Assignment 1

. Let f: R — R be a linear map.

(a) How does f look like?

(b) Suppose f: R — R is continuous such that f satisfies f(x +y) = f(z) + f(y).
How does f look like?

. For each p € [0, 00], we have the norms || - ||, on R". Let

By = {z € R?: ||z[|, < 1}
Draw By, B> and B and observe how B, behaves as p — oco.
. Prove that any finite dimensional nls is complete.

(a) Prove that any linear map from (R™, || - ||) to (R™, || - /') is continuous.
(Hint: We have already seen that if ||.||2 is the Euclidean norm, then

1T ()ll2 < 1Tl ll]l2-

Use this to show that 7' is continuous. )

(b) Prove that any linear map between any two finite dimensional normed linear
spaces is continuous.

(c) Prove that if (V,]-]|) and (W, ||-|') are finite dimensional normed linear spaces,
then £(V, W) is a normed linear space under the operator norm.

. Suppose (V)| - ||v) and (W, || - ||w) are finite dimensional nls and T;,T, are linear
maps from V to W such that

Ti(x) = To(x) Vo € {y € R": [lyllv <4},
where ¢ is a positive number. Prove that 17 = Tb.
. Prove that any subspace of a finite dimensional nls is closed.

. Suppose W is a subspace of a finite dimensional nls which is open. What can you
say about W?

. Suppose T: R” — R™ is a linear isomorphism. Then what can you say about m and
n?

. Suppose V is a finite dimensional vector space of dimension n such that 72 = 0.
Prove that n
rank(7") < 5



10. Let < -,- >: V xV — R be an inner product on a vector space V. Prove that < -,- >
is continuous in both the variables, i.e., if xg,yo € V, then the maps

[zo,1: V — V, Ixo’l(y) =< xp,y >
and
Lyyo2: V=V, Iya(y) =<y,yo >
are continuous.
11. Prove that
[ fllsup = SUPxe[0,1}|f(x)|
defines a norm on C[0, 1].
12. Prove that

[fllsup = supzerlf(z)]
defines a norm on Co(R) := {f : R — R continuous such that lim, . |f(z)| = 0}.

13. Let R[a, b] denotes the set of all Riemann integrable functions on [a, b]

(a) Does ||f|| = [”|f(x)|dz define a norm on R[a,b]?
(b) Does < f,g >= f;f(m)g(x)da: define an inner product on Cfa, b]?

14. Let (V|| - |lv), (W, |- |lw) and (X, | - ||x) be finite dimensional nls.
(a) If T e L(V,W), prove that

[Tllop = sup{[|T(x)[lw: [lzllv = 1}
= sup{||T()[lw: [lzllv <1}
— inf{K : K >0 and ||T(2)|lw < K|z|v}

(b) Prove that ||T(x)|lw < [|T||opllz||v V2 € V.

(c) If S is a bounded subset of V in || - ||y, and T € L(V,W),, prove that T(S) is
bounded subset of W in || - || .

(d) If T € L(V,W) and Tz € L(W, X)), prove that || 1211 |op < |17 |opl|Z2]|op-

(e) Prove that if V=W and || - ||y = || - |w, then ||I|,p = 1.

(f) Now suppose < -,- > be inner products on V' which induces || - ||y .
An element T € L£(V,V) is called an orthogonal projection if 72 = T and
T =T;ie. <Tv,w>=<v,Tw >, YVv,w e V.
Prove that the operator norm of a non-zero orthogonal projection is 1.

15. Prove that a subset K of a finite dimensional nls is compact if and only if it is closed
and bounded.
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Assignment 2

Lo @(O\“‘Q\w
= %00 WY\‘:&

Examine the continuity of the following functions f: R? — R at the point (0,0):

(a)

fag) = L Vg T@9#00

0 when (z,y) = (0,0)
(b) W) if (,y) # (0,0)
fla,y) = {0 S WheI,l (z,y) _ (0,0)
(c)
fla,y) = HeF iyt
0 o.w.
(d)

1 1 .
xsin: +ysin=  if xy #0
f(w,y)Z{ v !
0 oW

2. Consider the following funcion f: R? — R defined by:

o ﬁLﬁJyQ if (z,y) # (0,0)
f(z,y) {0 when (z,y) = (0,0)

Let m € R. Prove that lim,_,o f(z,mz) = f(0,0) = 0 but f is not continuous at
(0,0).

3. If x = (x1,- - x,) denotes an element of R", prove that
n
lzll <) lail -
i=1

4. Suppose z and y belong to R™. When does equality hold in the triangle inequality

[z +yll < [l + [lyl?

5. Suppose R” is equipped with the usual inner product and the usual norm. A linear
map T : R" — R” is called norm preserving if |Tz| = |lz|. T is called angle-
preserving if (T'z, Ty) = (z,y) .



Assignment 4

1. Suppose U is an open set in R” and f : U C R" — R is a differentiable function
such that f attains a local maxima or minima at the point x. Using the function
g(t) = f(x+tv) defined on a suitable open interval containing 0, prove that V f(x) =
0,ie, gL(x) =0foralli=1,2,--n.

2. Suppose U is an open set in R® and f: U C R® — R is a differentiable function.
Let xg be a fixed element in U where at least one partial derivative of f is not equal
to zero. Let us denote by S™'the set

st hi={z e R": ||z|| = 1}.

Define a function
g: 5" = R, g(v) = Dy f(x0)]-
e : : V f(zo)
Prove that ¢ attains its maxima at the points + NEEDIE

In other words, the direction v in which |D, f(zo)| is maximum is along V f(zo).

