$24/07/2029$ $Lecture-1)$ * Groals of the course :-1 Define and study continuity and differentiability of Functions $f:U\subseteq lR^M\longrightarrow RN(U\setminus OP^{en})$ 2 Mean Value Theorem for differentiable function. 3 Define higher der values and deduce a Taylor's for formula. 4 we will develop Riemann integration theory for Some functions f: X C (pm, For a particular class of sets : X. 5 Prove analogues of wruneed a The Fundamental Theorem of Calculas theory) Ethe Integration by parts for formula.
of differential (follows from divergence thin) if (Stones Thm) * Key Difference between one and sevenal variables! Recall! A function R & F! R > R is called continuor Continuous at no ER FF $um_{h\rightarrow0+}f(x_{0}+h)=f(x_{0})=lim_{h\rightarrow0+}f(x_{0}-h)$ Def) For $x\in \mathbb{R}^n$, define $||x||_2 = (x_1^2 + 4x_1^2)^{\frac{1}{2}}$ If $x = (x_{11}x_{21} - 121n)$ Let $U\subseteq \mathbb{R}^N$ be open, Then $f:U\rightarrow \mathbb{R}^m$ is sould to be come be continuous at 20 If given E20, 3820 s_{ξ} . $1|x - x_{0}||_{2} \leq s \Rightarrow$ $||f(x) - f(x_{0})||_{2} \leq \epsilon$ [prop] f: UCIRⁿ-> 12^m is cone at to Iff forall sequence fangri se an 720, we nave $lm \n\in f(xn) = f(xo)$ 17220 $\frac{fEg}{x^{2}+1}f:1R^{2}\rightarrow1R$, $f(x_{1}y)=\frac{2xy}{x^{2}+y^{2}}$ if $(x_{1}y)\neq(y_{1}y)$ $F(my)=(0,0)$

接 Is f cont at (0,0)? If (x(y) E X axis or & Yaxis, f(x(y)=0 of (x(y) >(a) Set Mowever, look at { (2m mm)) xm->0} (m fo) then, $P'(m \nleftrightarrow P(m) m > n) = \frac{m}{1 + m^2} \neq 0$ So, f is not cont at (0,0). [Def] Let Is P < 00. Define 11211p = (2 |xil)) P
We say that f is cont at no Free (7) if VE20 $38>0$ st. $11x$ -nollp < 8 => 11 f(x)-f(x))1p < 6 Question] Are definitions for continuity for p=2 and any p are equivalent? Normal Linear spaces '-Def A real NLS is a par (V, 11.11) where V is a neal vector space and $||\cdot||:V \rightarrow |P|$ is a function St. 1 1/21/20 HxEV $2 \text{ } |x||=0 \text{ iff } x=0$ 3 Harll=1all1211 tae R, trev. 9 $11x+y11 \leq ||x||+||y||$ $\forall x,y \in V$. Jonop If (VIII.11) is a NLS and we define divoron by $d(x_1 y) = 1 |x - y||$, then $(y_1 d)$ is a methre Spore. proof: [easy]. Moral: If CV, II. IIv) and (W, II. IIW) are NLS and f: V-> W is a function, can make gense of continuity. (Remark / Threughout the course, we will deal cutte neal NLS only. Eg] (NLS): O'Let 1 < p & < 00 and coe we define $UxI(p = (\sum_{i=1}^{pn} |(x_i||P))^2P,$ Then

$$
(PR^{n}, ||\cdot ||p) \text{ is a NLS.}
$$
\n② Define ||x||00 = max {x27, Then (PRⁿ, ||\cdot ||\infty) is a
\nNLS.
\n③ (Mm(R), ||\cdot ||p), where ||A||_p := $\left(\sum_{i,j=1}^{n} |a_{ij}|^{2}\right)^{1/2}$
\n $\left(\frac{P}{N}\right) = \left(\sum_{i,j=1}^{n} |a_{ij}|^{2}\right)^{1/2}$
\n $\left(\frac{P}{N}\right) = \left(\frac{P}{N^{2}}\right) = \frac{P}{N^{2}}$
\n② (Mn (IR), ||\cdot ||op), where ||A||_{op} = sup ||Ax||₂
\n $\left(\frac{P}{N}\right) = \left(\frac{P}{N^{2}}\right) = \frac{P}{N^{2}}$
\n $\left(\frac{P}{N}\right) = \frac{P}{N^{2}}$
\n $\left(\frac{P}{N}\right)$

