
Assignment-5
Design and Analysis of Algorithms

Trishan Mondal

—————————————

▲! Disclaimer. Consider the following set of students

P =
{
Trishan, Eeshan Pandey, Soumya Dasgupta, Priyatosh Jana

}
Discussion of solutions to the assignment problems are limited to the people of set P only. Most of the problems
in this assignment has general solution. If any other person have same solution as mine is not my fault.

§ Problem 20

Problem. (Greedy Scheduling) There are n tasks, T1, T2, · · · , Tn. We are given n pairs

(d1, p1), (d2, p2), ..., (dn, pn)

where di ∈ {1, 2, ..., n} refers to the deadline of the i-th task Ti, and pi is the penalty if Ti is not performed
by the deadline. Each task needs one unit-length timeslot. We wish to assign to each task a different
timeslot si in the range {1, 2, ..., n}. A task i is delayed under this assignment if di < si. The cost of the
assignment is ∑

j:Tj is delayed

pj

Show that the following greedy strategy produces an optimal solution:

Consider the tasks in the monotonically decreasing order of their penalties (tasks with higher penalty
earlier). When considering task Ti, determine if some timeslot that helps it meet the deadline di
is still available. If there is such a slot, set si to be the last slot that still allows it to meet the
deadline. Otherwise, schedule Ti in the last available slot.

State your argument by carefully establishing that at each stage, there is an optimal solution that extends
the current partial assignment of tasks to slots. Describe how you will implement this strategy as an
algorithm and analyze the worst-case time complexity of your algorithm.

——
Solution. WLOG, p1 ≥ p2 ≥ · · · pn. We want to assing an array of time slots s1, · · · , sn to the tasks, T1, · · · , Tn

so that,
n∑

j=1

pj1[dj < sj]

get minimized. We will prove the correctness of the greedy algorithm by induction. Here the induction hy-
pothesis is: The greedy strategy gives us an optimal assignment that agrees upto i-th step. For the base case
i = 1 there is nothing to prove. Let {sk} for k ∈ {1, · · · , n} be the optimal solution that agrees upto i-th step.
We will show the greedy strategy will give us an optimal assignment {s′k} for k ∈ {1, · · · , n} that agrees upto
(i+ 1)-th step. To prove this we have to deal with different cases:

1

1. The greedy solution fails to schedule Ti+1 before its deadline di+1 : In this case we must have
used all the slots from 1 to di+1 while scheduling T1, · · · , Ti. The solution {sk} fails to assign Ti+1 before
di+1 so in this case just take {sk} = {s′k} which will give us optimal solution that agrees upto (i+ 1)-th
step.

2. The greedy solution schedules Ti+1 before its deadline di+1:

– Assume that the greedy algorithm assigns Ti+1 to slots s < di+1. The assignment {sk} has no choice
but to schedule Ti+1 within the slots from 1 to s. If {sk} indeed schedules Ti+1 in slot s, we can
simply set {sk} = {s′k}. However, if that’s not the case, it implies that {sk} schedules some other
task Tj in slots for some j > i+ 1, given that {sk} aligns with the greedy solution up to stage i. In
this scenario, by exchanging the slots assigned to Tj and Ti+1, we observe that the resulting solution
remains optimal. The cost can only decrease as Ti+1 is scheduled in earlier slots than Tj , while the
scheduling of the remaining tasks Ti remains unchanged. This process allows us to construct a valid
assignment {s′k}, thereby establishing the validity of induction hypothesis at (i+ 1)-th step.

– If the greedy algorithm schedules Tk in slots s < dk, it implies that in this scenario, {sk} allocates
some slot to a task Tj with j > i+ 1 as {sk} follows the greedy solution up to stage i. However, we
can exchange the slots assigned to Tj and Ti+1. Here, Ti+1 is assigned before di+1 but Tj can exceed
deadline. By the assumption pj ≤ pi+1, so the solution {s′k} is optimal too. Thus this gives us an
assignment which is optimal upto (i+ 1)-th position.

Thus the proof of correctness is complete.

