Assignment-5

Functional Spaces

TRISHAN MONDAL

§ Theorems and Lemmas proved in class

Theorem 1.1: (Monotone Convergence Theorem) Let, $\{f_n\}$ be a sequence of Lebesgue integrable function on [0, 1] such that, (i) $\{f_n\}$ is increasing sequence almost everywhere (ii) $\lim_{n\to\infty} \int_0^1 f_n(x) dx$ is finite, then $\{f_n\} \to f$ and

$$\int_0^1 f \, dx = \lim_{n \to \infty} \int_0^1 f_n(x) \, dx$$

Theorem 1.2: (MCT for series) Let, $\{g_n\}$ be a sequence of Lebesgue integrable function on [0, 1], assume that, $\sum_{n=1}^{\infty} \int_0^1 |g_n|$ is convergent. Then $\sum_{n=1}^{\infty} g_n$ converges to a Lebesgue integrable function g almost everywhere and,

$$\int_0^1 g \, dx = \int_0^1 \sum_{n=1}^\infty g_n(x) \, dx = \sum_{n=1}^\infty \int_0^1 g_n$$

Theorem 1.3: (Dominated Convergence Theorem) Let, $\{f_n\}$ be a sequence of Lebesgue-integrable function on [0, 1], assume that (i) $\{f_n\} \to f$ almost everywhere (ii) $|f_n(x)| \le g(x)$ almost everywhere on [0, 1], where g is non-negative Lebesgue-integrable function. Then, f is Lebesgue integrable function and

$$\int_0^1 f \, dx = \lim_{n \to \infty} \int_0^1 f_n \, dx$$

Theorem 1.4: (Lebesgue integral on unbounded interval) Let, f defined on $[a, \infty)$ assume f is Lebesgue integrable on [a, b] for all $b \ge a$ and there is a positive constant M such that, $\int_a^b |f| \le M$ for all $b \ge a, f$ is Lebesgue-integrable on $[a, \infty)$ and,

$$\int_{a}^{\infty} f \, dx = \lim_{b \to \infty} \int_{a}^{b} f \, dx$$

Theorem 1.5: (Improper Riemann integrable) Let, f defined on $[a, \infty)$ assume f is Riemann integrable on [a, b] for all $b \ge a$ and there is a positive constant M such that, $\int_a^b |f| \le M$ for all $b \ge a$, then f is Riemann integrable on $[0, \infty)$ and

$$\int_{a}^{\infty} f \, dx = \lim_{b \to \infty} \int_{a}^{b} f \, dx$$

Theorem 1.6: (Theorem on measurable function) Let, φ be a real valued continuous function on \mathbb{R}^2 . If f, g are two measurable function on I, (in other words $f, g \in M(I)$) the function $h(x) := \varphi(f(x), g(x))$ is then Lebesgue-integrable.

Theorem 1.7: (Continuity of function defined by Lebesgue Integral) Let, $f : X \times Y \to \mathbb{R}$ be a function such that,

- (i) $f_y(x) = f(x, y)$ is measurable on X for all $y \in Y$.
- (ii) $|f(x,y)| \leq g(x)$ almost everywhere on X where, g(x) is Lebesgue-integrable function on X.
- (iii) $\lim_{t\to y} f(x,t) = f(x,y)$ almost everywhere on X

Then the Lebesgue integral $\int_X f(x, y) dx$ exists and the following function is continuous on Y,

$$F(y) = \int_X f(x, y) \, dx$$

Theorem 1.8: (Differentiation under integral sign) Let, X and Y be two sub-intervals of \mathbb{R} and let f be a function defined on $X \times Y$ satisfying the following conditions,

- For each fixed $y \in Y$, the function $f_y = f(x, y)$ is measurable on X and $f_a(x)$ is Lebesgue integrable on X for some $a \in Y$.
- The partial derivative $\partial_y f(x, y)$ exists for each interior point $(x, y) \in X \times Y$.
- There is a non-negative function $G \in L(X)$ such that, $|\partial_y f(x, y)| \leq G(x)$ for all interior points of $X \times Y$.

Then the Lebesgue integral $\int_X f(x, y) dx$ exists for every $y \in Y$ and the function $F(y) = \int_X f(x, y)$ is differentiable at each interior point Y, moreover it's derivative is given by

$$F'(y) = \int_X \partial_y f(x, y) \, dx$$

§ Lemma 1.1: Let, f(x) be a function defined on [0, a] as $f(x) = x^s$ when x > 0 and 0 when x = 0, then the Lebesgue integral $\int_0^a f(x) dx$ exists is s > -1.

