
Assignment-1
Functional Spaces

Trishan Mondal

§ Problem 1

Problem. For n ∈ N, let fn ∈ C ([0, 1];R) be given by fn(x) = xn.

(a) (5 points) Prove that the sequence {fn} converges point-wise but not uniformly.
For n ∈ N, let fn ∈ C ([0, 1];R) be given by fn(x) = xn.

(b) (5 points) Let g ∈ C ([0, 1];R) with g(1) = 0. Show that the sequence {xng(x)} converges uniformly on [0, 1].

Proof. (a) For every point x0 ∈ [0, 1] we can see that 0 ≤ x0 ≤ x2
0 ≤ · · · ≤ 1 which is a bounded and strictly decreasing

sequence for x0 ∈ (0, 1), so for all x0 the functions fn(x0) will converge to 0 and for x0 = 1, 0, f(x0) will converge to
1 or 0 respectively. Now for contradiction let fn converge to f uniformly. Since, uniformly converge implies point-wise
convergence

f(x) =

{
0 x ∈ (0, 1]

1 x = 1

which is clearly not continuous.

(b) Since g(x)xn is 0 for x = 1 it is enough to prove the uniform continuity of {xng(x)} on the interval [0, 1). For a
given ε > 0 continuity of g at 1 will give us a δ > 0 such that, |g(x)− g(1)| < ε for 1− δ < x < 1. Now split the interval
[0, 1) in two parts [0, 1− δ]∪ (1− δ, 1). Since, |g(x)| is continuous function on [0, 1], it must have an upper bound, say M .
We will show uniform convergence of the sequence on these two parts. For a given ε > 0, we can choose N such that,

|g(x)xn − 0| ≤ |g(x)||xn|
≤ M(1− δ)n

< ε

For all n ≥ N . This means {xng(x)} converges uniformly on [0, 1− δ]. Now, we will show the convergence in the interval
(1− δ, 1).

|g(x)xn − 0| ≤ |g(x)|
= |g(x)− g(1)|
< ε

This gives us the uniform continuity of {g(x)xn} on the interval (1− δ, 1).

§ Problem 2

Problem. (10 points) Prove that
∑∞

n=1 x
n(1 − x) converges point-wise but not uniformly on [0, 1], whereas∑∞

n=1(−1)nxn(1 − x) converges uniformly on [0, 1]. (This illustrates that uniform convergence of
∑

fn(x) along
with point-wise convergence of

∑
|fn(x)|.)
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Proof. Proving point-wise convergence of
∑

xn(1 − x) is easy for x ∈ [0, 1) as it can be treated as product of the
geometric series

∑
xn and 1 − x. Since the geometric series converges for |x| < 1 we can say that the given series

converges for x ∈ [0, 1). For x = 1 we can see that the series is actually 0. So the given sum converges point-wise. Let,
sn(x) = (1− x)

∑n
k=1 x

k, for x ̸= 1

sn(x) = (1− x)

n∑
k=1

xk

= (1− x)x(1 + x+ · · ·+ xn)

= x(1− xn)

If sn(x) converges uniformly to s(x) we can say that, sn(x) must converge to s(x) point-wise. But then,

s(x) =

{
x x ∈ [0, 1)

0 x = 1

which clearly is not a continuous function. For proving the next part we will use Dirichlet test for uniform converge.

Theorem (Dirichlet’s test for uniform convergence)

Let, sn(x) denote n-th partial sum of the series
∑

fn(x), where fn(x) is complex valued function defined on a set S.
Where, {sn(x)} is uniformly bounded on S. Let, gn be a sequence of real-valued function such that gn+1(x) ≤ gn(x)
for each x in S, assume that gn(x) → 0 uniformly on S. Then

∑
fn(x)gn(x) converges uniformly on S.

In the given series take fn = (−1)n and gn(x) = xn(1 − x). We can see gn(x) ≥ gn+1(x) and by Problem 1, we can see
that gn(x) → 0 uniformly. So the given series converges uniformly.

§ Problem 3

Problem. (10 points) Let {an} be a decreasing sequence of positive real numbers. Prove that the series∑∞
n=1 an sin(nx) converges uniformly on R if, and only if, nan → 0 as n → ∞.

