Group Theory

Assignment-4

Trishan Mondal

Let $\mathbb H$ be the $\mathbb R$ -algebra of quaternions and $V = \mathbb H_p$ be the $\mathbb R$ -subspace of pure quaternions;

 $\mathbb{H} = \mathbb{R} \oplus \mathbb{R}\mathbf{i} \oplus \mathbb{R}\mathbf{j} \oplus \mathbb{R}\mathbf{k} \text{ and } \mathbb{H}_p = \mathbb{R}\mathbf{i} \oplus \mathbb{R}\mathbf{j} \oplus \mathbb{R}\mathbf{k}$

where

$$\mathbf{i} = \begin{pmatrix} i & 0\\ 0 & -i \end{pmatrix}, \mathbf{j} = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}, \mathbf{k} = \begin{pmatrix} 0 & i\\ i & 0 \end{pmatrix}$$

Problem 1 For $X, Y \in \mathbb{H}_p$, Show that the Euclidean inner product

$$\langle (x_2, x_3, x_4), (y_2, y_3, y_4) \rangle = -\frac{1}{2} \operatorname{tr}(XY)$$

Solution. Given, $X, Y \in \mathbb{H}_p$. So, we can write

$$X = \begin{pmatrix} ix_2 & x_3 + ix_4 \\ -x_3 + ix_4 & -ix_2 \end{pmatrix}, Y = \begin{pmatrix} iy_2 & y_3 + iy_4 \\ -y_3 + iy_4 & -iy_2 \end{pmatrix}$$

Now, We will look into the diagonal of XY,

$$XY = \begin{pmatrix} -(x_2y_2 + x_3y_3 + x_4y_4) + i(x_3y_4 - y_3x_4) & \cdots \\ \cdots & -(x_2y_2 + x_3y_3 + x_4y_4) - i(x_3y_4 - y_3x_4) \end{pmatrix}$$

So, $tr(XY) = -2(x_2y_2 + x_3y_3 + x_4y_4)$. Hence,

$$\langle (x_2, x_3, x_3), (y_2, y_3, y_4) \rangle = -\frac{1}{2} \operatorname{tr}(XY)$$

Problem 2 Verify that, for
$$X, Y \in \mathbb{H}_p$$
 and $P \in SU(2)$,
 $\langle PXP^*, PYP^* \rangle = \langle X, Y \rangle$

Solution.

At first of all, I will show that $PXP^* \in \mathbb{H}_p$. Since , P is invertible matrix, trace of PXP^* is equal to trece of X, which is 0. So $PXP^* \in \mathbb{H}_p$.b

$$\begin{split} \langle PXP^*, PYP^* \rangle &= -\frac{1}{2} \mathrm{tr}(PXP^*PYP^*) \\ &= -\frac{1}{2} \mathrm{tr}(PXYP^*) \\ &= -\frac{1}{2} \mathrm{tr}(XY) \ [\text{as P is invertible matrix }] \\ &= \langle X, Y \rangle \end{split}$$

Problem 3 Identifying \mathbb{H}_p with \mathbb{R}^3 , verify that the map $\varphi : SU(2) \to GL_3(\mathbb{R})$, $\varphi_P(x_2, x_3, x_4) = PXP^*$, where $\varphi(P) = \varphi_P, X$ is the corresponding element in \mathbb{H}_p , has image in O(3) and is a homomorphism.

Solution. In the question, it is given that φ maps $P \in SU(2)$ to φ_P . For any $X \in \mathbb{H}_P$ (which is analog of \mathbb{R}^3) φ_P preserves the innerproduct. We have shown that in **Problem 2**. So, obviously φ maps $P \in SU(2)$ to O(3).Now, we will prove that φ is a **homomorphism**.

