
Post-midsem Lecture - 15

QuotientSpaces . (Armstrong
Defe X, Y are topological spaces. 9 : X-Y is subjective · It is called quotient
map if vey((U) open

->> U is open.

Example .
1 Projection map .

11 Open map that is surjective is a quotient map.

⑪ pixty surjective and closed map ,
then it's a quotient map.

open but not close map

12-> R and Ti (xy = 1
, xx0 -> (0,0)

closed open

closed map but not open (Pix-y is surjective from opt to Hausdoft)
If uto ,TE3,2]-> [0 1 1] us So so

it's not open & think : [0 , 11 -> S
77

works too.

Example of quotient map that is not open or closed

↑R2
,

X = (14) tr : 110 Ony =0 - X-axis
USIR

,
Sit . #+ (r) is open . 1) 170,(v) = [G013 2403)u = 0,) =O

xeU = 5-ball & H+(x) 75 Sit By(o,0)nX
So

, it's a quotient map. => (k- 2
,x2) & U G+ (U)

=> U is open

D M

Gluing Lemma : X = AUB
,
A and Bare closed.

fix- z Sit fla and fli are continuous. Then fis continuous

(similarStatement holds for open A
, B)

Lemma : Compact-Hausdaft surjective map is quotient map.

Example :D [0 , 17 -> s (t eit)

⑪ DM < Sh ; int(Dh)R, SAN : 4 :>

D"lint(D") -> N & -> combining these two we get T.

show that His continuous . O VAN
, then Y

+ (U) isopen

⑪ UEN
, then P+ (U1 = P+ (UC) is compact.

So, PiD"-s" is a quotient map #

IQuotient Topology
T ↳

Defi : Call UEY open if 9 (U) is open . This defines a topology on Yo

[Here
, 9 : X(top)-> Y (Set) Saj map] ·



OBSERVATION.

19 : X-Y is cont

2)9 : X-Y is quotient map.
3) p : X-Y is quotient map. Then the topology onzis same as quot . top.

UNIVERSAL PROPERTY:

1 gix-y Suj , Y has quotient topology · fix- z is continuous E

fog : X- Z is Cart .

Proof. ()) Trivial (E) Suppose, for is cont . (0q) + U is open
-> q+(f(v))

is open
here

,
u is open. => f-1(r) open

q
X - Y

-R (In Tapa

· Remark : Esurjective functions) - Requivalance relation>
"If X is top.

The,n

from X
9 : -X/ Swij

gives a topology
g

Example: [0, 1]-> 5 here Ino . on X/n
t
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Q : P : X- Y be a quotient map . Then the quotient topology is the finest

topology that makep continuous.

Defh : (Weak topology) ... Eg product topology on #X that makes projection to

continuous.

* fix-Y be surjective function So that Vopen it fl(u) is open . Suppose, I is a topology
on y St. fix-Y is Cant (VET => f(V) is open in X) So, VE Qt #

UNIVERSAL Prop .

Map(X/n ,z) = &YeMap (x,2) : unx => y()= y()]
- sujective open/closed map are quotient map

Closed mapping Lemma) fix -Y (X= Cpct , Y= Hausdaff
,
+ is cont .) Surjective

then it is a quotient map .

Example. [ails-C0R/ou EnomoS'
t 1 > eatit

① -"Cuniversal prop).~

To, 1/n



>
·

② [01]x[0,]/(0) ·q
>

Y

Define, FI > IXS

(y) 1 > (x, eatn)

-- universal prop

③ [01] x[0 ,1)/c Similarprot.
① (Mobius strip) [0 . 1]x [0/(0,3) - (+y) )x onebound,e

⑤ III sloU) -- removing one Amulus
III

Note that SYUE D3
more open ball

Cylinder= Ex : REMIRS

⑥ F

= sxs (Handle Attachment) .

-

Attaching handle to S/VX gives us Torns.

