
Assignment-5
Functional Spaces

Trishan Mondal

§ Theorems and Lemmas proved in class

————————————————————————————————————————————————–

Theorem 1.1: (Monotone Convergence Theorem) Let, {fn} be a sequence of Lebesgue integrable func-
tion on [0, 1] such that, (i) {fn} is increasing sequence almost everywhere (ii) limn→∞

∫ 1
0 fn(x) dx is finite,

then {fn} → f and ∫ 1

0
f dx = lim

n→∞

∫ 1

0
fn(x) dx

Theorem 1.2: (MCT for series) Let, {gn} be a sequence of Lebesgue integrable function on [0, 1], assume
that,

∑∞
n=1

∫ 1
0 |gn| is convergent. Then

∑∞
n=1 gn converges to a Lebesgue integrable function g almost

everywhere and, ∫ 1

0
g dx =

∫ 1

0

∞∑
n=1

gn(x) dx =

∞∑
n=1

∫ 1

0
gn

Theorem 1.3: (Dominated Convergence Theorem) Let, {fn} be a sequence of Lebesgue-integrable func-
tion on [0, 1], assume that (i) {fn} → f almost everywhere (ii) |fn(x)| ≤ g(x) almost everywhere on [0, 1],
where g is non-negative Lebesgue-integrable function. Then, f is Lebesgue integrable function and∫ 1

0
f dx = lim

n→∞

∫ 1

0
fn dx

Theorem 1.4: (Lebesgue integral on unbounded interval) Let, f defined on [a,∞) assume f is Lebesgue

integrable on [a, b] for all b ≥ a and there is a positive constant M such that,
∫ b
a |f | ≤ M for all b ≥ a,f

is Lebesgue-integrable on [a,∞) and, ∫ ∞

a
f dx = lim

b→∞

∫ b

a
f dx

Theorem 1.5: (Improper Riemann integrable) Let, f defined on [a,∞) assume f is Riemann integrable

on [a, b] for all b ≥ a and there is a positive constant M such that,
∫ b
a |f | ≤ M for all b ≥ a,then f is

Riemann integrable on [0,∞) and ∫ ∞

a
f dx = lim

b→∞

∫ b

a
f dx
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Theorem 1.6: (Theorem on measurable function) Let, φ be a real valued continuous function on R2. If
f, g are two measurable function on I, (in other words f, g ∈ M(I)) the function h(x) := φ(f(x), g(x)) is
then Lebesgue-integrable.

Theorem 1.7: (Continuity of function defined by Lebesgue Integral)Let, f : X × Y → R be a function
such that,

(i) fy(x) = f(x, y) is measurable on X for all y ∈ Y .

(ii) |f(x, y)| ≤ g(x) almost everywhere on X where, g(x) is Lebesgue-integrable function on X.

(iii) limt→y f(x, t) = f(x, y) almost everywhere on X

Then the Lebesgue integral
∫
X f(x, y) dx exists and the following function is continuous on Y ,

F (y) =

∫
X
f(x, y) dx

Theorem 1.8: (Differentiation under integral sign) Let, X and Y be two sub-intervals of R and let f
be a function defined on X × Y satisfying the following conditions,

� For each fixed y ∈ Y , the function fy = f(x, y) is measurable on X and fa(x) is Lebesgue integrable
on X for some a ∈ Y .

� The partial derivative ∂yf(x, y) exists for each interior point (x, y) ∈ X × Y .

� There is a non-negative function G ∈ L(X) such that, |∂yf(x, y)| ≤ G(x) for all interior points of
X × Y .

Then the Lebesgue integral
∫
X f(x, y) dx exists for every y ∈ Y and the function F (y) =

∫
X f(x, y) is

differentiable at each interior point Y , moreover it’s derivative is given by

F ′(y) =

∫
X
∂yf(x, y) dx

§ Lemma 1.1: Let, f(x) be a function defined on [0, a] as f(x) = xs when x > 0 and 0 when x = 0,
then the Lebesgue integral

∫ a
0 f(x) dx exists is s > −1.