3. Let f : R — R? be defined as f(t) = (cos(t),sin(t)). Prove that there exist z,y €
[0, 27] such that the equation

fy) = f(z) = Df(2)(y — x)
cannot hold for any z € [z, y].

4. Suppose U is an open set in R™ which is convex, i.e, for any a,b in U, the set
{tx + (1 —t)y: 0 <t <1} is contained in U.

(a) Prove that if f: U — R™ is a C''-function, then
supg<i<1||Df (2 + t(y — z))|[op < 00.

(b) Suppose f is a real-valued differentiable function defined on an open set U in
R™. If 2,y belonging to U is such that L(z,y) C U, then prove that

fy) = fx) =(Vf(z),y —x)

for some z € L(x,y).

(c) Suppose U C R™ is a convex open set and f : U — R™ is a differentiable
function such that all partial derivatives of f are bounded on U. Prove that f
is Lipschitz on U, i.e,
there exists a real number A > 0 such that for all z,y € U,

1f(y) = f@)ll < Ally — =] .



(d) Prove that if f: U — R™ is a differentiable function and 7" is any linear map
from R™ to R™, then for z,y € U such that L(x,y) C U, we have

1f(y) = f(z) = T(y — )| < lly — zl[supo<i<a [[Df (@ + t(y — 2)) = T[op-

5. If V and W are finite dimensional vector spaces, prove that the dimension of the
vector space of all k-multilinear maps from V' to W is equal to dim(V)*dim(W).

6. Suppose U is an open convex set in R” and f : U — R be a C?-function. Prove that
for all @ in U and h in R™ such that ||A|| is sufficiently small,

Flat h) = f(@) + (V(a),h) + 5 D*F(a)h + [h]* E(h),

where F is a real-valued function defined on an open set containing zero such that
|E(h)|| — 0 as ||h|| — 0.

7. Prove that the map
f : GLy(R) = GLo(R), f(A)=A""

is C°.



Assignment 5

1. Suppose f: U C R™ — R™ is differentiable, where U is an open set in R™. Let p € U
and v € R™. Prove that

d
Df(x)(v) = Lo f (1(2).
where v is a smooth curve passing through p with velocity v.

2. Suppose X € M, (R). Prove that
7R = My(R),y(t) =
is a curve passing through I with velocity X.

3. Prove that for any X € M, (R),
d tX
£|t:0det(e ) = Tr(X).

( Hint: Use the fact that for any X € M, (R), D(det)(I)(X) = Tr(X). )
4. Prove that for any X € M, (R),

det(eX) = ¢,

( Hint: Consider the function g(t) = det(e!X). Note that g(0) = I. Since e(*+)X =
esXe!X | observe that we can write

d
g'(s) = 9(s) 7 lizodet(e™X).
Now solve this differential equation with the initial condition ¢g(0) = I. )

5. We had found out a very nice formula for D(det)(I)(X), namely, D(det)(I)(X) =
Tr(X). Now if A is an arbitrary element of GL,,(R), does there exist a nice formula
for D(det)(A)(X)? This exercise answers this question.

Prove that for all A € GL,(R) and for all X € M,(R),
D(det)(A)(X) = det(A)Tr(A71X).

( Hint: Observe that y(t) = AetA™X ig a curve passing through A with velocity X.
Next, you will need to use the equation det(e™) = ¢T(X) )



Some problems on IMT and IFT

1. If U and V are open subsets of R™ and R" respectively and ¢ : U — V is a
diffeomorphism, prove that m = n. This says that if m # n, then an open subset of
R™ cannot be diffeomorphic to an open subset of R™.

2. Define f: R®> — R2, given by f = (f1, fo) where fi(z1, 22, y1,Y2,%3) = 2€*! + zoy; —
dyo + 3 and fo = (21,22, Y1, Y2, y3) = z2c08(21) — 621 + 2y1 — Y3.
(a) Show that f(0,1,3,2,7) = (0,0)
(b) Show that 3 a C!' map ¢ defined on a neighbourhood of (3,2,7) such that
9(3,2,7) = (0,1) and f(g(y),y) = (0,0).
(c) Compute Dg(3,2,7).
3. Using the implicit function theorem ( and not otherwise ), show that the system of
equations:
3x+y—z+u’=0
r—y+2z24+u=0
20+ 2y —4z4+2u=0

has a solution for x,y,u in terms of z; for x, z,u in terms of y; for y, z, v in terms of
x.

4. Define f: R? —» R by
fla,y1,y2) = 2y + e +ys
Show that %(O, 1,—1) # 0 and there exists a differentiable function g in a neigh-

borhood of (1,—1) in R? so that g(1,—1) = 0 and f(g(vy1,%2),y1,y2) = 0. Moreover
find 29 (1, 1) and 22 (1, -1).
Y1 Y2



Assignment 6
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Y1 Y2

. If S is a regular k-level surface in R***_ £ is called the dimension of S and n is called
the codimension of S. For each of the following examples, determine whether the set
f71(0) is a regular surface. If your answer is yes, then also determine the dimension
and the codimension.



(a) f(z,y,2) =2 +y*+2° -1
(b) f(‘rvyaz) :.’I/’Q—yQ—ZQ

7. Prove that the following are examples of regular surfaces. Also compute their di-
mension and codimension.

(a) ( the 2-torus )
T? = f7H(1,1),

where f : R* — R? is defined by
f(x1, w0, w3, 24) = (2] + 23, 23 + 7).
(b) ( the n-torus)
™ =f1(1,---1)
where f : R?” — R” is defined by

fla, @, op—1,Ton) = (a1 + 23, - 25,1 + 3,).

