ASSIGNMENT-2

Functional spaces

TRISHAN MONDAL

§ Problem 1

Problem. (a) (5 points) Show that A C R™ is convex, if and only if «A + A = (a+ ) A holds, for all o, 8 > 0.
(b) (5 points) Which non-empty sets A C R nare characterized by aA 4+ A = (a+ B)A, for all ¢, f e R ?

Proof. (a) Let, A be the convex set, take two points x,y from that set. If both «, 3 are zero then we of course have

aA+ A = (a+ B)A, now take o, 8 > 0 (but both are not zero at same time) then arg + aﬁ—fﬁ € A by convexity of A.

There is z € A such that 2% + aﬁ—fﬁ = z and hence az + fy = (o + 5)z. This means aA + A C (o + §)A and hence

aA+ A = (a+ B)A (containment of another direction is trivial follows from definition).

Let, A + BA = (a+ B)A holds for a,8 > 0. Let, z,y € A for any ¢ € [0,1] we can take t = aip if we vary
(o, B) € {(z,y) : 2,y > 0,(x,y) # (0,0)}, as a function of «, 8 is continuous everywhere on the given set. And ¢ can take
the value 1 and 0 thus it will take the value in whole interval [0, 1]. Thus for nay z,y € A we can say there is z € A such
that, ax + By = (a+ )z and hence z = tz + (1 — t)y since we can vary «, § we can say tx + (1 —t)y € A for all ¢t € [0, 1].
So A is convex set. |

(b) In this case we don’t have any restrictions on «, 3, for every a we can choose = —a(and « # 0), to get ax —ay = 0,
for all z,y € A. And hence x = y. Hence, the set A is singleton set.

§ Problem 2

Problem. (10 points) A set R :={z + ay: a > 0},z,y € R™, |ly|| = 1 is called a ray (starting at x in direction y).
(a) (5 points) Let A C R™ be convex, closed and unbounded. Show that A contains a ray.

(b) (5 points) In the above question, is it necessary to assume that A is a closed set?

Proof. (a) Consider an unbounded convex set C' with C' # ). Let’s establish some convenient assumptions. Firstly,
we can assume, without compromising the general case, that C' possesses a nonempty interior containing a point xg.
Furthermore, for simplicity, we can also assume that zo = 0 (if not we can translate C' to C' \ zo and continue the same
proof). Given the unbounded nature of C, we can locate a sequence (z,)neny € C such that ||z,| > n. Notice that for

sufficiently large n, ﬁxn +0 (1 — ﬁ) € C. According to the Bolzano-Weierstrass theorem, a normalized subsequence

{ﬁ} converges within C(using closedness of C'). In fact, without loss of generality, we can consider the entire
" neN

sequence to converge to a point z, i.e., ﬁ — .
Our aim is to demonstrate that the ray defined by {Az; A > 0} lies within C. Let’s proceed by selecting an arbitrary
positive value R. Evidently, for sufficiently large n, we have ||z,| > n > R. Convexity of C' and the fact that 0 € C
allow us to deduce that for sufficiently large n, we can find y,, = \ﬁw7\Ll € C. Furthermore, as n approaches infinity, v,

approaches Rx. Since 0 lies in the interior of C, it follows that for large n, y, — Rx also resides in C'. Consequently,
leveraging convexity, we can express

R 1
2%= §(yn + (Rx —yn)) € C



Since our choice of R > 0 was arbitrary, we’ve established that the ray {Az; A > 0} lies within C.

(b) Let’s consider C' = {(z,y) : > 0} it is a convex, unbounded set which contains a ray R = {(1,1) + «(1,0) : « > 0}.
Closed condition is not necessary. |

§ Problem 3

Problem. (10 points) Let A C R™ be a locally finite set (this means that A N B(0,r) is a finite set, for all » > 0,
where B(r) denote the closed ball of radius r centred at the origin). For each x € A, we define the Voronoi cell,

Cla,A):={z e R": ||z — 22 < ||z — yll2Vy € A},

consisting of all points z € R™ which have x as their nearest point (or one of their nearest points) in A.

(a) (5 points) Let A be the set of vertices of a regular hexagon. Provide a rough sketch of the Voronoi cell of one
of its vertices.

(b) (5 points) If conv(A) = R™, show that the Voronoi cells are bounded.

Solution. (a) Let,A = {ap, a1, as,as3,aq,as} and label the corresponding regular hexagon. When we consider one of its
vertices as the generator point for a Voronoi cell, the Voronoi cell is the region of the plane where all points are closer to
that vertex than to any other vertex of the hexagon.

Here’s a description of the Voronoi cell of a vertex of a regular hexagon, the center of the Voronoi cell is the vertex ag,
the boundary of the Voronoi cell consists of lines £, ¢ that are perpendicular bisectors of the edges ajag, agas. In the green
shaded T region any point is closer to ag than a1, as, now by triangle inequality any point in g € T, d(g,a2) < d(g,a1) <
d(g,ap), thus I' = C(ap, 4).