Algorithms and Time complexity

� Input: Array of (di, pi), where di is the deadline of task Ti and pi is the penalty if the work hasn’t done
within di.

� Output: An assignment of tasks to slots si such that
∑n

j=1 pj1[dj < sj] is minimized.

- Sort Tasks in decreasing order of penalties i.e. p1 ≥ p2 ≥ . . . ≥ pn.

- Initialize an array s to represent time slots with all values set to NULL.

- For i = 1 to n:

– If: di (corresponding to pi in the sorted array) is available in the time slot si, then assign Ti to
the time slot si.

– Else: Assign task Ti to the last available time slot sj where j is the largest such that sj = NULL.

Mark time slot si as unavailable.

- Return: The assignment of tasks to time slots.

Time complexity. The above algorithm takes O(n log n) time to sort the array P = [pi] and the subsequent
for loop takes O(n2) time (as each iteration takes O(n) time to find the maximum j such that sj = NUll). So
the time complexity is O(n2).

2

§ Problem 21

Part(I): The given algorithm produce the following codewords for the sequence (ℓ1, · · · , ℓ8) = (3, 4, 3, 4, 2, 3, 4, 3):

1 :S = {Λ}
2 :S = {1, 01, 001} w1 = 000

3 :S = {1, 01, 0011} w2 = 0010

4 :S = {1, 0011, 011} w3 = 010

5 :S = {1, 01, 0011} w4 = 0011

6 :S = {011, 11} w5 = 10

7 :S = {11} w6 = 011

8 :S = {111, 1101} w7 = 1100

9 :S = {1101} w8 = 111

Part(II): Let, Si be the set S at the i-th iteration step. And let there are total n number of iteration (i.e. there
are given n positive integer ℓ1, · · · , ℓn). Considering the algorithm never stuck we will prove the algorithm is
correct. In the next part we will show the algorithm never stuck (maybe we can use the hint given in the
question). Before proving the correctness we want to prove the Claim: After each iteration Si is prefix free and
Si contains no prefix of {w1, · · · , wn} (here i runs through 1 to n).

Proof of claim: We will prove this by induction on i. The base case is S0 = {Λ}, in this case the
statement is trivially true. Let Sk is prefix free which is the induction hypothesis.

If |w| = ℓ = ℓk: In this situation, we have {w1, · · · , wk} = {w1, · · · , wk−1} ∪ {w} and Sk = Sk−1 \ {w}. If
Sk were to contain a prefix of {w1, · · · , wk}, that prefix would need to be part of w, which would violate
the prefix-free property of Sk−1, leading to a contradiction. It is evident that Sk = Sk−1 \w maintains the
prefix-free property because it is a subset of Sk−1, which is guaranteed to be prefix-free by the induction
hypothesis.

If |w| = ℓ < ℓk: In this scenario, we have {w1, · · · , wk} = {w1, · · · , wk−1} ∪ {w} and Sk = (Sk−1 \ {w})∪
{w1, w01, . . . , w0 . . . w 000000..0︸ ︷︷ ︸

ℓi−ℓ−1

1}. If Sk were to contain a prefix of an element x in {w1, · · · , wk}, that

prefix could not belong to Sk−1 \{w} because if it did, and x = w, Sk−1 would lose its prefix-free property.
Additionally, if x ∈ {w1, · · · , wk−1}, such a scenario would contradict the induction hypothesis. The prefix
cannot belong to {w1, w01, . . . , w0 . . . 0︸ ︷︷ ︸

ℓk−ℓ−1

1} because, in that case, it implies that x = w. Consequently,

w 0 . . . 0︸ ︷︷ ︸
p

1 would be a prefix of an element in {w1, · · · , wk−1} for some 0 ≤ p ≤ ℓk − ℓ − 1. However, this

would also mean that w is a prefix of that element, leading to a contradiction with Sk−1 containing a prefix
of {w1, · · · , wk−1}, which contradicts the induction hypothesis. Thus, Sk must not include any prefixes
of {w1, · · · , wk}. Additionally, Sk must be prefix-free. To understand this, consider that Sk−1 \ {w} is
prefix-free, being a subset of Sk−1 which is prefix-free according to the induction hypothesis. It is also
evident that {w1, w01, . . . , w 0 . . . 0︸ ︷︷ ︸