[EX] Check that $UCA(1_{OP} = |C| ||A|/_{OP}$ Lee MIBEMU (IR) Now, MA+Bllop = $80P$ II A $x \in B$ x II $||x||_2 \leq |$ \leq Sup $||Ax||_2 + 8up ||Bx||_2 = ||A||_{op} + ||B||_{op}$
 $||x||_2 \leq ||B||_{op}$ Dener Inner product spaces !-Det is unown. /prep] If (V, <,>) is an IPS, there and we define $||x|| := \langle x, x \rangle^{1/2}$, then (V) II-II) is a NZS. proof: [EX] (needs Cavely schwarz inequality) (three (Cauchy Schwarz Includity): If (V, 2, >) is an inner preduct sperce, then. $\forall x,y\in V, |\langle x,y\rangle| \leq ||x|| \cdot ||y||$. (*) proof: we have 11.9-121/270 +21.y. 1) Equility helds Ift y= >x. If y= An, then check that (*) is an equality. Otherwise, 119112-28<21197.+ 2211211270 > 0 to the discriminant is negotine, ve none $42n_1y)^2 \le 4 ||x||^2 ||y||^2$ Sorry Charles $\Rightarrow | \langle x_i y \rangle | \leq ||x|| ||y||.$ Prop If & (VI <1>) is a neal IPS, tren, $\langle 2u \rangle = ||x+y||^2 - ||x-y||^2$ Thus, the inner product can be recovered from the norm.

 $[30 \ m \neq 0.$, $(M \ge 0)$ Let y EIRM, y = 0 Then $\frac{y}{11313}$ ES. $1.11 \frac{y}{11y1z}$ 1/2 m => [11911 => m119112] So, (Donel) 25/07/2024 Lecture-2 Warm up 1) Prove that any finite dimensional Nerme NLS is camp comprete. 2) suppose {xri}n is a seqn in a finite dimension NLS st. Il 24/1<00. Then the sean 8 82 = Ink converges to an element in V. we arrêl denote this element by Enge. Hirt! Use compreheness. 每 3) suppose v/w are FD NLS and TE L(VW), Preve fort T is cent. 4) let A CIRM, TFAE:-@ A is open 1 ArEA, Jopen boll Bx St. 2 CBn and Bx CA @ HMFA, Forzen rectaingte Rzst. n E Rx st. rif Ru and Rn EA (over rectangue = ols the Form (aubu) & Cazibil 8 - 2 (Un, bn) B cet vise fd NLS. Let $a \in V$ and $\alpha \in \mathbb{R}$, $\alpha \neq 0$. Tron the maps $Tx:V\rightarrow V$ and $D:V\rightarrow V$ $Tr(U)=U+X$ $D(U)=AU$ are remernorphism Inparticular, Tr and Da are open maps. Proot: 1 suppose, {nn} is a cavely seqn a (VIII.11) curt U.11. Fils an isomorphone V -> 12h: Then using the Bonnemphorm, can define 11-112 or V. Honge

$$
\frac{3\pi e^{2}(\mathbb{R}^{2})}{2! \pi e^{2}(\mathbb{R}^{2})} \quad ||U||_{2} = ||TV||_{2} \quad \text{if } U \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2} \text{ and } \mathbb{R}^{2} \text{ is a multiple of } \mathbb{R}^{2}
$$

