Post - midsem

Lecture - 15

Quotient Spaces. (Armstrong)

open but not close map

Def": X, Y are topological Spaces. 9: $X \rightarrow Y$ is Surjective. It is called quotient map if $\forall U \subseteq Y = q^{-1}(U)$ open $\Rightarrow U$ is spen.

Example. I Projection map. II Open map that is surjective is a quotient map. III p:x > Y Surjective and closed map, then it's a quotient map.

 $\mathbb{R}^2 \longrightarrow \mathbb{R}$ and $\mathbb{T}: (xy=1, x>0) \longrightarrow (0, \infty)$ closed open

Closed map but not open $(\stackrel{1}{p}: X \rightarrow Y \text{ is Surjective from Cpt to Hausdorff})$ $[-3,2] \rightarrow [0,1] \rightarrow \begin{cases} x & \text{if } x \in [0,1] \\ 0 & \text{if } x \neq 0 \end{cases}$ Example of quotient map that is not open or closed

 $X \leq \mathbb{R}^2$, $X = \{(x,y) \in \mathbb{R}^2 : z \leq 0 \text{ or } y = 0\} \longrightarrow X - axis$

Gluing Lemma: X=AUB, A and B are closed. f: X = Z S.t flA and flB are continuous. Then f is continuous. (Similar Statement holds for Open A, B)

+

Lemma: Compact \rightarrow Hausdorff Surjective map is quotient map. Example: () [0,1] \rightarrow s' (t $\mapsto e^{2\pi i t}$) () $D^{n} \rightarrow s^{n}$; $int(D^{n}) \xrightarrow{\psi} iR^{n} \xrightarrow{st^{-1}} s^{n}N$; $i \psi: x \mapsto \frac{i|x||^{2}}{1-i|x|^{2}} \frac{x}{ix||}$ $D^{n} int(D^{n}) \xrightarrow{\psi} N$; j = combining these two we get ψ . Show that ψ is continuous. () $U \not\ni N$, then $\psi^{-1}(\psi)$ is open () $U \ni N$, then $\psi^{-1}(\psi) = \psi^{-1}(\psi)$ is compact. So $\psi: D^{n} \rightarrow s^{n}$ is a quotient map.

 \square

?

Defⁿ: Call USY open if $9^{-1}(U)$ is open. This defines a topology on Y. [Hore, 9.: $X(t_p) \rightarrow Y(s_t)$ Swy map].

OBSERVATION.

- D 9: X→Y is cont
- 2) $9: X \rightarrow Y$ is quotient map.

3) p: X -> Y is quotient map. Then the topology on Z is same as quot top.

UNIVERSAL PROPERTY.

 $9:X \rightarrow Y$ Swij, Y has quotient topology. $f: X \rightarrow Z$ is continuous \Leftrightarrow (1)fog: X > Z is Cont.

Proof. (=>) Trivial (=) Suppose, fog is cont. (fog) -1 U is open => 9-1(f-1(U)) is open here, U'is open. ⇒ f-1(u) open.

 $X \xrightarrow{q} Y$ $\stackrel{Q}{\longrightarrow} f \quad (In T_{op})$

§ Surjective functions } → § equivalance grelation } → If X is top. then, from X on X on X gives a topology [0,1] → S', here 1~0. Remark: Example: $[0,1] \rightarrow S'$, here $1 \sim 0$.

Lecture - 16

Q: P: X > Y be a quotient map. Then the quotient topology is the finest topology that malke P continuous.

Defn: (Weak topology) ... Eg product topology on TTXX that makes projection TTX Continuous.

● $f: X \rightarrow Y$ be Subjective function. So that U open if $f^{-1}(U)$ is open. Suppose I is a topology on Y st. $f: X \to Y$ is cont $\Rightarrow (V \in J \Rightarrow f'(V) \text{ is open in } X)$ so, $V \in Q_{top}$

UNIVERSAL PROP.

$$Map(X_{n},Z) = \left\{ \varphi \in Map(X,Z) : X \sim X_{1} \Rightarrow \varphi(X) = \varphi(X_{1}) \right\}$$

- Surjective open/closed map are quotient map

(closed mapping Lemma.) f: x→Y (X=Cpct, Y= Hausdorff, f is cont.) Scorjective then it is a quotient map.

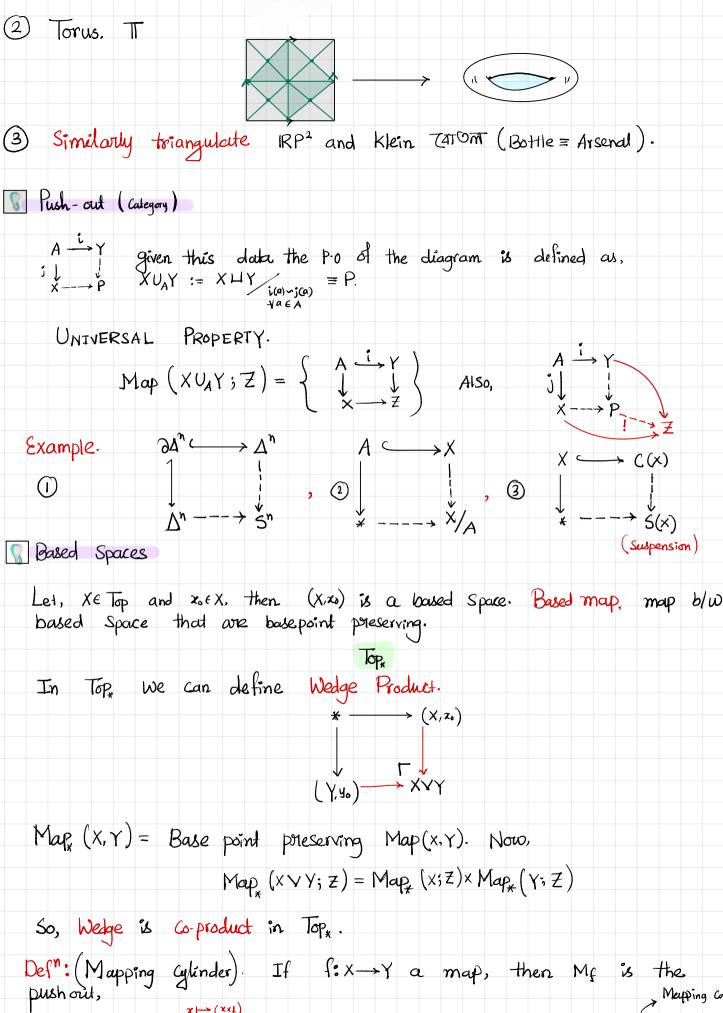
 $\begin{array}{cccc} \hline [o_{11}] & \xrightarrow{\phi} & S' & \Rightarrow & \hline [o_{11}] \\ \downarrow & \xrightarrow{\phi} & e^{2\pi i t} \\ & & & & e^{2\pi i t} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$ Example. (

