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Problem 1.1. Prove that ||z| − |w|| ≤ |z − w| for all z, w ∈ C.

Solution. For z, w ∈ C we will begin with,

(|z| − |w|)2 = |z|2 + |w|2 − 2|zw|

We can write, |z − w|2 = (z − w)(z − w) and hence,

|z − w|2 =
∣∣z2∣∣+ ∣∣w2

∣∣− (zw̄ + wz̄)

here, zw̄ + wz̄ = 2Re{zw̄}. We can write, 2|zw| = 2|zw̄| and hence, 2|zw| > 2Re{zw̄}. Thus we get,

(|z| − |w|)2 ≤ |z − w|2

and hence wet our desired result: ||z| − |w|| ≤ |z − w| for any z, w ∈ C. ■

Problem 1.2. Prove thatHol(D) is a vector space over C. IsHol(D) finite dimensional?

Solution. Let, f, g, h ∈ Hol(D) and a, b ∈ C. Note that the following properties (axioms) are satisfied,

• Since f, g are holomorphic. We can see ∂̄f = ∂̄g = 0. We can see, ∂̄(f + g) = 0. So, f + g ∈ Hol(D).

• Similarly af also a holomorphic funcion.

• 0 function is holomorphic.

• Associativity. It’s not hard to see f(x) + (g(x) + h(x)) = (f(x) + g(x)) + h(x), for all x ∈ D.

• Commutativity. Again for x ∈ D, f(x) + g(x) = g(x) + f(x).

• Note that −f is also holomorphic over D and f + 0 = f for all x ∈ D. So, Additive inverse exists.

• It’s not hard to see a(bf(x)) = (ab)f(x) for all x ∈ D.

• Also, 1.f = f .

• Distributive. (a+ b)f(x) = af(x) + bf(x) for all x ∈ D, so (a+ b)f = af + bf .

Since f, g, h and a, b were chosen arbitrarily we can say, Hol(D) is a vector-space over C. We have proven that
zn(n ≥ 0) is holomorphic over any domain D ⊂ C. Now note that the set {zn ∈ Hol(D) : n ≥ 0} is linearly
independent set. So,Hol(D) can’t be finite dimensional vector space over C. ■

Problem 1.3. Characterize all (a) real linear maps from C to C, (b) complex linear maps from C to C.

1



Solution. (a). Note that over R, C is a two-dimensional vector space with basis {1, i}. In order to characterize
all the real linear maps f : C → C, its enough to find all the find the value of f(1) and f(i). Now that f(a+ib) =
az + bw where z, w ∈ C are constant is always a linear map. Thus f(1) and f(i) can take any complex value,
and we get a real linear map f(a+ ib) = af(1) + bf(i). Therefore we get

{All real linear maps from C to C} = {f(a+ ib) = az + bw | z, w ∈ C} ∼= C⊕ C.

(b). Now to find all the complex linear maps from C to C, note that C forms a 1-dimensional vector space over
C with basis being {1}. So its enough to find where f(1) goes. And clearly f(z) = λz is a linear map for all
λ ∈ C, thus f(1) can take any value. Therefore we get

{All complex linear maps from C to C} = {f(z) = λz | λ ∈ C} ∼= C.

Problem 1.4. Let f ∈ Hol(D). If |f | is constant on D, then prove that f is constant on D.

Solution. Let f = u+ iv, then since we are given that |f | is constant on D, we get that u2 + v2 is constant on D.
So we have the following differential equations,

uux + vvx = 0 and uuy + vvy = 0.

Further since f ∈ Hol(D) by Cauchy Riemann equations we get ux = vy and uy = −vx, hence we get that

uux − vuy = 0 and uuy + vux = 0.

Thus we get that [
u −v
v u

] [
ux
uy

]
=

[
0
0

]
We can assume that u2 + v2 ̸= 0 as otherwise we would have u ≡ 0 and v ≡ 0, and hence f ≡ 0 is constant
function. But then the matrix

[
u −v
v u

]
is invertiable for all z ∈ D, and hence we get that ux ≡ 0 and uy ≡ 0.

