
Group Theory
Assignment-4

Trishan Mondal

Let H be the R-algebra of quaternions and V = Hp be the R-subspace of pure quaternions;

H = R ⊕ Ri ⊕ Rj ⊕ Rk and Hp = Ri ⊕ Rj ⊕ Rk

where
i =

(
i 0
0 −i

)
, j =

(
0 1

−1 0

)
, k =

(
0 i
i 0

)

Problem 1 For X, Y ∈ Hp,Show that the Euclidean inner product

⟨(x2, x3, x4), (y2, y3, y4)⟩ = −1
2 tr(XY )

Solution. Given,X, Y ∈ Hp. So,we can write

X =
(

ix2 x3 + ix4
−x3 + ix4 −ix2

)
, Y =

(
iy2 y3 + iy4

−y3 + iy4 −iy2

)

Now, We will look into the diagonal of XY ,

XY =
(

−(x2y2 + x3y3 + x4y4) + i(x3y4 − y3x4) · · ·
· · · −(x2y2 + x3y3 + x4y4) − i(x3y4 − y3x4)

)

So, tr(XY ) = −2(x2y2 + x3y3 + x4y4). Hence,

⟨(x2, x3, x3), (y2, y3, y4)⟩ = −1
2 tr(XY )

■

Problem 2 Verify that, for X, Y ∈ Hp and P ∈ SU(2),

⟨PXP ∗, PY P ∗⟩ = ⟨X, Y ⟩

Solution.

At first of all, I will show that PXP ∗ ∈ Hp. Since , P is invertible matrix, trace of PXP ∗ is
equal to trece of X, which is 0. So PXP ∗ ∈ Hp.b
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⟨PXP ∗, PY P ∗⟩ = −1
2 tr(PXP ∗PY P ∗)

= −1
2 tr(PXY P ∗)

= −1
2 tr(XY ) [as P is invertible matrix ]

= ⟨X, Y ⟩

■

Problem 3 Identifying Hp with R3, verify that the map φ : SU(2) → GL3(R),
φP (x2, x3, x4) = PXP ∗, where φ(P ) = φP ,X is the corresponding element in Hp,
has image in O(3) and is a homomorphism.

Solution. In the question, it is given that φ maps P ∈ SU(2) to φP . For any X ∈ HP ( which
is analog of R3 ) φP preserves the innerproduct. We have shown that in Problem 2.
So, obviously φ maps P ∈ SU(2) to O(3).Now, we will prove that φ is a homomorphism.

• For P = Q,
φP (X) = PXP ∗ = QXQ∗ = φQ(X) forall X ∈ HP

=⇒ φP = φQ

• For P, Q ∈ SU(2),we will check what happens to φ(PQ) = φP Q.

φP Q(X) = PQ(X)(PQ)∗

= P (QXQ∗)P ∗

= φP ◦ φQ(X)
This is true forall X ∈ HP

Which means,
φP Q = φP ◦ φQ

These two things proves that φ is a homomorphism.

■
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Problem 4 Let Y be invertible, and Y ∈ SU(2). Verify, for φ as above, det(φY ) = 1
for all Y ∈ SU(2)

Proof 1

Solution.

We have seen that φ : SU(2) → O(3),defined as previous question is a homomorphism.We
will look at the kernal of this homomorphism.

ker(φ) = {P ∈ SU(2) : φP = Id}
= {P ∈ SU(2) : PX = XP forall X ∈ Hp}

=⇒ {±I} ⊂ ker(φ)
We Know that, ker(φ) ⊴ SU(2)

{±I} ⊂ ker(φ) ⊴ SU(2)
=⇒ {±I} ≤ ker(φ) ⊴ SU(2)

Now, i will use a result proved in class. That is SU(2)/{±I} is simple. This means there do not
exist any normal subgroup N of SU(2) containing {±I} I except SU(2) itself and {±I}.So,
ker(φ) is either SU(2) or {±I}.
Kernal can not be whole SU(2). As P = i do not fix the point X = j. So,ker(φ) = {±I}.Using
first Isomorphism theorem we get,

Im(φ) ∼= SU(2)/ker(φ)
=⇒ Im(φ) ∼= SU(2)/{±I}

Lemma (Stated in Class) SO(3) ∼= SU(2)/{±I}

We have O(3) ≥ Im(φ) ∼= SO(3).This means , Im(φ) = SO(3). For any Y ∈ SU(2),φY ∈
SO(3). This means det(φY ) = 1. ■

Proof 2

Solution.

Lemma SU(2) is connected.

Proof. We have proved in class that SU(2) is homeomorphic to S3,Which is simply con-
necetd.And hence SU(2) is connected(Simply connected more precisely). ■

Now , I will show that φ : SU(2) → O(3) is continuous map. Let P = (a, b, c, d) ∈ SU(2).
From the defination of φ we can conclude that, φP (x) will look like axi + bxj + cxk. Where ax
is Polynomial function of x as well as (a, b, c, d).So φ is Continuous.

We know continuous function maps connecetd domain to a connected space. i.e Im(φ) is
connecetd. Under this mapping I ∈ SU(2) maps to Id ∈ O(3). So, IdO(3) ∈ Im(φ).
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Fact O(3) has two connected component. One containing IdO(3) and another containing
−IdO(3). SO(3) is the connected component containig IdO(3).

Using the above fact we can say, Im(φ) ≤ SO(3). So, det(φY ) = 1 ■
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