
Assignment-7
Functional Spaces

Trishan Mondal

§ Problem 1

Problem. Assume that f is a 2π-periodic function integrable on [−π, π] and that f is of bounded variation
on [x0 − δ, x0 + δ]. Show that the Fourier series of f at x0 converges to 1

2

(
f
(
x+0
)
+ f

(
x−0
))
.

Solution. Before proving the theorem let us state the Jordan’s theorem, which we will use frequently.

Theorem 1.1: (Jordan.) If g is of bounded variation on [0, δ], then

lim
α→∞

2

π

∫ δ

0
g(t)

sinαt

t
dt = g(0+)

Now recall the definition of Dirichlet’s kernal,

DN (x) =
1

2
·

N∑
k=−N

ei kx =
1

2
+

N∑
k=1

cos kx =


sin (N+ 1

2)x
2 sin x

2
if x ̸= 2πm(

N + 1
2

)
if x = 2πm

where, m runs over the set of integers. Now we will prove the following lemma,

§ Lemma: Assume that f ∈ L([−π, π]) and suppose that f is periodic with period 2π. Let {sn} denote
the sequence of partial sums of the Fourier series generated by f , say

sn(x) =
a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx) , (n = 1, 2, . . .).

Then we have the integral representation

sn(x) =
2

π

∫ π

0

f(x+ t) + f(x− t)

2
Dn(t)dt.

Proof. The Fourier coefficients of f are given by the integrals given in the question. Substituting these integrals
in partial summation sn(x) we find

sn(x) =
1

π

∫ π

−π
f(t)

{
1

2
+

n∑
k=1

(cos kt cos kx+ sin kt sin kx)

}
dt

=
1

π

∫ π

−π
f(t)

{
1

2
+

n∑
k=1

cos k(t− x)

}
dt =

1

π

∫ π

−π
f(t)Dn(t− x)dt.

Since both f and Dn are periodic with period 2π, we can replace the interval of integration by [x − π, x + π]
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and then make a translation u = t− x to get

sn(x) =
1

π

∫ x+π

x−π
f(t)Dn(t− x)dt

=
1

π

∫ π

−π
f(x+ u)Dn(u)du

Using the equation Dn(−u) = Dn(u), we obtain

sn(x) =
1

π

∫ π

−π

f(x+ t) + f(x− t)

2
Dn(t)dt =

2

π

∫ π

0

f(x+ t) + f(x− t)

2
Dn(t)dt

———————————————————————————————————————————————–
From the above lemma we can say

sn(x0) =
2

π

∫ π

0

f(x0 + t) + f(x0 − t)

2

t/2

sin t/2

sin(n+ 1/2)t

t
dt

The above integral can be separated in two part [0, δ] and [δ, π]. In the later interval, if we take n → ∞ the

value will be 0 as the function f(x0+t)+f(x0−t)
2

1
sin t/2 is Lebesgue integrable in the interval [δ, π]. Now by Riemann

Lebesgue lemma we can say,

lim
n→∞

2

π

∫ π

δ

f(x0 + t) + f(x0 − t)

2

t/2

sin t/2

sin(n+ 1/2)t

t
dt = 0

So it is enough to check the limit for the integral on the interval [0, δ]. It is given that f bounded-variation
on the interval [x0 − δ, x0 + δ], so we can write f(x0 + t), f(x0 − t) are bounded variation on [0, δ]. We know

addition of two bounded variation is bounded variation, so f(x0+t)+f(x0−t)
2 is bounded variation on [0, δ]. Thus

we can write the above function as difference of two increasing function g − h. Let us define a function

p(x) =

{
x/2

sinx/2 if x ∈ (0, δ]

1 if x = 0

The above function is continuous at [0, δ] and it is also increasing on [0, δ] (just by checking the derivative and
the fact δ < π). We can say g(x)p(x) and h(x)p(x) is increasing on [0, δ]. Thus (g − h)p is bounded variation
on [0, δ]. By Jordan’s theorem stated previously we can say,

lim
n→∞

sn(x0) = lim
n→∞

2

π

∫ π

0

f(x0 + t) + f(x0 − t)