Therefore we get that u is constant. Similarly using Cauchy Riemann equations we get that vx ≡ 0 and vy ≡ 0
and hence v is constant. Thus we get that f = u+ iv is a constant function on D. ■

Problem 1.5. Let u = xy
x2+y2

for all (x, y) ̸= (0, 0) and u(0, 0) = 0, and v(x, y) = 0 for all (x, y). Prove that the C.R
equation holds for the pair (u, v) at (0, 0). Prove that (however) f = u+ iv is not holomorphic at (0, 0). [What’s wrong!
- Find out and explain.]

Solution. We have the partial derivatives as follows :

ux(0, 0) = lim
h→0

u(h, 0)− u(0, 0)

h
= 0

similarly we have, uy(0, 0) = 0 and vx(0, 0) = vy(0, 0) = 0. In this case C.R equation holds at a point (0, 0). Any
holomorphic funcion is continuous. If, f was holomorphic, f must have been continuous and so does u, v. But
we can see u is not continuous as (0, 0) [as we can approach origin via the path y = mx(m ̸= 0) but then the
limit will be m

1+m2 which in non zero]. Mainly this is the reason C.R equation fails. ■

Problem 1.6. Let Ū = {z ∈ C : z̄ ∈ U}, and let f ∈ Hol(U). Prove that F ∈ Hol(Ū) where F (z) = f(z̄). Compute
F ′. [Question: Is Ū an open set?]

Solution. U is an open set in C, let ΩU be the corresponding open set in R2[i.e it is the image of U under the
homeomorphism h : C → R2, (x+ iy) 7→ (x, y)]. For the given, f ∈ Hol(U) we can write, f = u+ iv. Where,
u, v : ΩU → R satisfy Cauchy-Riemann equation. In other words ux = vy and uy = −vx for all points in U . We
can write down the function F (z) explicitly as follows:

F (x+ iy) = f(x− iy) = u(x,−y)− iv(x,−y)
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Let, u′(x, y) = u(x,−y) and v′(x, y) = −v(x,−y). Since u, v are differentiable so is u′, v′. Now we have,

u′x(x, y) = ux(x,−y)

u′y(x, y) = −uy(x,−y)

v′x(x, y) = −vx(x,−y)

v′y(x, y) = vy(x,−y)

Since, (x, y) ∈ ΩŪ , (x,−y) ∈ ΩU and C.R equation holds here. Thus we must have, u′x = ux = vy = v′y and
v′x = −vx = uy = −u′y. Thus the Cauchy Riemann equation holds for F and hence, F ∈ Hol(Ū).
[ The map C → C given by z 7→ Z̄ is homeomorphism. So Ū is the image of U under this homeomorphism. If U is open
so is Ū .] ■

Problem 1.7. (C-R Equation in Polar coordinate): Let x = r cos θ, y = r sin θ. Prove that the C − R equation(’s) for
f = u+ iv in polar coordinates is given by:

rur = vθ, rvr = −uθ.

Solution. In order to find out the relations of CR equations in polar coordinate we need to compute, ur and uθ
in terms of ux, uy (similarly for v).

ur = ux cos θ + uy sin θ

uθ = rux(− sin θ) + ruy cos θ

⇒
(
ur
uθ

)
=

(
cos θ sin θ

−r sin θ r cos θ

)(
ux
uy

)
⇒

(
ux
uy

)
=

1

r

(
cos θ −r sin θ
sin θ r cos θ

)(
ur
uθ

)
By Cauchy Riemann equations we have, ux = vy and uy = −vx. So,(

ux
uy

)
=

(
vy
−vx

)
=

(
0 1
−1 0

)(
vx
vy

)
⇒

(
ur
uθ

)
=

1

r

(
cos θ sin θ

−r sin θ r cos θ

)(
0 1
−1 0

)(
cos θ −r sin θ
sin θ r cos θ

)(
vr
vθ

)
⇒

(
ur
uθ

)
=

1

r

(
0 1

−r2 0

)(
vr
vθ

)
=

1

r

(
vθ

−r2vr

)
=

( vθ
r

−rvr

)
Thus we get, rur = vθ and rvr = −uθ. ■

Problem 1.8. Let f = u+ iv ∈ Hol(C) (that is, f is an entire function). Suppose h : R → R is a differentiable function
and u = h ◦ v. Prove that f is constant on C.