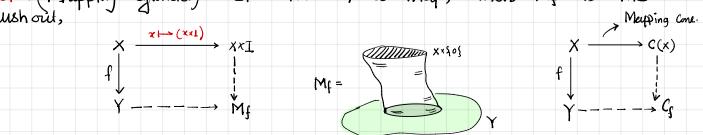
(2) $[0,1] \times [0,1] / (x,0) - (x,1)$ ₫ → (Define, I×I → Ixs $(x,y) \longmapsto (x, e^{2\pi i y})$ ↓ _--- = homeo (universal prop) [0,1] × [0,1] / (x,0) ~ (x,1) (0,y) ~ (1,y) (similar proof) 3 (Mobius Strip) [011]×[011]/(0,y)~(1+y) one boundary Circle. $S^{2}|(UUN) \leftarrow Jlemoving one <math>\Sigma Amulus$ Note that $S^{2}|U \cong D^{2}$ more open ball (alterday $S^{2}:$ (5)Cylinder ~ {x: r < 1x1 < R} 6) ∑ s'×s' (Handle Attachment). Attaching handle to S² (UUV) gives us Torus. $\rightarrow \underbrace{\sum_{2} = \text{Surface of}}_{\text{Surface of}} \quad \underbrace{\text{Inductively}}_{\text{Surface}} \quad \underbrace{\sum_{2} := \text{genus g}}_{-\text{Surface}}$ (1) Attaching handle to Torus. genus 2 (Polygonal Presentation) , Cut along this Cut along this = So, actagon with the edges identified like this is Jo For, Eq:= 49-Sided regular polygon with the edges identified like approxibit a2b2a2'b2' Will give us surface of genus g. (Classification of Surface) # Σ is a Surface contained in \mathbb{R}^3 which is [closed], $\partial \Sigma = \emptyset$, then $\exists g \gg 0$ Such that, ∑ ≃∑q X is top space and ASX closed subspace. X/A = X/qna', a, a' c.A. (Def") Exercise. If X is compact and A is closed. Then $(X \setminus A)^{\dagger} \simeq_{homeo} X/A$. (Hausdorff) Application. () $[0,1]/_{\sim} \rightarrow s^{1}$ Def": $C(x) = x \times [0,1]/_{x \times \{0\}}$ = C(X) Cone of X. $\textcircled{D} \quad D^{n}_{\partial D^{n}} \cong S^{n}_{\partial D^{n}}$

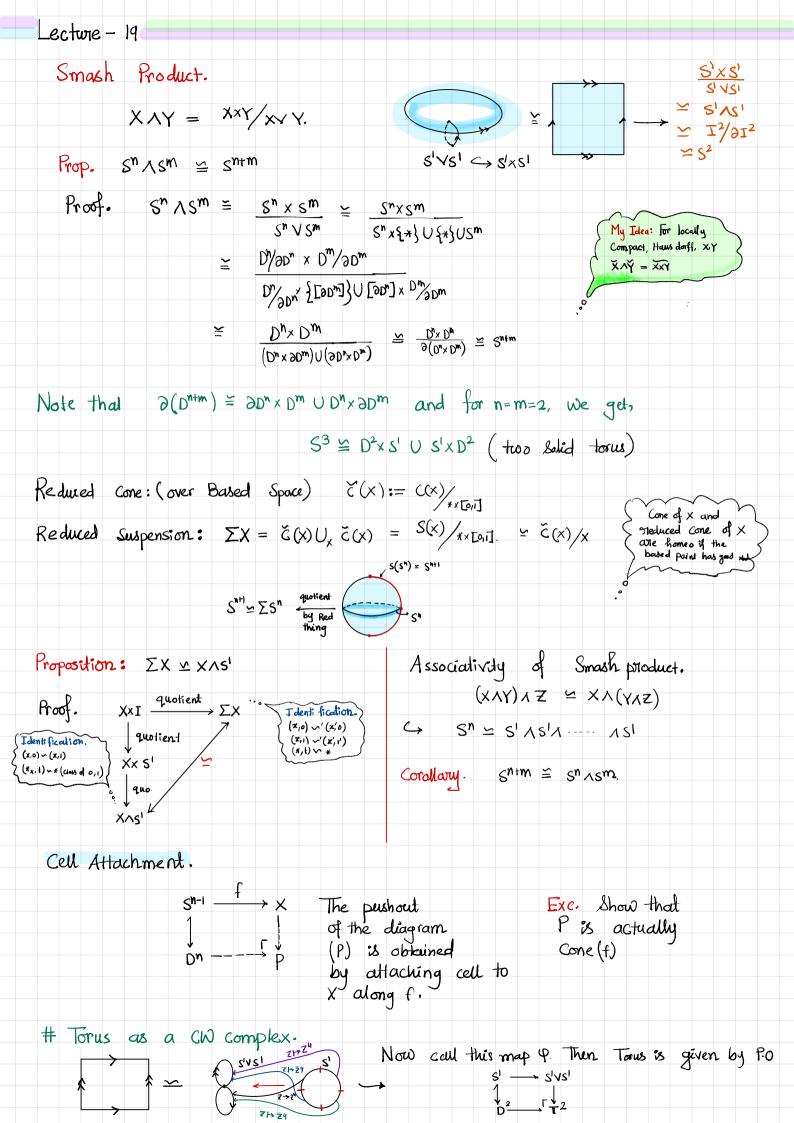
Example ()
$$\alpha(s) = 0^{2}$$
, $s_{1}^{(n+1)} \rightarrow 0^{2}$
 $(1+1) \rightarrow 1^{2}$
 $s_{1}^{(n+1)} \rightarrow 1^{2}$