2

t/2

sin t/2

sin(n+ 1/2)t

t
dt

= lim
n→∞

2

π

∫ δ

0

f(x0 + t) + f(x0 − t)

2

t/2

sin t/2

sin(n+ 1/2)t

t
dt

+ lim
n→∞

2

π

∫ π

δ

f(x0 + t) + f(x0 − t)

2

t/2

sin t/2

sin(n+ 1/2)t

t
dt

= lim
n→∞

2

π

∫ δ

0

f(x0 + t) + f(x0 − t)

2

t/2

sin t/2

sin(n+ 1/2)t

t
dt

= lim
t→0+

f(x0 + t) + f(x0 − t)

2

t/2

sin t/2

=
f(x+0 ) + f(x−0 )

2

§ Problem 2

Problem. (a) (5 points) With justification, provide an example of a function of bounded variation on
[−π, π] which does not satisfy any Lipschitz condition.
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Solution. Let’s consider the function f on [−π, π] defined as following,

f(x) =

{
1 if x ∈ [0, π]

−1 if x ∈ [−π, 0)

This function is increasing on [−π, π], so it is bounded variation. This function is not Lipschitz as any Lipschitz
function is uniformly continuous but the above function is not uniformly continuous (not even continuous).

Problem. (b) (5 points) With justification, provide an example of a function g that satisfies the Lipschitz
condition at zero, that is, |g(x) − g(0)| ≤ |x| but g is not of bounded variation on any neighborhood of
zero.

Solution. Consider the function f on [0, 1] defined as,

f(x) =

{
x cos π

x if x ̸= 0

0 if x = 0

It is not hard to see |f(x)− f(0)| =
∣∣x cos π

x

∣∣ ≤ |x| for x ̸= 0.

Now we will show this function is not bounded variation. Thus it satisfies Lipschitz condition at zero. Consider
the partition defined by {xn} = { 1

n},

xn cos

(
π

xn

)
=

{
xn if n is even

−xn if n is odd

Therefore,

m∑
n=1

|f(xn)− f(xn−1)| =
m∑

n=1

|(−1)n(xn + xn−1)| =
m∑

n=1

(xn + xn−1) = xm + x0 + 2

m−1∑
n=1

xn ≥
m−1∑
n=1

xn =

m−1∑
n=1

1

n
.

We see that

lim
m→∞

m−1∑
n=1

1

n
→ ∞

Since V 1
0 (f) is not bounded in this partition, f is not bounded variation function. ■

§ Problem 3

Problem. (Gibbs phenomenon) Let f be a 2π-periodic function whose values on [−π, π] are given by:

f(x) =


1 if 0 < x < π

−1 if − π < x < 0

0 if x ∈ {0, π}

(a) Show that

f(x) =
4

π

∞∑
n=1

sin(2n− 1)x

2n− 1
, ∀x ∈ R

Solution. Note that f is a step function, hence it is Riemann integrable and the Riemann integral is same
as the Lebesgue integral. Further we get f(x) cos(nx) and f(x) sin(nx) is discontinuous only at finitely many
points hence they are Riemann integrable and the Riemann integral is same as the Lebesgue integral. Now
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let us compute the coefficients an and bn. Note that f(x) cos(nx) is an odd function on [−π, π] hence an =
1
π

∫ π
−π f(x) cos(nx)dx = 0 for all n ≥ 0. And we have f(x) sin(nx) is an even function on [−π, π] thus we get

bn =
1

π

∫ π

−π
f(x) sin(nx)dx

=
2

π

∫ π

0
f(x) sin(nx)dx

=
2

π

∫ π

0
sin(nx)dx

=
2

nπ
(1− (−1)n) =

{
4
nπ if n is odd

0 if n is even.

