ASSIGNMENT-1

Functional Spaces

TRISHAN MONDAL

§ Problem 1

Problem. For n € N, let f,, € €([0,1];R) be given by f,(z) = 2™.

(a) (5 points) Prove that the sequence {f,} converges point-wise but not uniformly.
For n € N, let f,, € €(]0,1];R) be given by f,(z) = z™.

(b) (5 points) Let g € €([0, 1];R) with g(1) = 0. Show that the sequence {z"g(xz)} converges uniformly on [0, 1].

Proof. (a) For every point zo € [0,1] we can see that 0 < 29 < 22 < -+ < 1 which is a bounded and strictly decreasing
sequence for zg € (0,1), so for all zy the functions f,(xz) will converge to 0 and for g = 1,0, f(xo) will converge to
1 or 0 respectively. Now for contradiction let f,, converge to f uniformly. Since, uniformly converge implies point-wise

convergence
)0 ze(0,1]
o= {7 7<

which is clearly not continuous.

(b) Since g(z)z™ is 0 for = 1 it is enough to prove the uniform continuity of {#"g(z)} on the interval [0,1). For a
given € > 0 continuity of ¢ at 1 will give us a § > 0 such that, |g(x) — g(1)| < e for 1 —§ < z < 1. Now split the interval
[0,1) in two parts [0,1 —6]U (1 —4,1). Since, |g(x)]| is continuous function on [0, 1], it must have an upper bound, say M.
We will show uniform convergence of the sequence on these two parts. For a given € > 0, we can choose N such that,

g(z)z™ — 0 < [g(z)||z"|
<M1 -6
<e
For all n > N. This means {z"g(x)} converges uniformly on [0,1 — §]. Now, we will show the convergence in the interval
(1-94,1).
lg(x)z™ — 0] < |g(2)]

= lg(z) = g(1)]
<e

This gives us the uniform continuity of {g(z)z™} on the interval (1 — 4, 1).

§ Problem 2

Problem. (10 points) Prove that > °, z"(1 — x) converges point-wise but not uniformly on [0,1], whereas
Yoo (=1)"z™(1 — x) converges uniformly on [0,1]. (This illustrates that uniform convergence of ) f,,(z) along
with point-wise convergence of >_ | f(2)].)



Proof. Proving point-wise convergence of > z™(1 — x) is easy for z € [0,1) as it can be treated as product of the
geometric series > 2™ and 1 — 2. Since the geometric series converges for |x| < 1 we can say that the given series
converges for z € [0,1). For 2 = 1 we can see that the series is actually 0. So the given sum converges point-wise. Let,

sp(x) =1 —2)> ) _ ok forx #1

Sn(x (1—x) zn:xk
k=1
=1 -z)z(l+ +a")
=z(l —z")

If s, (x) converges uniformly to s(z) we can say that, s,(x) must converge to s(x) point-wise. But then,

)z x2e€l0,1)
s(m)_{o =1

which clearly is not a continuous function. For proving the next part we will use Dirichlet test for uniform converge.

Theorem (Dirichlet’s test for uniform convergence) }

Let, s, (x) denote n-th partial sum of the series > f,,(x), where f,,(z) is complex valued function defined on a set S.
Where, {s,(x)} is uniformly bounded on S. Let, g, be a sequence of real-valued function such that g,+1(z) < gn(z)
for each z in S, assume that g,(x) — 0 uniformly on S. Then > f,(2)g,(z) converges uniformly on S.

In the given series take f, = (=1)" and g, (z) = 2" (1 — z). We can see ¢, () > gn+1(x) and by Problem 1, we can see
that g,(z) — 0 uniformly. So the given series converges uniformly. O

§ Problem 3

Problem. (10 points) Let {a,} be a decreasing sequence of positive real numbers. Prove that the series
>0 | apsin(nx) converges uniformly on R if, and only if, na, — 0 as n — oo.

Proof. (=) Let, the series >~ | a, sin(nz) converges uniformly also assume that s, (z) denote the n-th partial sum of
the series. Then there exist N such that for m,n > N,

|sm () — sn(z)] <e

We can put m = 2n to get, son(z) — s, (z) which is Ziinﬂ ag sin(kx). The above inequality holds for all  now for
our convenience we will fix x € (0, 7). For that xq we will have sin kx is positive for k =n +1,---,2n and

sin(n 4+ 1)z < -+ < sin(2nxg)

The following calculation will give us the desired result,

2n
€ > Z a sin(kxo)
k=n-+1
> (py1 + -+ + agy) sin((n + 1)xo)
> nagy, sin((n + 1)xo)
2e
sin(n+1)xzo *
show that (2n 4+ 1)ag,+1 < €, here €’ depends on e. This means for every ¢ > 0 there is N € N such that na,, < ¢ for all
n > N which is lim,,_, . na, = 0.

which gives us 2nag,, < ¢’ where, ¢’ = Since the choice of m,n is in our hand by the similar calculation we can

(«=) Since na,, converges to 0 and it is a sequence of positive real numbers, for every € > 0 there is N € N such that,
na, < 5. Let us denote s, (z) be the n-th partial sum of the series. Now take n > N, we will show for any m € N,