ℓk−ℓ−1

1} is prefix-free. Furthermore, no element x from Sk−1 \ {w} can be a

prefix of {w1, w01, . . . , w 0 . . . 0︸ ︷︷ ︸
ℓk−ℓ−1

1}. If it were, and assuming len(x) < len(w), then x would be a prefix of

w. Alternatively, if len(x) ≥ len(w), then w would be a prefix of x. In either scenario, Sk−1 would lose
its prefix-free property.

Lastly, no element within {w1, w01, . . . , w0 . . . 0ℓk−ℓ−11} would be a prefix of an element in Sk−1 \ {w}
because that would imply w is a prefix of the same element in Sk−1, which leads to a contradiction.

Thus be induction we have proved that {w1, · · · , wn} are prefix free coding of length ℓ1 · · · , ℓn respectively.
Now we will prove the algorithm never stuck i.e ℓ ≤ ℓi before each iteration step i. To prove this we will prove

3

the following lemma (in the proof of lemma w and ℓ are the maximum length string in Si and their length
respectively):

Claim (a): All the strings in Si have distinct length.

We will again proceed by induction. This statement holds for i = 0 since S0 contains only the empty word.
Let’s assume that it holds for some i ≥ 0. At the next step, we can have two scenarios. Either Si+1 is
formed by excluding w from Si, or it is formed by excluding w and adding words like {w1, . . . , w0 . . . 01},
where the last word added in the second case contains ℓi+1 − ℓ− 1 trailing zeros. In the first case, Si+1 is
a subset of Si, which means it consists of words with distinct lengths. In the second case, we encounter
two words of the same length in Si+1 if there exists a word x in Si (after removing w) such that |x| = ℓ+s
for some 1 ≤ s ≤ ℓi+1 − ℓ. In other words, ℓ + 1 ≤ |x| ≤ ℓi+1. This contradicts our assumption that ℓ is
the maximum length below ℓi+1 among the words in Si. Therefore, Si+1 consists of words with distinct
lengths. By induction, this holds for all i.

Claim (b): For all i the following inequality holds:∑
j>i

2−ℓj ≤
∑
w′∈Si

2−|w′|

We will again use induction to prove this (⌣̈). For S = {Λ} it is true as
∑

2−ℓi ≤ 1 according to
the condition given in the question. Assume it holds for some i ≥ 0. If Si+1 = Si \ w, the inequality
holds for i + 1 as the same term is subtracted from both sides. Now assume ℓ < ℓi+1 so that Si+1 =
(Si \ w′

i) ∪ w1, . . . , w0 . . . 01. For the first case we have,∑
j>i

2−ℓj ≤
∑
w′∈Si

2−|w′| =⇒
∑

j>i+1

2−ℓj ≤
∑

w′∈Si\w

2−|w′| +
(
2−ℓ − 2−ℓi+1

)
The later term is zeronegative as ℓ = ℓi+1. Thus, the inequality holds. For the second case where
Si+1 = (Si \ w) ∪ {w1, · · · , w000..1} note that,

∑
w′∈Si+1

2−|w′| =

ℓi+1−ℓ∑
s=1

2−(ℓ+s) +
∑

w′∈Si\w

2−|w′| = 2−ℓ − 2−ℓi+1 +
∑

w′∈Si\w

2−|w′| >
∑

j>i+1

2−ℓj

By induction we are done.