Now we can do the Some for R.C.
$$P_{k}(w) \longrightarrow P(w)(w)$$

If $L_{1}L_{2}$ one too times in v , we vert in $w = dard + \frac{1}{2} \frac{$







CW Complex.

Def^{*:} A cw complex x has chain of subspaces.

$$\emptyset = X^{(1)} \subseteq X^{(1)} \subseteq X^{(1)} \subseteq \cdots \subseteq X^{(n)} \cdots$$

Such that $X = \bigcup X^{(n)}$ with the properties—
(1) $X^{(n)}$ is obtained from $X^{(n)}$ by attacking cells $\Psi_{n}: S^{n-1} \rightarrow X^{(n-1)}$ i.e. we have
the following po diagram
 $II: S^{n-1} \xrightarrow{\Psi_{n-1}} X^{(n-1)}$
 $I = \prod_{i=1}^{n-1} \prod_{i=1}^{n-1} \sum_{i=1}^{n-1} \sum_{i=1$

LECTURE 20

TOPOLOGICAL GROUPS

Let	G be	ag	roup	with	m:	ω×Ω	→ C	and	i :	G → (h be	the	multi	plicati	on ou	nd in	vense v	naps	respect	ively.
	ociativ	[dentity						verse).							Ţ
	xGx		ז → (^	хG				hx	G <	m					G –	M				
id x m	1	0	Ū			G		1 1				C.		i.j		>,(
	↓ h×G·	M	`	L C		ia ,	**	o > Gx	0./	m		idx		(a G×	c. /	m	u			
(1~9			Ч				- ų Λ	<u>Ч</u>					U.N.	м					

04.10.2024

Definition. A topological group G_1 is a topological space which is also a group such that the functions $m: G \times G \rightarrow G_1$ and $i: G \rightarrow G_2$ are continuous.

Definition. Let G be a topological group and X a topological space. G is said to act continuously on a space X if the action map $G \times X \longrightarrow X$ is continuous. (Note, when G is discrete, this is equivalent to $X \xrightarrow{Q_{2}} X$, $x \mapsto gx$ is continuous).

Proposition 20.1. Let Y = Z be a quotient map and let X be locally compact, then idx f: X × Y -> X × Z

n des a qu'hint map
Rud ED Exerces

Noo Let G be a locating compact imployed group and H C G be a cland entermough of G. Item
G acto continuendig on G(11 by 16x action, G × G(11 → G(11) → g+H)
(or que 6×6 → G(11) is continuent and G×6 t¹¹ → G×6 (11) → G×6 → G
a quotient map, we get that the action we is continuence). ¹¹ w
$$\int O \int v$$

G × G(1) $\xrightarrow{1}$ G / v
G × G / v

Hoursdorff and SO(n+1)(SO(n) is compact. The other results are analogous.

Proposition 20.3. Let $X \xrightarrow{f} Y$ be a open quotient map such that Y is connected and $\forall y \in Y$, we have $f^{-1}(y)$ is connected, then X is connected. Proof. Let $X = \bigcup \cup \bigvee$ be a separation of X. Then $Y = f(\bigcup) \cup f(\nabla)$, but then as Y is connected, we must have $f(\bigcup) \cap f(\nabla) \neq \emptyset$, thus $\exists y \in Y$ such that $f^{-1}(y) \in (f^{-1}(y) \cap \cup) \cup (f^{-1}(y) \cap \vee)$ and both terms are non-empty, but $f^{-1}(y)$ is connected thus we get a contradiction!

Theorem 20.4. SO(n) is connected. Proof. We proceed by induction, $SO(1) = \{1\}$ is obviously connected. Let SO(n) is connected, then as $SO(n+1)/SO(n) \cong S^n$ it is connected and $SO(n+1) \longrightarrow SO(n+1)/SO(n)$ is an open surjective map, hence by previous Proposition we get SO(n+1) is connected.

Analogously we can show that U(n) and SU(n) are also connected. We can also prove that C(Ln (C) is connected but this requires a little more work!