unit ball at O. with nading 1, and 11.11, 11.112, **I** 111100 α (a) α => \odot 19. otovions. (b) = 10 Assopen und 3070 St.B(210) SA. => x is an int port of A art 11.1100 => $30'$ >0 st. 200 $(200'')$ SA. But # its an open square. Thus, OCPS proved. $O \Rightarrow$ O $(S \times)$ (3) check: (using yespiday's proof for Mn(IR)) $U \tau x \rightharpoonup_{2} S U \tau \rightharpoonup_{E} M x \rightharpoonup_{2}$ $=$ T: (V) $|| \cdot ||_2$ \rightarrow $(W, || \cdot ||_2)$ is cont $117x - Ty112 \leq ||T||_F ||x-y||_2 \left(\cos \tau \cos \theta\right)$ $\begin{align} &\exists \begin{array}{l} c_{1, d_1 > 0} \\ c_1 \Vert \Psi \Vert_2 \leq \Vert \Psi \Vert_2 \leq \Vert \Psi \Vert_2 \leq c_2 \Vert \Psi \Vert_2 \end{array} \end{align}$ $dy ||\omega ||_2 \leq |w||_W \leq d\overline{z}||w||_2$ $\forall v \in W$. 12 $117x - 7y11w \leq 2217x - 7y112$ $S d2llTll \implies ||x-y||_2$ S dz ll TU \approx N^2 -5 Continuers. RENAVA (EX) f: (X(d1)) (Y,d2) meture Et a hernearerprism => $f(U)$ is open $M Y U$ open $M X$. $|l(Tn(0)-Tn(0s))| = |(V-NI)| \Rightarrow Tx \text{ is cont.}$ Observe, $T_{\tilde{u}}^T = T_{-n} \Rightarrow T_{\tilde{u}}^T$ $\#$ is cost. Same for Da.

open sets moun(IR) (wrt any norm) Ithm] If X e Mn (IR), then any open set containing X is of the form X + U outrose Uvs an open set in Mn(IR) eenfaming Zero. 2010 $=$ $5x+u|ueu|$ $\overbrace{p_{\text{max}}} := T_X : N_n(|R|) \rightarrow N_n(|R|)$ is an open map $X + U = T_X(U)$ OS TX is open, X+0 is open. $X = X + 0 \Rightarrow X \in X + U$ so, (x+U) vs open set containing X. let V be an open set containing X. $V = (\sqrt{1-X}) + (1-X)$ Non, V-X is open store, V-X = Tx (V) so, V is og ob the form (X+U) centamingX. [Thing GIL (MIR) is open in Mn (R) proof: we will work with the openertor norm. Let $A \in GL(N_1\mathbb{R})$. Hs enough to prove, I w-open in Mn (112) sq A & W E GL (M1R). Where OEW. $n[Claim]$ $A+B(O,\frac{1}{||A^{-1}||_{op}}) \subseteq GL(n,1R)$ Its enough to prove the claim. Spreaf :- suppose HEMn(IR) St. Il Hllop (1) Thop Observe Σ (-1)K (A"H)K is an element of Min (R). $\sum_{k\ge0}U(t)k(\pi^1H)K\|_{op}\le\sum_{k\ge0}UA^{1}H\|_{op}^{k}<\infty$
Since, $\|A^{1}HH\|_{op}^{k}<\infty$

Now,
$$
||(E+E)^{-1}(H)||
$$

\n $= ||(A^{-1}H)^{-1}||$
\n $\Rightarrow (I+A^{-1}H)^{-1} = \sum_{k=0}^{\infty} (-1)^{k} (A^{-1}H)^{k} - 0$
\n $= [[(A^{-1}H)^{-1}] = \sum_{k=0}^{\infty} (-1)^{k} (A^{-1}H)^{k} - 0$
\n $= \sum_{k=0}^{\infty} (-1)^{k} (A^{-1}H)^{k} + 0$
\n $= \sum_{k=0}^{\infty} (-1)^{k} (A^{-1}H)^{k} + 0$
\n $= \sum_{k=0}^{\infty} (-1)^{k} (A^{-1}H)^{k} + 0$
\n $= \sum_{k=0}^{\infty} A^{-1}A^{-1}A^{-1} + 0$
\n $= \sum_{k=0}^{\infty} A^{-1}A^{-1}A^{-1}A^{-1} + 0$
\n $= \$

