times \mathbb{S}^1$ for example.

Problem. Construct a simply-connected covering space of the subspace X of \mathbb{R}^3 given by attaching a diameter to a sphere (you are allowed to describe the space pictorially, but justify your answer). Compute the fundamental group X.

Solution. Consider the space \tilde{X} , which is union of countably many spheres and lines as shown in the following figure. Let, \mathbb{S}_n be the sphere (2-dim) of radius 1 centered at (0,0,3n), for $n \in \mathbb{Z}$ and let, L_n be the line segment $\{(0,0,t): t \in [3n+1,3n+2]\}$. We can write \tilde{X} explicitly as,

$$\tilde{X} = \bigcup_{n \in \mathbb{Z}} (\mathbb{S}_n \cup L_n)$$

Now we will define an action of \mathbb{Z} on \tilde{X} , as $n.(x,y,z)\mapsto (x,y,z+3n)$. For every point $(x,y,z)\in \tilde{X}$ take an open ball, B of radius $\frac{1}{2}$ centered at that point with $U=\tilde{X}\cap B$ being the open set in \tilde{X} . After this action this point will move to a point which is at-least 3 distance apart. Which means $U\cap n.U=\emptyset$, thus this action $\mathbb{Z} \curvearrowright \tilde{X}$ is properly discontinuous.



(Fundamental domain of the action)

Figure 1: Description of X

As in the above picture, we have aligned \tilde{X} along X-axis. Now we **claim** $\mathbb{S}_0 \cup L_0$ is the fundamental domain of this action. Any point in \tilde{X} must lie in a sphere \mathbb{S}_n or in a line L_m , by acting -n or -m respectively to this point we will get a point in \mathbb{S}_0 or L_0 respectively. Thus, $\mathbb{S}_0 \cup L_0$ is fundamental domain of this action. Note that, 1.(0,0,-1)=(0,0,2), which means end point of L_0 and one pole of \mathbb{S}_0 are identified in the orbit space \tilde{X}/\mathbb{Z} (as shown in the above figure with red mark). So, the orbit space \tilde{X}/\mathbb{Z} is exactly the space,

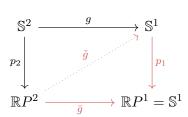
$$X:=\left\{ \text{ A sphere }\mathbb{S}^{2} \text{ along with the diameter joining noth-pole and south-pole } \right\}$$

From the above discussion we can conclude that, $\pi: \tilde{X} \to \tilde{X}/\mathbb{Z} \simeq X$ is a covering space. We are yet to show \tilde{X} is **simply connected**. It is enough to prove the finite collection $\tilde{X}_k := \bigcup_{n \in [-k,k]} (\mathbb{S}_n \cup L_n)$ is simplicity connected, i.e. $\pi_1(\tilde{X}_k) = \{0\}$. Now by taking $\operatorname{colim} \tilde{X}_k$, we will get \tilde{X} and thus $\pi_1(\tilde{X}) = \{0\}$. By inductive argument it boils down to proving $\mathbb{S}_0 \cup L_0 \cup \mathbb{S}_1$ is simply connected. Take the open covers $U = \mathbb{S}_0 \cup \{(0,0,t):t \in [1,1+\epsilon)\}$ and $V = \mathbb{S}_1 \cup \{(0,0,t):t \in (1+\frac{\epsilon}{2},2]\}$. Note that, $U \cap V$ is an open interval $\{(0,0,t):t \in (1+\frac{\epsilon}{2},1+\epsilon)\}$, which is simply connected. Also, both U and V has deformation retract onto the 2-sphere \mathbb{S}^2 , which have trivial fundamental group. By **SVK** we can say the above space is simply connected. Hence, \tilde{X} is simply connected and $\pi: \tilde{X} \to \tilde{X}/\mathbb{Z} \simeq X$ is the universal covering. By the **classification of covering space**, we can say, $\pi_1(X) = \mathbb{Z}$.

Problem. he Borsuk-Ulam theorem states that if $f: \mathbb{S}^n \to \mathbb{R}^n$ is continuous, then there exists $x \in \mathbb{S}^n$ such that f(x) = f(-x). Prove the Borsuk-Ulam theorem for n = 1, 2.

Solution. For n=1 if there exists a map $f:\mathbb{S}^1\to\mathbb{R}^1$ such that, $f(x)\neq f(-x)$ for all $x\in\mathbb{S}^1$. Consider the map $g(x)=\frac{f(x)-f(-x)}{|f(x)-f(-x)|}$. It is clearly a continuous map $g:\mathbb{S}^1\to\mathbb{S}^0=\{-1,1\}$. If for some x,g(x) is +1 then for -x it takes the value -1. We know continuous map preserves connectedness. \mathbb{S}^1 is connected but \mathbb{S}^0 is not. So, $g(\mathbb{S}^1)$ has to lie in one of the connected components, but it is not possible by the above observation. So, there must exist a point $x\in\mathbb{S}^1$ such that, f(x)=f(-x).

