Assignment -1

Algebraic Topology

TRISHAN MONDAL (Broat 2144)

(1) Let $n \in \mathbb{N}_{>0}$ and $N := (0, 0, \dots, 1) \in \mathbb{S}^n$ be the north pole of \mathbb{S}^n . Prove that the stereographic projection

$$s_n: \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n$$
$$(x_1, \dots, x_{n+1}) \mapsto \frac{1}{1 - x_{n+1}} \cdot (x_1, \dots, x_n)$$

is a homeomorphism.

Proof.
$$S_n: S^n \setminus i NS \to \mathbb{R}^n$$
, Since, $T_i \circ S_n = \frac{\chi_i}{1-\chi_{n+1}}$ for $i \in \{1,...,n\}$

So, $T_i \circ S_n$ is Continuous for $i = 1,...,N$ and hence S_n
is Continuous.

Injectivity: Let,
$$S_{n}(x_{1},...,x_{n+1}) = S_{n}(y_{1},...,y_{n+1})$$

$$\Rightarrow \frac{1}{1-x_{n+1}}(x_{1},...,x_{n}) = \frac{1}{1-y_{n+1}}(y_{1},...,y_{n})$$

(taking norm)² $\Rightarrow \frac{1-x_{n+1}^{2}}{(1-x_{n+1})^{2}} = \frac{1-y_{n+1}^{2}}{(1-y_{n+1})^{2}}$

$$\Rightarrow \frac{1+x_{n+1}}{1-x_{n+1}} = \frac{1+y_{n+1}}{1-y_{n+1}}$$

$$\Rightarrow 1-y_{n+1}+x_{n+1}-x_{n+1}y_{n+1} = 1-x_{n+1}+y_{n+1}-x_{n+1}y_{n+1}$$

$$\Rightarrow x_{1}=y_{1} \quad \forall i=1,...,n+1$$

So,
$$S_{h}(x_{1},...,x_{n+1}) = S_{h}(y_{1},...,y_{n+1}) \Rightarrow (x_{1},...,x_{n+1}) = (y_{1},...,y_{n+1})$$

Swijectivity: Let, $(x_{1},...,x_{h}) \in \mathbb{R}^{n}$ then, $(\frac{2x_{1},...,2x_{h}}{\|x\|^{2}+1}) \in S^{n}$

Now
$$\int_{0}^{\infty} \left(2x_{1},...,2x_{n}, \|x\|^{2}-1\right) = \frac{\|x\|^{2}+1}{2} \frac{\left(2x_{1},...,2x_{n}\right)}{\|x\|^{2}+1} = (x_{1},...,x_{n})$$

Let,
$$\overline{U_n}: \mathbb{R}^n \longrightarrow S^n \setminus \mathbb{N}$$
 defined as following, $\overline{U_n}(x_1, \ldots, x_n) = \frac{(2x_1, \ldots, 2x_n, ||x||^2 - 1)}{||x||^2 + 1}$

Again we can see, $\pi_i \circ \sigma_i (x_1, \dots, x_n) = \frac{2x_i}{||x_i||^2 + 1}$ for $i=1,\dots,n$ and. $\prod_{n \neq 0} O_n(x_0, x_n) = \frac{||x||^2 - |}{||x_1||^2 + 1}$, whe Continuous and hence on is continuous. Swijictivity of on is followed by looking Sno on = Id IRM. Now, we will check injectivity, at $\sigma_1(x_1,\ldots,x_n)=\sigma_1(y_1,\ldots,y_n)$ $\Rightarrow \left(\frac{2x_{1}, \dots, 2x_{n}, ||x||^{2}-1}{1|x||^{2}+1}\right) = \frac{\left(2y_{1}, \dots, 2y_{n}, ||y_{1}|^{2}-1\right)}{||y_{1}|^{2}+1} \qquad (*)$ Comparing $\Rightarrow \frac{\|\chi\|^2 - 1}{\|\chi\|^2 + 1} = \frac{\|\chi\|^2 - 1}{\|\chi\|^2 + 1}$ $\Rightarrow ||x||^2 = ||y||^2 \Rightarrow (x_1, ..., x_n) = (y_1, ..., y_n)$ 50, On is also bijective and Continuous. We also Can See that Sno On = Id IRn and Onosn = Id SNIN So, Sn is homeomorphism.

