Group Theory

Assignment-4
Trishan Mondal

Let H be the R-algebra of quaternions and V' = H|, be the R-subspace of pure quaternions;

H=RaRi®Rj®Rk and H, = Ri & Rj & Rk

where
(¢ 0) L _ (0 1) (0
“lo —i)? 7 10T i o
Problem 1 For X, Y € H,,Show that the Euclidean inner product

(w2, 3, 4), (y2, Y3, 3a)) = —;mm

Given,X,Y € H,. So,we can write

X — 1To T3 + 124 y — 12 Y3 + 1Yy
—x3 + 124 —1x9 ’ —y3 + 1Yy —11Y2

Solution.

Now, We will look into the diagonal of XY,

xy = [~ (@2y2 +3ys + Taya) +i(23y4 — ysza) e
a — (@22 + T3Y3 + Taya) — i(T3y4 — Y374)

So, tr(XY) = —2(zoys + x3ys + w4y4). Hence,

(22,23, 23), (Y2, y3,94)) = —%tr(XY)

Problem 2 Verify that, for X,Y € H,, and P € SU(2),
(PXP* PYP*) = (X,Y)

Solution.
At first of all, | will show that PXP* € H,,. Since , P is invertible matrix, trace of PXP* is

equal to trece of X, which is 0. So PXP* € H,,.b



1
(PXP*,PYP*) = —tr(PXP"PY P*)
1
=~ tr(PXYP")

1
= —itr(XY) [as P is invertible matrix ]

:<X7Y>

Problem 3 lIdentifying H,, with R3, verify that the map ¢ : SU(2) — GL3(R),
op(xg,x3,24) = PXP*, where o(P) = ¢p,X is the corresponding element in H,,
has image in O(3) and is a homomorphism.

Solution. In the question, it is given that ¢ maps P € SU(2) to pp. For any X € Hp ( which
is analog of R? ) ¢p preserves the innerproduct. We have shown that in Problem 2.
So, obviously ¢ maps P € SU(2) to O(3).Now, we will prove that ¢ is a homomorphism.

= For P =Q,
(pp(X) =PXP*"=QXQ"= QOQ(X) forall X € Hp

= PP =9¥Q
= For P,Q € SU(2),we will check what happens to ¢(PQ) = ¢pq.
pro(X) = PQ(X)(PQ)”
= P(QXQ")P”

= ¢p o pq(X)
This is true forall X € Hp

Which means,

PPQ = PP OYQ

These two things proves that ¢ is a homomorphism.



Problem 4 Let Y be invertible, and Y € SU(2). Verify, for ¢ as above, det(py) =1
forall Y € SU(2)

Proof 1

Solution.

We have seen that ¢ : SU(2) — O(3),defined as previous question is a homomorphism.We
will look at the kernal of this homomorphism.

ker(p) ={P € SU(2) : pp = Id}
= {P€SU@2): PX = XP forall X € H,}
= {£I} C ker(p)
We Know that, ker(yp) <SU(2)
{£I} C ker(p) < SU(2)
— {£I} < ker(p) ASU(2)

Now, i will use a result proved in class. That is SU(2)/{+£I} is simple. This means there do not
exist any normal subgroup N of SU(2) containing {£I} | except SU(2) itself and {+I}.So,
ker(yp) is either SU(2) or {£1}.

Kernal can not be whole SU(2). As P =i do not fix the point X = j. So,ker(¢) = {£I}.Using
first Isomorphism theorem we get,

Im(p) = SU(2)/ker ()
= Im(p) = SU(2)/{*I}
Lemma (Stated in Class) SO(3) = SU(2)/{xI}

We have O(3) > Im(p) = SO(3).This means , Im(p) = SO(3). For any Y € SU(2),py €
SO(3). This means det(py) = 1. [ |

Proof 2

Solution.

Lemma SU(2) is connected.

Proof. We have proved in class that SU(2) is homeomorphic to S3 Which is simply con-
necetd.And hence SU(2) is connected(Simply connected more precisely). B

Now , | will show that ¢ : SU(2) — O(3) is continuous map. Let P = (a,b,c,d) € SU(2).
From the defination of ¢ we can conclude that, pp(x) will look like axi + byj + cxk. Where ay
is Polynomial function of x as well as (a, b, ¢, d).So ¢ is Continuous.

We know continuous function maps connecetd domain to a connected space. i.e Im(yp) is
connecetd. Under this mapping I € SU(2) maps to Id € O(3). So, Idp(3) € Im(y).



Fact O(3) has two connected component. One containing Ido(3) and another containing
—Ido(3)- SO(3) is the connected component containig Ido(3)-

Using the above fact we can say, Im(¢) < SO(3). So, det(py) =1