Also prove that T" is the n-fold Cartesian product of S*.
(¢) ( the (n — 1) sphere in R™ )

§7t = F)

where f : R™ — R is defined by
flz1,- ) = Zx?

8. Prove that R™ x {0} is an n-manifold in R"*!.
9. Prove that GL,(R) is a manifold in R"*. What is its dimension?

10. (a) Recall that the derivative of the function det : GL,(R) — R is given by
D(det)(A)(X) = det(A)Tr(A1X).
i. Compute the dimension of the vector space Ker(D(det))(I), where I de-
notes the identity matrix in M, (R).
ii. Show that SL,(R) := {A € M,(R) : det(A) = 1} is a regular n? — 1-level
surface in R™”.
(b) Prove that O(n) ( i.e, the set of all n x n real orthogonal matrices ) is a manifold
of dimension ™1 in M, (R).
( Hint: Let S,, denote the vector space of all n x n real symmetric matrices.
Consider the function f : M,(R) — S, defined by f(A) = AA'.)

11. Suppose k,l are positive integers such that M is a k-manifold in R” and moreover,
M is an [-manifold in R™. Prove that k = [.



12.

13.

14.

Suppose M and N are k-manifolds in R™ and f : M — N is a smooth function such
that for all p in M, the linear map

Df(p) : TpM — Tf(p)N

is a vector space isomorphism. Then prove that if p € M, there exists an open set
V of M containing p which is diffeomorphic to an open set of N containing f(p).
Let us recall the statement of the implicit function theorem:

Suppose U C R™ is an open set and f : U — R™ is a smooth function. More-
over, assume that there exist (zg,y0) € R ™ x R™ such that f(zo,y9) = 0 and
Drgm f(x0,y0) is invertible.

Then I.LF.T. states that there exists an open set V in R®™™ containing xg, an open
set W in R™ containing yo and a smooth map g : V' — W such that Dgm f(z,y) is
invertible for all (z,y) € V x W and

{(z,y) e VxW: f(z,y) =0} ={(z,9(x)) :x € V}.
We also computed an expression for Dg(x).

(a) In the notations as above, prove that the set

M:{({B,y) EU:f(x,y):()}

is an n — m-manifold in R™.

(b) Prove that
T(HCo,yo)M = {(Ua DQ(CUO)(U)) RS Rn_m}.

Thus, even without knowing the function g explicitly, the implicit function
theorem helps us to understand the tangent space to the manifold M. This
follows from the fact that we have a formula for Dg(xo,yp) in terms of the
function f from the implicit function theorem.

( * ) We have seen that if p belongs to an open set U in R", then T,U can be
identified with the set of all derivations of C*°(p). We can go one step further, in
the context of vector fields.

Suppose U is an open set in R™. An R-linear map 0 : C®°(U) — C*°(U) is called a
derivation of C*°(U) if for all f,g € C*(U),

6(f.9) =0(f)-g+ f4(g).

The set of all derivations of C*°(U) is denoted by the symbol Der(C*°(U)). The goal
of this exercise is to show that X'(U) = Der(C>(U)).



(a) We will need the following result, called the existence of partition of unity (

(d)

See Theorem 3.11 of Spivak for a proof ). We recall that the support of a real
valued function defined on a topological space is

supp(f) := {z € Dom(f) : f(z) # 0}.

Theorem
Let A C R"™ and let {U,};,c; be an open cover of A. Then there exists
a collection {¢; : i € I} of smooth functions on an open subset of R"
containing A satisfying the following conditions:
i. For all x € A, 0 < ¢;(x) < 1.
ii. For all x € A, there exists V open in R” containing z such that all
but finitely many ¢; are zero on V.

iii. For all z € A,
Z ¢Z($) =1.

Note that this equation makes sense by the previous point.
iv. For all i € I, supp(¢;) C U;.
The collection {¢; : i € I'} is called a partition of unity subordinate to
the cover {U;:i € I}.
As an application of the theorem on partition of unity, prove the following
statement:

Suppose A C R” is closed and U be an open set in R"™ such that A C U. Then
prove that there exists a real-valued smooth function 3 : R™ — R such that
P(x) =1for all z € A, supp(¢p) CU and 0 < ¢(z) < 1.

Given an element f of C*°(U) and X in X(U), we can define a real-valued
function X f on U by the formula

(XF)(p) = Xp(f)-

Here, the element X, of T,(U) is viewed as an element of Der(C*(p)) and f is
viewed as an element of C*°(p) so that X, (f) makes sense.

Prove that X f is a smooth function on U.

Suppose X € X(U). Then prove that the map
C*U)—=C®U), f—Xf

is a derivation of C*°(U). Thus, X' (U) is a subset of Der(C*°(U)).
Finally , prove that X' (U) = Der(C*°(U)). This can be done in three steps:

i. Prove that if X,Y € X (U) are such that X(f) =Y (f) for all f € C>(U),
then X =Y.



ii. Suppose 6 € Der(C*(U)) and f € C*®°(U) is such that f(z) = 0 for all =
on an open subset V' of U. Prove that 6(f)(y) =0 for all y € V.
( Hint: By the problem in a), observe that there exists an open set W in
V such that p € W and a smooth function g on U such that g =1 on W
and g = 0 outside V. )

iii. Prove that X (U) = Der(C*>°(U)). i.e, if § € Der(C*°(U)), then there is an
unique element X in X(U) such that for all f € C*(U), 6(f) = X(f).