⑦ Attaching handle to Torus .DD ·
Inductively Ig := genus

-surface.

E2 = Surface of
genus 2. .

(Polygonal Presentation)
&./but

along this

-X So
, octagon with the

#along this
n on -edges identifiedlease

>

For
, Ig := 49-sided regular polygon with the edges identified like alaibl arbaitbil...

Will give us surface of genus g.

(classification ofSurface) #

Is a surface contained in RS which ised ,
G2=%, then 7gp0 Such that,

[Ig
.

X is top space and HEX closed subspace . NA = Yanal
, acced (Defu)

Exercise . If X is compact and As closed. Then (A)** homeo NA .

(Hausdorft)
Application· D [0 , D/n

-> s' Def" : ((x) =
X x 50 , 1/xx203 ·cone of X .

D DYD & Sh



Example. D (S = D2
,

S'x[OD -> D2
(7,H- E

↓ Thomeo
..... Induction c(s = Du

S'x20 , T//5x203
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G be a group acts on a SpaceX (GGX) by continuous function·
(It means Ug : X-X

, urgox is cart)
,

So Yg is actually a homeomorph
Thus View G : Homeo (X) .

X is

aGespace
, there aquirrelationonXyyg

forona

9 : X- XG .

UNIVESRAL Prop . Map (a ,
2) = 3 fix- 2 : f(x)= f(gu)) ·

Example . GoS" Lid,3 = C . M=x . Now consider, I

54/ : = IRIP? (Real projective Space).

⑪ IPL: & set of lines in MHS =MM101/aareS
⑪ RP2:= DYu for Be S

# and ① and I
In> IRhH/S03

Yell
> Sh Drigh

& G q M Beyondet- Handa

&

sup --

-B1203
----- 54 + Cts
-=- Bijection

IRIOS
Bijection Bijesticl +

tcts GTS

Example (complex projective Space
CIPh : I Consider

,
S = [(Z , -- zu) : [lik =13home Note

, St Se

by ,
U. (Z0 . . . · zn) = (Vz0s--- ,zn) · KIPh = Sa/Dir

⑪ eph = en+ 102/anxa
# ?

-> GeneralCase

Kph is Hausdorff. DIP/DDMhomeo PRIV) = Y0/ ; Vis ups and Vevep :

There, <phapu
[z0, ...Ent -> [E0...,En, 0]

VVOR, (VOR) d Pr(Y)

j



Now we can do theSame for R
,
C .

1 Pr(v) => NOR)

↓ ↓
this gives us

I hah are two lines in V. WSV
,

dim W = dimv-
Rpdimo)-- Kpolimer) P(k)(P(V) = V

So that
, L , h don't contain in Wo So,

S(w) Ased Jenn)
[L]

,
[h] -> Pi(v)/Pi(w) =

homeo Y (Hausdorff). LIt's enough as Pe(w) is closed Subset of W

q

P(V) -
II/II S(w)/sic > ScanYsI

Example. -Simplex ; A? Let
,
Co , D ! and consider the action

* = G(t ... , tu) EIRM : Iti =]
-

In 3101" by permuting Co-ordinate

I
n =2 ,

Rough!

Defle.An
obtained byi vertices from the

Sets Sc9e - --

,ens
,
Isl-it .

Examples of faces of A #i-dim faces = (ii)
Def" : A simplicial complex . K is a space obtained as a union of
simplices such that two simplices may have at most one face in

common identified linearly.
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Ine to ; [01]" = U Pri Po = &( ... kn)e[0 , 12/ : occod ... Dot]
ofIn - m

Now
, po > ( ....,n) MO , Moly - PolD , ..... -xh))

These <% )-gue to get 4 : To B-> An

UNIVERSAL PROPERTY.
v

[ai]"/In III

Simplicial Complex .

Defh : A simplicial complex K is a space obtained by identifying a

Collection of simplices along faces via linear Somophism, Such that
two different simplices can have atmost 1-face in Common.

