Assignment-2

Functional spaces

Trishan Mondal

§ Problem 1

Problem. (a) (5 points) Show that $A \subseteq \mathbb{R}^n$ is convex, if and only if $\alpha A + \beta A = (\alpha + \beta)A$ holds, for all $\alpha, \beta \ge 0$. (b) (5 points) Which non-empty sets $A \subseteq \mathbb{R}$ nare characterized by $\alpha A + \beta A = (\alpha + \beta)A$, for all $\alpha, \beta \in \mathbb{R}$?

Proof. (a) Let, A be the convex set, take two points x, y from that set. If both α, β are zero then we of course have $\alpha A + \beta A = (\alpha + \beta)A$, now take $\alpha, \beta \ge 0$ (but both are not zero at same time) then $\frac{\alpha x}{\alpha + \beta} + \frac{\beta y}{\alpha + \beta} \in A$ by convexity of A. There is $z \in A$ such that $\frac{\alpha x}{\alpha + \beta} + \frac{\beta y}{\alpha + \beta} = z$ and hence $\alpha x + \beta y = (\alpha + \beta)z$. This means $\alpha A + \beta A \subseteq (\alpha + \beta)A$ and hence $\alpha A + \beta A = (\alpha + \beta)A$ (containment of another direction is trivial follows from definition).

Let, $\alpha A + \beta A = (\alpha + \beta)A$ holds for $\alpha, \beta \ge 0$. Let, $x, y \in A$ for any $t \in [0, 1]$ we can take $t = \frac{\alpha}{\alpha + \beta}$, if we vary $(\alpha, \beta) \in \{(x, y) : x, y \ge 0, (x, y) \ne (0, 0)\}$, as a function of α, β is continuous everywhere on the given set. And t can take the value 1 and 0 thus it will take the value in whole interval [0, 1]. Thus for nay $x, y \in A$ we can say there is $z \in A$ such that, $\alpha x + \beta y = (\alpha + \beta)z$ and hence z = tx + (1 - t)y since we can vary α, β we can say $tx + (1 - t)y \in A$ for all $t \in [0, 1]$. So A is convex set.

(b) In this case we don't have any restrictions on α, β , for every α we can choose $\beta = -\alpha$ (and $\alpha \neq 0$), to get $\alpha x - \alpha y = 0$, for all $x, y \in A$. And hence x = y. Hence, the set A is singleton set.

§ Problem 2

Problem. (10 points) A set $R := \{x + \alpha y : \alpha \ge 0\}, x, y \in \mathbb{R}^n, ||y|| = 1$ is called a ray (starting at x in direction y).

(a) (5 points) Let $A \subseteq \mathbb{R}^n$ be convex, closed and unbounded. Show that A contains a ray.

(b) (5 points) In the above question, is it necessary to assume that A is a closed set?

Proof. (a) Consider an unbounded convex set C with $C \neq \emptyset$. Let's establish some convenient assumptions. Firstly, we can assume, without compromising the general case, that C possesses a nonempty interior containing a point x_0 . Furthermore, for simplicity, we can also assume that $x_0 = 0$ (if not we can translate C to $C \setminus x_0$ and continue the same proof). Given the unbounded nature of C, we can locate a sequence $(x_n)_{n \in \mathbb{N}} \subseteq C$ such that $||x_n|| > n$. Notice that for sufficiently large n, $\frac{1}{||x_n||}x_n + 0\left(1 - \frac{1}{||x_n||}\right) \in C$. According to the Bolzano-Weierstrass theorem, a normalized subsequence $\left\{\frac{x_n}{||x_n||}\right\}_{n \in \mathbb{N}}$ converges within C(using closedness of C). In fact, without loss of generality, we can consider the entire sequence to converge to a point x, i.e., $\frac{x_n}{||x_n||} \to x$.

Our aim is to demonstrate that the ray defined by $\{\lambda x; \lambda \ge 0\}$ lies within C. Let's proceed by selecting an arbitrary positive value R. Evidently, for sufficiently large n, we have $||x_n|| > n \ge R$. Convexity of C and the fact that $0 \in C$ allow us to deduce that for sufficiently large n, we can find $y_n := \frac{Rx_n}{||x_n||} \in C$. Furthermore, as n approaches infinity, y_n approaches Rx. Since 0 lies in the interior of C, it follows that for large n, $y_n - Rx$ also resides in C. Consequently, leveraging convexity, we can express

$$\frac{R}{2}x = \frac{1}{2}(y_n + (Rx - y_n)) \in C$$

Since our choice of R > 0 was arbitrary, we've established that the ray $\{\lambda x; \lambda \ge 0\}$ lies within C.

