Example. Q^o is a Baire Space! Pair space: Countable intersection.
{Un} popen t dense $\subseteq \mathbb{Q}^d$. Subspace top. (of open dense set is open dense **Lecture-4**

Example. Q^c is a Baire space! Bair space: Countable intersection.
 $\{U_n\} \rightarrow$ open t dense $\subseteq \mathbb{R}^d$. Subspace top. (of open dense set is open dense)
 $\{V_n\} \rightarrow$ open t dense $\subseteq \mathbb{R}^d$. Subspace top.
 $P\{v_n\} \rightarrow \text{open} + \text{dense} \in \mathbb{R} \Leftarrow (v_n = 1)$ open + dense \subseteq Q°. Subspace top.

open + dense \subseteq R \Leftarrow ($v_n = Q^c \cap v_n$)
 \downarrow
 $\$ mple. $\mathbb{Q}^{\mathbb{C}}$ is a Baire.
 $\S \rightarrow$ open t dense $\subseteq \mathbb{Q}^{\mathbb{C}}$.
 $\S \rightarrow$ open t dense $\subseteq \mathbb{R}$.
 \Downarrow
 $\bigcap V_n$ dense in $\mathbb{R} \cdot \frac{e^{\mathbb{Q}^{\mathbb{C}}}}{e^{\mathbb{Q}^{\mathbb{C}}}}$
pplication 1. (Uniform $\frac{d}{d}$
 $\frac{d}{d}$ This don't work!

& Application 1 . (Uniform Bounded Principle)

 X be a complete metric space. $\mathfrak{T} \subseteq \mathbb{C}(\chi,\mathbb{R})$. If, \mathfrak{T} is pointwise bounded. Then there exist non-empty open subset USX sit F is <mark>uniformly bounded</mark> on U.

Proof: X is a Batie Space. Fix, nem, te F,
 $E_{n,f} := \{ z \in X : |f(x)| \leq n \} \subseteq X$ (Closed by Cont. of f)

Now, $E_n := \bigcap_{f \in F} E_{n,f} \subseteq X$. (Closed again)
 Proof: X is a Baire Space. Fix, new, se F,

$$
E_{n,f} := \left\{ x \in X : |f(x)| \leq n \right\} \subseteq X \quad \text{(closed by Cont of f)}
$$

Now,
$$
E_n := \bigcap_{f \in F} E_{n,f} \subseteq X
$$
. (closed again)

Now, $E_n := \bigcap_{f \in \mathcal{F}} E_{n,f} \subseteq X$. (closed again)
Note that, $UE_n = X \Rightarrow \exists U \subseteq X$ (open) and ke N 5.2. $U \subseteq E_{k} \Rightarrow |f(x)| \le k \quad \forall f \in F$

Topological Spaces.

- $-\n\$ efinition
- Example. Discrete, Cofinite etc. (Metric Spaces)
- Maps, homeomorphism. $\epsilon_{\mathcal{I}}$ solves \mathbb{R}^n
	- Ti: points are closed (not eq. Indescrete)
	- T_2 : Hausolorff (not eg. finite complement)
- Basis and Subboets Definition of Basis Example: Metric Space x, B={open balls}
	- From a basis β , a topology $\int_{B} = \frac{5}{2}$ collection of U that one union of elements of \mathcal{E}_{e}^{q} . \mathbb{R} , $\mathbb{B} = \{(\mathfrak{a}, \mathfrak{b}) : \mathfrak{a} < \mathfrak{b} \in \mathbb{R} \}$.

 $\begin{array}{c}\n\longleftrightarrow \\
\begin{array}{c}\n\downarrow \\
\downarrow\n\end{array}\n\end{array}$

- Definition of Subbosis. If S subbasis $B_S = \{y_1 \ldots y_s : y_i \in S\}$ Collection of Subset of X
Such that $\forall x \in X, \exists \forall x \in S$ $\frac{2}{15}$ basis
- Definition of ordered set (x, \le) . We can define $\{(\alpha, b) = \{x \in x : a < x < b\}$ $B = \{(a, b): a, b \in X \cup \{-\infty, \infty\}\}$ is basis for a topology $\begin{cases} (a, a) = \{x \in X : a < x\} \\ (-a, a) = \{x \in X : x < a\} \end{cases}$
	- on X. To is called order topology.
- Finite Product topology. XXY, B = {UXV : UE tx} (check it is a basis for a \rightarrow topology of $xx\uparrow$) Projections are Continuous (also open)!
	- Theorem. X.Y, z top spaces then,

$$
Map(\mathbf{z}, x \times Y) \longleftrightarrow Map(\mathbf{z}, x) \times Map(\mathbf{z}, Y) \quad (\text{Bijection})
$$
\n
$$
f \longmapsto (\pi_{10}f, \pi_{20}f)
$$

Product.