§ Lemma 1.2: If f is a function continuous on (0, 1) and $|f| \leq g$ almost everywhere on [0, 1], where g is a non-negative Lebesgue integrable function then, $f \in L^1[0, 1]$.

Proof of the Lemma. Since, f is continuous on (0, 1) it is measurable on the open set (0, 1). In the set [0, 1], the sub-set $\{0, 1\}$ is measure zero. So, f is a measurable function on [0, 1]. Absolute value of it is uniformly bounded by a non-negative Lebesgue integrable function g. So by 1.3 we can say f is Lebesgue integrable on [0, 1].

§ Lemma 1.3: Let, f be a measurable function over I and $|f| \le g$, where g is Lebesgue integrable. f is also Lebesgue integrable.

§ Problem 1

Problem. The following two problems wort 10 points in total.

(a) (5 points) Show that $\log \frac{1}{1-x} \in L^1([0,1]; dx)$ and with justification, compute the following integral:

$$\int_0^1 \log \frac{1}{1-x} dx$$

(b) (5 points) For p > 0, show that $\frac{x^{p-1}}{1-x} \log \frac{1}{x} \in L^1([0,1]; dx)$ and

$$\int_0^1 \frac{x^{p-1}}{1-x} \log \frac{1}{x} dx = \sum_{n=0}^\infty \frac{1}{(n+p)^2}.$$

Solution.

(a) Let, $g(x) = -\log(1-x)$. This function is defined on [0, 1) and it has a Taylor series expansion around the point x = 0 as following,

$$g(x) = -\log(1-x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$$

Let, $g_n(x) = \frac{x^n}{n}$, then $g(x) = \sum_{n=1}^{\infty} g_n(x)$. We can see $g_n(x)$ is continuous on [0,1) for all $n \in \mathbb{N}$. Extend $g_n(x)$ to a continuous function $\tilde{g}_n(x)$ which is equal to $g_n(x)$ on [0,1) and equal to $\frac{1}{n}$ at x = 1. Notice that, $\tilde{g}_n(x)$ is continuous on the compact interval [0,1] and hence Riemann integrable. Here, $g(x) = \sum_{n=1}^{\infty} g_n(x) = \sum_{n=1}^{\infty} \tilde{g}_n(x)$ the last inequality holds at [0,1), i.e. almost everywhere on the interval [0,1]. We have the following,

$$\sum_{n=1}^{\infty} \int_{0}^{1} |\tilde{g}_{n}| = \sum_{n=1}^{\infty} \int_{0}^{1} \tilde{g}_{n} = \sum_{n=1}^{\infty} \int_{0}^{1} \frac{x^{n}}{n} = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Let, $s_k = \sum_{n=1}^k \frac{1}{n(n+1)} = 1 - \frac{1}{k+1}$. If $k \to \infty$, $\lim s_k = 1$. Thus the sum $\sum_{n=1}^\infty \int_0^1 |\tilde{g}_n|$ converges and by **MCT for series** 1.2 we can say, $\sum \tilde{g}_n(x)$ converges to a Lebesgue integrable function $\tilde{g}(x)$. From the above discussion we also know, $\tilde{g}(x) = g(x)$ almost everywhere on [0, 1]. So, g is also Lebesgue integrable on [0, 1] and,

$$\int_0^1 g(x) \, dx = \int_0^1 \tilde{g} \, dx = \sum_{n=1}^\infty \int_0^1 \tilde{g}_n \, dx = \sum_{n=1}^\infty \frac{1}{n(n+1)} = 1$$

(b) We know that $\frac{1}{1-x} = 1 + x + x^{2+\dots} = \sum_{n=0}^{\infty} x^n$. So we can write the given function as,

$$\frac{x^{p-1}}{1-x}\log\left(\frac{1}{x}\right) = \sum_{n=0}^{\infty} -x^{n+p-1}\log x, \ \forall x \in (0,1)$$

Consider the sequence of function $\{g_n(x)\}$ defined as $g_n(x) = -x^{n+p-1} \log x \ge 0$ for all $x \in (0,1]$ and $n \in \mathbb{N} \cup \{0\}$. Each term of the sequence is clearly Lebesgue-Integrable in (0,1]. Note that, g_n is continuous on (0,1).