§ Lemma 1.2: If f is a function continuous on (0, 1) and |f | ≤ g almost everywhere on [0, 1], where g
is a non-negative Lebesgue integrable function then, f ∈ L1[0, 1].

Proof of the Lemma. Since, f is continuous on (0, 1) it is measurable on the open set (0, 1). In the set [0, 1],
the sub-set {0, 1} is measure zero. So, f is a measurable function on [0, 1]. Absolute value of it is uniformly
bounded by a non-negative Lebesgue integrable function g. So by 1.3 we can say f is Lebesgue integrable on
[0, 1]. □

§ Lemma 1.3: Let, f be a measurable function over I and |f | ≤ g, where g is Lebesgue integrable. f is
also Lebesgue integrable.
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§ Problem 1

Problem. The following two problems wort 10 points in total.

(a) (5 points) Show that log 1
1−x ∈ L1([0, 1]; dx) and with justification, compute the following integral:

∫ 1

0
log

1

1− x
dx

(b) (5 points) For p > 0, show that xp−1

1−x log 1
x ∈ L1([0, 1]; dx) and

∫ 1

0

xp−1

1− x
log

1

x
dx =

∞∑
n=0

1

(n+ p)2
.

Solution.

(a) Let, g(x) = − log(1− x). This function is defined on [0, 1) and it has a Taylor series expansion around
the point x = 0 as following,

g(x) = − log(1− x) =

∞∑
n=1

xn

n

Let, gn(x) = xn

n , then g(x) =
∑∞

n=1 gn(x). We can see gn(x) is continuous on [0, 1) for all n ∈ N.
Extend gn(x) to a continuous function g̃n(x) which is equal to gn(x) on [0, 1) and equal to 1

n at x = 1.
Notice that, g̃n(x) is continuous on the compact interval [0, 1] and hence Riemann integrable. Here,
g(x) =

∑∞
n=1 gn(x) =

∑∞
n=1 g̃n(x) the last inequality holds at [0, 1), i.e. almost everywhere on the interval

[0, 1]. We have the following,

∞∑
n=1

∫ 1

0
|g̃n| =

∞∑
n=1

∫ 1

0
g̃n =

∞∑
n=1

∫ 1

0

xn

n
=

∞∑
n=1

1

n(n+ 1)

Let, sk =
∑k

n=1
1

n(n+1) = 1 − 1
k+1 . If k → ∞, lim sk = 1. Thus the sum

∑∞
n=1

∫ 1
0 |g̃n| converges and by

MCT for series 1.2 we can say,
∑

g̃n(x) converges to a Lebesgue integrable function g̃(x). From the
above discussion we also know, g̃(x) = g(x) almost everywhere on [0, 1]. So, g is also Lebesgue integrable
on [0, 1] and, ∫ 1

0
g(x) dx =

∫ 1

0
g̃ dx =

∞∑
n=1

∫ 1

0
g̃n dx =

∞∑
n=1

1

n(n+ 1)
= 1

(b) We know that 1
1−x = 1 + x+ x2+... =

∞∑
n=0

xn. So we can write the given function as,

xp−1

1− x
log

(
1

x

)
=

∞∑
n=0

−xn+p−1 log x, ∀x ∈ (0, 1)

Consider the sequence of function {gn(x)} defined as gn(x) = −xn+p−1 log x ≥ 0 for all x ∈ (0, 1] and
n ∈ N∪{0}. Each term of the sequence is clearly Lebesgue-Integrable in (0, 1]. Note that, gn is continuous
on (0, 1).

|gn(x)| = −xn+p−1 log x

= xn+p−1 log
1

x

= kxn+p−1 log
1

x
1
k

≤ kxn+p− 1
k
−1 using the fact log y ≤ y
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For a given p > 0 we can always choose a k > 0 such that, n+ p− 1
k > 0 for all n ∈ N ∪ {0} but then the

power of x in the above inequality will be > −1, by lemma 1.1 this function is Lebesgue integrable and
by lemma 1.2 we can say gn is Lebesgue-integrable.