\n- Thirde product (in the Some, every use alfixed product of two. Top)
\n- $$
M_{PP}(z, x, \ldots, x_n) \leftarrow \text{Time}(z, x_n)
$$
\n
\n- $M_{PP}(z, x, \ldots, x_n) \leftarrow \text{Time}(z, x_n)$ \n
\n- $M_{PP}(z, x^{n}) \rightarrow \prod_{i} X_{i}$ \n
\n- $M_{PP}(z, x^{n}) \rightarrow \prod_{i} M_{PP}(z, x_{i}) \rightarrow \text{Time}(z, x_{i}) \rightarrow \text{True} \cdot \text{True} \cdot$

Proposition. A is closed \Leftrightarrow All limit points of A belong to X .

.
Proposition. $\bar{A} = A \cup \{$ limit paint of $A \}$ Proof. {Limit paints of $A\bigcup A\subseteq A$, Enough to Show $A\cup\{\textit{Limit points}\}$ = closed prove it by taking Complement of (Auflimit paint).

·

E Exercise.

- $\overline{\mathbb{O}}$ X is Hausdorff \Leftrightarrow $\Delta \subseteq x \times x$ is closed.
- ^② Subspace of Hausdaff Space is Hausdaff.
- ③ Product of two Hausdorff Space is Hausdorff .

Connectedness.

A topological Space is Said to be connected, if any map $X \rightarrow \{0,1\}$ is constant. Prop. X is commected \Leftrightarrow $\not\exists A,B$ open, non-empty, $X = A \cup B$ and $A \cap B = \emptyset$. Proof. (Not writting). Example. Foi] is Connected.
• Indiscrete topology is Connected. Constant.

• Constant.

• Constant.

• Constant.

• Word:Hing).

• Con] is Connected.

• Discrete topology is Connected.

• Discrete topology is Connected.

• QC R; Not Connected. ∝EQs, ((m,a)nQ)v((m,m)vQ) $\curvearrowright \mathbb{Q} \subseteq \mathbb{R}$; Not connected. $\alpha \in \mathbb{Q}^c$, $(\leftarrow_{\alpha,\alpha}) \cap \mathbb{Q}$) \cup $((\alpha,\alpha) \cup \mathbb{Q})$ $\frac{1}{3}$ $\frac{1}{3}$

Proof: Look at restrictions $A - fl$ AUB (s
 $A \rightarrow A \lor B$
 $A \rightarrow \{0,1\}$
 $A \rightarrow \{0,1\}$ B Prop. Image of connected Sets are connected under continuous map. Proof. (Not writting) . Connected · Def" of path connected . A but not |||| | | | | | Path Connected ·> X path connected \Rightarrow X connected ↑xYU0, 1x20) · X connected \Rightarrow X path Connected. E.g. Comb Space $U_{\{0,1\}}$

C is not path Connected: $\Upsilon:[0,1]\rightarrow C$, $\Upsilon(0)=z-\frac{1}{2}(0,0)$.

- Prove that open ball arround {con) { is not path connected. $-\begin{array}{ccc}\n\Pi:C\to\mathbb{P}^{n}\end{array} \begin{array}{c}\n\Rightarrow \Upsilon\neq&\text{Constant }dz \Rightarrow \operatorname{Im}(\Upsilon)\cap\mathbb{P}^{n}\end{array} \begin{array}{c}\n\Rightarrow \operatorname{Tor}:\mathbb{P}^{n}\end{array} \begin{array}{c}\n\Rightarrow \operatorname{Tor}:\mathbb{P}^{n}\end{array} \begin{array}{c}\n\Rightarrow \operatorname{Tor}:\mathbb{P}^{n}\end{array} \begin{array}{c}\n\Rightarrow \operatorname{Tor}:\mathbb{P}^{n}\end{array} \begin{array}{c}\n\Rightarrow \operatorname{Tor}:\mathbb{P}^{n}\end{array}$ $\left[\sigma$, $\varepsilon \right)$ $\gamma|_{[0,s)} : [0,s) \rightarrow B_2(1)$
disconnected - Definition of Connected Components. (As equivalance classes) of
Writing topological Space as Union Commected Components. Path Components. - Connected components may not be open. Example: Q (cc are single tons) R and Rⁿ are not homeomorphic ~ Removing a Point - Next Day: Connected Subsets of R.
	- . Open sets of R.