$$|g_n(x)| = -x^{n+p-1} \log x$$

= $x^{n+p-1} \log \frac{1}{x}$
= $kx^{n+p-1} \log \frac{1}{x^{\frac{1}{k}}}$
 $\leq kx^{n+p-\frac{1}{k}-1}$ using the fact $\log y \leq y$

For a given p > 0 we can always choose a k > 0 such that, $n + p - \frac{1}{k} > 0$ for all $n \in \mathbb{N} \cup \{0\}$ but then the power of x in the above inequality will be > -1, by lemma 1.1 this function is Lebesgue integrable and by lemma 1.2 we can say g_n is Lebesgue-integrable.

Now consider the series $\sum_{n=0}^{\infty} \int_{0}^{1} g_n(x) dx$. Integrating by parts, we have

$$\int_{0}^{1} g_n(x) \, dx = \int_{0}^{1} -x^{n+p-1} \log x \, dx = -\frac{x^{n+p}}{n+p} \log x \Big|_{0}^{1} + \int_{0}^{1} \frac{x^{n+p-1}}{n+p} \, dx = 0 + \frac{x^{n+p}}{(n+p)^2} \Big|_{0}^{1} = \frac{1}{(n+p)^2} \Big|_{0$$

Therefore, we can conclude using MCT for series 1.2 that,

$$\int_{0}^{1} \frac{-x^{p-1}}{1-x} \log x \, dx = \int_{0}^{1} \sum_{n=0}^{\infty} g_n(x) \, dx = \sum_{n=0}^{\infty} \int_{0}^{1} \frac{x^{p-1}}{1-x} \log\left(\frac{1}{x}\right) \, dx = \sum_{n=0}^{\infty} \frac{1}{(n+p)^2}$$

§ Problem 2

Problem. Let $f: [0,1] \to \mathbb{R}$ be a function and $g: [0,1] \to \mathbb{R}$ by $g(x) = e^{f(x)}$.

- (a) (5 points) Show that if f is measurable, then so is g.
- (b) (5 points) If f is Lebesgue-integrable, is then g necessarily Lebesgue integrable? Prove or provide counterexample with justification.
- (c) (5 points) Give an example of an essentially unbounded function f which is continuous on (0, 1] such that f^n is Lebesgue-integrable for all positive integers n. (A function f is essentially unbounded if for every M > 0 the set $\{x \in [0, 1] : |f(x)| > M\}$ is not negligible, that is, not of measure zero.)

Solution.

- (a) We are given that f is a measurable function. So, there exists a sequence of step functions $\{s_n\} \subseteq S[0,1]$ such that $\lim_{n \to \infty} s_n(x) = f$ almost everywhere on [0,1]. Now, consider the sequence $\{e^{s_n}\}$. Clearly, every term of this sequence is a step function. Also, the map $x \mapsto e^x$ is a continuous map. So, $\lim_{n \to \infty} e^{s_n} = e^f$ almost everywhere on [0,1]. Since the sequence $\{e^{s_n}\}$ of step functions converges to $e^{f(x)}$, we can conclude that $g = e^f$ is a measurable function as well.
- (b) No. Even if f is Lebesgue-Integrable in [0, 1], g doesn't necessarily have to be Lebesgue Integrable. Define $f(x) = \log \frac{1}{x}$ for all $x \in (0, 1]$. Note that,

$$|f(x)| = |\log \frac{1}{x}| = |2\log \frac{1}{\sqrt{x}}| \le \frac{2}{\sqrt{x}}$$

By lemma 1.1 we know $\frac{1}{\sqrt{x}}$ is Lebesgue integrable and by lemma 1.2 we can say f(x) is Lebesgue-integrable. But $g(x) = e^{f(x)} = \frac{1}{x}$ is not Lebesgue integrable on [0, 1]. The proof is as following,