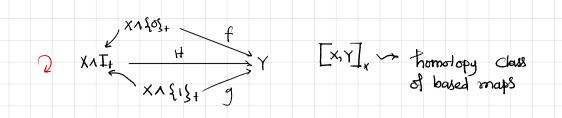
QUATERNION ALGEBRA

We will denote by 11 the quaterion algebra, which is a division ring. We can view $11f = R \oplus R \hat{n} \oplus R \hat{n} \oplus R \hat{n}$, and multiplication is generated by the distributive (aw and the formula $\hat{1}^2 = \hat{j}^2 = \hat{k}^2 = -1$, and $\hat{1}\hat{j} = \hat{k}$, $\hat{j}\hat{k} = \hat{i}$ and $\hat{k}\hat{n} = \hat{j}$ and $\hat{1}, \hat{j}, \hat{k}$ are anti-commutative. Note that if $\omega = \alpha + b\hat{1} + c\hat{j} + d\hat{k}$, then $\overline{\omega} = \alpha - b\hat{1} - c\hat{j} - d\hat{k}$, check that $\omega = 11 \text{ will} = \alpha^2 + b^2 + c^2 + d^2$, and in general verifics that 11 w, we ll = 11 will. In particular we have 11f is a division ring. We can consider $S^3 = S(11f) := \hat{4}$ we 11f = 101 = 1 with quaternions, is a group under multiplication Theorem 20.5. We have $SU(2) \cong S^3$ and $SO(3) \cong 1RP^3$.

Proof Idea! Write If as $C \oplus C_{j}$. Then we S^{3} , $w = (a + b_{1}) + v_{j}^{2}$, with $|u|^{2} + |v|^{2} = 1$. Check that $\|f\| \xrightarrow{l_{W}} \|f\|, x \mapsto xw$ is C-linear, then the matrix of Q_{W} is $\begin{bmatrix} u & -\overline{v} \\ v & \overline{u} \end{bmatrix} \in SU(2)$. Thus we get a group homomorphism $Q : S^{3} \longrightarrow SU(2)$, $w \mapsto Q_{W}$ is a group isomorphism. For the second statement we show that $S^3/3+1S \cong SO(3)$, which will complete the proof of the theorem. Let we S^3 , $\mathbb{N} \cap \frac{C(w)}{2}$, $\mathbb{N} \cap \frac{C(w)}{$

the matrices of the form $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$ are in the image of C. (Vorify this part!)

Based Homotopy



Natural map Top, -> h.Top.

Lecture - 22

Contractible Spaces

Convex Sets are Contractible

Deformation Retraction.

Retraction: If
$$Z \subset X$$
; then $P: X \to Z$ is glatraction if the composition $Z \xrightarrow{i} X \xrightarrow{P} Z$
E.g. $X \hookrightarrow X \times Y \xrightarrow{\pi_1} X$
 $X \xrightarrow{} X \vee Y \xrightarrow{\pi_1} X$
 T_{FR}

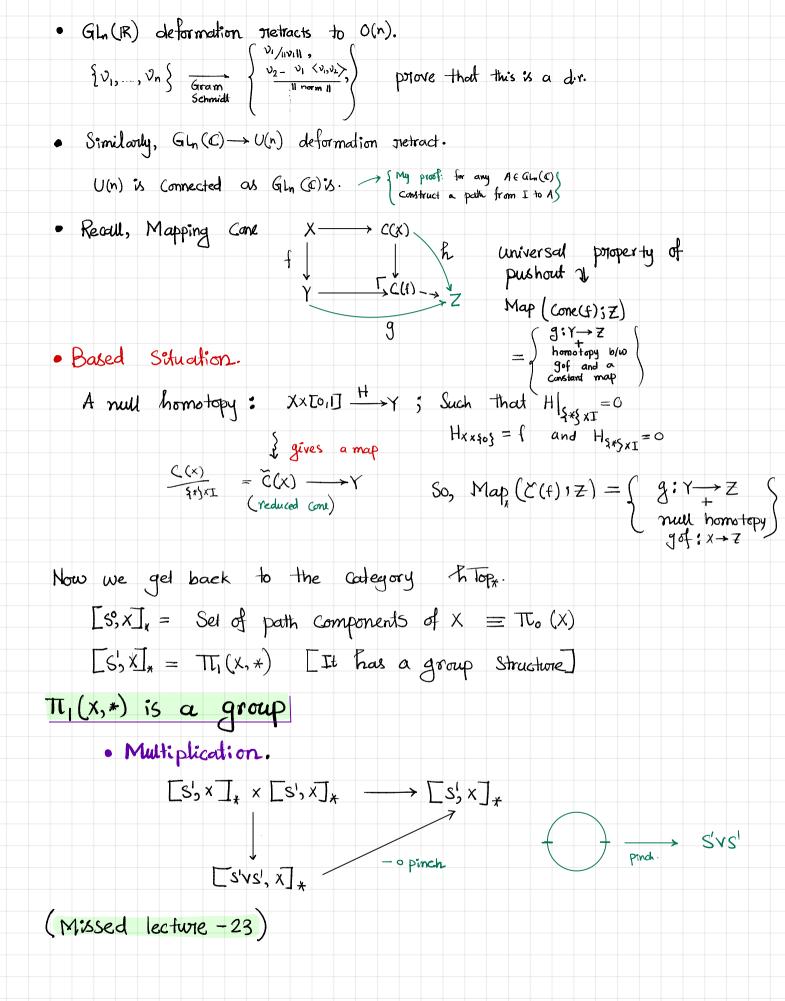
22/10/24

A deformation retract is a homotopy from identity to a retraction.