->

Date: 20/08/24

1	1	1	1	1	1	1	1	1	1	1	1	1									
2	\n $\begin{array}{r}\n 1 \\ 1\n \end{array}$ \n																				

Useful map:
$$
i_1 : X^1 \longrightarrow U^+
$$
 $i_1(x) = \begin{cases} x & \text{if } x \in U \\ \infty & \text{if } x \notin U \end{cases}$
\nIt is continuous: $W \subseteq U \subseteq U^+$ open, $\infty \in W$, $U^1|w = K$
\n $(i_1)^{-1}(W) = W$ and $(i_1)^{-(w)} = X^1|K$

ш

Tychonoff's Theorem. Product of Compact Sets are Compact. Proof: (Uses Zorn's lemma) Let, {Xa} be a collection of compact Sets. X= TTXx To Show X has F.I.P. Let, $C = \begin{cases} \text{Finite intersection of } & \text{if } \\ \text{F=} & \text{if } \\ \text{$ Partial order: Inclusion \leq Chain: $M = \{ \partial A \}$ for $A \neq \alpha'$ $\partial A \subseteq \partial A$ or $\partial A' \subseteq \partial A$. Upper bound of chain: William By Zorn's lemma we have a maximal element of c . Enough to check FIP for this maximal element. - Call this collection 2. $\pi_{\alpha}: X \to X_{\alpha} ; \quad \{ \pi_{\alpha}(p) \} \rightarrow \text{has} \quad \text{for} \quad \text{Let} \quad y_{\alpha} \in \bigcap_{p \in \mathbb{A}} \overline{\pi_{\alpha}(p)} \text{ is the case such a for every } \alpha.$ We will show, $y = (y_{\alpha}) \in \bigcap_{\alpha \in \mathbb{R}^n} \overline{D}$. $Let_3 \quad Y_{\alpha} \in U_{\alpha} \subseteq \chi_{\alpha} \Rightarrow \quad U_{\alpha} \cap T_{\alpha}(0) \neq \emptyset \quad (\forall D \in \mathcal{D}) \Rightarrow \pi_{\alpha}^{-1}(V_{\alpha}) \cap D \neq \emptyset \quad \forall D \in \mathcal{D}.$ • As ∂ is maximal in $\mathcal{C}_5 \longrightarrow \pi_{\alpha}^{-1}(U_{\alpha}) \in \mathcal{D}$: A Contain every Sub-basic open Set Containing y. If V is a basic open set containg y₂ $V \wedge D \neq \emptyset$, for all $D \in \mathbb{R}$. So, $y \in \overline{D}$ for all $D \in \mathcal{A}$ $: y \in \bigcap_{D \in \mathcal{D}} D$

Function Spaces.

