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§ Problem 1

Problem. (a) (5 points) Show that A ⊆ Rn is convex, if and only if αA+ βA = (α+ β)A holds, for all α, β ≥ 0.

(b) (5 points) Which non-empty sets A ⊆ R nare characterized by αA+ βA = (α+ β)A, for all α, β ∈ R ?

Proof. (a) Let, A be the convex set, take two points x, y from that set. If both α, β are zero then we of course have
αA + βA = (α + β)A, now take α, β ≥ 0 (but both are not zero at same time) then αx

α+β + βy
α+β ∈ A by convexity of A.

There is z ∈ A such that αx
α+β + βy

α+β = z and hence αx + βy = (α + β)z. This means αA + βA ⊆ (α + β)A and hence

αA+ βA = (α+ β)A (containment of another direction is trivial follows from definition).

Let, αA + βA = (α + β)A holds for α, β ≥ 0. Let, x, y ∈ A for any t ∈ [0, 1] we can take t = α
α+β , if we vary

(α, β) ∈ {(x, y) : x, y ≥ 0, (x, y) ̸= (0, 0)}, as a function of α, β is continuous everywhere on the given set. And t can take
the value 1 and 0 thus it will take the value in whole interval [0, 1]. Thus for nay x, y ∈ A we can say there is z ∈ A such
that, αx+ βy = (α+ β)z and hence z = tx+ (1− t)y since we can vary α, β we can say tx+ (1− t)y ∈ A for all t ∈ [0, 1].
So A is convex set. ■

(b) In this case we don’t have any restrictions on α, β, for every α we can choose β = −α(and α ̸= 0), to get αx−αy = 0,
for all x, y ∈ A. And hence x = y. Hence, the set A is singleton set.

§ Problem 2

Problem. (10 points) A set R := {x+ αy : α ≥ 0}, x, y ∈ Rn, ∥y∥ = 1 is called a ray (starting at x in direction y).

(a) (5 points) Let A ⊆ Rn be convex, closed and unbounded. Show that A contains a ray.

(b) (5 points) In the above question, is it necessary to assume that A is a closed set?

Proof. (a) Consider an unbounded convex set C with C ̸= ∅. Let’s establish some convenient assumptions. Firstly,
we can assume, without compromising the general case, that C possesses a nonempty interior containing a point x0.
Furthermore, for simplicity, we can also assume that x0 = 0 (if not we can translate C to C \ x0 and continue the same
proof). Given the unbounded nature of C, we can locate a sequence (xn)n∈N ⊆ C such that ∥xn∥ > n. Notice that for

sufficiently large n, 1
∥xn∥xn+0

(
1− 1

∥xn∥

)
∈ C. According to the Bolzano-Weierstrass theorem, a normalized subsequence{

xn

||xn∥

}
n∈N

converges within C(using closedness of C). In fact, without loss of generality, we can consider the entire

sequence to converge to a point x, i.e., xn

∥xn∥ → x.

Our aim is to demonstrate that the ray defined by {λx;λ ≥ 0} lies within C. Let’s proceed by selecting an arbitrary
positive value R. Evidently, for sufficiently large n, we have ∥xn∥ > n ≥ R. Convexity of C and the fact that 0 ∈ C
allow us to deduce that for sufficiently large n, we can find yn := Rxn

∥xn∥ ∈ C. Furthermore, as n approaches infinity, yn
approaches Rx. Since 0 lies in the interior of C, it follows that for large n, yn − Rx also resides in C. Consequently,
leveraging convexity, we can express

R

2
x =

1

2
(yn + (Rx− yn)) ∈ C
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Since our choice of R > 0 was arbitrary, we’ve established that the ray {λx;λ ≥ 0} lies within C.

(b) Let’s consider C = {(x, y) : x > 0} it is a convex, unbounded set which contains a ray R = {(1, 1) + α(1, 0) : α ≥ 0}.
Closed condition is not necessary. ■

§ Problem 3

Problem. (10 points) Let A ⊆ Rn be a locally finite set (this means that A ∩ B(0, r) is a finite set, for all r ≥ 0,
where B(r) denote the closed ball of radius r centred at the origin). For each x ∈ A, we define the Voronoi cell,

C(x,A) := {z ∈ Rn : ∥z − x∥2 ≤ ∥z − y∥2∀y ∈ A} ,

consisting of all points z ∈ Rn which have x as their nearest point (or one of their nearest points) in A.