Hence we get,

f(x) ∼ 4

π

∞∑
n=1

sin(2n− 1)x

2n− 1

Call the later function g(x) =
∑∞

n=1
sin(2n−1)x

2n−1 . Since the function f(x) is increasing it is bounded variation on

[−π, π]. By Problem 1 we can say g(x) = f(x+)+f(x−)
2 for every point x ∈ [−π, π] where f is bounded variation.

If x ∈ [−π, π] \ {−1, 0, 1} we can see g(x) = 1for x ∈ (0, π) and g(x) = −1 for x ∈ (−π, 0). At the point 0,

g(0) =

∞∑
n=1

sin(2n− 1)0

2n− 1
= 0

Similarly at the point −π, π, the function g(x) = 0. So g(x) = f(x) for all x ∈ [−π, π]. So we have,

f(x) =
4

π

∞∑
n=1

sin(2n− 1)x

2n− 1

Problem. Show that the partial sums sN given by,

sN (x) =
2

π

∫ x

0

sin(2Nt)

sin t
dt

Solution. Let sN (x) = 4
π

∑N
n=1

sin(2n−1)x
2n−1 , then ovserve that

sin(2n− 1)x

2n− 1
=

∫ x

0
cos(2n− 1)t dt

Therefore, we get:

sN (x) =
4

π

N∑
n=1

∫ x

0
cos(2n− 1)tdt

=
4

π

∫ x

0

N∑
n=1

cos(2n− 1)tdt

=
2

π

∫ x

0

1

sin t

(
N∑

n=1

2 cos(2n− 1)t sin t

)
dt

=
2

π

∫ x

0

1

sin t

(
N∑

n=1

sin(2nt)− sin(2n− 2)t

)
dt

=
2

π

∫ x

0

sin(2Nt)

sin t
dt
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Problem. (c) Find the points of local maxima and minima of sN in the interval (0, π).

Solution. Using Fundamental Theorem of Calculus in part(b) we get sN (x) is differentiable, and we in fact
have

s′N (x) =
2

π

sin(2Nx)

sinx

But then sN (x) is twice differentiable on (0, π) as sin(2Nx)
sinx is differentiable on (0, π), and we get

s′′N (x) =
2

π

(
2N cos(2Nx)

sinx
− sin(2Nx) cosx

sin2 x

)
Now to find the points of local maxima and minima we need to check for points x ∈ (0, π) where s′N (x) = 0
and s′′N (x) ̸= 0. We can clearly see s′N (x) = 0 happens when x = mπ

2N where m = 1, . . . , 2N − 1. And at all such
points we get that

s′′N

(mπ

2N

)
=

4N

π

(−1)m

sin
(
mπ
2N

) =

− 4N
π sin(mπ

2N )
< 0 if m is odd

4N
π sin(mπ

2N )
> 0 if m is even

since sin t > 0 for all t ∈ (0, π). Therefore the points x = (2m−1)π
2N for m = 1, . . . , N are the local maxima and

the points x = mπ
N for m = 1, . . . , N − 1 are the local minima of the function sN (x).

Problem. (d) Prove that amongst the points of local maxima for sN , the maximum value is attained at
π
2N .

Solution. We will begin by noting,

sN

(π
2
− x
)
=

2

π

∫ π
2
−x

0

sin 2Nt

sin t
dt

=
2

π

∫ π
2
+x

π

sin 2Nu

sinu
du ( tane u = π − t)

= sN

(π
2
+ x
)
− sN(π) = SN

(π
2
+ x
)

(since, SN (x) =
4

π

N∑
n=1

sin(2n− 1)x

(2n− 1)
so, SN (π) = 0 )

Hence, sN
(
π
2 + x

)
= sN

(
π
2 − x

)
, we can say sN (t) = sN (π − t), which is symmetric about π

2 . So, we will
just check for maximum in the interval

[
0, π2

]
. As we have seen in part (c), extrema occurs in xm = mπ

2N ,for
m = 1, 2, . . . , 2N , it is enough to check the maximum of sN (xm) where m varies over 1, · · · , N .