 $\text{Map}(X,Y) = \Big\{$ Cont. functions from $X \rightarrow Y$ $\frac{M}{\sqrt{2}}$ $Topology on it S(c, U) = \begin{cases} f: x \rightarrow Y: f(c) \subseteq U \end{cases}$ \leftarrow Sub basis of a topology t. functions from $X \rightarrow Y$
S(c, U) = { f: $X \rightarrow Y$: f(e) $\subseteq U$ } + Sub basis
Compact open in The corresponding topology is called compact - open topology on Map (X>Y) $\exists x$ ponential $\downarrow \omega$: $(Y^x)^{\mathcal{I}} \cong Y^{x \times \mathcal{I}}$ (Bijection as a set/function) In topology we want bijection blu; $\mathsf{Map}\left(\mathsf{z},\mathsf{Map}\left(\mathsf{x},\mathsf{y}\right)\right) \longrightarrow \mathsf{Map}\left(\mathsf{z} \times \mathsf{X},\mathsf{y}\right)$ ϕ \rightarrow $\hat{\phi}$ ($z \times x \rightarrow \rightarrow$ Map(x, x) xx) In order to ev: map being cont. We need \times to be locally compact + Haus. In onder to ey: map being cont. We need \times to be lo
Proposition. If X is locally compact, Hausdorff Then Proposition. If X is locally compact, Housdorff Then.
 $eV: X \times Map \longrightarrow Y$ is continuous. $Proof:$ $V \subseteq Y$ open, $(x, f) \in ev^{-1}(V)$ (Note, $f(x) \in V$ and $f^{-1}(v)$ is open) X is locally compact, Husdorff, \exists open \vee Such that $\overline{\vee}$ is compact and $x \in V \subseteq \overline{V} \subseteq f(\vee)$ So, $ev(v \times s(\overline{v}, v)) \subseteq U$ and thus, $ev^{-1}(v)$ is open. \Box Theorem: There is one-one correspondance blo Map $(z, Map(x,y)) \leftrightarrow Map(zx, y)$
Proof: We will show, ϕ cont. $\leftrightarrow \hat{\phi}$ is continuous. Proof: We will show, ϕ cont. $\Leftrightarrow \hat{\phi}$ is continuous. W $\frac{1}{2}$
Proof: We will show, ϕ cont. $\Leftrightarrow \hat{\phi}$ is continuous.
(=) $\hat{\phi}$ is continuous. Look at $\epsilon \in \phi^+(g(c,v))$, $\hat{\phi}$ ($\tau \times c$) $\epsilon \cup \neg$ $\tau \times c$ $\epsilon \hat{\phi}^{-1}(v)$; We get a open not ϕ of 7 We will show, ϕ cont. $\Leftrightarrow \hat{\phi}$ is continuous.
 $\hat{\phi}$ is continuous. Look at $\epsilon \in \phi^+(S(\epsilon, v))$, $\hat{\phi}$ ($\epsilon \times c$) $\epsilon \cup \Rightarrow \epsilon \times c \leq \hat{\phi}^-(v)$; We get a open not λ of τ
Such that $W \times c \subseteq \hat{\phi}^+(v) \implies w \in \phi^+(S(\epsilon, v))$.

& All the definitions are rigged in a way that everything will full in place...

Countability Axioms.

Definition: X is said to have countable basis at x if, \exists Countable

Collection $\{B_n\}$ of open nods of x Salisfying \forall open \cup ox, \exists $B'_n \subset O$.

- # First Countable: If every point $x \in x$ has a Countable basis.
- # Example: (No) first Countable) R with Cofinite topology. Take, $x \in X$. Suppose $\{B_n\}$ be the Countable Collector of open sets, $x \notin B_n^G = \{y_i, y_i\}$ VB_n^c at-most countable. Choose, $x+y \notin UB_n^c \Rightarrow x| \{y\}$ is open but don't contain any B_n . \mathbb{Z}/n
- # Example: (Not first Countable) $X = [0,1]^5$ (S=uncountable)
- Let, $x \in X$ and $\{B_n\}$ Countable open sets containing z.

Defⁿ of Second Countable/Seperable.

- · Any un countable Set with discrete topology -> not 2nd countable
- $R^{10} = \{- \text{Seq}(x_n) : |x_n| \text{ bad } \}, \quad d(x, y) = \text{Sup } |x_n y_n|$
	- $C = \begin{cases} \text{Sequence} & \text{with } \text{o's} \text{ and } \text{If's } \end{cases}$, $d(c,c') = \begin{cases} \text{O}, & c=c' \\ 1, & c+c' \end{cases}$
	- ⇒ B_c(b2), cec are uncountable disjoint open sets.

Theorem. O Product of 2nd countable Space is 2nd Countable.

Proposition. 1 Every open cover of 2nd Countable Space has Countable Cover.

$$
\{B_n\} = \text{Countable basis of } X
$$
\n
$$
\{B_n\} = \text{Countable basis of } X
$$

$$
\{B_{x}: x \in X\} \subseteq \{B_{n}\}
$$

Countable
Choice

$$
\{B_{x_1},\ldots,B_{x_n},\ldots\}\qquad\qquad \wedge \qquad \qquad \qquad \mathcal{A} \qquad \qquad \mathcal{C} \qquad \qquad \alpha_{x'}\qquad \qquad \ldots
$$

2)
$$
A = \{x_n : x_n \in B_n\}
$$
. Note that, $\overline{A} = X$.