(b) Let's consider $C = \{(x, y) : x > 0\}$ it is a convex, unbounded set which contains a ray $R = \{(1, 1) + \alpha(1, 0) : \alpha \ge 0\}$.

§ Problem 3

Problem. (10 points) Let $A \subseteq \mathbb{R}^n$ be a locally finite set (this means that $A \cap B(0, r)$ is a finite set, for all $r \ge 0$, where B(r) denote the closed ball of radius r centred at the origin). For each $x \in A$, we define the Voronoi cell,

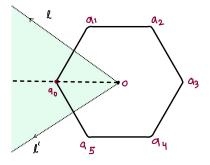
$$C(x, A) := \{ z \in \mathbb{R}^n : \| z - x \|_2 \le \| z - y \|_2 \forall y \in A \},\$$

consisting of all points $z \in \mathbb{R}^n$ which have x as their nearest point (or one of their nearest points) in A.

(a) (5 points) Let A be the set of vertices of a regular hexagon. Provide a rough sketch of the Voronoi cell of one of its vertices.

(b) (5 points) If $\operatorname{conv}(A) = \mathbb{R}^n$, show that the Voronoi cells are bounded.

Solution. (a) Let, $A = \{a_0, a_1, a_2, a_3, a_4, a_5\}$ and label the corresponding regular hexagon. When we consider one of its vertices as the generator point for a Voronoi cell, the Voronoi cell is the region of the plane where all points are closer to that vertex than to any other vertex of the hexagon.



Here's a description of the Voronoi cell of a vertex of a regular hexagon, the center of the Voronoi cell is the vertex a_0 , the boundary of the Voronoi cell consists of lines ℓ, ℓ' that are perpendicular bisectors of the edges a_1a_0, a_0a_5 . In the green shaded Γ region any point is closer to a_0 than a_1, a_5 , now by triangle inequality any point in $g \in \Gamma$, $d(g, a_2) < d(g, a_1) < d(g, a_0)$, thus $\Gamma = C(a_0, A)$.

(b) We will analyze Voronoi cell for a point $a_0 \in A$, for other points it will automatically follow. Let, $C(a_0, A)$ is not bounded. If $x, y \in C(a_0, A)$ then for any $t \in [0, 1]$, we will show that $z = tx + (1 - t)y \in C(a_0, A)$. Notice that $||x - a_0||^2 \le ||x - a||^2$, i.e. $||a_0||^2 - 2x \cdot a_0 \le ||a||^2 - 2x \cdot a_0$ for all $a \in A$,

$$\begin{aligned} \|z - a_0\|^2 &= \|z\|^2 + \|a_0\|^2 - 2z.a_0 \\ &= \|z\|^2 + \|a_0\|^2 - 2(tx + (1 - t)y).a_0 \\ &= \|z\|^2 + t\left(\|a_0\|^2 - 2x.a_0\right) + (1 - t)\left(\|a_0\|^2 - 2y.a_0\right) \\ &\leq \|z\|^2 + t\left(\|a\|^2 - 2x.a\right) + (1 - t)\left(\|a_0\|^2 - 2y.a\right) \\ &= \|z\|^2 + \|a\|^2 - 2(tx + (1 - t)y).a \\ &= \|z - a\|^2 \end{aligned}$$