From the inequality in claim(b), we observe that
∑

w∈Si
2−w ≥

∑
j>i 2

−ℓi . Due to (a), the words in Si all
possess distinct lengths. As a result, the sum on the left can be interpreted as a binary expansion. Hence, there
exists x ∈ Si such that |x| ≤ ℓi+1 since the inequality cannot hold otherwise. Consequently, S contains w′

i for
all 0 ≤ i < n, ensuring that the algorithm never encounters an impasse. ■

§ Problem 22

Problem. Suppose the edges of a graph on a vertex set {1, 2, . . . , n} are stored on a tape in the form
e1, e2, . . . , em. Design an algorithm that uses O(n) space (assuming that vertices and pointers can be
stored in one cell of memory) and, after performing one scan of the tape, determines if the graph is
bipartite. (Hint: you might want to use a union-find data structure to keep track of the color classes of
the graph as it is being built edge by edge.)

Solution. For simplicity we will work with connected graph. To determine if the graph is bipartite as the
edges are being scanned, we can utilize a union-find data structure with O(n) space. We will maintain two
color classes, say ‘red’ and ‘blue’, to represent the bipartition.

4

Input: G = (V,E).

output: If the graph G is bi-partite.

- Step 1: For each edge ei ∈ E:

we will check if the two vertices it connects are in the same color class. If they are, then adding ei would
create an odd-length cycle, making the graph non-bipartite. In such a case, we can conclude that the
graph is not bipartite. And return FALSE.

- Step 2: If the two vertices of ei are in different color classes, we can safely assign one of them to the ’red’
class and the other to the ’blue’ class. This ensures that no odd-length cycle is formed.

- Finally: By the end of the For loop, if we have not encountered any conflicts (i.e., vertices that should be
in the same color class but are not), the graph is bipartite. Then we would return TRUE.

correctness and time complexity. The way we described the algorithm, the correctness immediately
follows. We can also see the algorithm terminates after checking all the edges. The for loop runs m-times and
inside the loop every work can be done in constant time. So the time complexity is O(m). We can implement
the above algorithm in psudo-code:

1 function bipartite(G):

2 # Input : G = (V,E)
3 # Output : TRUE or FALSE according the graph is bipartite or not

4 for v ∈ V :

5 makeset(v)
6 color[v] = Nil

7 for {u, v} ∈ E:

8 if Find(u) = Find(v):
9 Return FALSE

10 else:

11 if color(u) = Nil:

12 color[u]=v
13 else:

14 Union(color(u),v)
15 if color(v) = Nil:

16 color[v]=u
17 else:

18 Union(color(v),u)
19 return TRUE

§ Problem 23

Solution. We will use dynamic programming method to find the optimal binary search tree as following:

Consider an array W = {w1, w2, . . . , wn} of words in sorted order, along with an array P = {p1, · · · , pn}
representing their corresponding frequencies. We will maintain two arrays: T , storing binary search trees,
and C, storing their associated costs. For i ≤ j, T [i, j] represents the binary search tree with the minimum
cost that contains words from wi to wj , or is an empty tree if i > j (in such cases, we will not populate
entries where j < i). Initially, we set T [i, i] to singleton trees, each consisting solely of the word wi. The
corresponding tree costs are given by the respective frequencies pi.

We will compute the remaining T [i, j] values diagonally. Starting with T [1, 1], . . . , T [n, n], we continue
with the super diagonal T [1, 2], . . . , T [n− 1, n], and so on. To compute T [i, j], we select a word wk from
the range wi to wj , where k varies from i to j. We calculate the cost of the tree with wk as the root
vertex, with its left subtree containing words from wi, .., wk−1, and the right subtree containing words
from wk+1, · · · , wj . The tree with the minimum cost is assigned as T [i, j], and its cost is stored in C[i, j].