- Consider, $f_n(x) = \sum_{k=1}^n k \chi_{(\frac{1}{k+1}, \frac{1}{k}]}(x)$, where χ_I is identity on I and 0 on it's complement. For all $n \in \mathbb{N}$ it satisfies $f_n(x) \leq \frac{1}{x}$ for x > 0 and $\int_0^1 f_n = \sum_{k=1}^n \frac{1}{k+1}$. Since $\sum_n \frac{1}{n}$ is divergent, we see that $g(x) = \frac{1}{x}$ is not integrable.
- (c) Let, $f = \log \frac{1}{x}$ it is continuous on (0, 1]. For every M > 0, the set $\{x \in (0, 1] : \log \frac{1}{x} > M\} = (0, e^{-M})$, this set is not negligible. So, f(x) is essentially unbounded function. Now, f^n (*n*-th power of f) is $\left(\log \frac{1}{x}\right)^n$. Note that,

$$|f^n| = \left(\log\frac{1}{x}\right)^n = k^n \left(\log\frac{1}{x^{\frac{1}{k}}}\right)^n \le k^n \frac{1}{x^{n/k}}$$

Suitably choose k > 0 according to n such that, $\frac{n}{k} < 1$. Then by lemma 1.1 and 1.2 we can say f^n is Lebesgue integrable $\forall n \in \mathbb{N}$.

§ Problem 3

Problem. (5 points) (Fundamental Theorem of Calculus) Let $f : [0, 1] \to \mathbb{R}$ be a differentiable functionwith one-sided derivatives at the end-points 0 and 1. If the derivative f' is uniformly bounded on [0, 1], then show that f' is Lebesgue-integrable and that

$$\int_0^1 f' dx = f(1) - f(0).$$

Solution. Let us define a sequence of function f_n as following, (n > 2)

$$f_n(x) = \begin{cases} n\left(f(x+\frac{1}{n}) - f(x)\right) & x \in [0,\frac{1}{2})\\ n\left(f(x) - f(x-\frac{1}{n})\right) & x \in [\frac{1}{2},1] \end{cases}$$

Since f(x) is differentiable on [0, 1] it is continuous on [0, 1], thus $f_n(x)$ is Lebesgue integrable on [0, 1]. Also note that, $\lim_{n\to\infty} f_n(x) = f'(x)$ almost everywhere on [0, 1]. We are given f' is uniformly bounded on [0, 1], so there exist M > 0 such that, |f(x)| < M, for all $x \in [0, 1]$. By the Mean value theorem we can say,

$$f_n(x) = \frac{f(x) - f(x - \frac{1}{n})}{\frac{1}{n}} = f'(c_x)$$

for some $c_x \in \left(x - \frac{1}{n}, x\right)$ if $x \ge \frac{1}{2}$ and if $x < \frac{1}{2}$ we will get some $t_x \in \left(x, x + \frac{1}{n}\right)$ such that,

$$f_n(x) = \frac{f(x + \frac{1}{n}) - f(x)}{\frac{1}{n}} = f'(t_x)$$

In either case we have $|f_n(x)| < M$, since constant function in [0, 1] is Lebesgue integrable, we can say the limit $\lim_{n\to\infty} \int_0^1 f_n(x) dx$ is finite. We can apply **MCT** 1.1 to get f' is Lebesgue integers and,

$$\int_{0}^{1} f'(x) \, dx = \lim_{n \to \infty} \int_{0}^{1} f_n(x) \, dx$$
$$= \lim_{n \to \infty} \int_{0}^{\frac{1}{2}} n\left(f\left(x + \frac{1}{n}\right) - f(x)\right) + \int_{\frac{1}{2}}^{1} n\left(f(x) - f\left(x - \frac{1}{n}\right)\right) \, dx$$

Let us define $F(t) = \int_0^t f(t) dt$ with F(0) = 0, it is differentiable as f is continuous on [0, 1]. Thus we have,

$$\begin{split} \lim_{n \to \infty} \int_{0}^{\frac{1}{2}} n\left(f\left(x+\frac{1}{n}\right)-f(x)\right) + \int_{\frac{1}{2}}^{1} n\left(f(x)-f\left(x-\frac{1}{n}\right)\right) dx \\ &= \lim_{n \to \infty} n\left(F\left(\frac{1}{2}+\frac{1}{n}\right)-F\left(\frac{1}{n}\right)-F\left(\frac{1}{2}\right)\right) + n\left(F(1)-F\left(\frac{1}{2}\right)+F\left(\frac{1}{2}-\frac{1}{n}\right)-F\left(1-\frac{1}{n}\right)\right) \\ &= \lim_{n \to \infty} \frac{F\left(\frac{1}{2}+\frac{1}{n}\right)-F\left(\frac{1}{2}\right)}{\frac{1}{n}} - \lim_{n \to \infty} \frac{F\left(\frac{1}{n}\right)-F(0)}{\frac{1}{n}} + \lim_{n \to \infty} \frac{F\left(\frac{1}{2}-\frac{1}{n}\right)-F\left(\frac{1}{2}\right)}{\frac{1}{n}} + \lim_{n \to \infty} \frac{F(1)-F(1-\frac{1}{n})}{\frac{1}{n}} \\ &= F'\left(\frac{1}{2}\right) - F'(0) - F'\left(\frac{1}{2}\right) + F'(0) \\ &= F'(1) - F(0) \\ &= f(1) - f(0) \text{ by Liebniz formula we have } F'(t) = f(t) \end{split}$$