So it is a convex set and by definition (as a subspace of \mathbb{R}^n) it is closed. $C(a_0, A)$ is closed, convex, unbounded. By the construction in **Problem 2** we can get a ray $R \subset C(a_0, A)$ starting at a_0 . We will get a hyperplane \mathcal{H} containing a_0 and normal to the ray R. We **claim** that the points of A can not lie on the half-space \mathcal{H}^+ in the direction of R. we can represent, the hyperplane by a linear functional $\rho(x) = k$, and (WLOG) assume $\mathcal{H}^+ = \{x \in \mathbb{R}^n : \rho(x) > k\}$ be the half-space in the direction of R. Let, $a \in \mathcal{H}^+ \cap A$, take a hyperplane normal to to $a\vec{a}_0$. It will cut the ray at some point say z i.e. we will get $a\vec{a}_0 \perp a\vec{z}_0$ let r be the length of this perpendicular and let $d = ||a_0 - z||$. Take the sphere centered at z and of radius d, then a will strictly lie inside the sphere hence, ||z - a|| < d, but z lies in Voronoi cell. So it is not possible. All the points of A must lie in \mathcal{H}^- . Since \mathcal{H}^- is itself a convex set, Cov(A) will be contained in that set. So it cannot be \mathbb{R}^n . This leads to a contradiction!

§ Problem 4

Problem. (10 points) Prove that a compact convex set in \mathbb{R}^2 is the convex hull of its extreme points.

Proof. We will show that any compact, convex subset of \mathbb{R}^2 has extreme points. We will define a terminology **Face**. A subset F of a convex set K is said to be face if, $z = tx + (1-t)y \in F$, for some $t \in [0,1]$ then x, y also belongs to F.

§ Lemma: Let, ρ be a linear functional from \mathbb{R}^2 to \mathbb{R} , then the following set is a face,

$$F_{\rho} := \left\{ y \in K : \max_{K} \rho(x) = \rho(y) \right\}$$

Proof. Let, $tx + (1 - y)y = z \in F_{\rho}$ then,

$$\max_{K} \rho(a) = \rho(z) = \rho(tx + (1 - y)y)$$
$$= t\rho(x) + (1 - t)\rho(y)$$
$$\leq t \max_{K} \rho(a) + (1 - t) \max_{K} \rho(a)$$
$$= \max_{K} \rho(a)$$

The equality at each step will hold if $\rho(x) = \max_K \rho(a)$ and $\rho(y) = \max_K \rho(a)$. Thus, F_{ρ} is a face.

Existence of extreme points. If K consist one point then there is nothing to worry. If there is at east two points $x, y \in K$ then by **Hahn-Banach** there is a linear functional $\rho_0 : \mathbb{R}^2 \to \mathbb{R}$ such that $\rho(x) > \rho(y)$. Now we construct the face F_{ρ_0} , it surely does not contain the point y. From this F_{ρ_0} we will get another compact F_{ρ_1} . Thus we get a sequence of compact faces $\{\cdots \subseteq F_{\rho_1} \subseteq F_{\rho_0}\}$. This set is partially ordered by reversed inclusion. This set has an upper-bound $\cap F_{\rho_i}$, which is nonempty by **cantor intersection theorem**. By Zorn's lemma we will get a minimal element, E of the above set. If this face contains more than one point, we will continue the same procedure to get a smaller compact set which contradicts the maximality of E. Thus we get an extreme point.

Main proof We will prove $\operatorname{conv}(\partial K) = K$, where ∂K is boundary of K. If E is the set of all extreme points of K then we will show $\operatorname{conv}(\partial K) \subseteq \operatorname{conv}(E)$ which will finish our proof. $\partial K = K \cap \overline{K^c}$, intersection of two closed set and it is bounded so ∂K is compact. We know convex hull of a compact set is compact so $\operatorname{conv}(\partial K)$ is compact. By definition of convex hull we can say $\operatorname{conv}(\partial K) \subseteq K$, if there is a point $x \in K \setminus \operatorname{conv}(\partial K)$, there exists disjoint open set containing x and $\operatorname{conv}(\partial K)$, respectively, thus by Hahn-Bancach Separation theorem we will get a hyperplane(line) strictly separating x and $\operatorname{conv}(\partial K)$, let $\rho : \mathbb{R}^2 \to R$ be the corresponding linear functional, line is represented by $\rho(y) = k$, so $\rho(x) > k > \rho(\operatorname{conv}(\partial K))$, the following theorem will say that maximum of $\rho|_K$ can occures only at ∂K , which will give us a contradiction and hence $\operatorname{conv}(\partial K) = K$

Theorem

Let ρ be a non-constant linear functional from K to \mathbb{R} then the maximum will be attained in the extreme points.