Again for contradiction let's assume there is a continuous map $f: \mathbb{S}^2 \to \mathbb{R}^2$ such that, $f(x) \neq f(-x)$ for all $x \in \mathbb{S}^2$. Consider, $g(x) = \frac{f(x) - f(-x)}{\|f(x) - f(-x)\|}$. This is by definition a continuous map from $\mathbb{S}^2 \to \mathbb{S}^1$. Let, $p_i: \mathbb{S}^i \to \mathbb{R}P^i$ be the quotient maps that takes a piar of antipodal points to ta point. We know these maps are covering map (done in class). Note that, g(x) = -g(-x), i.e. it takes a pair of antipodal point to a pair of antipodal point. So it will induce a map $\bar{g}: \mathbb{R}P^2 \to \mathbb{R}P^1$.



We know, $\pi_1(\mathbb{R}P^2)$ is $\mathbb{Z}/2\mathbb{Z}$ and $\pi_1(\mathbb{R}P^1)=\mathbb{Z}$. The induced homomorphism $\tilde{g}_*:\pi(\mathbb{R}P^2)\to\pi_1(\mathbb{R}P^1)$ must be a trivial homomorphism as the fundamental group of $\mathbb{R}P^2$ is finite. Thus can extend the map \bar{g} to a map $\tilde{g}:\mathbb{R}P^2\to\mathbb{S}^1$ such that the red triangle in the above diagram commutes i.e. $p_1\circ \tilde{g}=\bar{g}$. From the commutativity of the square we can say $p_1^{-1}\circ \bar{g}\circ p_2(s)$ can take values either g(s) or g(-s). Which means, $\tilde{g}\circ p_2(s)=\tilde{g}\circ p_2(-s)$ can take two one of the values g(s) or g(-s). In either case we can get a t (it is s or -s) such that, $\tilde{g}\circ p_2(t)=g(t)$. By the fundamental theorem of covering space theory we can say $\tilde{g}\circ p_2=g$ for all $t\in\mathbb{S}^2$. But it is not possible as g(t)=-g(-t) and $\tilde{g}\circ p_2(t)=\tilde{g}\circ p_2(-t)$. So there is a point $x\in\mathbb{S}^2$ such that, f(x)=f(-x).

Remark: We can prove the 'Borsuk-Ulam theorem' for higher n in the same way. But in order to showing the extension \tilde{g} exist, we need to deal with 'Hurewicz isomorphism' and cohomology ring of $\mathbb{R}P^2$ with the coefficients in $\mathbb{Z}/2\mathbb{Z}$.

§ Problem 8

Problem. Prove that there is a double covering of the Klein bottle by the torus. Take the definition of the Klein bottle as $[0,1] \times [0,1] / \sim$ where \sim is the equivalence relation generated by $(x,0) \sim (x,1)$ and $(0,1-y) \sim (1,y)$.

Solution. For the simplicity of notation, let's call K be the Klein bottle and T be the one-holed torus. We know from **Problem 2**, $\pi_1(K) = \langle a, b : aba^{-1}b = 1 \rangle$. Now consider the action of homeomorphisms φ_1, φ_2 on \mathbb{R}^2 defined as, $(x,y) \mapsto (x+1,y)$ and $(x,y) \mapsto (-x,y+1)$ respectively. Let,G be the group generated by these homomorphisms under composition. Note that, $\varphi_2 \circ \varphi_1 = \varphi_1^{-1} \circ \varphi_2$. So, $G = \langle \varphi_1, \varphi_2 : \varphi_2 \circ \varphi_1 = \varphi_1^{-1} \circ \varphi_2 \rangle$ is the group generated by the homomorphisms. It is not hard to notice that, $G = \pi_1(K)$. We are basically looking at the action of $G \curvearrowright \mathbb{R}^2$. Note that,

$$\varphi_2 \circ \varphi_1 \circ \varphi_2(x, y) = (x - 1, y + 2)$$

$$= \varphi_1^{-1} \circ \varphi_2^2(x, y)$$

$$\varphi_1 \circ \varphi_2 \circ \varphi_1 = (-x, y + 1)$$

$$= \varphi_2$$

So any element in the group G can be written as $\varphi_1^m \circ \varphi_2^n$ for some $m, n \in \mathbb{Z}$. Generators of the group are distance preserving homeomorphisms. So and element of the group is distance preserving homeomorphism. For