(b) We will analyze Voronoi cell for a point ag € A, for other points it will automatically follow. Let, C(ag, A) is
not bounded. If z,y € C(ag, A) then for any ¢ € [0,1], we will show that z = tx + (1 — t)y € C(ag, A). Notice that
|z — ao||” < ||a —al|?, ie. |laol® = 2z.a¢ < ||a||> = 2z.a, for all a € A,

I — all® = l121* + llaoll® — 22.a
= [|21* + llao||* — 2(tz + (1 — t)y).a0
= Jl2I* + ¢ (llaol* = 2z.00 ) + (1 = &) (Jlaoll® — 24.00 )
< =0 + ¢ (llall® — 22.0) + (1 = &) (Jlao]* - 29.0)
2] + llal® = 2(tw + (1 — t)y).a
2
=z —all
So it is a convex set and by definition (as a subspace of R™) it is closed. C(ag, A) is closed, convex, unbounded. By

the construction in Problem 2 we can get a ray R C C(ap, A) starting at ag. We will get a hyperplane H containing ag
and normal to the ray R.



We claim that the points of A can not lie on the half-space H* in the direction of R.
we can represent, the hyperplane by a linear functional p(z) = k, and (WLOG) assume
HT = {x € R": p(x) > k} be the half-space in the direction of R. Let, a € H* N A, take a
hyperplane normal to to adg. It will cut the ray at some point say z i.e. we will get adg L aZy
let r be the length of this perpendicular and let d = ||ag — z||. Take the sphere centered at
z and of radius d, then a will strictly lie inside the sphere hence, ||z — a|| < d, but z lies in
Voronoi cell. So it is not possible. All the points of A must lie in H~. Since H™ is itself
a convex set, Cov(A) will be contained in that set. So it cannot be R™. This leads to a
contradiction! |

§ Problem 4

Problem. (10 points) Prove that a compact convex set in R? is the convex hull of its
extreme points.

Figure 1: Part(b)

Proof. We will show that any compact, convex subset of R? has extreme points. We
will define a terminology Face. A subset F' of a convex set K is said to be face if, z =
te+ (1 —t)y € F, for some ¢ € [0,1] then z,y also belongs to F.

§ Lemma: Let, p be a linear functional from R? to R, then the following set is a face,
F, = {y € K :maxp(x) = p(y)}

Proof. Let, tx 4+ (1 — y)y = z € F,, then,

max p(a) = p(z) = p(tz + (1 - y)y)

= tp(z) + (1 =1)p(y)
< tm}z{xx pla)+(1—1) m}z{xxp(a)

= max pla)

The equality at each step will hold if p(z) = maxg p(a) and p(y) = maxg p(a). Thus, F, is a face. O

Existence of extreme points. If K consist one point then there is nothing to worry. If there is at east two points =,y € K
then by Hahn-Banach there is a linear functional py : R? — R such that p(z) > p(y). Now we construct the face F,, it
surely does not contain the point y. From this F),, we will get another compact F),,. Thus we get a sequence of compact
faces {--- C F,, C F,,}. This set is partially ordered by reversed inclusion. This set has an upper-bound NF,,, which is
nonempty by cantor intersection theorem. By Zorn’s lemma we will get a minimal element,F of the above set. If this
face contains more than one point, we will continue the same procedure to get a smaller compact set which contradicts

the maximality of F. Thus we get an extreme point.

Main proof We will prove conv(0K) = K, where 0K is boundary of K. If E is the set of all extreme points of K then we
will show conv(0K) C conv(E) which will finish our proof. 0K = K N K¢, intersection of two closed set and it is bounded
so OK is compact, We know convex hull of a compact set is compact so conv(9K) is compact. By definition of convex hull
we can say conv(0K) C K, if there is a point z € K \ conv(0K), there exists disjoint open set containing = and conv(0K)
respectively, thus by Hahn-Bancach Separation theorem we will get a hyperplane(line) strictly seperating « and conv(9K),
let p : R? — R be the corresponding linear functional, line is represented by p(y) = k, so p(x) > k > p(conv(9K)), the
following theorem will say that maximum of p|x can occures only at 0K, which will give us a contradiction and hence
conv(0K) =K

Theorem

Let p be a non-constant linear functional from K to R then the maximum will be attained in the extreme points.




Proof. Since K is compact and convex the maximum of p will be attained. Let, p(z) = maxg p, if z is not extreme
point then for any y € k we will get a = such that, z = tx + (1 — ¢)y for some ¢t. The following calculation will show

p(y) = p(2),
max p(a) = p(2)

= pltz + (1 - t)y)

=tp(x) + (1 —t)p(y)

<t 1—-1¢

< tmaxp(a) + (1~ 1) max p(a)

= max pla)
for the equality to hold we must have p(x) = p(y) = maxg p(a) = p(z). Thus p will be constant function over K which is
not possible. O

Now, we will show 0K C conv(E). Let, x € 0K \ E, S be the partially ordered set of line segments containing x, by the
ordered inclusion. Clearly S is not empty, if L; C Lo --- is a chain of line segments in .S, then by Zorn’s lemma there is a
maximal element . C K C S. Since L is a line within compact set it has two end point z1, x>.