(e) Let X, Y € X(U). Define a map [X,Y]: C®(U) — C*>(U) by the formula

(X, Y](f) = XY f) =Y (X]).

This means that for all p € U,

(X, YT(H)(p) = Xp(Y[) = Yp(X[).

Prove that [X,Y] is a vector field on U. Moreover, write [X,Y] as a C*°(U)-
linear combination of the vector fields 8%1-'

15. Suppose M is a k-manifold in R™. A vector field X on M is called non-vanishing on
M if X, # 0 for all p € M. A vector field X on a k-manifold M in R" is called a
unit vector field if < X(p), X(p) >=1 for all p € M.

(a) Prove that there exists a non-vanishing tangent vector field on M if and only
if there exists a unit tangent vector field on M.

(b) Prove that there exists a non-vanishing normal vector field on M if and only if
there exists a unit normal vector field on M.

(c) Prove that on a connected regular level n-surface in R™*!, there exist exactly
two unit normal vector fields.

(d) On a connected regular level k-surface in R"** how many unit normal vector
fields can you think of?

(e) Suppose k > 1 and n = 2k — 1. Consider the n-manifold M = S™ inside R" 1.
Prove that
3} 0 3} 0 0

+I187x2)+( a 3+:E38 4)+"'+(—$2k +332k_1872k)

X =(—x9

0y 0Tok—1

defines a nowhere vanishing tangent vector field on M.

This shows that on an odd dimensional sphere, there always exists nan-vanishing
( equivalently unit ) tangent vector fields.

This is false for the 2 dimensional sphere S? but we won’t prove this fact in
this course.

16. Let V be a 3-dimensional inner product space. Fix two elements v, w in V.



(a) Then prove that there exists a unique vector g(v,w) in V such that for all z in
V, the following equation holds:

(9(v,w), 2) = det(v,w, 2)".
( Hint: Look at the map
¢:V =R, ¢(2) = det(v,w, 2)".

Observe that ¢ is a linear functional on V. )

(b) Prove that g(v,w) coincides with the cross-product v x w. From now on, we
will drop the symbol g(v, w) and instead continue to denote it as v x w.

(c) From the above-made definition of v x w, prove that det(v,w,v x w)* is always
non-negative. Moreover, prove that v x w is orthogonal to both v and w.

(d) Prove that if (U,) is a local parametrization of a 2-manifold in R? such that
U is a region, then there exists a unit normal vector field along 1.

(e) Compute this unit normal vector field for the parametrization (U, 1)) where
U={(0,0) eR?: —1 < <7m0<¢<n}and :U — R? is defined as
Y(0,¢) = (r cos @ sin ¢, rsin O sin ¢, r cos ¢).

17. Let (U, 1) be a parametrized n-surface in R"*!. Let X1, X, - - - X,, be the co-ordinate
vector fields along 1. Suppose x € U. Prove that there is a unique vector N(x) €
(Ran(D1(x)))* satisfying the following two conditions:

(a)

N

IN(@)]| == (< N(@), N(2) >1,, @ner)? = L.

(b) The determinant of the matrix with the rows Xj(z), Xa(x), - N(x) ( in this
particular order ) is positive.

18. The goal of this exercise is to show that the vector field N constructed in the previous
problem is indeed a smooth vector field.

We continue with the notation of the previous exercise. Define

n+1
0

N'(z)=>)_ ”é(x)@|¢(x)a

i=1

where n/(x) = (=1)"""*! times the determinant of the matrix obtained by deleting
the i-th column from the n x (n + 1) matrix with the first row X;(x), second row
Xo(x),- - the n-th row X, (z).

Here, the entries of the vector X;(x) are in the basis aiin(w)? where, y1, - Yn11 are
the co-ordinates of R™*1,

Prove that



(a) N'(z) #0 for all x € U.
(b) N'(z) € (Ran(Dy(x)))*
(¢) The determinant of the matrix with the rows Xj(z), Xa(z), - X (), N'(z) (

in this particular order ) is positive.

(d) Prove that the assignment z — N (z) constructed in the previous problem is a
( smooth ) vector field. The vector field N is called the orientation vector
field along .

(e) Now here comes the moral of the story.

Prove that if (U, %)) is a local parametrization of an n-manifold in R"*! so that
U is a region, then there exists a unit normal vector field along ).



Assignment 7

. Prove that A C R™ has content zero if and only if given ¢ > 0, there exists a finite

cover {Uy,---U,} of A by open rectangles such that Y ;" | vol(U;) < e.

. Prove that the following subsets have measure zero:

(a) any countable set in R".
(b) B, where B C A and A has measure zero.

. Prove that the following subsets do not have measure zero:

(a) A, where A contains a set which does not have measure zero.

(b) Suppose A is a subset of R™ which has one interior point, then A does not have
measure zero.

. Prove that if K is a compact set in R™ which has measure zero, then K has content
Zero.

(a) Suppose Q2 and €y are regions in R"™ with ©Q; C 5. Prove that vol(£2;) <
vol(3).

(b) Suppose S C R" is a region such that S C Ba(xg,r) for some zp in R", where
Bs(zg, r) denotes the open ball around x( of radius r. Then prove that vol(S) <
AL

. Suppose f is a real-valued function which is continuous at a and integrable on a
neighborhood of a, prove that

1
— i S e xVdry - d,

. Let ¢1,¢2 be two continuous non-negative functions defined on [a,b] such that
#1(7) < ¢o(x) for all x in [a,b]. Let S be the subset of R? defined as
S={(z,y) ER*:a<a<b¢i(x) <y < go(n)}

Prove that if all iterated integrals of f exist, then

/Sf(x,y)dxdy = /ab(/jz(z) f(x,y)dy)dx.