Finally we get, $\int_0^1 f' dx = f(1) - f(0)$.

§ Problem 4

Problem. (10 points) Let $f, g: [0,1] \to \mathbb{R}$ be two Lebesgue-integrable functions satisfying

$$\int_0^t f(x)dx \le \int_0^t g(x)dx$$

for all $t \in [0,1]$. If $\varphi : [0,1] \to \mathbb{R}$ is a non-negative decreasing function, the show that the functions φf and φg are Lebesgue-integrable over [0,1] and that they satisfy

$$\int_0^t \varphi(x) f(x) dx \le \int_0^t \varphi(x) g(x) dx$$

for all $t \in [0, 1]$.

Solution. Consider the function h(x) = f(x) - g(x), we will have h is Lebesgue integrable on [0,1] (since $f, g \in L^1([0,1])$), and further for all $t \in [0,1]$ we have

$$\int_0^t h(x) \, dx = \int_0^t f(x) \, dx - \int_0^t g(x) \, dx \le 0.$$

Let $\varphi : [0,1] \to \mathbb{R}$ be a non-negative decreasing function. We will show show $\varphi f \in L^1([0,1])$. Since φ is decreasing, hence the points of discontinuity of φ is at countable, hence is of measure zero. Thus φ is continuous almost everywhere on [0,1], and hence is measurable. Since $f \in L^1([0,1]) \subseteq \mathcal{M}([0,1])$ we get f is also measurable on [0,1], therefore $\varphi f \in \mathcal{M}([0,1])$. We will have $|\varphi f(x)| \leq |\varphi(0)||f(x)|$, but $f \in L^1([0,1]) \Rightarrow |f| \in L^1([0,1])$ hence $\varphi f \in L^1([0,1])$ (using lemma 1.3). Similarly we get $\varphi g \in L^1([0,1])$, therefore $\varphi h = \varphi(f-g) \in L^1([0,1])$. Now we will show that, $t \in [0,1]$, we have $\int_0^t \varphi(x)h(x) dx \leq 0$. Let $t \in [0,1]$, now consider the sequence of step

Now we will show that, $t \in [0, 1]$, we have $\int_0^{\circ} \varphi(x)h(x) dx \leq 0$. Let $t \in [0, 1]$, now consider the sequence of step functions (where $0 \leq j \leq n-1$)

$$\varphi_n(x) = \sum_{j=0}^{n-1} \varphi\left(\frac{jt}{n}\right) \chi_{\left[\frac{jt}{n}, \frac{(j+1)t}{n}\right]}(x) \quad \forall n \in \mathbb{N}.$$

Let x be a point of continuity of φ and let $\varepsilon > 0$, then there exists $\delta > 0$ such that $|\varphi(x) - \varphi(y)| < \varepsilon$ for all $|x - y| < \delta$. Now there exists $n_0 \in \mathbb{N}$ such that $1/n < \delta$ for all $n \ge n_0$. Notice that $x \in \left[\frac{jt}{n}, \frac{(j+1)t}{n}\right]$ for some j, then we get $|x - jt/n| \le \frac{1}{n} < \delta$ for $n \ge n_0$, and hence we get $|\varphi(x) - \varphi(jt/n)| < \varepsilon$. Thus for $n \ge n_0$ we get that $\varphi_n(x) = \varphi(jt/n)$, and hence $|\varphi_n(x) - \varphi(x)| < \delta$ for all $n \ge n_0$. Therefore $\lim_{n \to \infty} \varphi_n(x) = \varphi(x)$, whenever x is a point of continuity of φ . Since the points of discontinuity of φ is at most countable, it has measure zero, therefore we get that $\lim_{n\to\infty} \varphi_n(x) = \varphi(x)$ almost everywhere on [0, 1].