§ Lemma: If ¢ € 0K is a point such that a = tb+ (1 — t)c for some b, c € K then the segment tb+ (1 —t)c C 0K
for all t € [0,1]

Proof. If b € K°, there exist a hyperplane(line) H separating K° and a, if b € K° C HT,a € H™, then ¢ must lie in
(H7)°, but then ¢ can not lie in K. So, both b, ¢ € 9K, therefore line segment joining them also lie in 0K. ]

Now we will show, x1, x5 (as mentioned previously) are extreme points of K. If 1 € K\ E, we can write z = uty +v(1—1t1)
for some t; € (0,1), then x will lie in the triangle A formed by u,v,z2, as t; € (0,1) and u # v, by definition of L we
know that u,v do not lie on the line passing through z1,x,xs. So, A is non-degenerate and = cannot lie on any of it’s
side. Then there is an open ball B centered at z is contained in A, but then it contradicts the fact x is a boundary point.
So, 1 € E and in similar way we can show zo € E. By the previous lemma whole line segment joining x1, x5 is in dK.

Thus we have shown, any boundary point can be written as a linear combination of two extreme point. And hence
K C conv(E), which means conv(0K) C conv(E), and hence our proof is completed. u

§ Problem 5

Problem. (10 points) Let p : R” — R be a linear functional. Prove that there is a unique vector =, € R” such that
p(y) = (y,z,) for all y € R™.

Proof. Let, {e1,--- ,e,} is the standard basis of R™. Let us define,
Tp = Z expler)
i=1

Now, for any = = Y z;e; we have, p(z) = Y i, xip(e;).

(
(y,2p) = <Z wien Y ejp(ej)>

|
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We can represent p as (x,x,). We are remains to show the unigeness of x,. Let, zo be another vector such that
p(y) = (y, zo), then we will have (y,z, — xo) = 0 for all y € R and hence, z, = xo. [ |



§ Problem 6

Problem. (10 points) A function f : R™ — R is called convex if for all z,y € R™ and ¢ € [0, 1], we have f(tz + (1 —
t)yy) < tf(z)+ (1 —t)f(y). Moreover, f is called concave if —f is convex. If f is both convex and concave, then
f is called affine; In other words, for an affine function f, we have f(tx + (1 —t)y) = tf(z) + (1 — t)f(y) for all
z,y € R" and ¢ € [0,1].

Let f : R™ — R be a continuous concave function and g : R” — R continuous convex function satisfying f(z) < g(z)
for all x € R™. Show that there exists an affine function h : R™ — R satisfying f(x) < h(z) < g(z) for all x € R™.

Proof. Let’s denote Gy and G, be two sets defined as following,

Gr={(z,r) eR" xR: f(z) >r}
Gy ={(z,r) eR" xR:g(z) <r}

e Let, (x1,71), (z2,72) are two points in G, then, for an t € [0,1] we have, g(tz1 + (1 — t)z2) < tg(x1) + (1 —t)g(z2) <
tr1 + (1 — t)re. Hence, t(z1,71) + (1 — t)(z2,72) belongs to G, for any ¢ € [0, 1] thus it is a convex subset of R"*!. Since
f is concave, f(x) < r is an equivalent condition to —f(z) > —r. —f is a convex function thus by similar calculation as
above shows G is also convex.

e Since f(z) < g(x) we can say GgNGy = 0. Otherwise, let(z,r) € G;NGy but then f(z) > r > g(x), which is not possible.
e We will prove that, G,G, is open. We will prove this for Gy, similar proof will work for the other case. We know,
{(z, f(z)) : € R"} is closed so it’s complement will be open. i.e. Fyu = {(z,y) : y # f(z)} is open. We can write this set
as G¢ [[{(z,y) : y > f(x)}. For any (z,y) € Gy there is an open ball B C Fy centered at (z,y), define h : R — R as
h(z,y) = f(z) —y, Since, the open ball is connected by intermediate value theorem h(z,y) £ 0, so the ball B is contained
in Gy. All of it’s point are internal point.

By Hahn-Banach Separation Theorem, we can can say there is a hyper-plane strictly seperating these convex sets,
call it # and assume it is denoted by the linear Functional, p : R™ x R — R as p(z,y) = k such that p(Gy) < k. We will
show p(0,1) > 0. Let, p(0,1) <0, for y; > y2 we will have p(z,y1) < p(x,y2). Take (x,y) € H, z > max {g(z),y} which
means (z,z) € Gy, i.e

k=plz,y) = p(z,2) > 2

which is not possible as the hyperplane strictly seperating the sets. We can define, h(z) = k;(”o(wl’)o). It is an affine function

as,

k—p(te+ (1 —1t)y,0)

h(tz + (1 —t)y) =

p(0,1)
_k—p(z,0) k= p(y,0)
=y T 00

=th(z) + (1 —t)h(y)

Since, h(z) ¢ G, we can say, h(x) < g(x) and since h(z) ¢ Gy we can say f(z) < h(z). Thus,

f(@) < h(z) < g(x)
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