1(z)

. Prove that any compact regular k-level surface in R™** has (n + k)-dimensional
content zero.



9. This exercise shows that none of the hypotheses of Fubini’s theorem can be dropped.
We will have three cases.

(a) Consider the function
f:00,1] x[0,1] = R, f(z,y)=1if x =0, y € Q, 0 otherwise.

Then show that f is integrable on [0, 1] x [0, 1] but fo f(0,y)dy does not exist.
(b) Consider the function

f:00,1] x [0,1] = R, f(z,y) =1if y € Q, 2z otherwise.

Then show that f is not integrable on [0, 1] x [0, 1] but the integrals fol f(z,y)dx
and fo fo x,y)dr)dy exist.
(c) Let g be a prime number. Consider the function
m

f:00,1]x[0,1] = R, f(z,y)=1lifx =—, y= n for some m,n € N, 0 otherwise.
q q

Then show that f is not integrable on [0,1] x [0, 1] but fo fo z,y)dzdy as
well as fo fo x,y)dydx exist.

10. Let S = {(z,y) : 2* + y* < a?,y > 0}. Evaluate [qydady.

11. Let 2 be the subset of {(x,y,2) € R : 2 >0,y > 0,2 > 0} which is bounded below
by the paraboloid z = x? + »? and above by the plane z = 4. Evaluate fQ rdxdydz.

12. ( * ) The change of variable formula works if the derivative of the change of variable
map ¢ is invertible at all points of the domain of g. The goal of this exercise is to
point out that this condition can be dropped under some circumstances.

More precisely, the following statement is true:

If U C R™ is an open region and g : U — R" is a one-one C''-function such that the
set

B ={x €U :det(Dg(x)) =0}

is a region. Suppose in addition, the following conditions hold:

)
) g(U) is a region.

(¢) f:9(U)— Ris a function which is Riemann-integrable on ¢g(U).
) fog.||det(Dg)| is Riemann-integrable on U.



13.

14.

15.

16.

Then

/(U)f(xl,mxn)dwl---dwn = /Ufog(yl,---yn)ldet(Dg)(yl,--~yn)\dy1--~dyn-
g

Now here comes the exercise:

Prove the above statement using the change of variable formula stated during the
lecture and the Sard’s theorem which states:

If U CR"™is an open set and g : U — R" is a C'-function. Let
B ={z €U :det(Dg(z)) = 0}.

Then g(B) has n-dimensional measure zero.

If you are interesting in the proof of Sard’s theorem, have a look at Spivak, page 72,
Theorem 3.14.

Let € be the subset of {(x,y,2) € R*: 2 >0,y > 0,2 > 0} which is bounded below
by the paraboloid z = 22 + y? and above by the plane z = 4. Evaluate fQ xdrdydz
by using cylindrical co-ordinates.

Compute the volume of the closed 3-dimensional ball of radius r centered at the
origin using spherical change of co-ordinates.

Suppose M is a k manifold in R™ and p € M. Then prove that p belongs to the image
of some parametrized k-surface in R™. Observe that this implies that any manifold
can be covered by images of parametrized k-surfaces in R”™.

This exercise gives some examples of parametrized n-surfaces in R"*1. In each case,
prove that the example is indeed a parametrized surface. Moreover, compute the
coordinate vector fields and the orientation vector fields along the parametrization.
Finally, compute the volume of the parametrized surface.

(a) Let a,b be two real numbers such that a < b. Define h : [0,1] — R? by h(t) =
((1 = t)b+ ta,0). Note that h(0) = b and h(1) = a.

(b) Let a,b be two real numbers such that a < b. Now define h : [0,1] — R? by
h(t) = ((1 —t)a +tb,0). Here, h(0) = a and h(1) = b.
Thus, the same set can have more than one parametrizations. Also note that

in this new parametrization, the orientation vector field points in the opposite
direction to the orientation vector field in part a.

(c) Consider the function
g: (0, g) — R2

defined as g(z) = (cosz,sinx).



17.

18.

19.

20.

(d) Consider the function
g:{(r,@):0<r<R,0<9<g}—>R3

is defined as g(r,0) = (r cos 6, rsin6,0).
(e) Let
Q:{(e,z):0<9<g, -M<z< M}

and let ¥ : Q — R? by
¥(0,2) = (Rcosf, Rsind, z)

for some R > 0.
(f) Let
Q:{(r,0,¢):0<r<R,O<9<g, o<¢<g}

for some R > 0 and define ¢ : Q — R* by
Y(r,0,¢) = (rcosfsin ¢, rsinfsin ¢, r cos ¢, 0).

Suppose f is a real valued smooth function on an open region U in R™. If ¢ : U —
Rt is defined as

¢<u17uQ’ e un) — (ul’ e U/T“ f<u17 P un))7
then prove that (U, ¢) is a parametrized n-surface in R"*1,

Suppose 7 : (a,b) — R? be a parametrized 1-surface in R%. Prove that

b
vol(y(a, b)) = / Iy ()]t

LetU:{(O,gb)ER2:0<9<g,0<¢<%} and ¥ : U — R? be defined as
(0, ¢) = (rcosfsin ¢, rsinfsin ¢, r cos ¢).

(a) Compute the volume of this parametrized surface.