Example:
$$\mathbb{R}^n | s_0 s \xrightarrow{d.r} s^{n-1}, \quad X \xrightarrow{i} X \times \mathbb{E}_{0,i} \xrightarrow{f} X \xrightarrow{s} D.r$$

• A deformation retract is homotopy equivalance. $A \xrightarrow{i} X \xrightarrow{p} A \xrightarrow{i} X$

= Mop Id (Definition)



Lecture - 23

Group Structure of
$$T_{1}(X_{3}^{*})$$

• $Y_{1}, Y_{2} \in [S_{3}^{*}X]_{*}$ then, $Y_{1}^{*}Y_{2} \in [S_{3}^{*}X]$
• $[T]^{-1} = [T]$ where, $\overline{Y}(t) = Y(t-t)$
• Identity = [Constant loop]
 $Top_{x} \xrightarrow{T_{1}} Groups \qquad f: X \longrightarrow Y \qquad I (f_{1} \circ f_{2})_{*} = (f_{1})_{*} \circ (f_{2})_{*}$
 $\downarrow Top_{*} \xrightarrow{I_{1}} S_{3} - J_{*} \qquad f_{*}: T_{1}(X) \longrightarrow T_{1}(Y)$
 $\downarrow Top_{*} \qquad f_{*}([Y]) = [f \circ Y]$

Example.

 $\mathcal{T}_{I}(\mathbb{R}^{n}, 0) \cong \{0\}$

Eckman-Hilton arguement

S be a group with • and * $S \times S \longrightarrow S$ Now, $s_1 \cdot (-): S \longrightarrow S$ is a group homomorphism w.r.t *. $\Rightarrow (a \ast b) \cdot (c \ast d) = (a \cdot c) \ast (b \cdot d)$ Similarly, (a.b)* (c.d) = (a.c). (b.d) • Identity for ex, a= b= c=d=e*; (e).(c) = (e:e) × (e:e) → e:e=e. axd = a.d S 15 abelian IF, G is a topological group. There are two multiplication. * = Join of loop l = Comes from group mult. II (G) is Abelian [Theorem : Let * CA GX is a deformation stetract. i: A - x - A; ix: π, (A) - π(X) is isomorphism. - For a contractible Space. The (x,*) = {0} $\begin{bmatrix} \mathbf{r} \end{bmatrix} \in \Pi_1(\mathbf{x}, \mathbf{x}) \qquad S^1 \xrightarrow{\mathbf{r}} \mathbf{x} \qquad \Pi_1(\mathbf{s}^1) \xrightarrow{\mathbf{r}} \Pi_1(\mathbf{x}) ; \qquad \begin{bmatrix} \mathbf{r} \end{bmatrix} = \mathbf{o}.$ **Results** If, σ is a path from x_0 to x_1 , then $\pi(x_1, x_0) \longrightarrow \pi_1(x_1, x_1)$ $[r] \longrightarrow [\overline{\sigma}_{*} \cdot \cdot r]$ $\Rightarrow C(\sigma_1 * \sigma_2)[r] = \left[\overline{\sigma_1 * \sigma_2} * r * \sigma_1 * \sigma_2 \right]$ Now, $TT_1(x, x_0) \xrightarrow{C(\sigma)} TT_1(x, x_1) \cdot \qquad I_1 \quad \sigma_1 \leq \sigma_2 \quad C(\sigma_1) = C(\sigma_2)$ $= C(\overline{\sigma}) \quad C(\sigma_1 * \sigma_2) = C(\sigma_1) \cdot C(\sigma_1) \cdot C(\sigma_1) = C(\sigma_1) \cdot C(\sigma_1) - C(\sigma_1) \cdot C(\sigma_1) = C(\sigma_1) \cdot C(\sigma_1) - C(\sigma_1) \cdot C(\sigma_1) = C(\sigma_1) \cdot C(\sigma_1) \cdot C(\sigma_1) = C(\sigma_1) \cdot C(\sigma_1) \cdot C(\sigma_1) = C(\sigma_1) \cdot C(\sigma_1) - C(\sigma_1) \cdot C(\sigma_1) = C(\sigma_1) \cdot C(\sigma_1) \cdot C(\sigma_1) - C(\sigma_1) - C(\sigma_1) \cdot C(\sigma_1) - C(\sigma_1) - C(\sigma_1) \cdot C(\sigma_1) - C(\sigma$ = [52 * (5, 1 5,)* 5] $C(\sigma_1 * \sigma_2) = C(\sigma_1) \cdot C(\sigma_1) - C(\sigma_$ $= \mathcal{L}(\mathcal{O}_{L}) \circ \mathcal{L}(\mathcal{O}_{1})$ Defn: (Simply Connected) Path Connected + TII (X, Xo) + Choice of Xo.

29/10/24

Theorem. (SVK)

X = UvV and U and V are Simply connected and UnV is path Connected. Then X is simply connected. UNV Proof. • Part of loop in V • Part of loop in V • Path in UNV

Claim: If, X is Simply connected then Any two paths b/W two fixed point are homotopic. Now back to the proof. Make a partition of [0,1] $0 = a_1 < a_2 < \cdots < a_r = 1$ (here r) such that $r([a_i,a_j]) \in U$ or V. We have, $r(a_i) \in U \cap V$. Now,

$$\Upsilon = \Upsilon \big[a_{1,a_{L}} \ast \cdots \ast \Upsilon \big] \big[a_{r-1,a_{\bar{r}}} \big]$$

Choose path of from $f(a_{j+1})$ to $f(a_{j}) \cdot \vee Simply$ connected $\gamma|_{[a_{j+1},a_{j}]} = \sigma \Rightarrow \gamma \simeq loop$ in U.