Now observe that,

$$\int_0^t h(x)\varphi_n(x) \, dx = \int_0^t \left(\sum_{j=0}^{n-1} h(x)\varphi\left(\frac{jt}{n}\right)\chi_{\left[\frac{jt}{n},\frac{(j+1)t}{n}\right]}(x)\right) \, dx$$
$$= \sum_{j=0}^{n-1} \int_0^t h(x)\varphi\left(\frac{jt}{n}\right)\chi_{\left[\frac{jt}{n},\frac{(j+1)t}{n}\right]} \, dx$$
$$= \sum_{j=0}^{n-1} \varphi(jt/n) \left(\int_{jt/n}^{(j+1)t/n} h(x) \, dx\right)$$

Now we will use Abel's summation formula to get, (1)

The above sum
$$= \varphi(t) \left(\sum_{j=0}^{n-1} \int_{jt/n}^{(j+1)t/n} h(x) \, dx \right) + \sum_{j=0}^{n-1} (\varphi(jt/n) - \varphi((j+1)t/n)) \left(\sum_{k=0}^{j} \int_{kt/n}^{(k+1)t/n} h(x) \, dx \right)$$

$$= \underbrace{\varphi(t)}_{\geq 0} \underbrace{\left(\int_{0}^{t} h(x) \, dx \right)}_{\leq 0} + \sum_{j=0}^{n-1} \underbrace{\varphi(jt/n) - \varphi((j+1)t/n)}_{\geq 0} \underbrace{\left(\int_{0}^{(j+1)t/n} h(x) \, dx \right)}_{\leq 0} \right)$$

 $\leq 0.$

Now note that

- $h\varphi_n$ is Lebesgue integrable (as $h \in L^1([0,1])$ and $\varphi_n \in L^1([0,1])$ hence $h\varphi \in \mathcal{M}([0,1])$, but since $|h\varphi_n| \leq \varphi(0)|h|$ and $|h| \in L^1([0,1])$, we get that $h\varphi_n \in L^1([0,1])$).
- And since $\lim_{n\to\infty}\varphi_n(x) = \varphi(x)$ almost everywhere, we get that $\{h\varphi_n\}$ converges almost everywhere to the limit function $h\varphi$.
- And finally note that $|h(x)\varphi_n(x)| \leq \varphi(0)|h(x)|$ for all $x \in [0,1]$ and $|h| \in L^1([0,1])$.

Using Dominated Convergence Theorem we get,

$$\int_0^t h(x)\varphi(x)\,dx = \int_0^t \lim_{n \to \infty} h(x)\varphi_n(x)\,dx = \lim_{n \to \infty} \int_0^t h(x)\varphi_n(x)\,dx \le 0.$$

But t was chosen arbitrarily from [0, 1], thus we have

$$\int_0^t f(x)\varphi(x)\,dx \le \int_0^t g(x)\varphi(x)\,dx \quad \forall t \in [0,1].$$

§ Problem 5

Problem. (10 points) For $t \ge 0$, let

$$A(t) := \left(\int_0^t e^{-x^2} dx\right)^2, B(t) := \int_0^1 \frac{e^{-t^2(1+x^2)}}{1+x^2} dx.$$

(a) (5 points) Prove that $A(t) + B(t) = \frac{\pi}{4}$ for all $t \ge 0$.

(b) (5 points) Prove that $e^{-x^2} \in L^1(\mathbb{R}_{\geq 0}; dx)$ and $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.

(N.B.: Carefully justify each step, such as existence of integral, interchange of limits and integrals, etc.)

