ASSIGNMENT-6

Design and Analysis of Algorithms

TRISHAN MONDAL

A\ Disclaimer. Consider the following set of students

P = {Trishan, Aaratrick basu}

Discussion of solutions to the assignment problems are limited to the people of set P only. Most of the problems
in this assignment has general solution. If any other person have same solution as mine is not my fault.

(a)

§ Problem 25

We can assume r > 0 as the graph has a perfect matching vacuously if » = 0. Now, as |U|r = |V|r
by counting edges going out of U and V', we get |[U| = |V|. Then, U is a vertex cover as every edge of
the graph must have an endpoint at some vertex of U. This is a minimum vertex cover for G because
if every edge avoids some vertex of U, then the degree of that vertex is 0, a contradiction. Hence, the
minimum vertex cover is of size |U| and by the Konig-Egervaty theorem, this must also be the size of a
maximum matching. Therefore, there is a perfect matching in G. We remove all the edges occurring in
this matching to get a (r — 1)—regular graph. If » > 1, we can repeat the above arguments to get a new
perfect matching. Hence, we get £ = F1 U ---U E,, where each E; is the edge set of a perfect matching
and no two E; are the same.

Consider the bipartite graph on U UV, where both U and V have n vertices, representing buses. An
edge (u,v)s exists for each student s on bus u in the Principal’s plan and on bus v in the Vice Principal’s
plan, resulting in a 20—regular bipartite graph. According to (a), this graph possesses a perfect matching.
Therefore, as each edge represents a student, we have a set of n students who can serve as bus monitors
under both plans.

Let n = % Consider the bipartite graph on L U K, where an edge (uK, Kv)4 is present in the graph for

each group element g that is present in both the left coset uK and the right coset Kv. Hence, we get a
| K|—regular bipartite graph, because every coset has | K| many elements. By (a), this graph has a perfect
matching, and thus, as each edge arises because of some group element, we get a set of n elements who
can serve as common coset representatives. |

§ Problem 26

For this and the next problem, let n = |V| and m = |E|, where V is the vertex set of G and E is the
edge set of G. For this problem, we can assume without loss of generality that f is not the max flow, i.e
A > 0, as there are always flows of value 0 and all s — ¢ paths in the residual graph of a max-flow must
have bottleneck capacity 0. We first note that the capacities of the residual graph G are:

of (u,v) = c(u,v) = f(u,v), if (u,v) € E, f(u,v) < ¢(u,v)
, f(v, ), if (v,u) € E, f(v,u) >0



N

20

Hence, the following map

g (u,v) = {f*(u’v) — flwv), if(u,v) € B, f(u,v) < e(u, )
’ 0 if(v,u) € E, f(v,u) > 0

satisfies the feasibility condition for flows, because f*(u,v) < ¢(u,v) and 0 < f(u,v). Further, for all
ue V\{s,t},

Yo gaw= ) (fleu)-fau)= Y (fuy-Ffluy)= Y gy

(z,u)EE(GY) (zu)EE (wy)E€E (u,y)EE(GT)

where the first and third equalities follow from the definition of ¢* and the second equality follows from
the conservation law of flows f and f*. Hence, g* is a flow on G7 and it has value

S sy = Y (F(s2) — f(s,2) = A

(s,x)EE(GY) (s,x)EE

as was required.

Let Go = Gf and G; = (Gf)9" represent the residual graph concerning g*. We observe that in G/, at least
one edge of non-zero capacity must be saturated by g*. This is because there exists at least one edge in
G where f(u,v) < f*(u,v) = c(u,v), and g* must saturate the corresponding edge in G;. Consequently,
(1 has one fewer edge of non-zero capacity compared to Gg. Therefore, we can iterate this process up to
m times until the new flow g}, on G,, becomes zero. However, this scenario contradicts the case where
all s —t paths in G1 have bottleneck capacities strictly less than %. Hence, at least one s — ¢ path in Gf
has a bottleneck capacity of at least %. |

§ Problem 27

Let the bottleneck capacity of a vertex be the maximum capacity. We use the following modification to Dijkstra’s
algorithm (from the midsem exam) to find a path with maximum bottleneck capacity. Let, for v € V, v.bcap
denote the capacity of a maximum s — v bottleneck path.

Input: G, with source s and sink ¢, stored using adjacency lists, with attributes for

storing capacities of edges and bottleneck capacities of vertices.

Output: The output is an s—t path of maximum bottleneck capacity.

for veV:

S

v.prev = None, v.bcap = 0
.bcap = o0

H = makeheap(V)
While H #0:

u = deletemax(H)

for (v,cap) € u.out_nbrs: #cap is the capacity of(u,v)

if wv.bcap < min(u.bcap,cap):
v.bcap = max(u.bcap, cap)
V.prev =1u
bubble_up(H,v)

P =]] #Stores the vertices in thes—{¢ maximum bottleneck path in order
v=t
while v # None

P = P.append(v)

v = v.prev

return P

The correctness of the algorithm follows from the definition of bottleneck capacity and the correctness of
Dijkstra’s algorithm. The time complexity of this algorithm is O((m+n)logn), the same as Dijkstra’s algorithm,
as the last loop runs at most n times and the rest of the algorithm has the same complexity as Dijkstra’s



algorithm. We rely on the outcome established in problem 26, where any flow f that isn’t the maximum flow f*

is guaranteed to possess an augmenting path with a bottleneck capacity of at least %, where A = val(f*)—val(f).
Let f; represent the flow obtained after the j' iteration, fy denote the zero flow, A; = val(f*) — val(f;), and
a;j stand for the maximum bottleneck capacity in the residual graph G1i. Consequently,

val(fj1) = val(f;) + o = val(f;) + % — Aji1 <A (1 - ;)