LECTURE 25

COVERING SPACES

Definition. Let p: E -> B surjective map. We say that an open set U C B is evenly covered if $p'(U) \cong \coprod x \cup x$ and $p \mid_{u_{\alpha}} : \cup_{x} \longrightarrow \cup$ is a homeomorphism, and we say p is a covering space if every 2 E B has an evenly covered neighborhood. Ur Up Up Example. 1 (Trivial convering). Let F be any discrete space and p: B×F -> B be the projection, then p is a covering space, and we call it the trivial covering. 2. The q: $\mathbb{R} \rightarrow S^1$, $x \mapsto \exp(2\pi i x)$ is a covering map. Note that ļþ Q (x-1/3, x+1/3) : (x-1/3, x-1/3) → q (x-1/3, x-1/3) is a homeomorphism, and this is an spen set in S', as $q'(q_{(x-\frac{1}{2},x+\frac{1}{3})}) = \prod nez(x-\frac{1}{3}+n,x+\frac{1}{3}+n)$, and as each restriction is an open map, we get q is a covering space "Medieval picture of covering map!" 3. The map p: s' -> s', 2 +> 2" is a covering map, n E Z_21. We have the following diagram $x \stackrel{P}{\longrightarrow} S^{1}$ Then $p_{A}^{-1}(q^{n}(a,b)) = \prod_{k=0}^{n-1}(a+\frac{k}{n},b+\frac{k}{n})$, for $b < a + \frac{1}{n}$ 4. (2. fold cover of IRP"). S" 2 , IRP" the standard quotient map is a covering space. Pick open set U = f(S) such that $U \cap (-U) = \phi$, then $q^{-1}(q(U)) = U \amalg (-U)$, and another medieval picture of covering map". each restriction is a homeomorphism if we choose $U \subseteq D_{1}^{*}$. Thus q is a covering space

Proposition 25.1. Let G be a group acting on a space X such that every point $x \in X$ has an open neighborhood U such that $U \cap g U = \emptyset \forall g \in G$. Then $X \rightarrow X/G$ is a conving space. Proof. Let $[X] \in X/G$ and $x \in U$ satisfying the hypothesis, then $\overline{q'}(q(U)) = \amalg g \in g \cup$ is open hence $[X] \in q(U)$ is evenly covered and hence $X \rightarrow X/G$ is a covering space.

Example. (Lens space). We can view C_m as a subgroup of S' as the mth roots of unity. Then $S^1 \cap S^{2n+1}$, whose restruction gives an action of $C_m \cap S^{2n-1}$, we define the Len's space to be

01. 11.2024

 $\chi m (2n-1) = S^{2n-1}/Cm$, then $S^{2n-1} \longrightarrow \chi_m(2n-1)$ is a conversing space. Note that the adian of Cm on S^{2n-1} is free, and then by Hausdorffness of S^{2n-1} as there only finitely many pre-images let then be gx e Ug, for $g \in Cm$, then let $V = N_0 \in cm$ $g^+ U_g$. Then $x \in V$ satisfies the hypothesis of the Proposition 25.1. In particular, the above example shows that if C_1 is a finite group acting freely on a Hausdorff space X, then $X \to X/G$ is a covering space.

Some LIFTING THEOREMS

Lemma 25.2. (Path lifting). Let p: E -> B be a covering map, and let Y: [0,1] -> B be a path starting at bo, then I! lift i of r starting at eo E p-1 (bo). Proof Let {Urils: LE [0,1]} be everily covered neighborhoods, then {5'(Urils): LE [0,1]} is an open correr of [0,1], then by Lebesque number lemma, 3 5>0 such that [0,1] -----→ B V C r' (Urit) for some t, whenever diam V < S. Then 3 0 = s. < s. < . < sm = 1. such that r([si, sit1]) is contained in an evenly covered neighborhood. Then let eo E p⁻¹(bo), and let ~ (so) = eo. Now as eo E Va. where p'(Uo) = 11 × Va, then define ~ [Eso, so] = (p|Va) 'o ~ [Eso, so] Continuing this way we get an unique path ~ which is the lift of ~ starting at e. "nicely lifted Lemma 26.3. (Homotopy Lifting). Let p: E -> B be a covering map (en T(su) Vi Let H: I × 1 -> B is a homotopy such that H(0,0) = bo. Then 7: lift \widetilde{H} : $I \times 1 \rightarrow E$ such that $\widetilde{H}(0,0) = e_0$. Further if H is a (Plv.) homotopy of paths V1 and V2, then H is a homotopy T[Esi, Sin] between \widetilde{r}_1 and \widetilde{r}_2 . 5; Sin ß Proof. Note that if we can show $\exists ! \tilde{H}$ such that $\tilde{H}(0,0) = e_0$, evenly covered" then the last hypothesis is immediate from uniqueness of path lifting. So it remains to show that]! lift It satisfying $\widetilde{H}(0,0) = e_0$. Uniqueness of the homotopy lift follows from uniqueness of path lifting, so we only need to show the existence. Once again using Lebesgue number lemma, 3 0= soc sic. csm=1 and O< to <... < tr = 1 such that Iex Ju: [se, seti] × [tw. twi]

are such that $H(I_e \times J_e)$ is evenly covered. Initially we can simply lift H by defining.

 $\widetilde{H}|_{I_0\times J_0} := (p|_{V_{x_0}})^{-1} \cdot H|_{I_0\times J_0} \quad \text{where } V_{x_0} \text{ is the unique open set in } p^{-1}(V_{0,0}) \quad \text{containing } c_0, \text{ and then } extend it inductively !$

Lecture -26

Example. (1) $S_{E}^{i} \xrightarrow{P} S_{B}^{i}$; $Z \mapsto Z^{5}$ is a Covering space. Now, $\Gamma: [0,1] \to S_{B}^{i} t \mapsto e^{2\pi i t}$ The lifted path $\check{\Gamma}$ with $\check{\Gamma}(0) = 1_{E}$ is $\check{\Gamma}(t) = e^{2\pi i t/5}$.

