Assignment-1

Complex Analysis

Trishan Mondal

Problem 1.1. *Prove that* $||z| - |w|| \le |z - w|$ *for all* $z, w \in \mathbb{C}$ *.*

Solution. For $z, w \in \mathbb{C}$ we will begin with,

$$(|z| - |w|)^2 = |z|^2 + |w|^2 - 2|zw|^2$$

We can write, $|z - w|^2 = (z - w)(\overline{z - w})$ and hence,

$$|z - w|^{2} = |z^{2}| + |w^{2}| - (z\bar{w} + w\bar{z})$$

here, $z\bar{w} + w\bar{z} = 2 \operatorname{Re}\{z\bar{w}\}$. We can write, $2|zw| = 2|z\bar{w}|$ and hence, $2|zw| > 2 \operatorname{Re}\{z\bar{w}\}$. Thus we get,

$$(|z| - |w|)^2 \le |z - w|^2$$

and hence wet our desired result: $||z| - |w|| \le |z - w|$ for any $z, w \in \mathbb{C}$.

Problem 1.2. *Prove that* $Hol(\mathbb{D})$ *is a vector space over* \mathbb{C} *. Is* $Hol(\mathbb{D})$ *finite dimensional?*

Solution. Let, $f, g, h \in Hol(\mathbb{D})$ and $a, b \in \mathbb{C}$. Note that the following properties (axioms) are satisfied,

- Since f, g are holomorphic. We can see $\bar{\partial} f = \bar{\partial} g = 0$. We can see, $\bar{\partial} (f + g) = 0$. So, $f + g \in Hol(\mathbb{D})$.
- Similarly *af* also a holomorphic function.
- 0 function is holomorphic.
- Associativity. It's not hard to see f(x) + (g(x) + h(x)) = (f(x) + g(x)) + h(x), for all $x \in \mathbb{D}$.
- Commutativity. Again for $x \in \mathbb{D}$, f(x) + g(x) = g(x) + f(x).
- Note that -f is also holomorphic over \mathbb{D} and f + 0 = f for all $x \in \mathbb{D}$. So, Additive inverse exists.
- It's not hard to see a(bf(x)) = (ab)f(x) for all $x \in \mathbb{D}$.
- Also, 1.f = f.
- Distributive. (a+b)f(x) = af(x) + bf(x) for all $x \in \mathbb{D}$, so (a+b)f = af + bf.

Since f, g, h and a, b were chosen arbitrarily we can say, $\operatorname{Hol}(\mathbb{D})$ is a vector-space over \mathbb{C} . We have proven that $z^n (n \ge 0)$ is holomorphic over any domain $\mathbb{D} \subset \mathbb{C}$. Now note that the set $\{z^n \in \operatorname{Hol}(\mathbb{D}) : n \ge 0\}$ is linearly independent set. So, $\operatorname{Hol}(\mathbb{D})$ can't be finite dimensional vector space over \mathbb{C} .

Problem 1.3. Characterize all (*a*) real linear maps from \mathbb{C} to \mathbb{C} , (*b*) complex linear maps from \mathbb{C} to \mathbb{C} .

Solution. (a). Note that over \mathbb{R} , \mathbb{C} is a two-dimensional vector space with basis $\{1, i\}$. In order to characterize all the real linear maps $f : \mathbb{C} \to \mathbb{C}$, its enough to find all the find the value of f(1) and f(i). Now that f(a+ib) = az + bw where $z, w \in \mathbb{C}$ are constant is always a linear map. Thus f(1) and f(i) can take any complex value, and we get a real linear map f(a+ib) = af(1) + bf(i). Therefore we get

{All real linear maps from \mathbb{C} to \mathbb{C} } = { $f(a + ib) = az + bw \mid z, w \in \mathbb{C}$ } $\cong \mathbb{C} \oplus \mathbb{C}$.