sN (x1) =

∫ π/2N

0

sin 2Nt

sin t
dt > 0 as t ∈

(
0,

π

2N

)
sN (xm)− sN (xm−1) =

∫ mπ
2N

(m−1)π
2N

sin 2Nt

sin t
dt

=
π

2N

sin 2Nε

sin ε
for ε ∈

(
(m− 1)π

2N
,
mπ

2N

)
The last equality is true due to mean value theorem. For any m ∈ {1, · · · , N} we have sin ε > 0. Thus we have
the following,

sN (xm)− sN (xm−1) =

{
> 0 if m = odd

< 0 if m = even
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Let’s define (−1)m−1am = sN (xm)− sN (xm−1). It’s not hard to see am is non-negetive. Note that,

sN (xm) = a1 − a2 + a3 − a4 + · · ·+ (−1)m+1am

⇒ sN (x1)− sN (xm) =

{
(a2 − a3) + (a4 − a5) + · · ·+ (a2k−2 − a2k−1) + a2k if m = 2k

(a2 − a3) + (a4 − a5) + · · ·+ (a2k−2 − a2k−1) if m = 2k − 1
· · · (1)

Claim: a2k ≥ a2k+1 for k ∈
{
1, · · · , N−1

2

}
.

The following calculation will show our claim is true,

a2k = (−1)2k−1 [sN (x2k)− sN (x2k−1)]

= −
∫ 2kπ

2N

(2k−1)π
2N

sin 2Nt

sin t
dt

a2k+1 = sN (x2k+1)− sN (x2k)

=

∫ (2k+1)π
2N

(2k)π
2N

sin 2Nt

sin t
dt

=

∫ 2kπ
2N

(2k−1)π
2N

− sin 2Nu

sin
(
u+ π

2N

)du by Substituting t = u+
π

2N

⩽
∫ 2kπ

2N

(2k−1)π
2N

− sin 2Nu

sinu
du = a2k

The last inequality is true as − sin 2Nu > 0 when u ∈
[
(2k−1)π

2N , 2kπ2N

]
and sinu < sin

(
u+ π

2N

)
, as both

u, u+ π/2N lies in the interval [0, π/2] for the k we mentioned in the claim. Thus we can see the claim in true.
From equation (1), we can see sN (x1) − sN (xm) ≥ 0 and hence sN (x1) ≥ sN (xm) for m ∈ {1, · · · , N}, so sN
attains maximum at x1 on the interval [0, π]. ■

Problem. (e) Interprete sN (π/2N) as a Riemann sum and prove that

lim
N→∞

sN

( π

2N

)
=

2

π

∫ π

0

sin t

t
dt

Solution. Let us consider the function f on [0, π] defined as,

f(x) =

{
sinx
x if x ̸= 0

1 if x = 0

clearly the above function is continuous on [0, π] and hence it is Riemann integrable on this interval. Let us
consider the partition of the interval [0, π] as following,

P =

{
0,

π

N
,
2π

N
, · · · , Nπ

N

}
Corresponding intervals are Ik =

[
(k−1)π

N , kπN

]
let, tk = (2k−1)π

2N be the tags of the interval Ik. Thus the Riemann
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sum is given by,

R(f,P) =

N∑
k=1

|Ik|f(tk)

=
π

N

N∑
k=1

sin tk
tk

= 2

N∑
k=1

sin (2k−1)π
2N

2k − 1

=
π

2
.
4

π

N∑
k=1

sin (2k−1)π
2N

2k − 1

=
π

2
sN

( π

2N

)
⇒ lim

n→∞
sN

( π

2N

)
=

2

π
· lim
∥P∥→0

R(f,P) =
2

π

∫ π

0

sin t

t
dt

As n → ∞, the length of interval In tends to 0. So the mesh of the partition ∥P∥ → 0. Since the function f
is Riemann integrable the limit will go to the Riemann integral. This is the reason we have concluded the last
line. ■

§ Problem 4

Problem. Consider the Fourier series (in exponential form) generated by a 2π-periodic function f ∈ C1(R),
say

f(x) ∼
∑
n∈Z

αne
inx

(a) Prove that the series
∑

n∈Z n
2 |αn|2 converges, and deduce that

∑
n∈Z |αn| converges.