(Here p is a covering space which winds around s' five times, so the path lifting makes sense)

THEOREM. $\pi_i(s', 1) \cong \mathbb{Z}^{d}$

Proof. Consider the Covering Space, $q: \mathbb{R} \to S'$ ($z \mapsto e^{2\pi i z}$). Let, $[Y] \in TL_1(S', I)$ then, $Y: [o, I] \to S'$, with Y(0) = Y(I) = 1 htopy. Thus we have $q(\tilde{Y}(1)) = 1 \Rightarrow \tilde{Y}(I) \in \mathbb{Z}$.

Let, V_1, V_2 Such that, $V_1 \simeq V_2$ Via homotopy H. Lifting this homotopy to \widehat{H} b/w \check{Y}_1, \check{Y}_2 . So, $\check{Y}_1(1) = \check{Y}_2(1)$. Thus the map $\overline{\Phi}: \Pi_1(s, 1) \rightarrow \mathbb{Z}$ given by $[Y] \mapsto \check{Y}(1)$ is well defined.

Group homomorphism.

Let, r_1 and r_2 are two paths we need to look at $\overline{\Phi}(\Gamma r_1 * r_2 J)$. We need to look at $\overline{r_1 * r_2}$.

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Note that
$$(\widetilde{r}_{1}*\widetilde{r}_{2})$$
 is $\widetilde{r}_{1}(2t)$ for $t \in [0, \pm 7]$ So, $\Phi([\widetilde{r}_{1}*\widetilde{r}_{2}]) = \widetilde{r}_{1}*\widetilde{r}_{2}(1) = \widetilde{r}_{1}(1) + \widetilde{r}_{2}(1)$
 $(\widetilde{r}_{2}^{++}(2t))$ for $t \in [\pm, 1]$ and thus Φ is a group homomorphism.
 $= \widetilde{r}_{2}(2t) + \widetilde{r}_{1}(1)$

Surjectivity.

Let, $\omega_i : [o_i i] \rightarrow s^i$ and $\omega_i(t) = e^{2\pi i t}$. Note that $\overline{\Phi}(\omega_i) = \widetilde{\omega}_i(t) = 1$. And \mathbb{Z} is generated by 1 so, $\overline{\Phi}$ is surjective.

Injective

Let, $\overline{\Phi}(\Gamma] = 0 \Rightarrow \widetilde{r}(\cdot) = 0 \Rightarrow \widetilde{r}$ is a loop in \mathbb{R} . It is contractible so, \widetilde{r} is homotopic to constant map at 0 via homotopy K. (9.0K) is homotopy of path from r to $\operatorname{Const}_{1s}$. So, $\Gamma r = \operatorname{Lconst}_{1} = \operatorname{Id}_{\pi_{1}(s^{1})}$ so, $\overline{\Phi}$ is injective.

Computation of TLI (IRP") (>2) = ZL/2Z

Covering Space p: Sⁿ → IRpⁿ. Let, [r] ∈ TL (IRpⁿ). N → P(N) ⇒ r: [0,1] → IR pⁿ; r(0)=r(1)=P(N) Define, $\overline{\Phi}$: TT (IRP", P(N)) → {±1}. [Note it's well defined by the Same arguement]

For injectivity we use same arguement. For surjectivity just construct a path in Sn from N to -N take the composition of it with p to get the required pre-image.

PROPOSITION. G is a group $\Im X$ Such that $x \in X$ and $\exists open \ U \ni x$ with $U \cap g(u) = \phi$ for all $g \neq 1$. Then $X \to X/G$ is a covering Space.

PROPOSITION. X is Hausdorff. G is finite group freely acting on X. Then X -> X/G is covering Space. [X is Simply Connected]

Theorem. For the type of group action $G \circ X$ defined on the propositions, $\pi_1(X/G) \simeq G$.

Proof. We have a covering Space $q: X \to X/G$ $(* \mapsto q(*))$. $\overline{\Phi}: \pi_1(X/G) \to G$ by, $[r] \to \tilde{r}(I) = g(*)$. (for some g) Again by homotopy lifting I is well defined.

 $\widetilde{Y_1 * Y_2} = lift of Y_1$ Standing at $* \oplus lift of Y_2$ standing at $g(r) \Rightarrow \widetilde{Y_1 * r_2}(1) = g \cdot \widetilde{Y_2}(1) \Rightarrow \overline{\Phi}$ is grp hom. Injectivity + Surjective of $\overline{\Phi}$ is similar to the proof of $\pi_1(s;e)$.

Consequences: Jt, (Im (2nti)) = Zm Lens Space. JI1 (IR²] \$0\$) ≥ Z • JI1 (Cylinder) ≥ Zm.

• $\mathbb{R}^2 \neq (homeo) \mathbb{R}^n$ (for $n \neq 2$). (Remove a point from both side, use π_1 , draw the contradic)

Theorem. There is no retraction from $D^2 \rightarrow s^{\prime}$.

Brower fixed point theorem. $f: D^2 \rightarrow D^2$ has a fixed point.

We can construct a Jetraction, $\|l x + (l \cdot t) f(x)\| = 1$, t > l; $\|t (x \cdot f(x) + f(x)\|^2 = 1 \Rightarrow t^2 \|x - f(x)\|^2 + 2t \langle x - f(x), f(x) \rangle = | \rho : x \mapsto o$ $\Rightarrow t^{2} || x - f(x) ||^{2} + 2t \langle x - f(x), f(x) \rangle + || f(x) ||^{2} - 1 = 0$ So, $f(x) = -\langle x \cdot f(x), f(x) \rangle + \sqrt{\langle x \cdot f(x), f(x) \rangle^2} - \||x \cdot f(x)\|^2 (\|f(x)\|^2 - 1)$ is a fletraction. from $D^2 \rightarrow s!$. It's not possible. $\|x - f(x)\|^2$

Lecture - 27

🚟 Recap 🚝

- $\rightarrow T_4(s') \cong \mathcal{T}$ • Quotient topology. TL_1 : $Top_* \longrightarrow Giroups$
- (Computation for spheres, · Topological group hTop.
- · Projective Space, Lens Space, Homotopy orbit Spaces X/G.
- Fundamental groups.