Example : Os as simplicial complex. #ED = 23 Eads?

*

---- : Complex)



② Torus
.
T

·

D *

⑱ & · > 1- I

* *

③ similarly triangulate2
and Klein To (Bottle = Arsenal) ·

Push-out (Category

A Y

given this data the p. o of the diagram is defined as,

X := XHYP:(a) n;(a)
YaEA

UNIVERSAL PROPERTY-
A Y

Map (XaYiz) =[ ] As
Example. 2) > An AX

X-C(x)

① i ② I , iIn---> gu * - - - - - MA * - - -- (X)

BasedSpaces (suspension)

Let
, XETop and notX

,
then (no) is a based space . Based map, map blu

based space that are basepoint preserving
Top

In Top we can define Wedge Product.

*> (X ,x)

(Y)-Y

Mar(X,Y) = Base point preserving Map(X , Y). Now,

Map (xVY ; z) = Map (iz) x Marx(Y: z)

So
, Wedge is coproduct in Top :

Def : (Mapping cylinder). If fix-Y a map,
then My is the

push out
,

-
Mapping come.

X
x+(xxy)

> XXI X > C(X)

fr f

Y -- ----- as M,---
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Smash Product ·
3) S

XNy = XXY/XY.

& Ea -

= S'asI

i = [4252

Pop. Shysm Shim SVs'sxsI 3) = S2

Proofs Shysm=Msusm My Idea : For locally
Compact ,

Haus doff, X,Y

- ·= Dyed" x DM/Dm

·
Dyn" [tedna]Vlad"] x DYDm

. -

E

#XDm)Daym) Eghtm

Note that 2/phtm) = 2DXpMUDxaDm and for n= m=z
,

we get,

S3EDEXS'US'XD2 (two salid torus)

Reduced Come : (over Based Space) Y(X) := C*YAxton)

3.Reduced suspension : IX = U
,
[() = SAYOD .=/Minda
-

<S(S2) = Sh+ 1

..
IgnQuotient-a

Proposition : IXIXXSI Associativity of Smash product .

Proof . XI
quotient (xxY)xz = XX(YXz)

quotient

&identification
.

s

·

Exication Sixsi

Y

corollary - Shim= Shxsm.

~ quo

~

Xxgih

Cell Attachment .

su f , x The pushout Exc. Show that

of the diagram P is actuallyin---- IP s obtained Cone(f)
by attaching cell to

X along fo

# Torus as a CW complex ·
-

Y SusI
Zz4 Now call this map 4. Then Torus is given by Po

* si Sivs'
& -

·

E-
7

⑮
1 ,TF2



CW complex

Defh : A sw complex X has chain of subspaces,

0 =xH(XM(xI(X(C . ... (X)
. ..

Such that X = UX" With the properties -n7,0

① XI is discrete space
② XM) is obtained from X*) by attaching Cells Y :sy i . e. We have

the following po diagram

#S> X(nz)

Ho-
③ A is open inX Anxi is open An, 0.

Back to the Torous Example .
X=Th ; XM = Sit

,
X- (svs) ,

X* = T

Another examples : 1RP31 /Klein bottle)
The example of RRPh

Sh antibody IRp So
,
Xi) = R forI

↓ is the cro complex
Structure of X = RPH

in->Iph

The example of Up?

gan-t > Cpn-1 So
, X(i) = <ph

is the cu complex

sen quotsp
structure of KP2

.
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S category and Functors Cone : Top -> Top : Top*

-> Top

B . Math Susp: Top -> Top [ : Top -> Top
Cyl : Top -> Top X : Top XTop*

-> Tope
L ↓

CF Cof -> Top andFunctors from Top-
Main Focus y

% > Changes suitably
> M. Math,

Pushout as functor : Top
*-

-> Top &To
⑤ Natural Transformation

fo-> 2
-F> D N: F- G is a natural transformation F(f)
N if

, for any object CeC and morph
F()-> F()

- #( : F(c) -> G() So that the following N() N(C2)
~diagram commutes (for P .GeG) · G() G(f)

> G(G)

For a group G ,
we can define a category J . Obj = [x3 . Mor(+,*) = G.