(b). Now to find all the complex linear maps from \mathbb{C} to \mathbb{C} , note that \mathbb{C} forms a 1-dimensional vector space over \mathbb{C} with basis being {1}. So its enough to find where f(1) goes. And clearly $f(z) = \lambda z$ is a linear map for all $\lambda \in \mathbb{C}$, thus f(1) can take any value. Therefore we get

{All complex linear maps from \mathbb{C} to \mathbb{C} } = { $f(z) = \lambda z \mid \lambda \in \mathbb{C}$ } $\cong \mathbb{C}$.

Problem 1.4. Let $f \in Hol(\mathcal{D})$. If |f| is constant on \mathcal{D} , then prove that f is constant on \mathcal{D} .

Solution. Let f = u + iv, then since we are given that |f| is constant on \mathcal{D} , we get that $u^2 + v^2$ is constant on \mathcal{D} . So we have the following differential equations,

$$uu_x + vv_x = 0$$
 and $uu_y + vv_y = 0$

Further since $f \in Hol(\mathcal{D})$ by Cauchy Riemann equations we get $u_x = v_y$ and $u_y = -v_x$, hence we get that

$$uu_x - vu_y = 0$$
 and $uu_y + vu_x = 0$.

Thus we get that

$$\begin{bmatrix} u & -v \\ v & u \end{bmatrix} \begin{bmatrix} u_x \\ u_y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

We can assume that $u^2 + v^2 \neq 0$ as otherwise we would have $u \equiv 0$ and $v \equiv 0$, and hence $f \equiv 0$ is constant function. But then the matrix $\begin{bmatrix} u & -v \\ v & u \end{bmatrix}$ is invertiable for all $z \in D$, and hence we get that $u_x \equiv 0$ and $u_y \equiv 0$. Therefore we get that u is constant. Similarly using Cauchy Riemann equations we get that $v_x \equiv 0$ and $v_y \equiv 0$ and hence v is constant. Thus we get that f = u + iv is a constant function on D.

Problem 1.5. Let $u = \frac{xy}{x^2+y^2}$ for all $(x, y) \neq (0, 0)$ and u(0, 0) = 0, and v(x, y) = 0 for all (x, y). Prove that the C.R equation holds for the pair (u, v) at (0, 0). Prove that (however) f = u + iv is not holomorphic at (0, 0). [What's wrong! - Find out and explain.]

Solution. We have the partial derivatives as follows :

$$u_x(0,0) = \lim_{h \to 0} \frac{u(h,0) - u(0,0)}{h} = 0$$

similarly we have, $u_y(0,0) = 0$ and $v_x(0,0) = v_y(0,0) = 0$. In this case C.R equation holds at a point (0,0). Any holomorphic function is continuous. If, f was holomorphic, f must have been continuous and so does u, v. But we can see u is not continuous as (0,0) [as we can approach origin via the path $y = mx(m \neq 0)$ but then the limit will be $\frac{m}{1+m^2}$ which in non zero]. Mainly this is the reason C.R equation fails.

Problem 1.6. Let $\overline{U} = \{z \in \mathbb{C} : \overline{z} \in U\}$, and let $f \in \operatorname{Hol}(U)$. Prove that $F \in \operatorname{Hol}(\overline{U})$ where $F(z) = \overline{f(\overline{z})}$. Compute F'. [Question: Is \overline{U} an open set?]

Solution. *U* is an open set in \mathbb{C} , let Ω_U be the corresponding open set in \mathbb{R}^2 [i.e it is the image of *U* under the homeomorphism $h : \mathbb{C} \to \mathbb{R}^2$, $(x + iy) \mapsto (x, y)$]. For the given, $f \in \text{Hol}(U)$ we can write, f = u + iv. Where, $u, v : \Omega_U \to \mathbb{R}$ satisfy Cauchy-Riemann equation. In other words $u_x = v_y$ and $u_y = -v_x$ for all points in *U*. We can write down the function F(z) explicitly as follows:

$$F(x + iy) = f(x - iy) = u(x, -y) - iv(x, -y)$$

Let, u'(x, y) = u(x, -y) and v'(x, y) = -v(x, -y). Since u, v are differentiable so is u', v'. Now we have,

$$u'_{x}(x, y) = u_{x}(x, -y) u'_{y}(x, y) = -u_{y}(x, -y) v'_{x}(x, y) = -v_{x}(x, -y) v'_{y}(x, y) = v_{y}(x, -y)$$