(2) For a topological space X, let $\Sigma X := X \times [-1,1]/\sim$ denote the suspension of X, where \sim is the equivalence relation given by $(x,1)\sim (y,1)$, $(x,-1)\sim (y,-1)$ and $(x,t)\sim (x,t)$ for all $x,y\in X$ and $t\in [-1,1]$. For $n\in\mathbb{N}$, show that the following map is a well-defined homeomorphism:

$$\Sigma \mathbb{S}^n \to \mathbb{S}^{n+1}$$
$$[x,t] \mapsto (\sqrt{1-t^2} \cdot x, t).$$

<u>Proof:</u> Let, $TT: S^h \times [-1,1] \longrightarrow S^{h+1}$ defined by $(x,t) \mapsto (\sqrt{1-t^2} \times 1+) \cdot \text{We can easily see that}$ It is Continuous on both co-ordinates and hence TT: S Continuous function.

Now, we will show that IT is Swjective. Let, $(x_0, x_1, ..., x_n, x_{n+1}) \in S^{n+1}$ Let, $x = (x_0, ..., x_n)$ and $||x|| = (\sum_{i=0}^n x_i^2)^{\frac{i}{2}}$ then we can easily verify that, $\Pi\left(\frac{\chi}{\sqrt{1-\chi_{n+1}}}, \chi_{n+1}\right) = (\chi_{1}, \dots, \chi_{n}, \chi_{n+1}), \quad \text{Whenever } |\chi_{n+1}| \neq 1.$ If $x_{n+1} = 1$, TT(x, 1) = (0, 1) and if $x_{n+1} = -1$, then TT(x, -1) = (0, -1)holds for any x ∈ Sn. $S^n \times [-1,1] \xrightarrow{q} \Sigma S^n$ Clearly, IT is a Swijective Continuous may From Compact Space to Hausdorff Space, by "Closed map Lemma" We can Say, IT is a quotient map. # Let, $\Gamma: \Sigma S^n \to S^{n+1}$ Such that $[x_it] \mapsto (\sqrt{1+t^i}x_it)$ # We Can verify that, This Constant on the Fibre of quotient map 9: $S^n \times [-1, \Pi] \to \Sigma S^n$. We can See that Tog=TT i.e. the diagramm Commutes. By universal property of quotient map $\Sigma S^n \simeq S^{n+1}$ by the homeomorphism o.

(3) A subspace $X \subseteq \mathbb{R}^n$ is said to be star-shaped if there is a point $x_0 \in X$ such that, for each $x \in X$, the line segment from x_0 to x lies in X. Show that if a subspace $X \subseteq \mathbb{R}^n$ is locally star-shaped, in the sense that every point of X has a star-shaped neighborhood in X, then every path in X is homotopic in X to a piecewise linear path, that is, a path consisting of a finite number of straight line segments traversed at constant speed. Show this applies in particular when X is open or when X is a union of finitely many closed convex sets.

Proof: Before proving the main statement we want to

note, if U is Star Shaped from x_0 , then any Path $Y: [0:1] \to U$, with Y(0) = x. Y(1) = Y is homotopic to the Joint line Segment of x_0, x and $x_0 y$. The homotopy Canbe achive d by taking line homotopy.

Let, $\alpha: I \to X$ be a path on X. Let, U_t be the open Set Containin alt) and Storr shaped. We can see that, $\alpha(I) \ C \ \bigcup_{t \in I} U_t$

Since, $\alpha(I)$ is Compact, there is finitely many, ties Such that $\bigcup_{i=0}^{N} Ut_i \supseteq \alpha(I)$. Where, to $<\dots < t_{n-1} < t_n$ over ordered. Now, the pre-smy $\bigcup_{i=0}^{N-1} (Ut_i)$ will give us a partition of the interval I by open interval (as U_t are open and path Connected).

Let, $P: 0 = to \langle x_0 \langle t_1 \langle x_4 \langle \cdots \langle t_{n-1} \langle x_{n-1} \langle t_n = 1 \rangle, be partition of i where, <math>\alpha(x_i) \in U_{t_{i-1}} \cap U_{t_i}$.