Comp. by mult)

Sets ; obj (Sets3) = Functors y : - Sets G-sets .

FAE Sets and F(g) : Set -> set Rep(a) = 190]-modules
with f(gh) = f(g)of (n)

Morphism : G-equivariant maps.

I Isomorphism in category.

Homotopy .

Let, f and g are two maps : X-Y and Let,
H:I-Y Such that

H(,% = f, H(l =g . Then fig :

y
xx319

-

· Homotopy is equivalance relation.

Ex, Y] : = Maprop (*,Y)
~

htop
3. X · [A ,] = Spath component of /1

·Contractible
,
Some examples

-> Top -> S

[X ,Y]eartac* )

actibleisne
hop------somorphism inha



Based Homotopy

xx203+ f
#

Z XXIt class

xasis
[x]

*

- homotopy
of based maps

Natural map Top-> hTop
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Contractible Spaces
· ConvexSets are contractible.

Deformation Retraction.

Retraction : If Tex ; then Pix-2 is retraction if the composition 2x12
2.g. x XXY- X

It
,

N

A deformation retract is a homotopy from identity to a retraction.

Example: 1103 gat
,
XMID EX is Dr

· A deformation retract is homotopy equivalance.

AlXdX
-ntopEd (Definition)

fix- Y , My = Cy)(f) · My dir onto Y. XXI > Cy(x) XI

The Hin the picture gives us the required homotopy .

-/(thisis) ~Xjusingnot) YI > MfXE
HX My " > Y Any map Can be - ↳

natural

y1- y
I written as inclusion

ii
by

> Y naturalF
(u, 4)-> f(x) and deformation retraction.

f

· Another example : (cell attachment

+ YUp (DL Sos)

↓do (Homework)in---very



· GLn(IR) deformation retracts to O(n)·

Evi
,

. . .

.,UnSam v, prove that thisar aE S
· Similarly ,

Gln()-> Un) deformation retract .

Un) is connected as GLCDis -

- My profiforanyACS
· Recall, Mapping Came X < ()

f h universal property of
s

Y T(f)
-,z

Rushout I

Map (Conect) ;z)
9

· BasedSituation.

A well homotopy ? XXTO .DES ! Suchthe
& gives a map

&x

= Y(x)->Y

Creduced come)
So

, Map((z) = 2&top
Now we get back to the categoryTop

[sixEx-Set of path components of X = To (X)

[S=(,*) [It has a group structure]

Th(x , 1) is a group
· Multiplication .

[six]+x [six]* -> [six]+
↑

- -

pinch .

" Svs

[svs
, X] *

- o pinch

(Missed Lecture - 23)
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Group Structure of Th(+)

y
Concatenation

· UKEsiX] then
, Vree[SX]

· [V] = [i] where,(t = r(-t)
·

Identity--[constant loopI

Top
Th

> Groups /Based map
T fix- Y ↓ (fofz)a = (f)ofz)+

Top
[S-] Ex : Th(X)->Th(Y)

·([r]) = [ for]

Example.

Th (10) = 203

Eckman-Hilton arguement

S be a groupWith 0 and *

sXs is Now
, sil) : -S is a group homomorphism writ to

=> (a + b) · (d) = (9. c) + (b- d)

Similarly ,
(ab) + (cd) = (axc) · (b . d)

· Identity for eatb= c = -e ; (G) = (2) (e) = -

· a* d = d- d

· S is abelian

If,
G is a topological group . There are two multiplication.

E
* = Join of loop
·= Comes from group

mult.

