Group Theory Homework-3

Trishan Mondal

Bmat 2144

Problem 1. Show that an abelian group has a composition series if and only if it is finite.

Solution.

At first I will show that every finite group has a Composition series.

If G is Simple or G is trivial then we are done. Let, G is not simple and nontrivial.Now consider G_1 be the maximal normal subgroup(this exist by Zorn's lemma) of G. Then consider Maximal normal subgroup of G_1 , call it G_2 . Then by induction we can construct,

$$\{e\} \trianglelefteq G_r \trianglelefteq \cdots \trianglelefteq G_1 \trianglelefteq G$$

Where G_{i+1} is maximal normal subgroup of G_i . If, $G_{i+1} \neq \overline{N} \leq G_i/G_{i+1}$ Then there is a normal subgroup N of G_i containg G_{i+1} , which Contradict the fact that G_{i+1} is maximal normal subgroup of G_i . And Hence corresponding factor G_i/G_{i+1} is simple.

Now I will Show that if G is a abelian group, it has composition series then G is finite.

Lemma 1. An Abelian Group G is Simple if it has prime order.

Proof. If G has infinite order then any subgroup of this is Normal. So it Can't be simple. If G has finite order then to make it Simple, it can't have a proper non-trivial subgroup. Otherwise that subgroup will be normal to G. so only posibility that the group has prime order.

Let's consider the composition series of G is as following,

$$\{e\} \trianglelefteq G_r \trianglelefteq \cdots \trianglelefteq G_1 \trianglelefteq G$$

Since G is abelian, all subgroups of it is Abelian and Normal. Hence $G_r/\{e\}$ is abelian and simple. Only Possibility is that $G_r/\{e\} \cong \mathbb{Z}/p_r\mathbb{Z}$. For Some prime p_r .

So, G_r is a finite group.Now we will look at the quotient G_{r-1}/G_r . This is again abalian and simple.So, $G_{r-1}/G_r \cong \mathbb{Z}/p_{r-1}\mathbb{Z}$. For some prime p_{r-1} . Here, $|G_{r-1}| = |G_{r-1}/G_r| \times |G_r/\{e\}|$.And hence, G_{r-1} is finite.

By Induction we Can show that all of G_i are finite $\forall i \in \{0, \dots, r+1\}$. (Here, $G_0 = G$ and $G_{r+1} = \{e\}$)

Problem 2. Give an example of a infinite series which has a composition series.

Solution. Let's denote the symmetric group of \mathbb{N} by $S_{\mathbb{N}}$.Let Ω be the subgroup of $S_{\mathbb{N}}$ such that,

$$\Omega := \{ \sigma \in S_{\mathbb{N}} | \sigma(i) = i \text{ forall i except finitely many} \}$$

Now Let, $A_{\infty} \leq \Omega$ which is generated by all there cycles. Defined as following,

$$A_{\infty} := \langle (xyz) | x, y, z \in \mathbb{N} \text{ and } x, y, z \text{ are distinct} \rangle$$

Let A be a normal subgroup of A_{∞} , $A_n \cap A$ is normal to A_n , forall $n \ge 5$.(Because for any $g \in A_n$, $ghg^{-1} \in A_n$ and also belong to A. i.e. $ghg^{-1} \in A_n \cap A$. Where, $h \in A_n \cap A$.) Since A_n is simple (for $n \ge 5$). So, $A_n \cap A$ is either trivial or A_n .

If there is any m and $m \ge 5$ such that $A_m \cap A = A_m$, then $A_n \cap A = A_n$ for n > m. This is Because $A_n \cap A \ge A_m \cap A = A_m$. This means $A_n \cap A$ is nontrival normal subgroup of A_n . Using simplicity of A_n we get $A_n \cap A = A_n$. i.e. $A_n \subset A$. Then, $\forall g \in A_\infty$, $g \in A_k$ for some $k \ge 5$. Also $A_k \subset A$, i.e. $g \in A$. (As A_k are embded in A_m for m > k).