Since, $(x, y) \in \Omega_{\bar{U}}$, $(x, -y) \in \Omega_U$ and C.R equation holds here. Thus we must have, $u'_x = u_x = v_y = v'_y$ and $v'_x = -v_x = u_y = -u'_y$. Thus the Cauchy Riemann equation holds for F and hence, $F \in \operatorname{Hol}(\bar{U})$. [*The map* $\mathbb{C} \to \mathbb{C}$ given by $z \mapsto \bar{Z}$ is homeomorphism. So \bar{U} is the image of U under this homeomorphism. If U is open so is \bar{U} .]

Problem 1.7. (*C*-*R* Equation in Polar coordinate): Let $x = r \cos \theta$, $y = r \sin \theta$. Prove that the C – R equation('s) for f = u + iv in polar coordinates is given by:

$$ru_r = v_\theta, \quad rv_r = -u_\theta.$$

Solution. In order to find out the relations of CR equations in polar coordinate we need to compute, u_r and u_{θ} in terms of u_x , u_y (similarly for v).

$$u_{r} = u_{x} \cos \theta + u_{y} \sin \theta$$
$$u_{\theta} = ru_{x}(-\sin \theta) + ru_{y} \cos \theta$$
$$\Rightarrow \begin{pmatrix} u_{r} \\ u_{\theta} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{pmatrix} \begin{pmatrix} u_{x} \\ u_{y} \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} u_{x} \\ u_{y} \end{pmatrix} = \frac{1}{r} \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix} \begin{pmatrix} u_{r} \\ u_{\theta} \end{pmatrix}$$

By Cauchy Riemann equations we have, $u_x = v_y$ and $u_y = -v_x$. So,

$$\begin{pmatrix} u_x \\ u_y \end{pmatrix} = \begin{pmatrix} v_y \\ -v_x \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} v_x \\ v_y \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} u_r \\ u_\theta \end{pmatrix} = \frac{1}{r} \begin{pmatrix} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix} \begin{pmatrix} v_r \\ v_\theta \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} u_r \\ u_\theta \end{pmatrix} = \frac{1}{r} \begin{pmatrix} 0 & 1 \\ -r^2 & 0 \end{pmatrix} \begin{pmatrix} v_r \\ v_\theta \end{pmatrix} = \frac{1}{r} \begin{pmatrix} v_\theta \\ -r^2 v_r \end{pmatrix} = \begin{pmatrix} \frac{v_\theta}{r} \\ -rv_r \end{pmatrix}$$

Thus we get, $ru_r = v_\theta$ and $rv_r = -u_\theta$.

Problem 1.8. Let $f = u + iv \in Hol(\mathbb{C})$ (that is, f is an entire function). Suppose $h : \mathbb{R} \to \mathbb{R}$ is a differentiable function and $u = h \circ v$. Prove that f is constant on \mathbb{C} .

Solution. We can write $f = h \circ v + iv$. Since, this is a holomorphic function it must satisfy Cauchy-Riemann equations. From Cauchy Riemann equations we get,

$$u_x = h'(v)v_x = v_y; u_y = h'(v)v_y = -v_x$$

Combining those two equation we get, $(h'(v))^2 v_x = -v_x$ [this holds for every $(x, y) \in \mathbb{R}^2$]. Only possibility is $v_x = 0$ (and hence $v_y = 0$) for all $x, y \in \mathbb{R}$. Thus v is a constant function and by definition of $u = h \circ v$ we can say, u is also constant i.e. f is constant function.

Problem 1.9. Write ∂ and $\overline{\partial}$ in polar coordinates. [Do NOT submit the solution.]

Problem 1.10. Let $p \in \mathbb{C}[z, \bar{z}]$ (so typically, $p = \sum_{l,m\geq 0} \alpha_{lm} z^l \bar{z}^m$, $\alpha_{lm} \in \mathbb{C}$). Prove that $p \in \mathbb{C}[z]$ if and only if $\bar{\partial}p = 0$.