Now consider the series
∞∑
n=0

1∫
0

gn(x) dx. Integrating by parts, we have

1∫
0

gn(x) dx =

1∫
0

−xn+p−1 log x dx = − xn+p

n+ p
log x

∣∣∣1
0
+

1∫
0

xn+p−1

n+ p
dx = 0 +

xn+p

(n+ p)2

∣∣∣1
0
=

1

(n+ p)2

Therefore, we can conclude using MCT for series 1.2 that,

1∫
0

−xp−1

1− x
log x dx =

1∫
0

∞∑
n=0

gn(x) dx =
∞∑
n=0

1∫
0

xp−1

1− x
log

(
1

x

)
dx =

∞∑
n=0

1

(n+ p)2

§ Problem 2

Problem. Let f : [0, 1] → R be a function and g : [0, 1] → R by g(x) = ef(x).

(a) (5 points) Show that if f is measurable, then so is g.

(b) (5 points) If f is Lebesgue-integrable, is then g necessarily Lebesgue integrable? Prove or provide
counterexample with justification.

(c) (5 points) Give an example of an essentially unbounded function f which is continuous on (0, 1] such
that fn is Lebesgue-integrable for all positive integers n. (A function f is essentially unbounded if
for every M > 0 the set {x ∈ [0, 1] : |f(x)| > M} is not negligible, that is, not of measure zero.)

Solution.

(a) We are given that f is a measurable function. So, there exists a sequence of step functions {sn} ⊆ S[0, 1]
such that lim

n→∞
sn(x) = f almost everywhere on [0, 1]. Now, consider the sequence {esn}. Clearly, every

term of this sequence is a step function. Also, the map x 7→ ex is a continuous map. So, lim
n→∞

esn = ef

almost everywhere on [0, 1]. Since the sequence {esn} of step functions converges to ef(x), we can conclude
that g = ef is a measurable function as well.

(b) No. Even if f is Lebesgue-Integrable in [0, 1], g doesn’t necessarily have to be Lebesgue Integrable. Define
f(x) = log 1

x for all x ∈ (0, 1]. Note that,

|f(x)| = | log 1

x
| = |2 log 1√

x
| ≤ 2√

x

By lemma 1.1 we know 1√
x
is Lebesgue integrable and by lemma 1.2 we can say f(x) is Lebesgue-integrable.

But g(x) = ef(x) = 1
x is not Lebesgue integrable on [0, 1]. The proof is as following,

– Consider, fn(x) =
∑n

k=1 kχ( 1
k+1

, 1
k
](x), where χI is identity on I and 0 on it’s complement. For all

n ∈ N it satisfies fn(x) ≤ 1
x for x > 0 and

∫ 1
0 fn =

∑n
k=1

1
k+1 . Since

∑
n

1
n is divergent, we see that

g(x) = 1
x is not integrable.

(c) Let, f = log 1
x it is continuous on (0, 1]. For every M > 0, the set

{
x ∈ (0, 1] : log 1

x > M
}
= (0, e−M ), this

set is not negligible. So, f(x) is essentially unbounded function. Now, fn (n-th power of f) is
(
log 1

x

)n
.

Note that,

|fn| =
(
log

1

x

)n

= kn
(
log

1

x
1
k

)n

≤ kn
1

xn/k
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Suitably choose k > 0 according to n such that, n
k < 1. Then by lemma 1.1 and 1.2 we can say fn is

Lebesgue integrable ∀n ∈ N. ■

§ Problem 3

Problem. (5 points) (Fundamental Theorem of Calculus) Let f : [0, 1] → R be a differentiable function-
with one-sided derivatives at the end-points 0 and 1 . If the derivative f ′ is uniformly bounded on [0, 1],
then show that f ′ is Lebesgue-integrable and that∫ 1

0
f ′dx = f(1)− f(0).