Let $x_i = \alpha|_{[t_i, x_i]}$ and $\tilde{\alpha}_i = \alpha|_{[x_i, t_{i+1}]}$ i=0,1,...,n.l. For general purpose let, L_{x_iy} denote the joint Segment*(2,20),(43,20) By the previous property we discussed, κ_i is homotopic to $L_{\alpha(t_i), \alpha(x_i)}$ and $\tilde{\alpha}_i$ is homotopic to $L_{\alpha(x_i), \alpha(t_{i+1})}$ Let, H_i is homotopy from α_i to $L_{\alpha(t_i), \alpha(x_i)}$ and \tilde{H}_i is homotopy from $\tilde{\alpha}_i$ to $L_{\alpha(x_i), \alpha(t_{i+1})}$ By gluing lemma. We can construct a homotopy from α to piece wise linear path l, $l|_{[x_i, t_{i+1}]} = L_{\alpha(x_i), \alpha(t_{i+1})}$ and $l|_{[t_i, x_i]} = L_{\alpha(x_i), \alpha(t_{i+1})}$

* There the Space was star snaped at 2

Since $X \subseteq \mathbb{R}^n$ has Subspace topology from \mathbb{R}^n ,

We can say if X is open then X is locally star shaped

(convex in general)

and if X is finite union of closed convex set

is also locally star shaped thus by previous part

we are done!

(4) Let $f: X \to Y$ be a continuous map between topological spaces. The mapping cone of f is defined as the pushout

$$X \xrightarrow{f} Y$$

$$\downarrow_{i} \qquad \downarrow$$

$$Cone(X) \longrightarrow Cone(f),$$

where $i: X \to Cone(X) := X \times [0,1]/X \times \{0\}$ denotes the inclusion $x \mapsto (x,1)$. Show that Cone(X) is contractible. Further if f is a homotopy equivalence, Cone(f) is contractible.

C(f)

Proof: We will show that Cone (x) is homotopic equivalent to the Constant map at [(x,0)]. The

homotopy is given by,

 $H: Cone(x) \times I \longrightarrow Cone(x)$

Which maps ([x,t],s) to [x,(-s)t], H([x,t],o) = [x,t] and H([x,t],l) = [x,o].

• For this part we need to talk about Homotopy extension property or "Cofibration". A map $i: A \rightarrow X$ is Said to be Cofibration if We can extend any homotopy, on other words. There exist a homotopy $h: x \times I \rightarrow Y$ the following diagram m Commutes,

We claim that: i: X -> CX is a cofibration. Proof: Let, Z is another topological Space with a homotopy $G: \times I \to Z$.

The from $CX \to Z$ such that Define ho From $CX \rightarrow Z$ Such that, CXhoi = G(-,0) and $ho([x,1]) = Z_0$. From here, He Want to Construct a homotopy h: CxxI -> Z. Let's define, $\Delta = (Ix\{0\}) \cup (\partial IXI)$ Let, $\tilde{H}: X \times \Delta \longrightarrow X$ by, $\tilde{H}(x,s_{0}) = h_{0}([x_{1}s])$ and, $\widetilde{H}(x_i \circ_i t) = G(x_i t)$ and $\widetilde{H}(x_i \circ_i t) = Z_0 \cdot \text{ If } \Upsilon: IxI \to \Delta$ is the retraction then we can define, $H: X \times I \times I \longrightarrow Z$ which is extension of H defined by, H(x,s,t) := H(x,r(s,t)).Notice that, $CX \times I = (X \times I / X \times \{1\}) \times I \cong X \times I \times I / (x,1,t) \times (x,1,t)$ Thus we can pass H through quotient map to get a map $h: CX \times I \to Z$ and $h([x_i s]_i t)$ is the desired homotopy. \square

Since, f is homotopy equivalance there is a map g: Y > X Such that, gof = Idx

by a homotopy H. Since, X i id CX H ixI

cx id CX H ixI

is Cofibration we can have G: CxxI→CX

as Shown in the Commutative diagram.