Only One Case Remained. If all the intersection $A_n \cap A$ are trivial for $n \ge 5$. In this case $A = \{e\}$. (By the construction of A_{∞}). Hence, A_{∞} is simple.

 A_{∞} is infinite group Because $\{(12x)|x \in \mathbb{N} - \{1,2\}\} \subset A$. Clearly A_{∞} is an infinite group who has composition series. Namely,

 $\{e\} \trianglelefteq A_{\infty}$

Here, the Corresponding factor is simple.

Problem 3. Show that the Dihedral group D_{2n} is Solvable.

Solution.

The representation of Dihedral Group is follwing;

$$D_{2n} := \langle r, s | r^n = s^2; sr = r^{-1}s \rangle$$

For D_{2n} , We know, $sr^k s^{-1} = r^{-k} \in \langle r \rangle$ (we have shown this in previous Assignment).

Now,Look at the following normal series decomposition of D_{2n} .

$$\{e\} \trianglelefteq \langle r \rangle \trianglelefteq D_{2n}$$

Now look at the successive Factors, $\langle r \rangle / \{e\} \cong \mathbb{Z}_n$ and $D_{2n} / \langle r \rangle \cong \mathbb{Z}_2$.

So , Both the factors are abelian. And Hence D_{2n} is solvable.

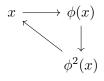
Problem 4. Give an example of a Group G admitting an automorphism ϕ of order 3. such that $\phi^3 = 1, \phi(x) = x \iff x = e$, When G is finite as well as G is infinite.

Solution.

Example of such Finte Group

We should start with a remark.

Remark: Given, $\phi \in AutG$. For any $x \neq e$ in G we will get a cycle as following,



In the above diagramm each of the terms $x, \phi(x), \phi^2(x)$ will be different, by definition of ϕ . If y does not belong to the above cycle then y will also make a separate cycle. So, the Cardinality of G,|G| must be in the form 3k + 1.

Example 0.1. For |G| = 7, $G = \mathbb{Z}/7\mathbb{Z}$ is such an example.

Writing the automorphism explicitly,

$$\phi(1) = 2 \qquad \qquad \phi(3) = 6 \tag{0.1}$$

$$\phi(2) = 4$$
 $\phi(6) = 5$ (0.2)

$$\phi(4) = 8 \qquad \qquad \phi(5) = 3 \tag{0.3}$$

Vaguely speaking, G will split like the following under the automorphism,

$$\{0\}, \begin{array}{c} 1 \xrightarrow{2} 2 \\ \swarrow \\ 4 \end{array}, \begin{array}{c} 3 \xrightarrow{6} \\ \swarrow \\ 5 \end{array}$$

 $G = \mathbb{Z}/7\mathbb{Z}$ is an example where we can find such Automorphism.

Example of such Infinte Group

For this case consider $G = (\mathbb{Z}/7\mathbb{Z})^{\infty}$. So, G is product of countably infinite copies of $\mathbb{Z}/7\mathbb{Z}$. Define, a homomorphism $(\psi : G \to G)$ as , $\psi(g) = \psi(g_1, g_2, \cdots) = (\phi(g_1), \phi(g_2), \cdots)$. This is clearly an Automorphism. Because, for any $x = (x_1, \cdots)$ we will get corresponding $(\phi^{-1}(x_1), \cdots)$ for which $\psi((\phi^{-1}(x_1), \cdots)) = (x_1, \cdots)$. (this is because ϕ is Automorphism defined for the finite case)

Notice that,

$$\psi(x) = x$$

$$\implies \psi(g_1, g_2, \cdots) = (g_1, g_2, \cdots)$$
$$\implies (\phi(g_1), \phi(g_2), \cdots) = (g_1, g_2, \cdots)$$
$$\implies \phi(g_i) = g_i \qquad \forall i \in \mathbb{N}$$
$$\implies g_1 = e \qquad \forall i \in \mathbb{N}$$

Also, It is easy to show that $\psi^3(x) = (\phi^3(x_1), \cdots) = (x_1, \cdots) = x$. So,this Automorphism satisfy the given condition.