(b) Does the value of the integral remind you of something? What is the image of

W7

Let (U,) be a parametrized n-surface in R"*! and Xj,--- X,, be the co-ordinate
vector fields along v while N will denote the orientation vector field along .

Fori,j=1,2,---n, g;j : U — R be the functions defined as

gzj(ul,un) =< X’i(ulv"’un>7Xj(u17' . un) > .

4



Define g : U — M, (R) by the formula

gua, - un) = (gi(ur, -+ un))ij-

Prove that

vol(¥(U)) = /U(detg(ul, cup))2duy - duy.

( Hint: We indicate the hint for a parametrized 2-surface in R3. The general case
follows in the same way.

X1 (p) Xi1(p) Xi(p)\ '
(det (X2(P)) )? = det (X2(P)) x det (Xz(P)>
N(p) N(p)



Assignment 8

1. If V is a vector space of dimension n, then prove that A¥(V) =0 if & > n.

2. (a) Prove that if w is a k-form on an open subset U, k being odd, then w A w = 0.

(b) Suppose the coordinates in R* are given by x1,xa,y1,%2. Consider the 2 form
in R* defined by
w = d(z1) Nd(y1) + d(z2) A d(y2).

Then prove that
wAw=2d(z1) ANd(y1) Ad(x2) Ad(y2)
and hence w A w # 0.

3. Compute the exterior derivative of the following differential forms:

(a) w = e"dx considered as a one-form in R2.
(b) w = 22dx + x?dy + y*dz considered as a one form in R3.

(¢) w = x1w2dx3 A dry considered as a two-form in R*.
4. Compute the pullback g*w for the following examples:

(a) g(u,v) = (cosu,sinu,v) and w = zdz + xdy + ydz.

(b) g being the spherical co-ordinate map from (0, ) x (0,27) x (0,7) to R and
w=dx Ndy ANdz.

5. Suppose U, V,W are open sets in R” R™ and RP respectively. If f: U — V and
g : V — W are smooth functions, then prove that

(go f)'w=(f"og")w.

6. Prove that if U is an open subset of R™, then dx1 AdzsA- - - dx,, is a nowhere vanishing
form on U.

7. Let U be an open set in R™. Suppose w : U — UueyA¥(T,(U)) is a map such
that w(p) € A*(T,(U)) for all p € U. Prove that w € QF(U) if and only if for all
X1, X9, - X € :{(U), the map

WXy 1 U = R, wixyx, (&) = 0(@) (X1 (@), Xa (@), - X))

is C°°.



8. Suppose 7 : [a,b] — R™ defines a parametrized 1-surface in R™ and let v = (71, - - Yn).

Let w =Y, fidz; is a one-form on R™.

(a) Prove that v*(dx;) = ~;dt, where dt denotes the generating one-form on R.
(b) Prove that

/v([a,b]) “T ;/a (fi o) ()i (t)dt.

9. Let C be the line segment joining (1,—1,0) and (2,2,2) in R? and let w = xydz.
Give a suitable parametrization of C' and calculate fcw.

10. Consider the rectangle R = [a, b] X [¢, d]. Endow R with the anti-clockwise parametriza-

tion, i.e,
() = m(), 0<t<1
= ’72(25), 1<t <2
= y(t), 2<t<3
- 74(75)’ 3<t< 4’
where
() = (1 —=t)a+tdb,c)
72(t) = (b,(2—t)c+ (t—1)d)
13(t) = (B—=1)b+ (t —2)a,d)
v(t) = (a,(4—=t)d+ (t —3)c).

(a) Compute [, fdx + gdy.
(b) Compute [ dw.
(c) Prove the Green’s theorem for rectangles:

Let R C R? be a 2-dimensional rectangle and let w € Q!(U), where U is an
open set in R? containing R. -Then

/ w:/dw,
OR R

where OR is given the anticlockwise parametrization.

(d) Prove that the Green’s theorem fails if the boundary OR is given a clockwise
parametrization.

11. Consider the trapezium with vertices (a,0), (b,0), (e, f), (¢,d). . Here, b > a, e > a,
f>0,c<bandd>0.

Moreover, let R = [0,1] x [0, 1].



(a) Prove that the following equations define a parametrization
V=7 UypUy U7 : OR — R?

of the boundary of the trapezium.

1(0) = (1-1)(a0) +1(b,0)

1o(11) = (1-1)(5,0) + tc,d)
s —61) = (1= 0)(e,d) +He, /)
v4(0,1—¢t) = (1—t)(e, f)+t(a,0).

(b) Prove that the interior of R parametrizes the interior of the trapezium by the
equation
Y(z,y) = (1 - 2)74(0,y) + 272(1, y).

(c) Using the Green’s theorem for the rectangle, prove the Green’s theorem for the
trapezium.

(d) Prove Green’s theorem for the closed half-disk {(z,y) € R? : z € [-1,1],0 <

y<v1-a?}
12. ( Gradient, divergence and curl )

Suppose U is an open set in R3.

a) If X = 3: f;-2- is a vector field, then the work form associated to X is the
i=1J9gx;
one-form Wx on U defined by

WX(p)(U) = <Xp7 'U) )

where v € T,U and the inner product is taken in the vector space T,,(U).
Prove that if X = Z?:l fia%iv then

3
Wx = Z fidx;.
=1

(b) The flux form ®x associated to a vector field X on U is the two-form on U
defined by
Dx(p)(v,w) = det(Xp, v, w)"
for all v,w € T,(U).
Here, (X,,v,w)" is the transpose of the matrix (X,, v, w).
Prove that if if X =), fiz2-, then

Ox = frdy Ndz + fadz Adx + fsdx A dy.