Diagram 1

We can notice that, $X \longrightarrow Y \longrightarrow X$ H(x,0)= Idx and hence, i

G(x,0)= Idcx. Let Come $X \longrightarrow G_1$ G₁= G(-,1). We can

Show the magenta avvowed digram Diagram 2 Commutes. This is because from

diagram I we can see, i.g. of = G.o.i. By the property of Pushout there is a unique map \tilde{f} : Come $f \rightarrow Come X$. We can see, $\tilde{f} \circ \tilde{f} = G_1$ which is homotopic to Idcx. We can do the Same For $\tilde{f} \circ \tilde{f}$. Thus we have 8hown come x and come f has Same homotopy type. Since come x is comtractible come f is also comtractible.

References.

[1] Concise Course in Algebraic topology: J.P. May (Ch6)
[2] Topology and Groupoid: Ronald Brown. (Ch7)

- (5) Show that for a space X, the following three conditions are equivalent:
 - (a) Every map $\mathbb{S}^1 \to X$ is homotopic to a constant map, with image a point.
 - (b) Every map $\mathbb{S}^1 \to X$ extends to a map $\mathbb{D}^2 \to X$.
 - (c) $\pi_1(X, x_0)$ is trivial for all $x_0 \in X$.

Proof: (a) \Rightarrow (b) Let, $f:S' \rightarrow X$ be the homotopic to a Constant map. Let, $H:S' \times I \rightarrow X$ be the homotopy with $H(x_1I) = f(x)$ and $H(x_1O) = C_{x_0}$ (Constant map with image x_0). Consider, $q:S' \times I \rightarrow S' \times I/S' \times \{o\}$ be the quotient map. Notice that $g: X = f(x_1) = f(x_1) = f(x_2) = f(x_2) = f(x_1) = f(x_2) = f(x_2)$

(b) \Rightarrow (c) Let, [x] $\in \Pi_1(x,x_0)$, then $Y:S' \rightarrow X$ and this will extends to a map $Y:D^2 \rightarrow X$. We can identify D^2 as $S'xI/S|x_{\{0\}}$. Then $Y:S'xI/S|x_{\{0\}} \rightarrow X$ With $Y:X_{\{0\}} = Y$ gives us a homotopy blu Y and $(x_0 - i\cdot e\cdot \Pi_1(x_0,x_0) = \{0\})$.

(c) \Rightarrow (a) Any map $f:S' \rightarrow X$ Can be Seen as a loop based at f(i) and $\Pi_1(x,f(i)) = 0$ means, $[f] = [C_{\{0\}}]$ So, f:S homotopic to $C_{\{0\}}$.

(6) Let $W = W_1 \cup W_2 \cup W_3 \cup W_4$ denote the Warsaw circle endowed with the subspace topology of \mathbb{R}^2 (see Hatcher, Page 79, Figure in Que. 7), where

$$W_1 = \{(x, \sin(\pi/x)) | 0 < x \le 1\}$$

$$W_2 = \{(0, y) | -1 \le y \le 1\}$$

$$W_3 = \{(x, 1 + \sqrt{x - x^2}) | 0 \le x \le 1\}$$

$$W_4 = \{(1, y) | 0 \le y \le 1\}.$$

Show that the for every point w_0 of W, the fundamental group $\pi_1(W, w_0)$ is trivial.

<u>Proof:</u> Any loop $Y: I \rightarrow W$ will be Contained in Some Set like the following,

W_€ := W2 UW3 UW4 V { (2, Sin 7/2): € < 2 ≤1}

for Some \$>0. If there is no such \$\varepsilon^2 \text{IIIIIIV Vew} then there is a subsequence \{an\} CI Such that, \(\varepsilon^2 \) \(\varepsilon^2 \) \(\varepsilon^2 \) and, \(\tau_1 \cdot \varepsilon^2 \cdot \text{By the Bolzano Wiere Strass property} \) there is a Subsequence of \{\varepsilon^2 \text{Ank}\} \Converges to a \\
\text{point lefoin I and hence, ITio Y(k) = \lim TTio Y(nk) = 0.} \\
\So_1 \cdot Y(l) \in W_2. \text{Take a } \varepsilon^2 \text{bound the point } l \\
\text{there is a convergent Subsequence of } \{\varepsilon^2 \) \(\varepsilon^2 \) Contained in that \(\varepsilon^2 \) not \(\varepsilon^2 \) which \\
\varepsilon^2 \text{Connected}\) to a disconnected set which \\
\text{Contains portions of Wi and W2. This is not possible.}

Once, we have establised the property that, Y(I) C $W_{\mathcal{E}}$ for some \mathcal{E} , we can see Y is contractible. as $W_{\mathcal{E}}$ is something homeomorphic to closed interval.