[$n+m (z) — sn ()] < € for any = € [0, 7] (It is enough to show uniform convergence in this interval). We will subdivide
the interval [0, 7] into two parts [0, 6] U [d, 7], where ¢ is small. For the interval [0, ],

n+m

|$ntm(x) — sp(z)] = Z a, sin(kx)
k=n+1

n+m

< Z kagx

k=n-+1

13
< md—
mosg

We can choose § such that md < 1 (in this case wee will choose § = min) Now we will show the convergence in the

interval [§, 7]. Let, A, (x) = > ;_, sin(nz), by the Abel’s summation formula,

n+m

|5n+m(='17) - 5n(£)| = Z (aK - ak—l)Ak(I) —ani1An + an+mAn++m+1(m)
k=n-+1
n+m
< Z (ak — ar—1)Ax(2)| + ant1|An(@)] + Gngm| Angmir ()]
k=n-+1
‘Z:i;n.g.l(ak - ak—l)‘
< .z + Nan+1 + (n +m+ 1)a7n+n
|Sln 5}
< 2a.p, €
|sin %‘ 3
< Z—Wan +25
x 3
< 2m n 25
“a, 22
5 3
N
-3 3
By Cauchy Theorem we can conclude the series converges uniformly on [0, 7. O
§ Problem 4
Problem. (10 points) Prove that the series ((s) = >, -& converges uniformly on the interval [1 + ¢, 00) for every
e > 0. Show that the equation ('(s) = = 7, l(fsn is valid for each s > 1 and obtain a similar formula for the

k-th derivative ¢(®)(s).

Proof. We will use Weierstrass-M test, which is sated below to solve this problem.

,_[ Theorem (Weierstrass-M test) ]

Let {f,} be a sequence of real or complex valued functions such that,

0 < |fn()] < My

for all x. Then, if >~ M, converges, > fn(r) converges uniformly.

Notice that % < # holds for any s in the given interval. Now we will show that > # converges. For that we
will use Cauchy condensation test.



Theorem (Cauchy condensation test) }

. o0 . . o0
The series ), a,, converges if and only if 3> | 2"asn converges.

In this case we have,

o0

271
2 gatrra

This is a geometric series which converges. So, the given series of functions converges uniformly. Since the series converges
uniformly we can interchange sum and derivatives in other words,

d¢(s)
(o) —
C (8) - ds
d (1
] i a1
B — ds \ n*
__ Z O n
n=1
We will prove the above series is uniformly convergent so that we can define ((?). Here, ‘—lcfsn < nlflgﬁ). It is enough

to Show >~ 7, nlflgﬁ) equivalently > | % converges (Cauchy condensation test). We can use Cauchy condensation test
on the series ) 57z to ensure this is a convergent series. Which means ¢’(s) is uniformly convergent. Thus we can again
commute sum and differentiation. Inductively we will have,

C(k)(s) _ i(_l)k (logn)*
n=1 ne

§ Problem 5

Problem. (10 points) Assume that {f,} is a sequence of monotonically increasing functions on R such that 0 <
fu(x) <1for all z € R and n € N. Prove that there is a function f and a subsequence {ny} such that

flz) = lim fo, (z)

Proof. The following lemma will help us to prove the statement for z € Q. Then we will try to extend this result for R.

§ Lemma: Let, f, be sequence of point-wise bounded complex valued function on a countable set S, then f, has
subsequence {fn, } and there exist a function such that for every x € S,

lim fy, (z) = f(2)

k—o0

Proof. Let, s; be the points in S where, ¢ € N. Since {f,(s;)} is bounded there exist a subsequence. Which we will
denote by {fir}. Now consider the following array of sequences,



S f1,1 f1,2 f1,3
So i for fa2 fo3
Ss:if3n1 fa2 fas

Now we will choose the elements along the diagonal, we will have the following sequence,

S : f1,1 f2,2 f33

We can notice that S,, is subsequence of S,,_1, thus the sequence S is subsequence of S,, except for first (n — 1) terms
hence f,, »(s;) converges as n — oo for every s; € S. [ ]

{fn} has a subsequence {f,,} which converges to f on the set of rationals Q i.e. for any rational r,

lim fr, (r) = f(r)

Now we will extend this function to R by the following definition,

f(w) = sup f(r)
Let, f is continuous at z € R, for every ¢ > 0 there is § such that |f(z) — f(y)| < € for |z —y| < 6. We will get two
rationals 71,72 in the neighborhood such that, r < z < ry. Now by convergence of f,, (r) — f(r) gives us, a N; € N
such that, |f(r;) — fn,.(ri)| < € for all ny, > N;. We also have, f,, (r1) < fo, () < fo,(r2) (because fi are increasing),
from the continuity of f we also have |f(x) — f(r;)] <e,

fnk(’rl) < fnk(x) < fnk (TQ)
= f(r1) —e < fa, (1) < fo () < fo (r2) < flr2) +¢
= f(r)—2e < f(r1) —e < fu, () < flre) +e < f(z) +2¢

Which gives us |f,, (x) — f(z)| < € for ny > max N,. So, fn, — f at those point where f is continuous.

Let, 71 < r9 be two rational number we know f,, (11) < fn, (r2), by taking the limit ni — oo we have, f(r1) < f(r2),
for any x1 < x9 we have

f(x1) = sup f(r1) < sup f(r2) = f(x2)

r1<z1 ro<z2

So, f is increasing function and it is bounded. Then the set of points D where f is discontinuous is countable. Now by
the Lemma there is a subsequence {f,,, } of {fm,} such that f,,, (d) = g(d) for all d € R and g(x) = f(x) whenever f is
continuous. 0

§ Problem 6

[ Problem. (10 points) Prove that the unit ball of (€[0,1], || - ||cc) is not compact.

Proof. For a metric space compactness is equivalent to Bolzano- Weierstrass property. In other words every sequence has
a convergent sub-sequence. Now consider the sequence {f,(z) = 2"} C €[0,1]. We can easily verify that f,, lie in the
unit ball of the given metric space. Any subsequence of f,, will look like z"*. If this sub-sequence converges to f then for
all zg € [0,1], fn, (zo) converges to f(zo) (point-wise convergence). But then,

_JOo =ze(0,1)
f_{l r=1

Which is not continuous or in other words it doesn’t belong to €0, 1]. O
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