Solution. Let us define a sequence of function fn as following, (n > 2)

fn(x) =

{
n
(
f(x+ 1

n)− f(x)
)

x ∈ [0, 12)

n
(
f(x)− f(x− 1

n)
)

x ∈ [12 , 1]

Since f(x) is differentiable on [0, 1] it is continuous on [0, 1], thus fn(x) is Lebesgue integrable on [0, 1]. Also
note that, limn→∞ fn(x) = f ′(x) almost everywhere on [0, 1]. We are given f ′ is uniformly bounded on [0, 1],
so there exist M > 0 such that, |f(x)| < M , for all x ∈ [0, 1]. By the Mean value theorem we can say,

fn(x) =
f(x)− f(x− 1

n)
1
n

= f ′(cx)

for some cx ∈
(
x− 1

n , x
)
if x ≥ 1

2 and if x < 1
2 we will get some tx ∈

(
x, x+ 1

n

)
such that,

fn(x) =
f(x+ 1

n)− f(x)
1
n

= f ′(tx)

In either case we have |fn(x)| < M , since constant function in [0, 1] is Lebesgue integrable, we can say the limit
limn→∞

∫ 1
0 fn(x) dx is finite. We can apply MCT 1.1 to get f ′ is Lebesgue integers and,∫ 1

0
f ′(x) dx = lim

n→∞

∫ 1

0
fn(x) dx

= lim
n→∞

∫ 1
2

0
n

(
f

(
x+

1

n

)
− f(x)

)
+

∫ 1

1
2

n

(
f(x)− f

(
x− 1

n

))
dx

Let us define F (t) =
∫ t
0 f(t) dt with F (0) = 0, it is differentiable as f is continuous on [0, 1]. Thus we have,

lim
n→∞

∫ 1
2

0
n

(
f

(
x+

1

n

)
− f(x)

)
+

∫ 1

1
2

n

(
f(x)− f

(
x− 1

n

))
dx

= lim
n→∞

n

(
F

(
1

2
+

1

n

)
− F

(
1

n

)
− F

(
1

2

))
+ n

(
F (1)− F

(
1

2

)
+ F

(
1

2
− 1

n

)
− F

(
1− 1

n

))
= lim

n→∞

F
(
1
2 + 1

n

)
− F

(
1
2

)
1
n

− lim
n→∞

F
(
1
n

)
− F (0)
1
n

+ lim
n→∞

F
(
1
2 − 1

n

)
− F

(
1
2

)
1
n

+ lim
n→∞

F (1)− F
(
1− 1

n

)
1
n

= F ′
(
1

2

)
− F ′(0)− F ′

(
1

2

)
+ F ′(0)

= F ′(1)− F (0)

= f(1)− f(0) by Liebniz formula we have F ′(t) = f(t)

Finally we get,
∫ 1
0 f ′dx = f(1)− f(0). ■
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§ Problem 4

Problem. (10 points) Let f, g : [0, 1] → R be two Lebesgue-integrable functions satisfying∫ t

0
f(x)dx ≤

∫ t

0
g(x)dx

for all t ∈ [0, 1]. If φ : [0, 1] → R is a non-negative decreasing function, the show that the functions φf
and φg are Lebesgue-integrable over [0, 1] and that they satisfy∫ t

0
φ(x)f(x)dx ≤

∫ t

0
φ(x)g(x)dx

for all t ∈ [0, 1].

Solution. Consider the function h(x) = f(x)− g(x), we will have h is Lebesgue integrable on [0, 1] (since
f, g ∈ L1([0, 1])), and further for all t ∈ [0, 1] we have∫ t

0
h(x) dx =

∫ t

0
f(x) dx−

∫ t

0
g(x) dx ≤ 0.

Let φ : [0, 1] → R be a non-negative decreasing function. We will show show φf ∈ L1([0, 1]). Since φ is
decreasing, hence the points of discontinuity of φ is at countable, hence is of measure zero. Thus φ is continuous
almost everywhere on [0, 1], and hence is measurable. Since f ∈ L1([0, 1]) ⊆ M([0, 1]) we get f is also measurable
on [0, 1], therefore φf ∈ M([0, 1]). We will have |φf(x)| ≤ |φ(0)||f(x)|, but f ∈ L1([0, 1]) ⇒ |f | ∈ L1([0, 1])
hence φf ∈ L1([0, 1]) (using lemma 1.3). Similarly we get φg ∈ L1([0, 1]), therefore φh = φ(f − g) ∈ L1([0, 1]).

