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ExampQ Baurspam,

EvnS -> open + dense &I E .) Un =Q ~ it's open dense inRoH

1 Un dense in IR.
u

> This don't work

& Application 1 . (Uniform Bounded Principle)

* be a complete metric space . FCC(X, 1) · If , F is pointwise bounded .

Then there exist non-empty open subset UEX Sit F is uniformly bounded on U.

Proof : X is a BaireSpace . Fix ,
new ,

feF,

Eny : = GueX : Ifcul In) EX (closed by cant. of f)

Now, En : -MEny EX . (closed again)
Note that, VEn = X = EX(open) and be St. VEEr => Ifm/ < k FfeF

andHue U.



Topological Spaces.

- Definition

-

Example. Discrete
,

Cofinite etc. (Metric Spaces)
·

N

- Maps, homeomorphism . S.g . sakis EIR" - >

&

· N

-

To points are closed (not eg
. Indescrete) si

X

-

T : Hausdorff (not eg . finite complement) in
↳

- Basis and Subbasis - Definition of Basis - Example : Metric Space X,
B= S open balls)

- From a basis B
,

a topology TB =E Collection of U that are

union of elements of
E.g . R

.
B = ((a , b) : acbeR3 · BS

- Definition of Subbasis . IfS subbasis Bs = [v1 - 14 : viess
Y

Collection of subset of X is basis
Such that fuex

, 7 veu)eS

-> Definition of ordered Set (X,) . We can define
-

(9, b) = Guex : access
(a ,0) =Gu = X : ax)

B =[(a i b) : a be XV500)) is basis for a topology -

1-0, a) = quex = na]

on X . To is called order topology·

=> Finite . Product topology · XXY
,
B = GUXV :UES (check it is a basis fora

topology of XXY)
Projections are continuous (also open)

1Theorem . X,Y,
z top spaces then

,

Map (z,
Xxx) * · Map( ,x) x Map(z,Y) (Bejection)
f 1> (it of , iteof)
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Product.

- Finite product (in the same way we defined product of two Top/

-> Map (2.
Xix ... xXn) < <TMap(z, xi)

=> Product of arbitrary collection [X] . T

One Basis for this space is :B= STU : U + Bad ~Tp gives a topology on T = X
*

Box topology.

Map (z, x4)-> TMap(, Xa) ; T : X
*
-> X Cont.

(it's not bijection)
2 Another basis BETTU : all but finite Va = Xal me tp gives a topology

on the product space.
S = Gil(Va) : Nel and Un-X > is open ↓ "

Product

topology.
· In this case : Map(z ,

Xi) >Map(, X) is bejection · 'IIIII,

Coproduct .

XVY
,
B=UeXLY : YxBxSTB topology o XL

As Set
, Func(X4Y, z) = Func(X,z) x Func (Y, z)

Arbitrary coproduct #X Can be defined in the same way .

Theorem:+Top ,
then Map (2) -

>Map() is bijection ·

11
Func (HX, z) · Func (a,

closed Sets.

ASet is closed if it's complement is open.

Limit of a sequence . Sun) Sequence in X, utlimcen-X if, Nopen set ver there is N such that Sun EU
↳ Not unique X

liment Sets

Proposition. If X is Hausdaff , Ilimsenl=1 if exists

Limit points . UX is limit point of A if Vopen Vars An Uku) + 0.

closure· A = closure ofA= C ANALOGOUS Interior. Inte
USA

Vopen



Int(A)"=

Proposition: A is closed All limit points of A belong to A

Proposition. A = AU limit point of AS

Proof. Elimit points of ASUAEA , Enough to Show AUSlimit points) = closed prove it by

taking complement of (Audlimit points) · ·

- Exercise .

① X is Hausdorff AEXXX is closed .

② Subspace of Hausdaff Space is Hausdaff .

③ Product of two Hausdorff Space is Hausdorff .
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Connectedness.

A topologicalSpace is said to be connected , if any map

* soils is constant·

Prop. X is connected AA,
B open, non-empty,

X= AUB and AlB= % ·

Proof. (Not writting) .

Example. Toit is connected .

· Indiscretetopology isConnecteated-
"

QER; Not connected . XEQ (50,) nQ) v(()UQ)

Proposition : A , BEX . A connected
,

B connected . And AlB =- AUB is connected .

Proof : Look at restrictions

A fla

AUB ( f sol
-

B fly

Prop . Image of connected Sets are connected under continuous map.