Computation of TT for Zg (Surface of genus g)

 $\begin{array}{ccc} -\operatorname{For} & g=0 \ ; \ \Sigma_{g} = S^{2} \longrightarrow \operatorname{Tr}_{1}(S^{2}) = 0 \\ -\operatorname{For} & g=1, \ \Sigma_{g} = \operatorname{T}^{2} = S^{1} \times S^{1} \longrightarrow \operatorname{Tr}_{1}(S^{1} \times S^{1}) \cong \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{} \operatorname{Using} \operatorname{Tr}_{1}(X \times Y, (X_{0}, Y_{0})) = \operatorname{Tr}_{1}(X, x_{0}) \times \operatorname{Tr}(Y, Y_{0}) \\ \end{array}$

 $\mathcal{T}_{i}(Cone(x)) \simeq 0$ Π_1 (S(X)) $\simeq 0 \rightarrow$ use VKT of our version > Path Connected

Cell attachment.

$$S^{n} \longrightarrow D^{n+1} \rightarrow A = (X \cup_{\varphi} (D^{n+1} | \{0\}))$$

$$B = (D^{n+1} | D^{n+1}) \qquad \Rightarrow \text{ If } n \ge 1 \text{ and } X \text{ is }$$

$$A \cap B = \text{ Int } (D^{n+1}) | \{0\} \stackrel{d.r}{=} S^{n} \qquad \text{ Simply connected } \Rightarrow X \cup_{\varphi} D^{n+1}$$

$$S^{n} = X \cup_{\varphi} D^{n+1} \qquad A = A \cap B \stackrel{d.r}{=} S^{n} \qquad \text{ Simply connected.}$$

$$B = (D^{n+1} | D^{n+1}) | B = (D^{n+1} | B^{n+1}) | B^{n+1} | B^$$

General Vankampen theorem will tell us $Tt_1(x \cup_i D^{n+1}) \cong Tt_1(x)$ for $n \ge 2$.

Winding Number.

Fundamental Theorem of Algebra.

121

Every Complex polynomial have a stool.
If not, Let,
$$P(z) = a_0 + a_{1Z} + \cdots + a_{n-1} z^{n-1} + z^n$$
. Then $P: C \rightarrow C1\{0\}$.
Let, $S_R = Circle of radius R Centered at zero.
 $P|_{S_R^{i}}: S_R^{i} \longrightarrow C1\{0\}$
It extends to a map $P|_{D_R^{i}}$, So, $W(P|_{S_R^{i}}; o) = 0$. Now look at,
 $H(z,t) = (1-t)P|_{(z)} + tz^n$
Note that, Image $(H) \subseteq C[\{0\}]$ for large R. H is hormotopy b/w $P|_{S_R^{i}}$ and z^n
but,
 $W(z;o) = n \neq o = W(P|_{S_R^{i}}; o) = 0$
Contradicts the fact winding
number is homotopy invariant
Winding number is add, if $r(x) = -r(-x)$. $r:S^1 \longrightarrow R^2[\{0\}]$; $W(r;o) = odd$.
 $\hat{r}: S' \stackrel{V}{\longrightarrow} R^2[\{0\}] \longrightarrow S^1$; $\hat{r}_*: TL_1(S', 1) \longrightarrow TL_1(S', \hat{r}(1))$.$

Now,

$$\begin{array}{c} & \widetilde{r} \\ & \widetilde{r} \\ (S', i) \hline 1_{S'} \\ (S', i) \hline 1_{S'} \\ (S', i) \hline 1_{S'} \\ (S', i) \hline \widetilde{r} \\ (S', \widetilde{r}(i) \\ (I) \\$$

at brow, $q(\hat{r}(\frac{1}{2}+t)) = q(m+\frac{1}{2}+\hat{r}(t)) = \hat{r}(t) = \hat{r}(t+\frac{1}{2}) \Rightarrow \hat{r}(t) = \xi+2m+1$ So the winding number is odd.

Borsuk Ulam Theorem.

If,
$$g: S^2 \to \mathbb{R}^2$$
 sol $g(-x) = -g(x)$ then $\exists x$ such that $g(x) = 0$.
If not, $g: S^2 \to \mathbb{R}^2 \setminus \{0\}$. $Y = g|_{and} : S' \to \mathbb{R}^2 \setminus \{0\}$ so by prev let

It not, $g: S \rightarrow \mathbb{K}$ [20]. $Y = \exists equator : S \rightarrow \mathbb{K}$ [20] So by prev lemma. W(Y;N) = is odd but Y extends to a disk to winding number is zero.

Ham Sandwich Theorem.

Let, S1, S2, S3 be three Convex Subsets of 12³. There is a plane P Such that, P divides each of S1, S2, S3 into equal volume piecies.

For single object S₁, If, $\forall \in S^2$ then, P_1^t be the planes $L \vartheta$, then $\exists x_1 \in \mathbb{R}$ so that, $P_1^{x_1}$ and S_1 equally (By IVT). $\Rightarrow = (H_{\vartheta} + x_1 \cdot \vartheta)$ Then $g: S^2 \rightarrow \mathbb{R}^2$; $g(\vartheta) = (x_2 \cdot x_1, x_3 - x_3) \longrightarrow Apply$ borsuk ularn.

g(-v) = -g(v)