Now we will show that, t ∈ [0, 1], we have
∫ t
0 φ(x)h(x) dx ≤ 0. Let t ∈ [0, 1], now consider the sequence of step

functions (where 0 ≤ j ≤ n− 1)

φn(x) =
n−1∑
j=0

φ

(
jt

n

)
χ[

jt
n
,
(j+1)t

n

](x) ∀n ∈ N.

Let x be a point of continuity of φ and let ε > 0, then there exists δ > 0 such that |φ(x) − φ(y)| < ε for all

|x − y| < δ. Now there exists n0 ∈ N such that 1/n < δ for all n ≥ n0. Notice that x ∈
[
jt
n ,

(j+1)t
n

]
for some

j, then we get |x− jt/n| ≤ 1
n < δ for n ≥ n0, and hence we get |φ(x)− φ(jt/n)| < ε. Thus for n ≥ n0 we get

that φn(x) = φ(jt/n), and hence |φn(x)− φ(x)| < δ for all n ≥ n0. Therefore limn→∞ φn(x) = φ(x), whenever
x is a point of continuity of φ. Since the points of discontinuity of φ is at most countable, it has measure zero,
therefore we get that limn→∞ φn(x) = φ(x) almost everywhere on [0, 1].

Now observe that,

∫ t

0
h(x)φn(x) dx =

∫ t

0

n−1∑
j=0

h(x)φ

(
jt

n

)
χ[

jt
n
,
(j+1)t

n

](x)
 dx

=

n−1∑
j=0

∫ t

0
h(x)φ

(
jt

n

)
χ[

jt
n
,
(j+1)t

n

] dx

=
n−1∑
j=0

φ(jt/n)

(∫ (j+1)t/n

jt/n
h(x) dx

)
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Now we will use Abel’s summation formula to get, (1)

The above sum = φ(t)

n−1∑
j=0

∫ (j+1)t/n

jt/n
h(x) dx

+

n−1∑
j=0

(φ(jt/n)− φ((j + 1)t/n))

(
j∑

k=0

∫ (k+1)t/n

kt/n
h(x) dx

)

= φ(t)︸︷︷︸
≥0

(∫ t

0
h(x) dx

)
︸ ︷︷ ︸

≤0

+

n−1∑
j=0

φ(jt/n)− φ((j + 1)t/n)︸ ︷︷ ︸
≥0

(∫ (j+1)t/n

0
h(x) dx

)
︸ ︷︷ ︸

≤0

≤ 0.

Now note that

� hφn is Lebesgue integrable (as h ∈ L1([0, 1]) and φn ∈ L1([0, 1]) hence hφ ∈ M([0, 1]), but since |hφn| ≤
φ(0)|h| and |h| ∈ L1([0, 1]), we get that hφn ∈ L1([0, 1])).

� And since limn→∞ φn(x) = φ(x) almost everywhere, we get that {hφn} converges almost everywhere to
the limit function hφ.

� And finally note that |h(x)φn(x)| ≤ φ(0)|h(x)| for all x ∈ [0, 1] and |h| ∈ L1([0, 1]).

Using Dominated Convergence Theorem we get,∫ t

0
h(x)φ(x) dx =

∫ t

0
lim
n→∞

h(x)φn(x) dx = lim
n→∞

∫ t

0
h(x)φn(x) dx ≤ 0.

But t was chosen arbitrarily from [0, 1],thus we have∫ t

0
f(x)φ(x) dx ≤

∫ t

0
g(x)φ(x) dx ∀ t ∈ [0, 1].

■

§ Problem 5

Problem. (10 points) For t ≥ 0, let

A(t) :=

(∫ t

0
e−x2

dx

)2

, B(t) :=

∫ 1

0

e−t2(1+x2)

1 + x2
dx.