Solution. (a). Let $f:[0,1] \times [0,\infty) \to \mathbb{R}$ be defined as follows,

$$f(x,t) = \frac{e^{-t^2(1+x^2)}}{1+x^2}.$$

For any fixed t, the function $f_t : [0,1] \to \mathbb{R}$ defined by $f_t(x) = f(x,t)$ is continuous on the compact interval [0,1] and hence is Lebesgue integrable on [0,1]. Also note that the partial derivative $\partial_t f$ exists at all interior points of $[0,1] \times [0,\infty)$, and we also have

$$\partial_t f(x,t) = -2te^{-t^2(1+x^2)}$$

We will also have, $|\partial_t f(x,t)| \leq 2te^{-t^2}$ as $t^2 < t^2(1+x^2)$ and we can also bound te^{-t^2} by 1 as, $t < e^{t^2}$. Thus we have an uniform bound $|\partial_t f(x,t)| < 2$, the constant function 2 is Lebesgue integrable on [0,1]. By theorem 1.8 we can say $B(t) = \int_0^1 \frac{e^{-t^2(1+x^2)}}{1+x^2} dx$ is differentiable and in fact we have,

$$B'(t) = \int_0^1 \partial_t f(x,t) \, dx = -2t \int_0^1 e^{-t^2(1+x^2)} \, dx.$$

And by Fundamental Theorem of Calculus we get,

$$A'(t) = 2e^{-t^2} \int_0^t \exp(-x^2) \, dx = 2te^{-t^2} \int_0^1 \exp(-x^2t^2) \, dx = 2t \int_0^1 \exp(-t^2(1+x^2)) \, dx$$

And hence we get A'(t) + B'(t) = 0, therefore A(t) + B(t) is constant function, and

$$A(0) + B(0) = \int_0^1 \frac{1}{1+x^2} \, dx = \frac{\pi}{4}.$$

And hence we get that $A(t) + B(t) = \frac{\pi}{4}$ for all $t \ge 0$.

(b). In order to prove e^{-x^2} is Lebesgue integrable on $[0, \infty)$, we will break the interval in two parts $[0, 1] \cup [1, \infty)$. On the interval [0, 1] the function is continuous hence Riemann integrable and hence Lebesgue integrable. For any $a \ge 1$, the function is Lebesgue integrable on [1, a] and $e^{-x^2} \le e^{-x}$ will give us,

$$\int_{1}^{a} e^{-x^{2}} dx \leq \int_{1}^{a} e^{-x} dx \leq \left(\frac{1}{e} - \frac{1}{e^{a}}\right) < \frac{1}{e}$$

By theorem 1.4 we can say e^{-x^2} is Lebesgue integrable on $[1, \infty)$ and hence it's Lebesgue integrable on $[0, \infty)$. Note that B(t) is continuous and hence we get that

$$\lim_{t \to \infty} B(t) = \int_0^1 \lim_{t \to \infty} \frac{e^{-t^2(1+x^2)}}{1+x^2} \, dx = 0.$$

which gives us,

$$\left(\int_{0}^{\infty} e^{-x^{2}} dx\right)^{2} = \lim_{t \to \infty} A(t) = \lim_{t \to \infty} (A(t) + B(t)) = \frac{\pi}{4}$$

and therefore we get, $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.

§ Problem 6

Problem. (10 points) Show that for each $t \ge 0$, the integral $\int_0^\infty \frac{\sin xt}{x(x^2+1)} dx$ exists both as an improper Riemann integral and as a Lebesgue integral, and that

$$\int_0^\infty \frac{\sin xt}{x \, (x^2 + 1)} dx = \frac{\pi}{2} \left(1 - e^{-t} \right)$$

Solution. We fix $t \in [0, \infty)$ and choose M > 0 such that $t \in [0, M)$. Let $X = (0, \infty), T = [0, M]$ and consider the function $f : X \times T \to \mathbb{R}$ defined as

$$f(x,t) = \frac{\sin xt}{x(1+x^2)}$$

We note that f(x,t) is continuous on [0,b] for all $b \ge 0$ and hence Riemann integrable. Further,

$$\int_0^b |f(x,t)| \, \mathrm{d}x \le \int_0^b \frac{tx}{x(x^2+1)} \, \mathrm{d}x < M \int_0^\infty \frac{1}{x^2+1} \, \mathrm{d}x = \frac{M\pi}{2}$$

where the first inequality is because $|\sin tx| \leq tx$ for $x, t \geq 0$, the second inequality is because t < M and $\frac{1}{x^2+1} \geq 0$ for $x \geq 0$, and the last equality follows from the fact that $\int_0^\infty \frac{1}{1+x^2} dx = \frac{\pi}{2}$. Hence, by Theorem 1, f(x,t) is both Lebesgue and Riemann integrable as a function in x, and the values of both integrals are equal. Let, $f(x,t) = \frac{1-\cos tx}{x^2(1+x^2)}$ defined on the set $(0,\infty) \times [0,M) = X \times Y$ (where M > 0), we can see that the function $f_t(x)$ is continuous for all $x \in (0,\infty)$, where t is any element of Y and it is fixed. Hence it is measurable for all $t \in Y$. At t = 0 the function is identically 0 so, $f_0(x)$ is Lebesgue integrable on X. Also, note that,