 R emark: Existance of Cauntable dunse set + First countable \Rightarrow Second countable

W)

Proof: Nothing to prove in 1

Vrysohn's Theorem.

PROPN. fn + f Converges uniformly to a function f. Then f is continuous.

Ex tension, Theorem.	
Theorem.	(Tietze Extension: Theorem). ①Let: X be normal, $A \subseteq X$ is closed
Given continuous $f: A \rightarrow [0,1]$, f extends to $f: X \rightarrow [0,1]$	
② Given continuous $f: A \rightarrow [0,1]$, f extends to $f: X \rightarrow [0,1]$	
Proof: ① NLoG, $f: A \rightarrow [0,1]$, f extends the continuous function.	
SETP1: Find $\frac{3}{4}: X \rightarrow [0,1]$, f such that, 1) $ g(0) - f(0) \leq \frac{2f}{5}$ for a.e. 11) $ g(0) \leq \frac{7}{3}$	
To do this Consider, $G = f^{-1}([F_5 - 0,1])$, $C_2 = f^{-1}([E_9, \tau])$. Apply $\frac{1}{2}$ means $\frac{1}{2}$	
To get:	3: $X \rightarrow [0, 1, 1]$, $G(G) = -\frac{\pi}{3}$, $G(G) = \frac{\pi}{3}$, $\frac{\pi}{3} \leq 1$, $f^{-1} \leq 1$, $A \rightarrow [0, 1, 1]$
SETP2: Call the g for Step 1, $f_1: f_1: X \rightarrow [0, \frac{\pi}{3}]$, $f^{-1} \leq f_1: A \rightarrow [0, \frac{\pi}{3}]$	
APPUing previous Step we get $f_2: x \rightarrow [-\frac{\pi}{3}, \frac{\pi}{3}]$, $f^{-1} \leq f^{-1} \leq 1$	
We get:	$f_1: X \rightarrow [-\frac{\pi}{3}]$, $(\frac{\pi}{3})^{n-r}$
Step 3: $S_n = \sum_{i=1}^{\infty} f_i: X \rightarrow [-\frac{\pi}{3$	

(Note
$$
D \wedge A = \emptyset
$$
)
\n $\varphi(A) = 1$. So just define, $\hat{f} = \varphi \cdot \hat{f} : X \rightarrow (-1, 1)$. Finks the proof.

Theorem. Every regular Space with Countable basis is metrizable. I DEA. Construct map $X \xrightarrow{F} [0,1]^{\omega}$ Such that Fis injective. Fis IDEA. Construct map $\times \xrightarrow{F}$ [o,i]
homeomorphism to the image. $\frac{1}{10}$ EA. Construct map $\lambda \rightarrow 10$, Such that Γ is infective. It's
homeomorphism to the image.
Proof. $[0,1]$ ^w \rightarrow metric on it is, $d(\tilde{x}, \tilde{y}) = \sup_{\eta} (\frac{|\tilde{x}_n - y_n|}{n})$. this metric is equivalent to the product topology of $[0,1]^\omega$.

How does the open-set looks like? Under the metric,
$$
B_2(\xi) = U_1^{\xi} \times \cdots \times U_n^{\xi} \times \cdots
$$

\n $U_n^{\xi} = \{y \in [0,1]: |x_n \cdot y| \times n \epsilon\},$ chose *n* s.t, $k_n \cdot \xi \Rightarrow 1 \times n \epsilon \Rightarrow U_n^{\xi} = [0,1] \Rightarrow B_2(\epsilon) \times \cdots$
\n \rightarrow X is regular and have cantable basis $\{B_n\}$. Regularity $\Rightarrow \epsilon \vee \epsilon \vee \epsilon \vee \epsilon$
\n \rightarrow 26.12. Use back, \times 6 $B_{n_k} \leq B_{n_k} \leq U$.
\n \rightarrow 26.13. The result is a countable union of closed sets.
\nWe get a function $\{\cdot, x \rightarrow [0,1], \int_{\epsilon} (v^{\epsilon}) = 0$ and $\int_{\epsilon} (U) \times 0$.
\n \rightarrow 18.13. \int cantable basis. $\int_{\epsilon} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1$

$$
= F(B_{\mathsf{N}}) \subseteq F(\mathsf{U}).
$$