Proof. (Not writting) .

↑ Connected
· Def" of path connected .

A what but not

...... Path Connected
·> X path connected =>> X Connected .

↑ xYU0
, 1x20)

· X connected X path connected. E.g : Comb Space UE(0 , 1)S



Tis not path connected : V : [0 . 1] - C
,

U(0) = z = Eco , 11) ·

- Prove that open ball around [13 is not path connected.

=> [1 : C- [01] => Of Constant atE > Im() 1[0, 17x309 + 0. Mor : [0, 1) -> [0 , 1) ; it : Subjective · (Forl" (Co, 17) [0, 1)
(x,y) 1 - y It UI

[0, 5)

VIto
,s

: [0, s) -> Bz(l)
↑ disconnected

- Definition of Connected Components . (As equivalence classes)

of
-

Writing topological space as union
,

connected Components.

- Path components .

- Connected components may not be open . Example : Q (C) are Single tons)

·

R and R" are not homeomorphico Removing a Point

=> Next Day : ConnectedSubsets of IR
.

· open sets of R.
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-> Proposition : If X andy are Connected => XXY is Connected .

Proof : We can write XXY= Tay -> Sus XYVxx3y3

Which is union of connected Sets and their intersection is non-trivial : /

Compact Sets .

Definition (FIP) : X is said to have finite intersection property ifA collection &()

of closed set such that1C*I
,
then &C= 0.

finite

# Proposition: Compact X has F· I. P

Proof : ()) 3() be a collection of closed sets . Such that every finite interses is non-empty

E (2)-> collection of open Sets such that any finite collection do not Cover X .

= (by compactness of X)[C]
don't cover X :

(E) Easy

Remark : f : X((t) -R map ,
then I has a maximum and minimum .

Heine-Borel theorem .

X closed and bounded (fIM) is Compact.-> X [BalM)CIKT = X compact the-

closed

Subset

closed map lemma : foX(pt) < Y (Hausdaft) and bijective
=> f is homeomorphism .

Proof : Do it

Theorem: X be a metric space . The following are equivalent :

a X Compact .

Look at Counter

↳ X is "limit point compact" ". Examples.

X is "Sequentially compact. "

Proof : a = b AX => A closed -> A compat
inf.

Yet
Without limit pts

a A not limit point -> Funta Such that VanA = (a) , AEYVa does not have a finite subspace.

b = < [unS-finite -> Nothing to prove .

↳ infinite -> limit point-,
+ Br(1) , unzeB(k)

, BrzeBu(Y) , ....., Must Ba() ...



c = a

B. Lesbegue Number : U= [Ua] open cover of X- Sis lebesque number if any Set A of diam.

18
,

7 x Such that AcUX.

A Seg compact =>> X can be covered by finitely many 3-balls

↓ 8 = lebesque no

hmmm
Now

,
Affinite Covering of X by t-balls B ,

U . ... UBr .

diam (Bi) <Uki = X=U finite open cover.

Proof of A . If not
, leteX

,B + X(Bm(3) , . . . ., kntX))VBu (3)) ·
Suns has convergentSub Seg. But note that du; ) >E : Contradicting the Caw.

Proof of B . Again assume the Contra positive Statement
,

7 Set on of diam In

such thatIn any open set VatH · Pick
, unt(n and Seq compactness ,

7 Subseq (Unil +

xeX = WUx ,
for n

, Bum I Cm and the ball Bannl) Un [for some <J .
III

Locally compact.

If YueX
, we have an open set You Such that

,
I is compact

Example : -

- 10 = ((n) : FN Such that
,

un =on >3 > Metric : ((.n) =(ii)"2

Tl) is not compact .

e
> Seid

,
>dbge = ed .

= the Seg don't have Ca. Subseq

RO is not locally compact .

One Point Compactification .

X = locally compact ,
X

*
= XU(*) Top U Copen)

- If don't contains

uIX is open

-> If contain o

VIX ispact

Date : 23/00/24 · tecture- 10

Goal : Check Xt is Compact and Hausdorff.

Compactness: Let, U = (a) be an open cover of X . Let
, 20StUp , then Up is compact in X

,
thus can be

covered by finitely many X, dr . So
, UpU(UV) Covers Xt

Hausdorff. for uyeX+ if
, by X nothing to do . If neX and y = a. I has a embdy

Such that I is compact : Y,
O X* ->



X locallyCampaausdorffand
-Y is injection, y is compatient

# Examples. X Compact, Hausdorff
,

Xt = XUSO3 .

