Assignment-3

Differential Geometry

TRISHAN MONDAL

§ Problem 1

Problem. Let M, N be smooth manifolds and $f: M \to N$ is a smooth map. Let, $\Gamma(f) \subseteq M \times N$ be the graph of f, i.e. $\Gamma(f) = \{(x, f(x)) : x \in M\}$. Is $\Gamma(f)$ a sub-manifold of $M \times N$? Explain.

Solution. Let M, N has maximal atlas $\{(U_{\alpha}, \varphi_{\alpha})\}$ and $\{(V_{\beta}, \psi_{\beta})\}$ respectively. Let, $p \in M$ and $f(p) \in N$, has charts $(U_{\alpha}, \psi_{\alpha})$ and $(V_{\beta}, \varphi_{\beta})$ around them. Let's take $\tilde{U}_{\alpha} := U_{\alpha} \cap f^{-1}(V_{\beta})$. We can see f maps \tilde{U}_{α} into V_{β} . Let us consider the product chart $(\tilde{U}_{\alpha} \times V_{\beta}, \varphi'_{\alpha} \times \psi_{\beta})$, where φ'_{α} is the restriction of φ_{α} onto the subset \tilde{U}_{α} . Let us consider the pair of $M \times N$, $(\tilde{U}_{\alpha} \times V_{\beta}, \psi_{f}^{\alpha\beta})$ with

$$\psi_f^{\alpha\beta}(x,y) = (\varphi_\alpha'(x), \psi_\beta(y) - \psi_\beta(f(x)))$$

we will show such pairs are compatible. Let, $(\tilde{U}_{\alpha} \times V_{\beta}, \psi_{f}^{\alpha\beta})$ and $(\tilde{U}_{\gamma} \times V_{\eta}, \psi_{f}^{\gamma\eta})$ are two pairs of $M \times N$. The transition maps $\psi_{f}^{\alpha\beta} \circ (\psi_{f}^{\gamma\eta})^{-1}$ and $\psi_{f}^{\gamma\eta} \circ (\psi_{f}^{\alpha\beta})^{-1}$ are smooth follows from the smoothness of $\varphi_{\alpha}, \psi_{\beta}, f$. So the pairs are compatible.

If we restrict the pair $(\tilde{U}_{\alpha} \times V_{\beta}, \psi_f^{\alpha\beta})$ to $\Gamma(f)$, we must have,

$$\psi_f^{\alpha\beta}(x, f(x)) = (\varphi_\alpha'(x), 0)$$

For every $p \in M$ we can find a chart $((\tilde{U}_{\alpha} \times V_{\beta}) \cap \Gamma(f), \psi_{f}^{\alpha\beta})$ around $(p, f(p)) \in \Gamma(f)$ such that, $\psi_{f}^{\alpha\beta}$ on $(\tilde{U}_{\alpha} \times V_{\beta}) \cap \Gamma(f)$ is $(\varphi'_{\alpha}(x), 0)$ (i.e. dim N corodinates in the chart are 0), which is a diffeomorphism from \tilde{U}_{α} to an open subset of \mathbb{R}^{m} (as φ'_{α} is a diffeomorphism). Thus the pair $((\tilde{U}_{\alpha} \times V_{\beta}) \cap \Gamma(f), \psi_{f}^{\alpha\beta})$ acts as charts of $\Gamma(f)$. Thus, we have given $\Gamma(f)$ a smooth manifold structure.

Let, $i : \Gamma(f) \to M \times N$ be the natural inclusion, $(x, f(x)) \mapsto (x, f(x))$. Thus inclusion is smooth and it is immersion as Di(p) is full rank. *i* is injective and immersion. By definition of **sub-manifold** we can say $\Gamma(f)$ is sub-manifold of $M \times N$.

§ Problem 2

Problem. M, N are two smooth manifold of dimensions, dim M = m, dim N = n. Let $f : M \to N$ is a smooth map such that for every $p \in M$, there exist an open neighbourhood $U \subseteq M$ and a chart (V, y) around f(p) in N such that,

$$x_i := y_i \circ f|_U$$

are co-ordinate functions, (U, x) is a chart around p. Prove that f is immersion.

Solution. We know T_pM , tangent space at p is set of all pointed derivations at p. We also know if $\{x_i := u_i \circ x\}$ is the set of co-ordinate functions for the chart (U, x) (which contains p),

$$\left\{ \left. \frac{\partial}{\partial x_1} \right|_p, \cdots, \left. \frac{\partial}{\partial x_m} \right|_p \right\}$$

Where, $\frac{\partial}{\partial x_i}\Big|_p (f) := \frac{\partial}{\partial u_i} (f \circ x^{-1})(p)$. The above set forms a basis for the \mathbb{R} -vector space $T_p M$. We also know, $Df(p) : T_p M \to T_{f(p)} N$ is a linear transformation b/w two \mathbb{R} vector spaces. We also know,

$$Df(p)\left(\left.\frac{\partial}{\partial x_i}\right|_p\right) = \sum_{k=1}^n a_{ki} \left.\frac{\partial}{\partial y_k}\right|_{f(p)}$$

where y_k are co-ordinates around f(p) for some open nbd in N and $a_{ki} = \frac{\partial}{\partial x_i}\Big|_p (y_k \circ f)$. Thus we can treat Df(p) as a matrix with entries a_{ij} . We need to check the rank of this matrix in order to conclude DF(p) is an injective linear transformation. For the given scenario, $x_i = y_i \circ f\Big|_U = (y_i \circ f \circ x^{-1}) \circ x$, where x is the diffeomorphism corresponding to the chart (U, x) (as given in question). Let, $u_i = y_i \circ f \circ x^{-1}$, we must have

$$a_{ki} = \frac{\partial}{\partial x_i} \Big|_p (y_k \circ f)$$
$$= \frac{\partial}{\partial u_i} (y_k \circ f \circ x^{-1})(p)$$
$$= \frac{\partial u_k}{\partial u_i}$$
$$= \delta_{ki} \text{ (it was proved in class)}$$

As a vector space over \mathbb{R} , $T_p M$ and $T_{f(p)} N$ have dimensions m and n respectively. So, Df(p) can be represented as an $n \times m$ matrix. From the above calculation we can conclude,

$$DF(p) \equiv (I_{m \times m} | \cdots)^T$$

the later matrix is in row-echelon form which has full rank m. So, rank Df(p) = m. So the vector space morphism Df(p) is injective, we can prove this for any $p \in M$, thus f is an immersion.