(a) (5 points) Prove that A(t) +B(t) = π
4 for all t ≥ 0.

(b) (5 points) Prove that e−x2 ∈ L1 (R≥0; dx) and
∫∞
0 e−x2

dx =
√
π
2 .

(N.B.: Carefully justify each step, such as existence of integral, interchange of limits and integrals, etc.)

Solution. (a). Let f : [0, 1]× [0,∞) → R be defined as follows,

f(x, t) =
e−t2(1+x2)

1 + x2
.

For any fixed t, the function ft : [0, 1] → R defined by ft(x) = f(x, t) is continuous on the compact interval
[0, 1] and hence is Lebesgue integrable on [0, 1]. Also note that the partial derivative ∂tf exists at all interior
points of [0, 1]× [0,∞), and we also have

∂tf(x, t) = −2te−t2(1+x2)

7



We will also have, |∂tf(x, t)| ≤ 2te−t2 as t2 < t2(1 + x2) and we can also bound te−t2 by 1 as, t < et
2
. Thus we

have an uniform bound |∂tf(x, t)| < 2, the constant function 2 is Lebesgue integrable on [0, 1]. By theorem 1.8

we can say B(t) =
∫ 1
0

e−t2(1+x2)

1+x2 dx is differentiable and in fact we have,

B′(t) =

∫ 1

0
∂tf(x, t) dx = −2t

∫ 1

0
e−t2(1+x2) dx.

And by Fundamental Theorem of Calculus we get,

A′(t) = 2e−t2
∫ t

0
exp
(
−x2

)
dx = 2te−t2

∫ 1

0
exp
(
−x2t2

)
dx = 2t

∫ 1

0
exp
(
−t2(1 + x2)

)
dx.

And hence we get A′(t) +B′(t) = 0, therefore A(t) +B(t) is constant function, and

A(0) +B(0) =

∫ 1

0

1

1 + x2
dx =

π

4
.

And hence we get that A(t) +B(t) = π
4 for all t ≥ 0. ■

(b). In order to prove e−x2
is Lebesgue integrable on [0,∞), we will break the interval in two parts [0, 1]∪[1,∞).

On the interval [0, 1] the function is continuous hence Riemann integrable and hence Lebesgue integrable. For
any a ≥ 1, the function is Lebesgue integrable on [1, a] and e−x2 ≤ e−x will give us,∫ a

1
e−x2

dx ≤
∫ a

1
e−x dx ≤

(
1

e
− 1

ea

)
<

1

e

By theorem 1.4 we can say e−x2
is Lebesgue integrable on [1,∞) and hence it’s Lebesgue integrable on [0,∞).

Note that B(t) is continuous and hence we get that

lim
t→∞

B(t) =

∫ 1

0
lim
t→∞

e−t2(1+x2)

1 + x2
dx = 0.

which gives us, (∫ ∞

0
e−x2

dx

)2

= lim
t→∞

A(t) = lim
t→∞

(A(t) +B(t)) =
π

4
,

and therefore we get,
∫∞
0 e−x2

dx =
√
π
2 . ■

§ Problem 6

Problem. (10 points) Show that for each t ≥ 0, the integral
∫∞
0

sinxt
x(x2+1)

dx exists both as an improper

Riemann integral and as a Lebesgue integral, and that∫ ∞

0

sinxt

x (x2 + 1)
dx =

π

2

(
1− e−t

)
Solution. We fix t ∈ [0,∞) and choose M > 0 such that t ∈ [0,M). Let X = (0,∞), T = [0,M ] and

consider the function f : X × T → R defined as

f(x, t) =
sinxt

x(1 + x2)

We note that f(x, t) is continuous on [0, b] for all b ≥ 0 and hence Riemann integrable. Further,∫ b

0
|f(x, t)|dx ≤

∫ b

0

tx

x(x2 + 1)
dx < M

∫ ∞

0

1

x2 + 1
dx =

Mπ

2
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where the first inequality is because |sin tx| ≤ tx for x, t ≥ 0, the second inequality is because t < M and
1

x2+1
≥ 0 for x ≥ 0, and the last equality follows from the fact that

∫∞
0

1
1+x2 dx = π

2 . Hence, by Theorem 1,
f(x, t) is both Lebesgue and Riemann integrable as a function in x, and the values of both integrals are equal.