- (R)
+
e82

X iX2 are locally compact and Hansdorff ,
fix, >X2 isF continuous?

No . Example

+ Rn-> Sh

Defi (Proper maps) · f: x -Y is proper then
, f(k) = Compact o >

for K compact in X .

Proposition : It is cant f is proper.

-> A : R"->IRM is proper iff him and As injective

Property of locally compact Spaces + Hausdorff.

· UEX open then u is locally compact + Hausdaft. (Result 1)

Ts = It Def : (Regular) A space X is called regular if neX and AEX closed .

xfA , JYW ,
neY

,
AEW and YnW =0.

Let EunA = p .

HeLocallyamRegal
e

pact' mod Ground t. Not, Gus -(4)=
Compact

Can Separate, (4) and Ank by open Set
, GulEU,

AnkEV and uny = 0 .

Now take, U = Un(intk) ,
Yo = Yu(X(K) - Separation. I

· Proof : (Hausdorff easy (

(locally compactness) . v" = closed
,
UEU

,
and Us Can be

/closed

Separated by WIU? You => neXSW-U

FTER open so that
,

VITEU andU is closed
compact.



Useful map : i : X
* -U

+
i = Se ; n

It is continuous : WEUEU open, NEW
, Uw = K

(d)
" (w) = w

and (i)"(w) = X+ k. III

Example : O The obvious one .

② B G i : Sh-(B2)
+ a is

opendisk
- gu S

↓ An
③ BYLBER" i : -Sys

Bu ⑫ane
-(BLBY)Be III
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Tychonoff's Theorem . Product of CompactSets are compact

Proof : (uses Zorn's lemmal Let
, [Xc be a collection of compact sets . X= TX

E
Finite intersection of 3To show X has F. %. P. Let =collection of subsets in X : elements of Dis nonempty

Partial order : Inclusion &

Chain : M = [*a) for atc' BaEDd or DaCBc ·

upper bound of chain:Un
By Zorn's Lemma we have a maximal element of 5 . Enough to check F- I. P

for this maximal element .
- Call this collection *.

Th : X + Xc : [T(D)) has foP. Let Yat .
We can choose such for everyone

We will show, y = (Yc) - 15

Let, YatUnEpenX = Vand (XD +B) => NIlva)nD + DEB .

· As D is maximal in C
,

me T(Ua) ed

: contain every sub-basic open set containing y.

If V is a basic open Set containg y, VDFP ,
for all DEB . So

, Yet for all

DEP

:yel5 I
DED



Function Spaces .

#ap(X,Y) = & Cont . functions from X-Y)
/

Topology on it S(U) = [fx+ Y : fu]- Subbasis of a topology
↑

Compact open in ·
in X Y The corresponding

topology is called compact -open
topology on Map (X >Y)

Exponential Law : (YXEy** (Bijection as a set/function)
In topology we want bijection blu ;

Map (z ,Map( ,Y)) < Map(ExXY)
↓ 15 (EXXMapx

In order to ex : map being cont . We need X to be locally compact +Have

Proposition. If X is locally compact, Hansdorff Then

ev: XXMap-> Y
is continuous.

Proof : VEY open, (f) -> ev"(v) (Note, f(u) Ev and f+ (r) is open)

X is locally compact, Husdarff, Zopen V Such that is Compact and never ef()

So
, ev(VXS(, v)) &U and thus

, ext() is open.
#

Theorem : There is one-one correspondance bli Map (E, Map (X,Y)) =>Map (ExX ,Y)
&

Proof: We will show
,
I cont. - I is continuous.

W
(E) I is continuous . Look at -(SCV), (axSV + Exc"(v) ; We get a open ubd

,
of

Such that WX(V) - We"(Sul)
. So

, I is continuous. If

& All the definitions are rigged
in a way that everythingwill full in place...



Countability Axioms.

Definition : X is said to have countable basis at a if
, I countable

collection &Bn] of open ubds of c Satisfying Hopen Von
, 7 BrU.

# FirstCountable : If every point neX has a countable basis.

# Example : (Not first Countable) R with Cofinite topology ·
It

Take
, neX · Suppose [Bn] be the countable collecti of open sets

, uf Br = Eyi-bil
VB atmost countables choose

, KAY UB = Xy) is open but don't contain any Br . All

# Example : (Not first Countable) X = [0IS (S = uncountable)
↳ Let

, xeX and EBnS countable open sets containing e.