(c) If f € C®(U) (i, fisascalar field ), then the mass form Mj is the three-form

defined by
Mg (p)(v1,va,v3) = f(p)det(vi,va, v3)"

for all vy, va, vz in T(U).
Prove that My = fdx Ady A dz.
(d) Suppose X,Y € X(U), then prove the following equations:

i. Let X x Y be the vector field on U defined by
(X xY)(p) = Xp XYy,

where x denotes the cross-product of two vectors in R>.

Prove that
Py = Wx AWy

ii. Let X -Y be scalar field on U defined by
(X.Y)(p) = (Xp,Yp)

where the inner product has been taken in the vector space T},(U).

Prove that
Mxy =Wx AN®y =Wy APx.

(e) Now let us recall the definitions of gradient, curl and divergence.

i. The gradient of a scalar field f is defined to be the vector field
S af 9

ii. The curl of a vector field X = $7° fia%i is defined to be the vector field

_Ofs Ofs, @ Ofh Ofs. 0 _ Ofs Ofi. D
VXX = (8$2 8x3 8331 + 8%3 8%1 8%2 axl 81‘2 81‘3.

iii. The divergence of a vector-field X == $* fia%i’ denoted by div(X) is the
scalar field on U defined by

ofi  0fy  Ofs
X ="+ == 4 ==,
v 8.731 + 8332 + (9:133

Now, for f € C*(U) ( i.e, a scalar field on U ) and a vector field X on U, prove
that

df = Wy, dWx = ®yyxx, dPx = My x.

Observe that these three equations taken together prove that the diagram in
the attached file is commutative.



(f)

(g)

Using the commutativity of the above diagram and the relation d> = 0, prove
that
VxVf=0=div(V x X).

If f is a scalar field on U, then the Laplacian of f is defined as Af := divVf.

Prove that ;
0% f
Af = —.
/ ; 335@2

13. Suppose (U, 1) is a parametrized n-surface in R"*!, where U is an open region and
let N be the orientation vector field along v introduced in Assignment 6. Recall
that we defined Vol(¢(U)) to be the quantity

/ det(Xl(Ul, T un)7X2(u17 T un)7 e 7Xn(ul7 T un)7 N(U’l? T un))tdul e du?’L'
U

(a)
(b)

()

(1)

Prove that Vol(y(U)) is positive.
Prove that

Vol(i(U)) = /U (det(gur, - wn)) s - - dun,

where g(uq,---uy,) is the M, (R)-valued function on U whose (i,7)-th entry is
(Xi(ut, - up)s Xjur, - un)) .

Suppose (U, 1) is a local parametrization of an oriented n-manifold (M,w) in
R™*! where U is an open region. Observe that ¢)(U) is also a manifold. Prove
that Vol((U)) as defined by equation (1) is equal to [;; ¥*(dvolas) if (U, ) is
positively oriented. Thus, the two definitions of volume agree on the manifold
$(U).

In Assignment 7, we computed vol(¢(U)), where
U:{(0,¢)€R2:0<9<%,0<¢<§} and 1 : U — R? be defined as

Y(0,¢) = (r cos @ sin ¢, rsin O sin ¢, r cos ¢).

Now here is a follow up problem:

Construct an orientation form 7 on S? such that vol(y(U)) is the volume of the
manifold (¢(U),n).

Suppose 7 : [a,b] — R? define a parametrized 1-surface. Prove that

b
vol(y([a, b]) = / Iy (&)t

14. Prove that a regular n-level surface in R** is orientable. compute the volume form
corresponding to the orientation form you have constructed.



15. Suppose f is a real valued smooth function on an open set U in R™. If ¢ : U — R**!
is defined as

¢(U1,’LL2, o un) = (Ul, cr o Up, f(uly o un))7
then prove that

(a) (U, ¢, Graph(f)) is a parametrized n-surface in R" 1.
(b) Show that the orientation vector field along ¢ is given by

of of
v o T Y

L+ 30, (22

(c) Compute the volume of Graph(f).

16. Let (U,%) be a parametrized 2-surface in R? and let X1, X5 denote the coordinate
vector fields along 1. We define three functions F, F,G on U as

E=(X1,X1),G= (X2, X9),F = (X1,Xy),

i'e) for pe U, E(p) = <X1(p)7Xl(p)>T¢(p)(1j)(U)) , ete.
Then prove that

Vol(z/J(U))—/U\/EG(ul,uQ)—F2(u1,u2)du1duQ.

17. If S is a regular n-level surface with boundary in R”*!, then prove that 9;/9 is a
disjoint union of regular n — 1 level surfaces in R*+1.

18. Consider the following subsets of Euclidean spaces:

(a) The closed unit disk in R.

(b) The set B(a,r):={z € R": ||z —al <r}.

(c) The closed annulus in R? i.e, the set {(z,y) € R? : a < 2% +5? < b}, where a,b
are two positive real numbers.

Then show that all these subsets have the following property ( for a certain choice
of n in each of the cases ), which we shall call Property x for the moment:

S is a compact regular n-surface with boundary in R™' of the form f~1(0) N
(ME_ g, (=00, cil) with f: R™™ — R defined by f(x1,- -+, Tn11) = Tni1.

Note that if S satisfies property *, then S C R™ x {0}.

In each of the above mentioned examples, identify the manifold boundaries.

19. The following observations are needed in the proof of the divergence theorem:



20.