Tt (G) is Abelian

heorem :& Let
,
* AX is a deformation retract . IXA ; :, (A) -I) is somorphism.

-> For a contractible Space Th(X,*) = SoS

[r]eT(,) SX #, (s/) #, (x) ; [r] = 0 ·

~

D2 ~ J, (DY)

Mult. If
,
t is a path from Ko M, then IoT

Now,(4) (H)· I =)
GC) ·(0x) = ((o) · <(0)

- [e]
= ((t) 0 < (0) ·

Defh : (Simply connected) Path connected+ it, (40) - choice of so.



Theorem . (SVK)

X = UVY and U and Y are simply connected and Uny is path
connected. Then X is simply Connected.

Un

Proof. &
Y

· Part ofToop in V . Part of loop in V

· Path in U1X

Claim: If
,

Xis simply connected then Any two paths blu two fixed point are homotopic.

Now back to the proofo Make a partition ofa O = Gaz--car = 1 ThereSuch that r(apaj]) eUoo1. We have
, Vail Euny .

Now,

V = Ulta
, any

+..... * Ultr
,an]

choose path of from flag) to flay) . Y Simply connected Vla
,ajy

=-V = loop in U.
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Example.1)S is a covering space. Now
,V

The lifted pathwith 51 = It is TH = erit/s
·

Heresa covering space which winds around s fie times so the path liftingone

THEOREM. ThCSH=:

Proof . Consider the covering space , 9: /R-s' (n elin). Let, [UJETh(si 1) then,

Vital -5 With U10= UCK =1/htopy . Thus we have q((H) = 1-/IEX.

Let
, v,B such that

, V =R via homotopy H . Lifting this homotopy to to blu
n.. So

,
YIK=EI . Thus the map: (S1) -> X given by [P]- C) is well

defined.

Group homomorphism
Let

, u and I are two paths. He need to look at BINK) · We need to look at

---
R

↓ v, I wor
Note that (i) is FipH for +1 So,])=( = Fl +&(1)

E* (2) for te[t] and thus I is a group homomorphism .

= (2+)+ (1)

Surjectivity.

Let
, Wi : -> 5 and Wilt) = eit. Note thatwil-(t) = 1. And I is generated by

I so
,
I is surjective

Injective

Let, (1) = 0 = VI = 0 - is a loop in R. Ris contractible so
,

his homotopic to constant

map at 0 via homotopy K: (90k) is homotopy of path from U to Consti · So
, [V] = Ecost] = Ids)

So
,
is injective.

·

Computation of TG(IRP2) (2) = 2/24

Covering Space p : s"- > RP" Let, [v]eTh(IRPY - lift the pathI = +N or - N .

N1 > P() - VitI- 1RPM ; r(0) = r(1) = P(N)

Define
,
E : I, (IRP" P(N) -> 313 . [Note it's well defined by the same arguement]

For injectivity we use same arguement . For Surjectivity just construct a path in S" from Nto-N

take the composition of it with p to get the required pre-image. -

PROPOSITION . G is a group
IX such that neX and open Us with U1g(U)-

for all g #1 . Then X-X/G is a covering space .



PROPOSITION . X is Hausdorff , G is finite group freely acting on X . Then X-X/G is covering
Space .[X is simply connected]

Theorem. For the type of group action GOX defined on the propositions, Th(X/G) = G

Proof . We have a covering Space 9 : X-X/G(** 9()·(2)- G by ,
[v]- (1) = g(x) · (for someg)

Again by homotopy lifting I is well defined.

-

Y = lift of U Starting at At lift of starting at g) = H = gl) - is grphon
Injectivity + Surjective of tis similar to the proof of T(e). e

Consequences :[t (Im(int)) = Ym "Lens Space:

· T(IR1903) = X · Th Cylinder) &Im

St , 5/m * SI
[W]--> m . [Wi]

↑

ente -Im (2nt)

-> Special case m =2
, hi (k) = RPK

T > 04

· Romeo R (or U + 2) . (Remove a point from both side
,

use It,
draw the contradic.)