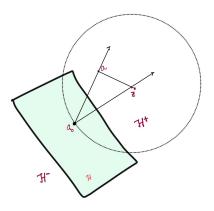


Figure 1: Part(b)

Proof. Since K is compact and convex the maximum of ρ will be attained. Let, $\rho(z) = \max_K \rho$, if z is not extreme point then for any $y \in k$ we will get a x such that, z = tx + (1 - t)y for some t. The following calculation will show $\rho(y) = \rho(z)$,

$$\max_{K} \rho(a) = \rho(z)$$

$$= \rho(tx + (1 - t)y)$$

$$= t\rho(x) + (1 - t)\rho(y)$$

$$\leq t \max_{K} \rho(a) + (1 - t) \max_{K} \rho(a)$$

$$= \max_{K} \rho(a)$$

for the equality to hold we must have $\rho(x) = \rho(y) = \max_K \rho(a) = \rho(z)$. Thus ρ will be constant function over K which is not possible.

Now, we will show $\partial K \subseteq \operatorname{conv}(E)$. Let, $x \in \partial K \setminus E$, S be the partially ordered set of line segments containing x, by the ordered inclusion. Clearly S is not empty, if $L_1 \subseteq L_2 \cdots$ is a chain of line segments in S, then by Zorn's lemma there is a maximal element $L \subseteq \partial K \subset S$. Since L is a line within compact set it has two end point x_1, x_2 .

§ Lemma: If $a \in \partial K$ is a point such that a = tb + (1-t)c for some $b, c \in K$ then the segment $tb + (1-t)c \subseteq \partial K$ for all $t \in [0, 1]$

Proof. If $b \in K^{\circ}$, there exist a hyperplane(line) \mathcal{H} separating K° and a, if $b \in K^{\circ} \subseteq \mathcal{H}^+$, $a \in \mathcal{H}^-$, then c must lie in $(\mathcal{H}^-)^{\circ}$, but then c can not lie in K. So, both $b, c \in \partial K$, therefore line segment joining them also lie in ∂K .

Now we will show, x_1, x_2 (as mentioned previously) are extreme points of K. If $x_1 \in \partial K \setminus E$, we can write $x = ut_1 + v(1-t_1)$ for some $t_1 \in (0,1)$, then x will lie in the triangle Δ formed by u, v, x_2 , as $t_1 \in (0,1)$ and $u \neq v$, by definition of L we know that u, v do not lie on the line passing through x_1, x, x_2 . So, Δ is non-degenerate and x cannot lie on any of it's side. Then there is an open ball B centered at x is contained in Δ , but then it contradicts the fact x is a boundary point. So, $x_1 \in E$ and in similar way we can show $x_2 \in E$. By the previous lemma whole line segment joining x_1, x_2 is in ∂K .

Thus we have shown, any boundary point can be written as a linear combination of two extreme point. And hence $K \subseteq \operatorname{conv}(E)$, which means $\operatorname{conv}(\partial K) \subseteq \operatorname{conv}(E)$, and hence our proof is completed.

§ Problem 5

Problem. (10 points) Let $\rho : \mathbb{R}^n \to \mathbb{R}$ be a linear functional. Prove that there is a unique vector $x_{\rho} \in \mathbb{R}^n$ such that $\rho(y) = \langle y, x_{\rho} \rangle$ for all $y \in \mathbb{R}^n$.

Proof. Let, $\{e_1, \dots, e_n\}$ is the standard basis of \mathbb{R}^n . Let us define,

$$x_{\rho} = \sum_{i=1}^{n} e_k \rho(e_k)$$

Now, for any $x = \sum x_i e_i$ we have, $\rho(x) = \sum_{i=1}^n x_i \rho(e_i)$.

$$\langle y, x_{\rho} \rangle = \left\langle \sum_{i,j=1}^{n} x_i e_i, \sum_{i=1}^{n} e_j \rho(e_j) \right\rangle$$
$$= \sum_{i,j=1}^{n} x_i \rho(e_j) \delta_{ij}$$
$$= \sum_{i=1}^{n} x_i \rho(e_i)$$

We can represent ρ as $\langle *, x_p \rangle$. We are remains to show the **uniqueness** of x_ρ . Let, x_0 be another vector such that $\rho(y) = \langle y, x_0 \rangle$, then we will have $\langle y, x_\rho - x_0 \rangle = 0$ for all $y \in \mathbb{R}^n$ and hence, $x_\rho = x_0$.