• For
$$P = Q$$
,
 $\varphi_P(X) = PXP^* = QXQ^* = \varphi_Q(X)$ forall $X \in \mathbb{H}_P$
 $\implies \varphi_P = \varphi_Q$

• For $P, Q \in SU(2)$, we will check what happens to $\varphi(PQ) = \varphi_{PQ}$.

$$\varphi_{PQ}(X) = PQ(X)(PQ)^*$$
$$= P(QXQ^*)P^*$$
$$= \varphi_P \circ \varphi_Q(X)$$

This is true forall $X \in \mathbb{H}_P$

Which means,

 $\varphi_{PQ} = \varphi_P \circ \varphi_Q$

These two things proves that φ is a **homomorphism**.

Problem 4 Let Y be invertible, and $Y \in SU(2)$. Verify, for φ as above, $det(\varphi_Y) = 1$ for all $Y \in SU(2)$

Proof 1

Solution.

We have seen that $\varphi: SU(2) \to O(3)$, defined as previous question is a **homomorphism**. We will look at the kernal of this homomorphism.

$$\begin{split} & \ker(\varphi) = \{P \in SU(2) : \varphi_P = \mathsf{Id}\} \\ &= \{P \in SU(2) : PX = XP \text{ forall } X \in \mathbb{H}_p\} \\ \Longrightarrow \ \{\pm I\} \subset \ker(\varphi) \\ & \text{We Know that, } \ker(\varphi) \trianglelefteq SU(2) \\ & \{\pm I\} \subset \ker(\varphi) \trianglelefteq SU(2) \\ & \Longrightarrow \ \{\pm I\} \leq \ker(\varphi) \trianglelefteq SU(2) \end{split}$$

Now, i will use a result proved in class. That is $SU(2)/\{\pm I\}$ is simple. This means there do not exist any normal subgroup N of SU(2) containing $\{\pm I\}$ I except SU(2) itself and $\{\pm I\}$.So, $\ker(\varphi)$ is either SU(2) or $\{\pm I\}$.

Kernal can not be whole SU(2). As $P = \mathbf{i}$ do not fix the point $X = \mathbf{j}$. So,ker $(\varphi) = \{\pm I\}$.Using first Isomorphism theorem we get,

$$\operatorname{Im}(\varphi) \cong SU(2)/\ker(\varphi)$$
$$\implies \operatorname{Im}(\varphi) \cong SU(2)/\{\pm I\}$$

Lemma (Stated in Class) $SO(3) \cong SU(2)/\{\pm I\}$

We have $O(3) \ge \operatorname{Im}(\varphi) \cong SO(3)$. This means , $\operatorname{Im}(\varphi) = SO(3)$. For any $Y \in SU(2), \varphi_Y \in SO(3)$. This means $\det(\varphi_Y) = 1$.

Proof 2

Solution.

Lemma SU(2) is connected.

Proof. We have proved in class that SU(2) is **homeomorphic** to \mathbb{S}^3 , Which is simply connected. And hence SU(2) is connected (**Simply connected** more precisely).

Now , I will show that $\varphi : SU(2) \to O(3)$ is continuous map. Let $P = (a, b, c, d) \in SU(2)$. From the defination of φ we can conclude that, $\varphi_P(\mathbf{x})$ will look like $a_{\mathbf{x}}\mathbf{i} + b_{\mathbf{x}}\mathbf{j} + c_{\mathbf{x}}\mathbf{k}$. Where $a_{\mathbf{x}}$ is Polynomial function of \mathbf{x} as well as (a, b, c, d).So φ is **Continuous**.

We know **continuous** function maps connecetd domain to a connected space. i.e $Im(\varphi)$ is connecetd. Under this mapping $I \in SU(2)$ maps to $Id \in O(3)$. So, $Id_{O(3)} \in Im(\varphi)$.

Fact O(3) has two connected component. One containing $Id_{O(3)}$ and another containing $-Id_{O(3)}$. SO(3) is the connected component containing $Id_{O(3)}$.

Using the above fact we can say, ${\rm Im}(\varphi) \leq SO(3).$ So, $\det(\varphi_Y) = 1$