(a) (5 points) Let A be the set of vertices of a regular hexagon. Provide a rough sketch of the Voronoi cell of one
of its vertices.

(b) (5 points) If conv(A) = Rn, show that the Voronoi cells are bounded.

Solution. (a) Let,A = {a0, a1, a2, a3, a4, a5} and label the corresponding regular hexagon. When we consider one of its
vertices as the generator point for a Voronoi cell, the Voronoi cell is the region of the plane where all points are closer to
that vertex than to any other vertex of the hexagon.

Here’s a description of the Voronoi cell of a vertex of a regular hexagon, the center of the Voronoi cell is the vertex a0,
the boundary of the Voronoi cell consists of lines ℓ, ℓ′ that are perpendicular bisectors of the edges a1a0, a0a5. In the green
shaded Γ region any point is closer to a0 than a1, a5, now by triangle inequality any point in g ∈ Γ, d(g, a2) < d(g, a1) <
d(g, a0), thus Γ = C(a0, A).

(b) We will analyze Voronoi cell for a point a0 ∈ A, for other points it will automatically follow. Let, C(a0, A) is
not bounded. If x, y ∈ C(a0, A) then for any t ∈ [0, 1], we will show that z = tx + (1 − t)y ∈ C(a0, A). Notice that

∥x− a0∥2 ≤ ∥x− a∥2, i.e. ∥a0∥2 − 2x.a0 ≤ ∥a∥2 − 2x.a, for all a ∈ A,

∥z − a0∥2 = ∥z∥2 + ∥a0∥2 − 2z.a0

= ∥z∥2 + ∥a0∥2 − 2(tx+ (1− t)y).a0

= ∥z∥2 + t
(
∥a0∥2 − 2x.a0

)
+ (1− t)

(
∥a0∥2 − 2y.a0

)
≤ ∥z∥2 + t

(
∥a∥2 − 2x.a

)
+ (1− t)

(
∥a0∥2 − 2y.a

)
= ∥z∥2 + ∥a∥2 − 2(tx+ (1− t)y).a

= ∥z − a∥2

So it is a convex set and by definition (as a subspace of Rn) it is closed. C(a0, A) is closed, convex, unbounded. By
the construction in Problem 2 we can get a ray R ⊂ C(a0, A) starting at a0. We will get a hyperplane H containing a0
and normal to the ray R.
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Figure 1: Part(b)

We claim that the points of A can not lie on the half-space H+ in the direction of R.
we can represent, the hyperplane by a linear functional ρ(x) = k, and (WLOG) assume
H+ = {x ∈ Rn : ρ(x) > k} be the half-space in the direction of R. Let, a ∈ H+ ∩ A, take a
hyperplane normal to to a⃗a0. It will cut the ray at some point say z i.e. we will get a⃗a0 ⊥ a⃗z0
let r be the length of this perpendicular and let d = ∥a0 − z∥. Take the sphere centered at
z and of radius d, then a will strictly lie inside the sphere hence, ∥z − a∥ < d, but z lies in
Voronoi cell. So it is not possible. All the points of A must lie in H−. Since H− is itself
a convex set, Cov(A) will be contained in that set. So it cannot be Rn. This leads to a
contradiction! ■

§ Problem 4

Problem. (10 points) Prove that a compact convex set in R2 is the convex hull of its
extreme points.

Proof. We will show that any compact, convex subset of R2 has extreme points. We
will define a terminology Face. A subset F of a convex set K is said to be face if, z =
tx+ (1− t)y ∈ F , for some t ∈ [0, 1] then x, y also belongs to F .

§ Lemma: Let, ρ be a linear functional from R2 to R, then the following set is a face,

Fρ :=
{
y ∈ K : max

K
ρ(x) = ρ(y)

}
Proof. Let, tx+ (1− y)y = z ∈ Fρ then,

max
K

ρ(a) = ρ(z) = ρ(tx+ (1− y)y)

= tρ(x) + (1− t)ρ(y)

≤ tmax
K

ρ(a) + (1− t)max
K

ρ(a)

= max
K

ρ(a)

The equality at each step will hold if ρ(x) = maxK ρ(a) and ρ(y) = maxK ρ(a). Thus, Fρ is a face. □

Existence of extreme points. If K consist one point then there is nothing to worry. If there is at east two points x, y ∈ K
then by Hahn-Banach there is a linear functional ρ0 : R2 → R such that ρ(x) > ρ(y). Now we construct the face Fρ0

, it
surely does not contain the point y. From this Fρ0

we will get another compact Fρ1
. Thus we get a sequence of compact

faces {· · · ⊆ Fρ1 ⊆ Fρ0}. This set is partially ordered by reversed inclusion. This set has an upper-bound ∩Fρi , which is
nonempty by cantor intersection theorem. By Zorn’s lemma we will get a minimal element,E of the above set. If this
face contains more than one point, we will continue the same procedure to get a smaller compact set which contradicts
the maximality of E. Thus we get an extreme point.