W is path-connected so choice of basepoint do not matter any $[v] \in TTi(w,x_0)$ must be contained in Some W_{ξ} and hence [v] = 0. Hence, $TTi(w,x_0) = \{0\}$.

- (7) Let X be a topological space.
 - (a) Let $\gamma: \mathbb{S}^1 \to X$ be a null-homotopic map and let $x_0 := \gamma(1)$. Show that $[\gamma]_*$ is trivial in $\pi_1(X, x_0)$.
 - (b) Conclude that if X is contractible (but not necessarily pointedly contractible) and $x_0 \in X$, then $\pi_1(X, x_0)$ is the trivial group.

Solution: (a) From problem 5 we can Say any null-homotopic map Y is also pointedly Contractible thus, $[Y]_* = \{0\}$ in $TI_1(X_1 \times b)$.

(8) Let X be a topological space. We say that Y is obtained from X by attaching n-cells if there are maps $\phi_i: \mathbb{S}^{n-1} \to X$ and a pushout square

$$\coprod_{i \in I} \mathbb{S}^{n-1} \xrightarrow{(\phi_i)_i} X$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$\coprod_{i \in I} \mathbb{D}^n \longrightarrow Y.$$

The maps ϕ_i are called the attaching maps.

- (a) Suppose that Y is obtained from X by attaching n-cells for some $n \geq 3$. Show that for any $x_0 \in X$, $\pi_1(X, x_0) \to \pi_1(Y, x_0)$ is an isomorphism.
- (b) Suppose that Y is obtained from X by attaching 2-cells. For each attaching map $\phi_i: \mathbb{S}^1 \to X$, choose a path γ_i from $x_0 \to \phi_i(e_1)$, and let $N \subseteq \pi_1(X, x_0)$ be the normal subgroup generated by the loops $\gamma_i * \phi_i * \bar{\gamma}_i$ for $i \in I$. Show that $\pi_1(Y, x_0) \simeq \pi_1(X, x_0)/N$.
- (c) Prove that the functor $\pi_1: \mathrm{Top}_* \to \mathrm{Grp}$ is essentially surjective.

At first we will prove (b) from that point we can easily conclude (a)

Proof (b) We will extend Y to a larger

Space by attaching rectengular coller.

Assuming S' to be unit circle in S',

Let, $x_i = \phi(x)$ and x_b be the base point $\lim_{i \in I} D^2 \longrightarrow Y$ With respect to which we want to calculate

The $(-, x_b)$. Let, Y; be a path from x_b to x_i $\forall i \in I$.

Now add a rectangular coller $R_i = Y_i(I) \times I$, Such that $Y_i(I) \times I \mid_{I \times \{a\}} = Y_i$. Choose $Y_i \in \phi(D^2) \setminus (\phi(S') \cup Y_i(I) \times I)$

Call this new Space Z. Since we have only added rectangular Strips to Y, Z deformation retract onto Y.

Let, A = Z-U4: and B = Z-X. We can clearly see A deformation retracts onto Z (The cell e; 14; has deformation retract onto d(e)) and B is Contractible Since, Z-X Contains cells e; and coller R:

Notice that, AUB = Z, A, B and ANB are path Connected and Contain Xb, then by Van Kampen theorem Ti will Preserve the following pushouts.

$$(*) \longrightarrow AUB \longrightarrow AUB \longrightarrow (*) \longrightarrow (*)$$

From here it is Clear that $TTi(Y, z_b) = TTi(X, z_b)/N$. We need to find proper description of the normal Subgrip N. We already know, N is generated by the image of the map $TTi(A\cap B, z_b) \rightarrow TTi(A/z_b)$.