By induction, A; < Ao(l — %)] = val(f*)(l — %)] Given that capacities are integers, the number of augmen-
tations needed is Ny, where Ny is the least integer satisfying

val(f*)<1 - 1>No <1

m

For N = [mInval(f*)], we have

N > mlnval(f*) = 0> Inval(f*) — N > lnval(f*) + N1n <1 - 1> =In <va|(f*) <1 - 1>N>

m m

Here, the strict inequality arises from the fact that for m € Z>1,

1 1 1
e*%>1—— — —>ln<1—>
m m m

Therefore, Ny < [mInval(f*)], as required. |

§ Problem 28
(a) A max flow is given by:

f(S’A) =0, f(S7B) =9, f(A,C): 4,
f(BvC) =2, f(B’D) =3, f(C’T):G

The value of this flow is val(f) =6 +5 = 11.
A min cut is given by ({S, A, B},{C, D,T}), with capacity 4 +2+2+ 3 = 11.

(b) The residual graph G is:

The labels of the edges are the edge capacities. The vertics A, B are reachable from S, and T is reachable
from the vertex C.



()

(d)

The bottleneck edges are AC and BC'. Clearly increasing the capacity of any of these edges will result in
an increased max flow because the edges (S, A) and (S, B) are not saturated. No other edge is a bottleneck
edge because every other edge is adjacent to a saturated one.

Consider the network:

==

where the edge labels are the capacities. Clearly, a max flow is the flow saturating both edges. It is clear
that there are no bottleneck edges, because both edges are saturated and an increase in the capacity of
one will not affect the max flow.

Consider the algorithm outlined as follows:

1. Employ the standard algorithm on the network to obtain a maximum flow, and retain the final
residual graph, storing solely those edges with non-zero capacity.

2. Perform Depth-First Search (DFS) initiated at S and compile all reachable vertices from S into an
array Lj.

3. Execute DFS on the reversed graph, commencing from 7', and capture all vertices from which T is
reachable, storing them in an array L.

4. Output all edges in the original network that link vertices in L to vertices in Ly. This can be executed
efficiently by hashing the adjacency lists of the vertices in L1 and Lo, followed by an iteration through
all edges while seeking the required edges utilizing the hash table.

CORRECTNESS: According to the definition of the residual graph and considering that the max flow
algorithm concludes at this stage, all edges produced by the aforementioned algorithm must have reached
maximum capacity. Consequently, if any of these edges had their capacities increased, it would have
enabled another iteration of the max flow algorithm due to the emergence of a new S — T path. Thus,
the algorithm exclusively outputs bottleneck edges.

Furthermore, considering that any bottleneck edge must originate from a vertex accessible from S and
terminate at a vertex reachable from T, it is established that no other bottleneck edges exist beyond those
generated by the algorithm.

TiME COMPLEXITY: Each subsequent step following the initial one can be executed in linear time.
Hence, the overall time complexity stands at O(m + n), in addition to the time complexity of the max
flow algorithm, contingent upon the chosen heuristic and the value of the max flow in the network. |

§ Problem 29

Let A represent a polynomial-time algorithm that determines whether a graph contains a Hamilton-Rudrata
path. Given a graph G = (V, E) as input, we execute the following steps:

1.

Compute A(G). If A(G) =0, we conclude that the graph lacks a Rudrata-Hamilton path and terminate.
If A(G) equals 1, proceed to the next step.

. Initialize an empty array P to record the edges forming the path.

. Iterate through each edge e € E. For every edge e, calculate A(V, E'\ {e}). If the result is 1, remove this

edge from the set, i.e., £+ E\ {e}.

. If the output is 0, add this edge to P.



Finally, sort P to arrange the edges’ vertices in order. This algorithm correctly identifies a Rudrata-Hamilton
path if one exists. The process ensures A(V, E’\ {e}) = 0 and A(V,E’) = 1 only if e is a mandatory part of
all Rudrata-Hamilton paths in (V| E). Given that A operates in polynomial time, this algorithm too functions
within a polynomial time.

(a)

§ Problem 30

To demonstrate, for any graph GG with a maximum degree at most 3, and a proposed solution for CLIQUE-
3 with parameter k, we aim to verify this solution in polynomial time relative to the size of G. The
proposed solution entails a subset of vertices that should form a complete subgraph. Notably, given the
degree constraint, the maximum clique size is 4. Rejecting the solution if £ > 4, we can verify the proposed
solution’s completeness in O(1) time for 4 vertices and in 9 edge checks for 3 vertices. Therefore, using
this verification process, CLIQUE-3 is in NP. |

The showcased " proof” demonstrates CLIQUE-3 <}, CLIQUE, signifying an instance reduction from CLIQUE-
3 to CLIQUE. However, this doesn’t offer any insights into the complexity of CLIQUE-3. To establish that
a problem in NP is NP-complete, we necessitate reducing a known NP-complete problem to the original
one.

The flaw in this proof lies in the assertion that a subset C' C V' is a vertex cover if and only if V' \ C'is a
clique. According to the vertex cover definition, C' is a vertex cover if V' \ C' constitutes an independent
set, i.e., none of the vertices in V' \ C' are adjacent. Consequently, they cannot form a clique.

Leveraging the insight from (a) that any clique in a graph with a maximum degree at most 3 has a size
of either 3 or 4, we handle parameters exceeding 4 by outputting the absence of a clique larger than the
parameter. Otherwise, we iterate over all size 4 and size 3 subsets of V', checking if they form a clique as
in (a). The algorithm’s correctness is evident, and its time complexity is O((}) + (3)) = O(n*), where
n = |V, meeting the requirements.

The extra credit problem is written in hands and attached to this pdf please note below !!



	Problem 25
	Problem 26
	Problem 27
	Problem 28
	Problem 29
	Problem 30