$$\partial_t \left(\frac{1 - \cos tx}{x^2(1 + x^2)} \right) = \frac{\sin tx}{x(x^2 + 1)}$$

exist everywhere on $(0, \infty) \times (0, \infty)$, these are the interior points of $X \times Y$. Also note that, $|\partial_t f(x, t)| \leq \frac{t}{1+x^2} < \frac{M}{1+x^2}$ as $|\sin xt| \leq xt$, for $x, t \geq 0$. Here, $g(x) = \frac{M}{1+x^2}$ is Lebesgue integrable in X. The following proves g(x) is Lebesgue integrable on $[0, \infty)$.

- For any $a \ge 0$, g(x) is Lebesgue integrable as it is continuous on this interval.
- $\int_0^a \frac{M}{x^2+1} dx = M \tan^{-1} a \leq \frac{\pi}{2} M$, for all $a \geq 0$. By theorem 1.4, g(x) is Lebesgue integrable on $[0, \infty)$.

By theorem 1.8, the Lebesgue integral $\int_X f(x,t) dx$ exists for every $t \in Y$ and the function $F(t) = \int_X f(x,t)$ is differentiable at each interior point Y, moreover it's derivative is given by

$$F'(t) = \int_0^\infty \partial_t f(x,t) \, dx$$
$$= \int_0^\infty \frac{\sin xt}{x(x^2+1)} \, dx$$

We can do the above case for any M > 0. Thus for all $t \ge 0$, F'(t) is given by the above formula. Now consider the function $g(x,t) = \frac{\sin xt}{x(x^2+1)}$ defined on $(0,\infty) \times [0,\infty)$. For all $t \in [0,\infty)$, $g_t(x) = g(x,t)$ is continuous and hence measurable. At t = 0, $g_0(x) = 0$ which is Lebesgue-integrable on $[0,\infty)$.

$$\partial_t \left(\frac{\sin xt}{x(x^2+1)} \right) = \frac{\cos xt}{(1+x^2)}$$

exists on the interior points of $[0, \infty)^2$. Also $\partial_t |g(x, t)| \leq \frac{1}{1+x^2}$. Note that, $g(x) = \frac{1}{1+x^2}$ is Lebesgue-integrable as observed previously. By theorem 1.8, the Lebesgue integral $\int_0^\infty g(x, t) dx$ exists for every $t \in [0, \infty)$ and the function $F'(t) = \int_X g(x, t)$ is differentiable at each interior point $[0, \infty)$, moreover it's derivative is given by

$$F''(t) = \int_0^\infty \partial_t g(x, t) \, dx$$

= $\int_0^\infty \frac{\cos xt}{(x^2 + 1)} \, dx$
$$\Rightarrow F(t) - F''(t) = \int_0^\infty \frac{1 - \cos xt}{x^2(x^2 + 1)} - \frac{\cos xt}{(x^2 + 1)} \, dx$$

= $\int_0^\infty \frac{1 - \cos xt}{x^2} - \frac{1}{(x^2 + 1)} \, dx$
= $-\frac{\pi}{2} - \left[\frac{1 - \cos xt}{x}\right]_0^\infty + t \int_0^\infty \frac{\sin xt}{x} \, dx$
= $\frac{\pi}{2}(t - 1)$

The last line follows from the result, $\int_0^\infty \frac{\sin xt}{x} dx = \frac{\pi}{2}$, which is **proved** in class. Thus we have to solve a 2 degree differential equation $F''(t) - F'(t) = \frac{\pi}{2}(t-1)$, with the initial conditions F(0) = 0, F'(0) = 0. Note that, $F(t) = \frac{\pi}{2}(t-1) + \frac{\pi}{2}e^{-t}$ satisfy the differential equation and it's initial conditions. Now by **Existence and uniqueness of ODE** we can say, this is the unique solution to the ODE with the initial conditions. Thus,

$$\int_0^\infty \frac{\sin xt}{x(x^2+1)} \, dx = F'(t) = \frac{\pi}{2}(1-e^{-t})$$