Let, $Z_0 \in A \cap B$ near Z_0 where all R_i over meeting. Now take the loop \tilde{Y}_i based at Z_0 representing the elements of $TT(A, Z_0)$ Corresponding to the loop $LY_i \not p_i Y_i J$ $\in TT_i(A, Z_0)$ under base change isomorphism $\beta_i : [rJ_* \to LIVIJ_*$ Where l is the line joining Z_0 and Z_0 . We will show that $TT_i(A \cap B, Z_0) = \langle \tilde{Y}_i : i \in I \rangle$.

For this case we will cover with $A_i = (A \cap B) - \bigcup_{j \neq i} e_j^2$, A_i has deformation retract onto $e_i^2 - \{y_i\} \cdot S_0$, $TT_i(A_i, z_0) = Z_i^2$, this is generated by $T_i \cdot Thus$ we can say N is normal subgroup generated by $[Y_i, y_i]$.

(a) If n is >3, then we can carry out the Same Construction as previous. But in this case TI (AnB, 26) will be trivial. To see this again take $A_i = AnB - Ve_j^n$ as the cover of ANB which has deformation.

Petraet onto $e_i^n - iy_i \}$ which has trivial fundamental group * So by van Kampen theorem we have, TI (ANB, 26) is trivial. The following pushout of fundamental group immediately implies isomorphism b/w TI (Y, 26) and TI (X, 26).

$$\{o\} = \Pi_{1}(A \cap B, x_{b}) \longrightarrow \Pi_{1}(A_{1}x_{b}) \xrightarrow{\sim} \Pi_{1}(x, x_{b})$$

$$\{o\} = \Pi_{1}(B, x_{b}) \longrightarrow \Pi_{1}(A_{1}x_{b}) \xrightarrow{\sim} \Pi_{1}(Y, x_{b})$$

(C) Amy group canbe written as, $G = \langle \coprod_{i \in \Lambda} \alpha_i \mid \coprod_{j \in \Gamma} \gamma_j \rangle, \text{ and } \Gamma \text{ are }$ index sets.

Let, X = VS' and Consider the following pushout diagramm,

By part (b) we can easily see that, $TT_i(Y,e)$ is, $\left(\prod_{i \in A} \alpha_i \right)/N$, where N is the normal subgroup generated image of loops of V(s,e) clearly,

$$Tr_i(\gamma, e) = \langle \underset{i \in \Delta}{\coprod} \alpha_i \mid \underset{j \in \Gamma}{\coprod} r_j \rangle$$

* Here we have used van Kampen thm. For infinite Covers
Reference. Algebrasic Topology: Allan Hatcher.

(9) Consider the following subspace of \mathbb{R}^2

$$H := \{x \in \mathbb{R}^2 | d(x, (1/n, 0)) = 1/n\}$$

with the subspace topology, the so-called Hawaiian earring (see Hatcher, Page 49, Figure in Ex. 1.25). Prove that $\pi_1(H,0)$ is uncountable. Is (H,0) (pointedly) homotopic equivalent to $\bigvee_{\mathbb{N}} (\mathbb{S}^1, e_1)$?

<u>Proof.</u> Let, $C_n = \{(x-h)^2 + y^2 = h \}$ be the Circle of radius y_n and Centered at $(y_n, 0)$. Define, y_n be the yetraction,

TT (rn): TT(H,0) → TT (Cn)=Z. Now define,

 $R := (\Pi_i(r_i), \Pi_i(r_i), \dots) : \Pi_i(H_io) \longrightarrow \prod_{i \in I} \mathbb{Z}$ Let, $\{K_n\}_{n \in IN} \in \prod_{i \in I} \mathbb{Z}$, take the loop l that winds alound C_n , K_n time (clock wise, anti-clockwise according to Sign of K_n). So, R is Swjective homomorphism.

© Ti(Ho) is also uncountable, Since ∏ I is uncountable.

We know fundamental group of (XS',e) is, TI(YS',e) = XZ. Free product of Z is Countable and hence (XS',e) is not homotopic to (H,0).