Solution. (\Rightarrow) Suppose $p \in \mathbb{C}[z]$, we already know that for holomorphic functions $\bar{\partial}f = 0$, since $p \in \mathbb{C}[z]$ is always holomorphic we get that $\bar{\partial}p = 0$.

(\Leftarrow) Now suppose $\bar{\partial}p = 0$, we need to show that $p \in \mathbb{C}[z]$. Let $p = \sum_{l,m \ge 0} \alpha_{lm} z^l \bar{z}^m$, then we get that

$$\bar{\partial}p = \sum_{l,m \ge 0} \alpha_{lm} \left[(\bar{\partial}z^l) \bar{z}^m + z^l (\bar{\partial}\bar{z}^m) \right]$$
$$\stackrel{(1)}{=} \sum_{l \ge 0, m \ge 1} \alpha_{lm} z^l (m\bar{z}^{m-1})$$

where (1) holds because $\bar{\partial}\bar{z}^m = \begin{cases} m\bar{z}^{m-1} & \text{if } m \ge 1\\ 0 & \text{otherwise.} \end{cases}$. Hence for $\bar{\partial}p = 0$, we must have $\alpha_{lm} = 0$ for all $l \ge 0$ and $m \ge 1$. Therefore the terms containing powers of \bar{z} greater than or equal to 1 must vanish, so $p = \sum_{l>0} \alpha_{l0} z^l \in C[z]$. And hence we are done.

Problem 1.11. Let f on \mathbb{C} be a \mathbb{C} -valued function, and let $\alpha \in \mathbb{C}$. What do you mean by " $f(z) \to \infty$ as $z \to \alpha$ "?

Solution. We can interpret this as: given any real number M > 0, then there exists a $\delta > 0$ such that for $z \in B_{\delta}(\alpha)$ we have |f(z)| > M.

Problem 1.12. Find an upper bound of

$$\left| \int_{C_2(0)} \frac{e^z}{z^2 + 1} dz \right|.$$

Solution. Since $f(z) = e^z$ is an entire function, we can compute the integral using Cauchy Riemann integral formula we get that

$$\int_{C_2(0)} \frac{e^z}{z^2 + 1} dz = \int_{C_2(0)} \frac{1}{2i} \left[\frac{e^z}{z - i} - \frac{e^z}{z + i} \right] dz$$
$$\stackrel{(1)}{=} \pi e^i - \pi e^{-i}$$
$$= 2\pi i \sin(1).$$

where (1) follows from Cauchy integral formular (as $-i, i \in B_2(0)$), the open region enclosed by the circle $C_2(0)$). Hence we get that

$$\left| \int_{C_2(0)} \frac{e^z}{z^2 + 1} \, dz \right| = 2\pi |\sin(1)| = 2\pi \sin(1).$$

Hence $2\pi \sin(1)$ is an upper bound for the given integral.

Problem 1.13. True or False:

$$\int_{C_1(0)} \bar{z} dz = \int_{C_1(0)} \frac{1}{z} dz$$

Solution. On the curve $C_1(0)$, every point z satisfy, |z| = 1. Taking the square we get, $|z|^2 = z\overline{z} = 1$. So, for $z \in C_1(0)$, $z^{-1} = \overline{z}$. So the integrals will also be the same. Thus the statement is **true**.

Problem 1.14. Let γ be the line joining -i to 1 + 2i. Compute,

$$\int_{\gamma} \operatorname{Im} z \, dz$$

Solution. We have $\gamma(t) = (1-t)(-i) + t(1+2i) = t + (-1+3t)i$, therefore $\gamma'(t) = 1 + 3i$. And thus we get

$$\int_{\gamma} \operatorname{Im} z \, dz = \int_{0}^{1} \operatorname{Im} \gamma(t) \gamma'(t) \, dt$$
$$= \int_{0}^{1} (3t - 1)(1 + 3i) \, dt$$
$$= \int_{0}^{1} (3t - 1) \, dt + i \int_{0}^{1} (9t - 3) \, dt$$
$$= \frac{1}{2} + \frac{3i}{2}.$$