Take Bn? basicopen sete Ubnts . Est Ubn

USX - - - xUsx[0 ,
]Sss then UX [0 ,ijss

CannotContain any Bn.

Defh of Second countable/separable
· Any uncountable set with discrete topology -> not end countable.

· RW = & Seq (n) : Kel bod3 ,
d (E , 1) = Sup Ken-yel

C = &Sequence with Os and Is] ,
d(c) =2

-> By(z) ,
(e) are uncountable disjoint open sets.

Theorem .
' Product of and countable space is2nd countable ·

2 subspace of2nd countable space is 2nd countable·

Proposition.1 Every open cover of 2nd countable Space has countable cover.

2 X has a countable dense sets .

EBn3 = countable basis of X.
Proof : I we Use my utBa Un

& Bu : nex] & [BnS
countable
Choice

& Ba , .... Brus ... 3 X = WUi

2 A= Sen:ueBn] · Note that, = X. "I

&emark : Existance of countable dense Set +First countable Second countable

I



·
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wrong
Theorem : If X is a metricSpace With Countable dense Set . X is 2nd countable·

Proof : [Bun(tm) : nxmx] = B forms a basis. If,
n+ Bu(s)eU Copen set) · Take, Sustee

Now, d(km , x) - 0 as Un -0 · Jh
,
d(,umz) < Im < Se

=> ze Bams(m) & Bu (3) ·

#l counter example Re (to the remark of last day)
1- With topology comes from basis

, [[9 . b) : a < b)
Note

,
(a , b)
=UCat ,b)

Let
, Here

-> Re is Haus-dorff .
For every i choose

-> Re is first countable - Une [xnet) &limen = u

- Reaerationals) a countable dense set.

->B be an basis of Re. Ke,
ne[unt

,
FBuEB

,
Bu Ent ; If uFY , But Bys

Int Be =1 Fy = intBy .
So the basis could-not be countable . #

Separation axioms .

-T Look at possible

T y,X counter examples.

Examples.
-> Tz

Proposition : X is T. · X is compact hausdorff .

=> X is Normal
X regular HueUeX
FeVIYEU.open -> T Locally compact and Hausdarff

is regular .

2 X is normalHHPULX · Metric Space are Normal

-open V, A PVCYCU . Proof : A , B are closed Sets . Ya , JEa70 Sot Bala) Be

and Xb
, J Eg Sit . By (3) & A ?

Proof: O Nothing to do .

A CUBa() = U

② Do same thing BUB( =Y

show that UNV = 0 . ·
-

PROPOSITION : I subspace of a regular space is regular.

2) Product of regular space.

Proof : Nothing to prove in D



2

uXxxand UapplyRegularityon N.
⑪ This don't hold for Normal I

Proof : (TXXVixX
· Counter 1 : [0, it is normal If, yeYXY - Hisy) is limit pt of Xi :

(0, 1)] <[0, 17] isn'tnormalEU
,

-> un(vix) + 0 (to show
· Counter? : Re isn't normal

Counter Examples
I

1 TT2

I
cofinite topology with IX = 0.

2 TT X = R ,
B = E(ab) , (a , b) /[b

Not regular as 303 , E3 can't be separated.

3 Tz Re? (next day)
I
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Proposition. X is a regular space, which is and countable . Then X is normal

Proof. Fix a countable basis . Pick basis element
, Va,No Satisfying (ACUE

Now note , ACUVa=u (using end countability)B

BCUVi,B
Now define,

Note ,A

If
,

neury revint; ,
wow is; I con't contain any point of U: So

,
unv = 0 . Al

Examples. (TzTy)

·Re is normal : A and Bare closed Sets atA
, afB [a, atra) &BC me V = UTakata)

a

be B, bA [b, bayn) Ac -V = U[b , Yatb)

Note that [a, atual 1[b, bins) = % 0 Son UNV-0. "IIIII

· RexRe is regular but not normal.

↳= E(x,x) : x + IReS
↳ IRC

A = Sc-veL : x is rationals

subspace topology·Eas

B = [(x,x) + 1 : x is Irrationals
is discrete-

· If IRI was normal
,

we

V L Can Sep A and B by open
· Kn = See Q50.1 : E,

u +)xin-un Sets U and V .