Proof. (⇒) Let, the series
∑∞

n=1 an sin(nx) converges uniformly also assume that sn(x) denote the n-th partial sum of
the series. Then there exist N such that for m,n ≥ N ,

|sm(x)− sn(x)| < ε

We can put m = 2n to get, s2n(x) − sn(x) which is
∑2n

k=n+1 ak sin(kx). The above inequality holds for all x now for
our convenience we will fix x ∈ (0, π

4n ). For that x0 we will have sin kx0 is positive for k = n+ 1, · · · , 2n and

sin(n+ 1)x0 < · · · < sin(2nx0)

The following calculation will give us the desired result,

ε >

2n∑
k=n+1

ak sin(kx0)

> (an+1 + · · ·+ a2n) sin((n+ 1)x0)

> na2n sin((n+ 1)x0)

which gives us 2na2n < ε′ where, ε′ = 2ε
sin(n+1)x0

. Since the choice of m,n is in our hand by the similar calculation we can

show that (2n+1)a2n+1 < ε′′, here ε′′ depends on ε. This means for every ε > 0 there is N ∈ N such that nan < ε for all
n ≥ N which is limn→∞ nan = 0.

(⇐) Since nan converges to 0 and it is a sequence of positive real numbers, for every ε > 0 there is N ∈ N such that,
nan < ε

3 . Let us denote sn(x) be the n-th partial sum of the series. Now take n > N , we will show for any m ∈ N ,

2



|sn+m(x)− sn(x)| < ε for any x ∈ [0, π] (It is enough to show uniform convergence in this interval). We will subdivide
the interval [0, π] into two parts [0, δ] ∪ [δ, π], where δ is small. For the interval [0, δ],

|sn+m(x)− sn(x)| =
n+m∑

k=n+1

ak sin(kx)

≤
n+m∑

k=n+1

kakx

< mδ
ε

3

We can choose δ such that mδ < 1 (in this case wee will choose δ = π
m+n ). Now we will show the convergence in the

interval [δ, π]. Let, An(x) =
∑n

k=1 sin(nx), by the Abel’s summation formula,

|sn+m(x)− sn(x)| =

∣∣∣∣∣
n+m∑

k=n+1

(aK − ak−1)Ak(x)− an+1An + an+mAn++m+1(x)

∣∣∣∣∣
≤

∣∣∣∣∣
n+m∑

k=n+1

(ak − ak−1)Ak(x)

∣∣∣∣∣+ an+1|An(x)|+ an+m|An+m+1(x)|

<

∣∣∣∑n+m
k=n+1(ak − ak−1)

∣∣∣∣∣sin x
2

∣∣ + nan+1 + (n+m+ 1)am+n

<
2an∣∣sin x

2

∣∣ + 2
ε

3

≤ 2π

x
an + 2

ε

3

<
2π

δ
an + 2

ε

3

≤ 2ε

3
+

ε

3
= ε

By Cauchy Theorem we can conclude the series converges uniformly on [0, π].

§ Problem 4

Problem. (10 points) Prove that the series ζ(s) =
∑∞

n=1
1
ns converges uniformly on the interval [1+ ε,∞) for every

ε > 0. Show that the equation ζ ′(s) = −
∑∞

n=1
logn
ns is valid for each s > 1 and obtain a similar formula for the

k-th derivative ζ(k)(s).

Proof. We will use Weierstrass-M test, which is sated below to solve this problem.

Theorem (Weierstrass-M test)

Let {fn} be a sequence of real or complex valued functions such that,

0 ≤ |fn(x)| ≤ Mn

for all x. Then, if
∑

n Mn converges,
∑

n fn(x) converges uniformly.

Notice that 1
ns ≤ 1

n1+ε holds for any s in the given interval. Now we will show that
∑

1
n1+ε converges. For that we

will use Cauchy condensation test.
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Theorem (Cauchy condensation test)

The series
∑∞

n=1 an converges if and only if
∑∞

n=1 2
na2n converges.