Let, f(x, t) = 1−cos tx
x2(1+x2)

defined on the set (0,∞)× [0,M) = X ×Y (where M > 0), we can see that the function

ft(x) is continuous for all x ∈ (0,∞), where t is any element of Y and it is fixed. Hence it is measurable for all
t ∈ Y . At t = 0 the function is identically 0 so, f0(x) is Lebesgue integrable on X. Also, note that,

∂t

(
1− cos tx

x2(1 + x2)

)
=

sin tx

x(x2 + 1)

exist everywhere on (0,∞)× (0,∞), these are the interior points of X×Y . Also note that, |∂tf(x, t)| ≤ t
1+x2 <

M
1+x2 as |sinxt| ≤ xt, for x, t ≥ 0. Here, g(x) = M

1+x2 is Lebesgue integrable in X. The following proves g(x) is
Lebesgue integrable on [0,∞).

� For any a ≥ 0, g(x) is Lebesgue integrable as it is continuous on this interval.

�

∫ a
0

M
x2+1

dx = M tan−1 a ≤ π
2M , for all a ≥ 0. By theorem 1.4, g(x) is Lebesgue integrable on [0,∞).

By theorem 1.8,the Lebesgue integral
∫
X f(x, t) dx exists for every t ∈ Y and the function F (t) =

∫
X f(x, t) is

differentiable at each interior point Y , moreover it’s derivative is given by

F ′(t) =

∫ ∞

0
∂tf(x, t) dx

=

∫ ∞

0

sinxt

x(x2 + 1)
dx

We can do the above case for any M > 0. Thus for all t ≥ 0, F ′(t) is given by the above formula. Now consider
the function g(x, t) = sinxt

x(x2+1)
defined on (0,∞) × [0,∞). For all t ∈ [0,∞), gt(x) = g(x, t) is continuous and

hence measurable. At t = 0, g0(x) = 0 which is Lebesgue-integrable on [0,∞).

∂t

(
sinxt

x(x2 + 1)

)
=

cosxt

(1 + x2)

exists on the interior points of [0,∞)2. Also ∂t|g(x, t)| ≤ 1
1+x2 . Note that, g(x) = 1

1+x2 is Lebesgue-integrable

as observed previously. By theorem 1.8, the Lebesgue integral
∫∞
0 g(x, t) dx exists for every t ∈ [0,∞) and the

function F ′(t) =
∫
X g(x, t) is differentiable at each interior point [0,∞), moreover it’s derivative is given by

F ′′(t) =

∫ ∞

0
∂tg(x, t) dx

=

∫ ∞

0

cosxt

(x2 + 1)
dx

⇒ F (t)− F ′′(t) =

∫ ∞

0

1− cosxt

x2(x2 + 1)
− cosxt

(x2 + 1)
dx

=

∫ ∞

0

1− cosxt

x2
− 1

(x2 + 1)
dx

= −π

2
−
[
1− cosxt

x

]∞
0

+ t

∫ ∞

0

sinxt

x
dx

=
π

2
(t− 1)

The last line follows from the result,
∫∞
0

sinxt
x dx = π

2 , which is proved in class. Thus we have to solve a 2
degree differential equation F ′′(t) − F ′(t) = π

2 (t − 1), with the initial conditions F (0) = 0, F ′(0) = 0. Note
that, F (t) = π

2 (t− 1) + π
2 e

−t satisfy the differential equation and it’s initial conditions. Now by Existence and
uniqueness of ODE we can say, this is the unique solution to the ODE with the initial conditions. Thus,∫ ∞

0

sinxt

x(x2 + 1)
dx = F ′(t) =

π

2
(1− e−t)
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