Theorems. There is no retraction from D-s.

Brower fixed point theoremo f: D"-p2 has a fixed point .

SI

We can construct a retraction· Iltu + CrHfcll = 1 , t1 ; llthful fi)/= 1 - In-fi)+ 11f(+ It (a-fu) , fiul) = 1 P : + · -
↳ D2

↓ => Ella-f(u + 2t <x-f(u),f(r)) + 11f(x)-1 = 0

So
, P(r) = -Cfcul,fin))+ <n-ful,fly"- 114-fui/12

MHI) is a retraction from D2-s! It's not possible.
((x-f(x)/)2
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Recap

· quotient topology . Th: Top Groups -> Th(s) = I

· Topological group shop" computation for spheres,
· Homotopy E Projective Space,

Lens space ,

· Fundamental groups. orbit Spaces X/G.

Computation of I for Eg(surface of genusg)
- For go ; Eg = s -> Th(s) = 0

- For g- Ig =+" = sys -> (sxs) = X0X- using #, (xY,
(0y0) = Th(x, x0) X Th(Y,0

&ao es as s

Th (Come(x)) = O

i (S(x)) 20 -> use YRT of our version
↓ path connected



Cell attachment .

A= (XVy (D+ (os) (52 >

p2/ Bz(phH(aDur)
All = Int(d)1903 an If net and X is

&

I - xuyph simply connected XVyDut
simply connected.

· XUyBtF ·And sF

&
B=

* General Vankampen theorem will tell us (up") = Th() for n 2 ·

Winding Number.
dir

A closed Curve V : S- IR2· Let ZerIm() . So
,
Y : S- RES > Sus

, zp

& If
,

8 : S-1R2 extends * Th(s) <13 , 82) x
-z

Circle passing
↑through)

to a map : D-IR? Issu
Then winding number

↳
Thish is called

is Zero. P winding number ofatz.

multiplicationa n : /v V

((
,z) Den If ze unbounded

Component of IRFCSI)
then winding number

w(, z) = 0

Fundamental Theorem of Algebra :

Every complex polynomial have a roof .

If not
,
Let

,
P(z) = artaz + --- + anyzh + zh . Then :- CoS ·

Let, Se-circle of radius R Centered at zero.

Plsk : Sr < Dos

It extends to a map Plp So
, W(P/sp : 0) = 0 . Now look at,

H(z, t) = (1 - +) PIE) + +z

Note that, Image (H)CC1503 for large R. His homotopy byw Pls and zh

but

W(z(0) = n + 0 = W(p/spio) = o

contradicts the fact winding
number is homotopy invariant ·

Winding number is odd , it uk = -utr) . Vis-RIos : Wri : odd

8 : SERIO -> S : Va : Th(S1) -> Th(s().
x+



Now , T (IR, 3) Note that

I St
&

(S)(i)

9(()) =- (1) ,
. (z) = S +met[@q()

(tz)= (t) + m + zz

at t
, 9) = q(m+= -) = (t +z) = () = Se2m+

So the winding number is odd.

Borsuk Ulam Theorem.

If
, g : st-> IR3 Set gly =-que) then In such that go =o ·

If, not
, gist-R1203 · U = glequator :S'- IR2/303 So by prev lemma

W(Vin) = is odd but v extends to a disk to winding number is zero.

Ham Sandwich Theorem ·

Let
,

S1
, 52

, Ss be three carrex subsets of I? There is a planet such that,
P divides each of S1

,
Sc , is into equal volume piecies.

For single object Sir If
,
rest then , Po be the planes 10

,
then Fat

So that
, P:

"
cut S; equally (by IVT) .

↳ = (Hu + c · r)
Then gis-R2 ; g() = (rx , 4-4) -> Apply borsak wam.

g(-v) = - g(v)

-