Main proof We will prove conv(∂K) = K, where ∂K is boundary of K. If E is the set of all extreme points of K then we
will show conv(∂K) ⊆ conv(E) which will finish our proof. ∂K = K ∩ K̄c, intersection of two closed set and it is bounded
so ∂K is compact, We know convex hull of a compact set is compact so conv(∂K) is compact. By definition of convex hull
we can say conv(∂K) ⊆ K, if there is a point x ∈ K \ conv(∂K), there exists disjoint open set containing x and conv(∂K)
respectively, thus by Hahn-Bancach Separation theorem we will get a hyperplane(line) strictly seperating x and conv(∂K),
let ρ : R2 → R be the corresponding linear functional, line is represented by ρ(y) = k, so ρ(x) > k > ρ(conv(∂K)), the
following theorem will say that maximum of ρ|K can occures only at ∂K, which will give us a contradiction and hence
conv(∂K) = K

Theorem

Let ρ be a non-constant linear functional from K to R then the maximum will be attained in the extreme points.
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Proof. Since K is compact and convex the maximum of ρ will be attained. Let, ρ(z) = maxK ρ, if z is not extreme
point then for any y ∈ k we will get a x such that, z = tx + (1 − t)y for some t. The following calculation will show
ρ(y) = ρ(z),

max
K

ρ(a) = ρ(z)

= ρ(tx+ (1− t)y)

= tρ(x) + (1− t)ρ(y)

≤ tmax
K

ρ(a) + (1− t)max
K

ρ(a)

= max
K

ρ(a)

for the equality to hold we must have ρ(x) = ρ(y) = maxK ρ(a) = ρ(z). Thus ρ will be constant function over K which is
not possible. □

Now, we will show ∂K ⊆ conv(E). Let, x ∈ ∂K \ E, S be the partially ordered set of line segments containing x, by the
ordered inclusion. Clearly S is not empty, if L1 ⊆ L2 · · · is a chain of line segments in S, then by Zorn’s lemma there is a
maximal element L ⊆ ∂K ⊂ S. Since L is a line within compact set it has two end point x1, x2.

§ Lemma: If a ∈ ∂K is a point such that a = tb+ (1− t)c for some b, c ∈ K then the segment tb+ (1− t)c ⊆ ∂K
for all t ∈ [0, 1]

Proof. If b ∈ K◦, there exist a hyperplane(line) H separating K◦ and a, if b ∈ K◦ ⊆ H+, a ∈ H−, then c must lie in
(H−)◦, but then c can not lie in K. So, both b, c ∈ ∂K, therefore line segment joining them also lie in ∂K. ■

Now we will show, x1, x2 (as mentioned previously) are extreme points ofK. If x1 ∈ ∂K\E, we can write x = ut1+v(1−t1)
for some t1 ∈ (0, 1), then x will lie in the triangle ∆ formed by u, v, x2, as t1 ∈ (0, 1) and u ̸= v, by definition of L we
know that u, v do not lie on the line passing through x1, x, x2. So, ∆ is non-degenerate and x cannot lie on any of it’s
side. Then there is an open ball B centered at x is contained in ∆, but then it contradicts the fact x is a boundary point.
So, x1 ∈ E and in similar way we can show x2 ∈ E. By the previous lemma whole line segment joining x1, x2 is in ∂K.

Thus we have shown, any boundary point can be written as a linear combination of two extreme point. And hence
K. ⊆ conv(E), which means conv(∂K) ⊆ conv(E), and hence our proof is completed. ■.

§ Problem 5

Problem. (10 points) Let ρ : Rn → R be a linear functional. Prove that there is a unique vector xρ ∈ Rn such that
ρ(y) = ⟨y, xρ⟩ for all y ∈ Rn.