Solution. We can write f = h ◦ v + iv. Since, this is a holomorphic function it must satisfy Cauchy-Riemann
equations. From Cauchy Riemann equations we get,

ux = h′(v)vx = vy;uy = h′(v)vy = −vx

Combining those two equation we get, (h′(v))2vx = −vx [this holds for every (x, y) ∈ R2]. Only possibility is
vx = 0 (and hence vy = 0) for all x, y ∈ R. Thus v is a constant function and by definition of u = h ◦ v we can
say, u is also constant i.e. f is constant function. ■

Problem 1.9. Write ∂ and ∂̄ in polar coordinates. [Do NOT submit the solution.]
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Problem 1.10. Let p ∈ C[z, z̄] (so typically, p =
∑

l,m≥0 αlmzlz̄m, αlm ∈ C ). Prove that p ∈ C[z] if and only if
∂̄p = 0.

Solution. (⇒) Suppose p ∈ C[z], we already know that for holomorphic functions ∂̄f = 0, since p ∈ C[z] is
always holomorphic we get that ∂̄p = 0.
(⇐) Now suppose ∂̄p = 0, we need to show that p ∈ C[z]. Let p =

∑
l,m≥0 αlmzlz̄m, then we get that

∂̄p =
∑
l,m≥0

αlm

[
(∂̄zl)z̄m + zl(∂̄z̄m)

]
(1)
=

∑
l≥0,m≥1

αlmzl(mz̄m−1)

where (1) holds because ∂̄z̄m =

{
mz̄m−1 ifm ≥ 1

0 otherwise. . Hence for ∂̄p = 0, we must have αlm = 0 for all

l ≥ 0 and m ≥ 1. Therefore the terms containing powers of z̄ greater than or equal to 1 must vanish, so
p =

∑
l≥0 αl0z

l ∈ C[z]. And hence we are done. ■

Problem 1.11. Let f on C be a C-valued function, and let α ∈ C. What do you mean by ”f(z) → ∞ as z → α”?

Solution. We can interpret this as: given any real number M > 0, then there exists a δ > 0 such that for
z ∈ Bδ(α) we have |f(z)| > M .
Problem 1.12. Find an upper bound of ∣∣∣∣∣

∫
C2(0)

ez

z2 + 1
dz

∣∣∣∣∣ .
Solution. Since f(z) = ez is an entire function, we can compute the integral using Cauchy Riemann integral
formula we get that ∫

C2(0)

ez

z2 + 1
dz =

∫
C2(0)

1

2i

[
ez

z − i
− ez

z + i

]
dz

(1)
= πei − πe−i

= 2πi sin(1).

where (1) follows from Cauchy integral formular (as −i, i ∈ B2(0), the open region enclosed by the circle
C2(0)). Hence we get that ∣∣∣∣∣

∫
C2(0)

ez

z2 + 1
dz

∣∣∣∣∣ = 2π| sin(1)| = 2π sin(1).

Hence 2π sin(1) is an upper bound for the given integral. ■

Problem 1.13. True or False: ∫
C1(0)

z̄dz =

∫
C1(0)

1

z
dz

Solution. On the curve C1(0), every point z satisfy, |z| = 1. Taking the square we get, |z|2 = zz̄ = 1. So, for
z ∈ C1(0), z−1 = z̄. So the integrals will also be the same. Thus the statement is true. ■

Problem 1.14. Let γ be the line joining −i to 1 + 2i. Compute,∫
γ
Im z dz.
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Solution. We have γ(t) = (1− t)(−i) + t(1 + 2i) = t+ (−1 + 3t)i, therefore γ′(t) = 1 + 3i. And thus we get∫
γ
Im z dz =

∫ 1

0
Im γ(t)γ′(t) dt

=

∫ 1

0
(3t− 1)(1 + 3i) dt

=

∫ 1

0
(3t− 1) dt+ i

∫ 1

0
(9t− 3) dt

=
1

2
+

3i

2
.
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