In this case we have,

∞∑
n=1

2n

2n(1+ε)

=

∞∑
n=1

1

2nε

This is a geometric series which converges. So, the given series of functions converges uniformly. Since the series converges
uniformly we can interchange sum and derivatives in other words,

ζ ′(s) =
dζ(s)

ds

=
d

ds

( ∞∑
n=1

1

ns

)

=

∞∑
n=1

d

ds

(
1

ns

)

= −
∞∑

n=1

log n

ns

We will prove the above series is uniformly convergent so that we can define ζ(2). Here,
∣∣∣− logn

ns

∣∣∣ ≤ logn
n(1+ε) . It is enough

to Show
∑∞

n=1
logn
n(1+ε) equivalently

∑∞
n=1

n
2nε converges (Cauchy condensation test). We can use Cauchy condensation test

on the series
∑

n
2nε to ensure this is a convergent series. Which means ζ ′(s) is uniformly convergent. Thus we can again

commute sum and differentiation. Inductively we will have,

ζ(k)(s) =

∞∑
n=1

(−1)k
(log n)k

ns

§ Problem 5

Problem. (10 points) Assume that {fn} is a sequence of monotonically increasing functions on R such that 0 ≤
fn(x) ≤ 1 for all x ∈ R and n ∈ N. Prove that there is a function f and a subsequence {nk} such that

f(x) = lim
k→∞

fnk
(x)

Proof. The following lemma will help us to prove the statement for x ∈ Q. Then we will try to extend this result for R.

§ Lemma: Let, fn be sequence of point-wise bounded complex valued function on a countable set S, then fn has
subsequence {fnk

} and there exist a function such that for every x ∈ S,

lim
k→∞

fnk
(x) = f(x)

Proof. Let, si be the points in S where, i ∈ N. Since {fn(si)} is bounded there exist a subsequence. Which we will
denote by {fi,k}. Now consider the following array of sequences,
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S1 : f1,1 f1,2 f1,3 · · ·
S2 : f2,1 f2,2 f2,3 · · ·
S3 : f3,1 f3,2 f3,3 · · ·

Now we will choose the elements along the diagonal, we will have the following sequence,

S̃ : f1,1 f2,2 f3,3 · · ·

We can notice that Sn is subsequence of Sn−1, thus the sequence S̃ is subsequence of Sn except for first (n − 1) terms
hence fn,n(si) converges as n → ∞ for every si ∈ S. ■

{fn} has a subsequence {fnk
} which converges to f on the set of rationals Q i.e. for any rational r,

lim fnk
(r) = f(r)

Now we will extend this function to R by the following definition,

f(x) := sup
r≤x

f(r)

Let, f is continuous at x ∈ R, for every ε > 0 there is δ such that |f(x)− f(y)| < ε for |x− y| < δ. We will get two
rationals r1, r2 in the neighborhood such that, r1 ≤ x ≤ r2. Now by convergence of fnk

(r) → f(r) gives us, a Ni ∈ N
such that, |f(ri)− fnk

(ri)| < ε for all nk ≥ Ni. We also have, fnk
(r1) ≤ fnk

(x) ≤ fnk
(r2) (because fk are increasing),

from the continuity of f we also have |f(x)− f(ri)| < ε,

fnk
(r1) ≤ fnk

(x) ≤ fnk
(r2)

⇒ f(r1)− ε < fnk
(r1) ≤ fnk

(x) ≤ fnk
(r2) < f(r2) + ε

⇒ f(x)− 2ε < f(r1)− ε < fnk
(x) < f(r2) + ε < f(x) + 2ε

Which gives us |fnk
(x)− f(x)| < ε for nk ≥ maxNi. So, fnk

→ f at those point where f is continuous.

Let, r1 ≤ r2 be two rational number we know fnk
(r1) ≤ fnk

(r2), by taking the limit nk → ∞ we have, f(r1) ≤ f(r2),
for any x1 ≤ x2 we have

f(x1) = sup
r1≤x1

f(r1) ≤ sup
r2≤x2

f(r2) = f(x2)

So, f is increasing function and it is bounded. Then the set of points D where f is discontinuous is countable. Now by
the Lemma there is a subsequence {fmk

} of {fmk
} such that fmk

(d) → g(d) for all d ∈ R and g(x) = f(x) whenever f is
continuous.

§ Problem 6

Problem. (10 points) Prove that the unit ball of (C [0, 1], ∥ · ∥∞) is not compact.

Proof. For a metric space compactness is equivalent to Bolzano- Weierstrass property. In other words every sequence has
a convergent sub-sequence. Now consider the sequence {fn(x) = xn} ⊆ C [0, 1]. We can easily verify that fn lie in the
unit ball of the given metric space. Any subsequence of fn will look like xnk . If this sub-sequence converges to f then for
all x0 ∈ [0, 1], fnk

(x0) converges to f(x0) (point-wise convergence). But then,

f =

{
0 x ∈ [0, 1)

1 x = 1

Which is not continuous or in other words it doesn’t belong to C [0, 1].
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