Proof. Let, {e1, · · · , en} is the standard basis of Rn. Let us define,

xρ =

n∑
i=1

ekρ(ek)

Now, for any x =
∑

xiei we have, ρ(x) =
∑n

i=1 xiρ(ei).

⟨y, xρ⟩ =
〈∑

xiei,
∑

ejρ(ej)
〉

=

n∑
i,j=1

xiρ(ej)δij

=

n∑
i=1

xiρ(ei)

We can represent ρ as ⟨∗, xp⟩. We are remains to show the uniqeness of xρ. Let, x0 be another vector such that
ρ(y) = ⟨y, x0⟩, then we will have ⟨y, xρ − x0⟩ = 0 for all y ∈ Rn and hence, xρ = x0. ■
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§ Problem 6

Problem. (10 points) A function f : Rn → R is called convex if for all x, y ∈ Rn and t ∈ [0, 1], we have f(tx+ (1−
t)y) ≤ tf(x) + (1 − t)f(y). Moreover, f is called concave if −f is convex. If f is both convex and concave, then
f is called affine; In other words, for an affine function f , we have f(tx + (1 − t)y) = tf(x) + (1 − t)f(y) for all
x, y ∈ Rn and t ∈ [0, 1].
Let f : Rn → R be a continuous concave function and g : Rn → R continuous convex function satisfying f(x) ≤ g(x)
for all x ∈ Rn. Show that there exists an affine function h : Rn → R satisfying f(x) ≤ h(x) ≤ g(x) for all x ∈ Rn.

Proof. Let’s denote Gf and Gg be two sets defined as following,

Gf = {(x, r) ∈ Rn × R : f(x) > r}
Gg = {(x, r) ∈ Rn × R : g(x) < r}

• Let, (x1, r1), (x2, r2) are two points in Gg then, for an t ∈ [0, 1] we have, g(tx1 + (1 − t)x2) ≤ tg(x1) + (1 − t)g(x2) <
tr1 + (1− t)r2. Hence, t(x1, r1) + (1− t)(x2, r2) belongs to Gg for any t ∈ [0, 1] thus it is a convex subset of Rn+1. Since
f is concave, f(x) < r is an equivalent condition to −f(x) > −r. −f is a convex function thus by similar calculation as
above shows Gf is also convex.
• Since f(x) ≤ g(x) we can say Gg∩Gf = ∅. Otherwise, let(x, r) ∈ Gg∩Gf but then f(x) > r > g(x), which is not possible.

• We will prove that, Gf ,Gg is open. We will prove this for Gf , similar proof will work for the other case. We know,
{(x, f(x)) : x ∈ Rn} is closed so it’s complement will be open. i.e. F# = {(x, y) : y ̸= f(x)} is open. We can write this set
as Gf

∐
{(x, y) : y > f(x)}. For any (x, y) ∈ Gf there is an open ball B ⊂ F# centered at (x, y), define h : Rn+1 → R as

h(x, y) = f(x)− y, Since, the open ball is connected by intermediate value theorem h(x, y) ≰ 0, so the ball B is contained
in Gf . All of it’s point are internal point.

By Hahn-Banach Separation Theorem, we can can say there is a hyper-plane strictly seperating these convex sets,
call it H and assume it is denoted by the linear Functional, ρ : Rn × R → R as ρ(x, y) = k such that ρ(Gg) < k. We will
show ρ(0, 1) > 0. Let, ρ(0, 1) ≤ 0, for y1 > y2 we will have ρ(x, y1) < ρ(x, y2). Take (x, y) ∈ H, z > max {g(x), y} which
means (x, z) ∈ Gg, i.e

k = ρ(x, y) ≥ ρ(x, z) > z

which is not possible as the hyperplane strictly seperating the sets. We can define, h(x) = k−ρ(x,0)
ρ(0,1) . It is an affine function

as,

h(tx+ (1− t)y) =
k − ρ(tx+ (1− t)y, 0)

ρ(0, 1)

= t
k − ρ(x, 0)

ρ(0, 1)
+ (1− t)

k − ρ(y, 0)

ρ(0, 1)

= th(x) + (1− t)h(y)

Since, h(x) /∈ Gg we can say, h(x) ≤ g(x) and since h(x) /∈ Gf we can say f(x) ≤ h(x). Thus,

f(x) ≤ h(x) ≤ g(x)

5


	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Problem 6