§ Problem 6

Problem. (10 points) A function $f : \mathbb{R}^n \to \mathbb{R}$ is called convex if for all $x, y \in \mathbb{R}^n$ and $t \in [0, 1]$, we have $f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y)$. Moreover, f is called concave if -f is convex. If f is both convex and concave, then f is called affine; In other words, for an affine function f, we have f(tx + (1 - t)y) = tf(x) + (1 - t)f(y) for all $x, y \in \mathbb{R}^n$ and $t \in [0, 1]$.

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous concave function and $g : \mathbb{R}^n \to \mathbb{R}$ continuous convex function satisfying $f(x) \le g(x)$ for all $x \in \mathbb{R}^n$. Show that there exists an affine function $h : \mathbb{R}^n \to \mathbb{R}$ satisfying $f(x) \le h(x) \le g(x)$ for all $x \in \mathbb{R}^n$.

Proof. Let's denote \mathcal{G}_f and \mathcal{G}_q be two sets defined as following,

$$\mathcal{G}_f = \{(x, r) \in \mathbb{R}^n \times \mathbb{R} : f(x) > r\}$$
$$\mathcal{G}_q = \{(x, r) \in \mathbb{R}^n \times \mathbb{R} : g(x) < r\}$$

• Let, $(x_1, r_1), (x_2, r_2)$ are two points in \mathcal{G}_g then, for an $t \in [0, 1]$ we have, $g(tx_1 + (1 - t)x_2) \leq tg(x_1) + (1 - t)g(x_2) < tr_1 + (1 - t)r_2$. Hence, $t(x_1, r_1) + (1 - t)(x_2, r_2)$ belongs to \mathcal{G}_g for any $t \in [0, 1]$ thus it is a convex subset of \mathbb{R}^{n+1} . Since f is concave, f(x) < r is an equivalent condition to -f(x) > -r. -f is a convex function thus by similar calculation as above shows \mathcal{G}_f is also convex.

Since f(x) ≤ g(x) we can say G_g ∩ G_f = Ø. Otherwise, let(x, r) ∈ G_g ∩ G_f but then f(x) > r > g(x), which is not possible.
We will prove that, G_f, G_g is open. We will prove this for G_f, similar proof will work for the other case. We know, {(x, f(x)) : x ∈ ℝⁿ} is closed so it's complement will be open. i.e. F_# = {(x, y) : y ≠ f(x)} is open. We can write this set as G_f ∐ {(x, y) : y > f(x)}. For any (x, y) ∈ G_f there is an open ball B ⊂ F_# centered at (x, y), define h : ℝⁿ⁺¹ → ℝ as h(x, y) = f(x) - y. Since, the open ball is connected by intermediate value theorem h(x, y) ≤ 0, so the ball B is contained in G_f. All of it's point are internal point.

By Hahn-Banach Separation Theorem, we can can say there is a hyper-plane strictly separating these convex sets, call it \mathcal{H} and assume it is denoted by the linear Functional, $\rho : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ as $\rho(x, y) = k$ such that $\rho(\mathcal{G}_g) < k$. We will show $\rho(0, 1) > 0$. Let, $\rho(0, 1) \leq 0$, for $y_1 > y_2$ we will have $\rho(x, y_1) < \rho(x, y_2)$. Take $(x, y) \in \mathcal{H}$, $z > \max \{g(x), y\}$ which means $(x, z) \in \mathcal{G}_g$, i.e

$$k = \rho(x, y) \ge \rho(x, z) > z$$

which is not possible as the hyperplane strictly separating the sets. We can define, $h(x) = \frac{k - \rho(x,0)}{\rho(0,1)}$. It is an affine function as,

$$h(tx + (1 - t)y) = \frac{k - \rho(tx + (1 - t)y, 0)}{\rho(0, 1)}$$
$$= t\frac{k - \rho(x, 0)}{\rho(0, 1)} + (1 - t)\frac{k - \rho(y, 0)}{\rho(0, 1)}$$
$$= th(x) + (1 - t)h(y)$$

Since, $h(x) \notin \mathcal{G}_g$ we can say, $h(x) \leq g(x)$ and since $h(x) \notin \mathcal{G}_f$ we can say $f(x) \leq h(x)$. Thus,

$$f(x) \le h(x) \le g(x)$$