(a)

(b)

Suppose V is a vector space of dimension n and {ej,---e,} is an orthonormal
basis of V. If X, Y € A™(V) are such that X(ej,---e,) = Y(e1,---e,), then
prove that X =Y as elements of A"(V).

Suppose M is a compact k-manifold in R™ and w,n are k-forms on M.

Recall that this means that there exists an open set W in R™ which contains
M and that w,n € QF(W).

Suppose for all z € M and for all {vy,---v,} in T, M, we have

w(@)(v1,---vn) = () (01, vp).

Prove that [, w= [}, 7.

If S has the property * as in the previous problem, and X is a vector field
defined on an open subset V of R™ containing S, then prove that X can be

extended to a smooth vector field on the set V' x R which is an open set in
R+,

Suppose S has the property * as in the previous problem. If xy,---xn, Tpi1
denotes the co-ordinates on R”*! and the orientation form on R” is defined to
be dxy A dxo A --- A dx,, then prove that

dvolg = dxq Adxs - - - dx,.

Suppose S has the property * as in the previous problem so that we have
dvolg = dx1 Adzs - - - A dz,. Prove that

ip o (dvolg) = (=1) fidwy Adzg A+ Aduj A+ Aday,

]B:L'J

where the symbol g;y means that dz; is not present in the term.

Let V be a 3-dimensional inner product space. Fix two elements v,w in V.
Then prove that there exists a unique vector g(v,w) in V such that for all z in
V, the following equation holds:

<g(v,w),z> = det(v,w,z)t.
( Hint: Look at the map
¢:V =R, ¢(2) = det(v,w, 2)".

Observe that ¢ is a linear functional on V. )

Prove that g(v,w) coincides with the cross-product v x w. From now on, we
will drop the symbol g(v,w) and instead continue to denote it as v x w.

From the above-made definition of v x w, prove that det(v,w,v x w) is always
non-negative. Moreover, prove that v x w is orthogonal to both v and w.



(d) Now suppose that S is a compact connected regular 2-level surface in R and
let n be a nowhere vanishing normal vector field on S. If we orient S by the
vector field n, then prove that for all z € S and for all v,w € TS,

dvol(z) (v, w) = det (v, w, n(x))". (2)

(e) Let S be as above. Prove that for all z in S and for all v,w € T,S and for all
z € T,R3, the following equation holds:

(z,n(z)) dvolg(x)(v,w) = (z,v X w) . (3)
( Hint: Use the equation (2). Remember that v x w is a scalar multiple of
n(z).)
21. Let S be a compact connected regular 2-level surface with boundary in R3. Let

0 0
n=n1z—+nN27 +N35-

ox oy 0z
be a unit normal orientation vector field on S.
(a) Prove that the volume form ( should be called the area-form in this case ) is
given by
dvolg = nidy A dz + nadz A dz + n3dx A dy.

( Hint: Let w = n1dy A dz + nadz A dx + nzdx A dy. Observe that it is enough
: 0 0 o 0 g 0
to prove that if (v, w) = (77, 5;) or (75, 5;) or (37, 57), then

w(z)(v,w) = dvolg(x) (v, w).

)

(b) Moreover, prove that the following equations hold:
nidvolg = dy A dz, nadvolg = dz A dz, ngdvolg = dx A dy. (4)

( Hint: Use (3) with suitable choices of z. Remember that dz A dy(v, w) is the
determinant of a 2 x 2 minor of a 2 x 3 matrix. )

22. Tho goal of this exercise is to derive the classical version of the Stokes’ formula from
the version of the Stokes theorem presented during the lecture.

Let S be a compact connected oriented regular level 2-surface with boundary in R3.
Let X be a vector field on an open set V’ in R? such that S C V’. Let V x X denote
curl(X), N the unit normal vector on S consistent with the orientation and 7" be
the unique tangent vector field on dpsS with dvoly,,s(T") = 1.



Then the classical Stokes’ formula states that

/ (V % X, N) dvols = / (X,T) dvoly, 5. (5)
S oS

The classical Stokes’ formula follows by applying the Stokes’ theorem to the work-
form W associated to the vector field X.

(a) Prove that
/dWX = / (V x X, N)dvolg.
S S
( Hint: Use the equation (4) from the previous problem. )
(b) Prove that
WX = / <X, T> dVOlaMs.
om S S
( Hint: Remember that 0575 is a one-manifold. If (U, ) is a positively oriented

local parametrization of dps.S, then it is enough to prove that for all smooth
function f such that 0 < f < 1, we have

/ foyy (Wx) = / foy(X,T)o~~y"(dvoly,,s)-
U U

)

(¢c) Now combine the above two statements along with the Stokes theorem to derive
the classical Stokes’ formula (5).

23. Compute the flux of the vector field

0 0
X = 2222 2 YV 2 ¢
Tz 8$+y:c ay—i—zy g

outward across the surface 22 + 3% + 22 = a?.

You can use the usual spherical co-ordinate parametrization ¢ : (0, 7) x (0, 27) — R3
is defined by
Y(¢,0) = (asin @ cos @, asin ¢sin b, acos @).

24. Consider the two-form w on R? defined by:
w = zzdy A dz + yzdz A de + (2* + y?)dz A dy.
We define a subset Q of the paraboloid z = 4 — 22 — y? as follows:
Q={(z,y,2) eR3: z=4—2% — 32 2> 0}.

We declare the orientation on {2 to be the one which corresponds to the normal
vector field 233% + Zya% + %. Compute [, w.