We will write the above algorithm as a psudo-code as following, where we will give input W = [w1, · · · , wn] in
sorted order with their frequencies P = [p1, · · · , pn] and out put will be an optimal binary search tree

5

1

2 function obst(W,P)

3

4 # Initialize T and C arrays

5 T [i, j] = Null for 1 ≤ i ≤ j ≤ n #Initialize such an array

6 A[i, j] = 0 for 1 ≤ i ≤ j ≤ n #Initialize such an array

7

8 # Initialize singleton trees and their costs

9 for i in 1 to n:

10 T [i, i] = wi # This will store root for the sub problem {wi · · · , wj}
11 for i in 1 to n:

12 C[i, i] = pi # This will store cost for the sub problem {wi · · · , wj}
13

14 # Loop to compute T and C values

15 for i in 1 to n-1:

16 for j in 1 to n-i:

17 sum_r = sum(P[i:j])

18 min_cost = ∞
19 min_root = Null

20

21 for k in i to i+ j:
22 if(sum_r+C[j, k − 1] + C[k + 1, d]<min_cost):
23 min_cost = C[j,k-1]+C[k+1,d]

24 min_root = k

25 T [j, j + i] = tree (leftt=T[j,min_root -1],root=min_r ,rightt=T[min_root+1,i]) #tree(

left ,root ,right) forms a tree with root , with ‘left ’, ‘right ’ subtree.

26 C[j, j + i]=min_c+sum_r
27

28 return T [1, n], C[1, n]

Correctness and Time complexity: The correctness of the algorithm is evident through its recursive
nature and the inherent property that the minimal binary search tree must have one of its elements as its root.
Furthermore, the final tree generated is guaranteed to be a binary search tree due to the fact that the array
W is sorted. Each iteration of the outermost ’for’ loop runs at most ’n’ times, and there are three nested ’for’
loops. All other operations inside the loops have a time complexity of O(1). Therefore, the algorithm exhibits
a time complexity of O(n3), making it an efficient solution.

§ Problem 24

Problem. You are tasked with preparing a five-volume collection of articles on algorithms. The available
articles are of varying lengths and are denoted as ℓ1, ℓ2, ℓ3, . . . , ℓn, where ℓ1 corresponds to the first article
published on the subject, ℓ2 corresponds to the next article, and ℓn corresponds to the most recent article.
The following constraints must be satisfied:

� No volume is allowed to have more than 300 pages.

� Every selected article must start on a fresh page and must appear completely in one volume.

� All articles in volume i+ 1 must have been published after all the articles in volume i.

Describe a dynamic programming-based method to determine a plan for publishing the maximum number
of articles in the five-volume collection while adhering to the above constraints. The output should indicate
which articles go into each volume. Provide an estimate of the time complexity of your algorithm.

Solution. Let’s define A[p,m] be the maximum number of article from {1, · · · ,m} that can be accommodated
in pages 1, · · · , p while respecting the conditions, A[p,m] = 0 whenever p ≤ 0 or m ≤ 0. For p,m ≥ 1 we can
compute A[p,m] by considering three cases

� We don’t include article m

6

� We include article m and it’s last page falls on p. In this case the page p − ℓ − 1 and p must be in the
same volume.

� We include article m but it falls before the page p

Combining these cases we can write,

A[p,m] = max

A[p,m− 1]

A[p− ℓm,m− 1] + 1 if ⌈p−ℓm
300 ⌉ = ⌈p−1

300 ⌉
A[p− 1,m]

The second term arises from the second case mentioned above and the fact that every volume can have at-most
300 pages. We can compute A[p,m] by Initializeing two for loops:

for m = 1, · · · , n: A[0,m] = 0

for p = 1, · · · , 1500: A[p, 0] = 0

� Then compute A[p,m] for other entries using the above recurrence

for m = 1, · · · , n:
for p = 1, · · · , 1500:
compute A[p,m] using the recurrence.

� Then return A[1500, n].

- The above will give us A[n, 1500] and adding those articles to volumes one by one as follows: Suppose
some new article is encountered, of length ℓ. Let x be the sum modulo 300 of the lengths of all the articles
encountered before this. We add the article encountered to the current volume if x + ℓ < 300 and to a
new volume otherwise.

correctness and time complexity. The correctness follows from the description of the algorithm and it
must terminate due to the recursive nature. While computing A[1500, n] we have two loops and inside the loop,
the works can be done in constant time. Thus, the time complexity for this case is O(1500n). And the space
complexity is also O(1500n). ■

7

	Problem 20
	Problem 21
	Problem 22
	Problem 23
	Problem 24