any point $(x,y) \in \mathbb{R}^2$ take an open disk centred at that point with diameter d < 1. Call this disk $D_{(x,y)}$, we will show, $g(D_{(x,y)}) \cap h(D_{(x,y)}) = \emptyset$. Which means the group action is properly discontinuous. Let, g is an element in G then $g = \varphi_1^m \circ \varphi_2^n$. So, $g.D_{(x,y)} = \{((-1)^n + u + m, v + n) : (u,v) \in D_{(x,y)}\}$. If there is a point (x',y') the intersection of $D_{(x,y)}$ and $g.D_{(x,y)}$ then distance between (x',y') and $((-1)^n x' + m, y' + n)$ is (x',y') and (x',y') are

$$\sqrt{(((-1)^n - 1)x' + m)^2 + n^2} \le d < 1$$

since n is an integer we must have n=0 and then $m^2 \le d < 1$ which means m=0 i.e g=e. If g is not identity then $g(D_{(x,y)}) \cap (D_{(x,y)}) = \emptyset$. We can see that $\varphi_1(x,y), \varphi_2(x,y)$ are at-least 1-unit distance apart from (x,y). By the similar calculation as above, for any two distinct element $g, h \in G$ we can say that g(x,y) and h(x,y) are at-least 1-unit apart from each other.

If (x, y) lies in \mathbb{R}^2 , by applying the homeomorphism φ_1^m for some appropriate integer m to (x, y), we can convert it to a point (a, y) where $a \in [0, 1)$ (this is like taking fractinal part). Then by applying the homeomorphism φ_2^n for some appropriate integer v to (a, y), we get the point $((-1)^n a, b)$ where $b \in [0, 1]$. If v is even, we get a point lying in $[0, 1]^2$ lying in the same equivalence class as (x, y) in \mathbb{R}^2/G . Otherwise another application of g gives us such a point lying in $[0, 1)^2$. Moreover no two points in $[0, 1]^2$ lie in the same equivalence class of \mathbb{R}^2/G . So \mathbb{R}^2/G can be identified with the space $[0, 1]^2$ with the quotient topology induced as it is the fundamental domain for the action.

Consider the unit square $S = [0,1] \times [0,1]$ We can see that any orbit of the given action has a representative on S. If we look at the point interior of the square, they are representative of themself. This is because any $g \in G$ must take a point at least 1-distance apart from itself by translation. We will look on the boundary of the square where, the points of the form (0,y) are representative with (1,y) (by φ_1) and the points of the form (x,1) representative with (1-x,0) (by $\varphi_1 \circ \varphi_2^{-1}$). We can also see all four vertex belong to same orbit. (0,y) and (x,1) can't be representative to eachother if 0 < x, y < 1 this is clearly because the distance in y-coordinate is greater than 0 but less than 1. Similarly we can show (0,y),(1,y) can't be representative with (x,0) and (x,1) in any means. From the given identification we can see the orbit space \mathbb{R}^2/G is Klein bottle K.

Now we will show $G = \pi_1(K)$ contains a copy of $\mathbb{Z} \oplus \mathbb{Z}$ and it's index as a subgroup of $G = \pi_1(K)$ is 2. Recall the representation of the group, (where $\varphi_2 = a, \varphi_1 = b$)

$$G = \pi_1(K) = \langle a, b : aba^{-1}b = 1 \rangle$$

Take the subgroup H generated by, a^2 , b. Notice that,

$$a^{2}b = a(ab)$$

$$= ab^{-1}a$$

$$= ab^{-1}a^{-1}a^{2}$$

$$= (aba^{-1})^{-1}a^{2}$$

$$= b^{2}a$$

So, $H \cong \mathbb{Z} \oplus \mathbb{Z}$ and **index of this group is** 2 as we are quotienting out G with $\langle a^2, b \rangle$. Now we will restrict the action $G \curvearrowright \mathbb{R}^2$ to H any element of H must look like $h = \varphi^n \circ \varphi^{2m}$, where $m, n \in \mathbb{Z}$. Any point (x, y) will go to h.(x, y) = (x + n, y + 2m) by the action of $h \in H$. In this case we can notice the fundamental domain is $[0, 1] \times [-1, 1]$. The identification hold here is, $(x, 1) \sim (x, -1)$ and $(0, y) \sim (1, y)$. So the orbit-space \mathbb{R}^2/H is torus T. By the **classification theorem of covering spaces**, we can say, there is a 2-sheeted covering $p: T \to K$.