Solution. We are given that f ∈ C1(R) thus f ′ exists and is in fact continuous. Thus the Lebesgue integral
βn = 1

2π

∫ π
−π f

′(x)e−inxdx exists and we get

βn =
1

2π
f(x)einx

∣∣∣∣π
−π

+
in

2π

∫ π

−π
f(x)e−inxdx (using integration by parts)

=
in

2π

(∫ π

−π
f(x)e−inxdx

)
= inαn

Theorem 4.1: (Parseval’s Theorem). Let f be a Riemann integrable function and let

f ∼
∞∑
n=0

cne
inx

Then
∑

|cn|2 converges and

1

2π

∫ π

−π
|f(x)|2dx =

∞∑
n=0

|cn|2

7



The above theorem was proved in class. And since f ′ is continuous it is Riemann integrable on [−π, π] and
hence we get that

∞∑
n=1

n2 |αn|2 =
∞∑
n=1

|βn|2 =
1

2π

∫ π

−π

∣∣f ′(x)
∣∣2 dx

converges. Also from Cauchy Schwarz inequality we get:(
m∑
n=ℓ

|αn|

)2

≤

(
m∑
n=ℓ

n2 |αn|2
)(

m∑
n=ℓ

1

n2

)

But we have already shown that
∑

n n
2 |αn|2 converges and we know

∑
n

1
n2 converges, hence for any ε > 0

there exists N ∈ N such that for m > ℓ ≥ N we have

m∑
n=ℓ

n2 |αn|2 < ε and
m∑
n=ℓ

1

n2
< ε

Therefore for m > ℓ ≥ N we get that (
m∑
n=ℓ

|αn|

)2

< ε2 ⇒
m∑
n=ℓ

|αn| < ε

Hence
∑∞

n=1 |αn| converges.

Problem. (b) Deduce that the series
∑

n∈Z αne
inx converges uniformly to a continuous sum function g.

Then prove that f = g.

Solution. We have
∣∣αne

inx
∣∣ = |αn|, hence by Weierstrass M-test we get that

∑∞
n=1 αne

inx converges uniformly
to a function g. Let h(t) = 1

2(f(x+ t) + f(x− t)) for t ∈ [0, δ], and let

s(x) = lim
t→0+

h(t) = f(x),

since f is continuous. Now note that∫ δ

0

h(t)− s(x)

t
dt =

∫ δ

0

(f(x+ t)− f(x)) + (f(x− t)− f(x))

2t
dt

Define,

u(t) =

{
f(x+t)−f(x)

t if t ∈ (0, δ]

f ′(x) if t = 0

Now take, u : [0, δ] → R is continuous, and thus
∫ δ
0 u(t) =

∫ δ
0

f(x+t)−f(x)
t dt exists. Similarly we can show that∫ δ

0
f(x)−f(x−t)

t dt exists by considering the function

v(t) =

{
f(x)−f(x−t)

t if t ∈ (0, δ]

f ′(x) if t = 0

Hence we have shown the following integral exists for all δ > 0,∫ δ

0

h(t)− s(x)

t
dt
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Theorem 4.2: (Dini’s Theorem). If the limit s(x) exists and if the Lebesgue integral∫ δ

0

h(t)− s(x)

t
dt

exists for some δ < π, then the Fourier series generated by f converges to s(x).

Hence using Dini’s Theorem we get that for any x, g(x) = f(x), therefore g = f . ■
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