& V

.... Postponed ...
· XtB choose n Sit · [,

x+)x[u, n+i)



Urysohn's Theorem .

Let
, X be a normal Topological Space ,

A and B are disjoint closedSubset.

Then
, If : X-10 , 17 So that ,

f(x) = 0 and f(B) = 1.

Proof: Let
,
U = X/B ,

ACUTEVI . write Qua = [, Va ,
--- -k,

... )
I

For every is FK Such that vicrcy and noother re for leK+e[R , r) ·

Using normality we can find open Sets
,

Ur
,Er Vo So

, for every

rational 9 we have found open Sets Ug,
with the prop. for Pa ,

Up Ugo

fix-> [0 is given by u +(inf)Epeton & : neUp3) for reps

I for xEB

CONTINUITY OF fo Enough to Show f+ (v, a) is open in X- Suppose, ref+ (r,0)

f(x)>r· F rational p St · flukP>U = PAQ) -U -met .
Now , yeUp flyyPir .

UCf" (r.b).: fi(ra) is open .

#
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Baire Category .

· X is ofIt category ,
it XUClosed se (n) = 0 .

·Otherwise X is of and category.

Thmo Complete metricSpace are of the 2nd category.
-> (Proof of Re is not normal) [01] = Vin U293are forSam an>1 &EQ

So
, Ex, 30,

(n-a
, a) &En => 9t(3x+ 3) 1 Q

IfContains Rational

Now, (9 , 9) -AEU . For some S
,
[9 , 975) xF9. -91s) EU . Choose

C (96 , 978)nkn · Then [E)[ch)xEcc+1) there

Recallo In-f convergergent + pointwise Convergent ·

PropN . An-f Converges uniformly to a function fo Then + is continuous ·



Extension Theorem .

Theorem: (Tietze ExtensionTheorem)-1Let, X be normals AX is closed

given continuous f : A-To, i)
,
f extends to F: x -> 2011

2 Given Continuous fiA-1
,
f extends to cont fix-> I.

Proof : 1 WLOG ,
f: A-Frrt

,
no be the continuous function.

STEP L : Find 9 : X-Err] such that, i) Ig()-fall for aA i) Igal35
To do this consider G = f+ (Er-vs]) , Gzf

+ )[Y . 0]) · Apply Uryshon's temma
to gets g : X - 55 1 57, g(a) = -5 , g(2) = Y ·

STEP2. Call the g
in stept , fi fix-E] , ff-E].

Applying previous step We get fix
-> ---- > f-fA-[-(i,]

·

We get, fn : X- > [-((
STEP 3 · Su= fi : X - Err] . Now note that,

(m>n) Sm()-Suckil < (
+

- (1 ... ) < (v
: Su F .

Note that , f(a)-f(u) = himfo
·

11 fiA-R= ( ,1) E11] · Now by part (D F :X-Ev] . Now choose,

D = F * (E-113) and apply Vryshow > 4 : X+ 50 ,1 Sit , Y(D) 20 and

Chote DnA= $)

4(A) = 1. So just defines F= 4 . :X-( , 1) · Finishes the proof·

Metrization Theorem

Theorems . Every regular space withCountable basis is metrizable·

IDEA . Construct map XITam such thatFis injective· Fis
homeomorphism tothe image.

PROOF [ODW--metric on it is(1) = Sup() · this metric

is equivalent to the product topology of [0 ,10.



How does the open-set looks like ? Under the metric, Bu(3) = U
,
Ex - ... xUX...

Un3 = Syetoi] : Knykng3 , Choose n St , Y(3 kne-US=o => Ba(a) is

open in pood.

- X is regular and have countable basis [Bn3 · RegularityEVENEV.

Choose basis , ueBruBIV.UB-U (countable Union) . Every
open Set is a countable union of closed sets.

We get a function fox-[01
,
flut = o and fluo.

=> EBnS countable basis . qu : X- [01] Str gn(X)30X-Bn · F : x-> 50,70
x1 (g , () , 92(4) ,

....)

T will imply . Fisfective

-> z= F(x) . Fix Z is homeomorph. Note: F is bejective · Enough to show F is open.
↓ open in X

For every ZoeF(u) ,
choose noth StZof(o) . Choose N S.t · NotBNEU

, INCoDo · 9N(V4 = 0

Take
,

W=ZotW asz =gno . Note ta,is

WnZ = WnF(x) = [F (r) :X = GF() :B
= F(Bw) [F(u) . ·