Conversely, support,
$$
f_{11}f_{21-1}f_{11}
$$
 are continuous.
\nNow, $||f(x)-f(x)||_2^2 = \sum_{i=1}^{n} |f_i^2(x)-f_i^2(x)|^2$
\nAs f_i is l and l is l if $l(x)-y| < \delta$;
\n \Rightarrow) $|f_i^2(x)-f_i^2(y)| < \epsilon$
\nSo, if $||x-y|| < m$ is l and $\frac{1}{2}$
\n \Rightarrow $|f_i^2(x)-f_i^2(y)| < \epsilon$
\nSo, if $||x-y|| < m$ is l and $\frac{1}{2}$
\n \Rightarrow $\frac{1}{2}$ $\frac{1}{2}$
\n $\frac{$

Differentiability of functions of several variables :-Recall f: U CIR WR is said to be differentiable at a CO Iff \exists a real number to denoted by $f'(\alpha)$ st. lm | $f(a+h) - f(a) - f'(a) \cdot h| = 0$ $h\rightarrow 0$ $[h]$ Notr: Let us denote the element in $f(R/R)$ correspending to f'(a) by Df(a). Thus $Df(\alpha)(\lambda) = \lambda f'(\alpha)$ [prop] Let USIR be open. F: UGR-OR is differentiable at a EU if $\exists a$ Conear map, denoted by Df(a) from R to R St. $Um [f(a+b)-f(a)-Df(a)(n)] = 0$ $h - 20$ Def Let USIR" be open. Then f: # USIR" - IRM is said to be differentiable at a EU if I a Linear map $DF(a): IP^n \rightarrow IR^m$ st. $\lim_{\Delta\to 0} \frac{1 f(a+h) - f(a)}{1} - Pf(a)(h)$ $h \rightarrow 0$ \mathcal{D} $II.411$ Remary: 1 Unless mentioned otherwise, 11.11 will denote the Euclidean norm. 2 f(a+h), f(a) E 12m, As 4 EIRM, DF(a) (4) ETRM Thus, flath) - f(a) - Dfea) (h) ERM Ex 1 D suppose f: UCRn -> 1Rm is diff at a in the sense of 1. If TE L(RM, RM) is st. lm Il flath $- f(\alpha) - T(h) || = 0$, fl.en $T = Df(\alpha)$ $M \rightarrow 0$ - II M L'e-the desinative is unique. 2) Let 11.11 and 11.11 be norms on RM and RM. If. f: USR" -> Rm is differen in the sense of 1),

Then,
$$
Im_{1} \mu f(a+h) - f(a) - Df(a) [u] ||^H = 0
$$

\n(Use that any two names or an finite dimension. N_{2,8}
\nare equivalent)
\n
$$
\frac{d}{dt} \begin{bmatrix} \frac{F}{G} \\ \frac{F}{G} \end{bmatrix}
$$
 Consider the function $f: Nn(R) \rightarrow Nn(R)$
\n $f(0,1) = Nn(R)$
\n $f(1,1) = 0$
\n $f(2,1) = A^2$
\nThen $f: 3$ differentiable and $Df(A)(X) = AX + XA$
\n \rightarrow Observe T: $Mn(R) \rightarrow Mn(R)$
\n $T(X) = AX + XA$
\n $\begin{bmatrix} \frac{1}{11} + (A+H) - f(A) - T(H) \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
\n $f(3) = AX + XA$
\n $\begin{bmatrix} \frac{1}{11} + 1 \\ \frac{1}{11} + 1 \end{bmatrix}$
\n $f(4) = 0$
\n $f(5) = 0$
\n $f(6) = 0$
\n $f(7) = 0$
\n $f(8) = 0$
\n $f(1) = 0$
\n $f(1)$

$$
\leq E \parallel h \parallel + \parallel Df(\alpha) \parallel op \text{ Id} \parallel \text{ using the following Eq.}
$$
\n
$$
\sqrt{E} = T : (V, \parallel \cdot \parallel) \rightarrow (V, \parallel \cdot \parallel) \text{ then } (V, \alpha) \text{ find}
$$
\n
$$
= (E + \parallel Df(\alpha) \parallel op) \parallel h \parallel \text{ when } (V, \alpha) \text{ find}
$$
\n
$$
= (E + \parallel Df(\alpha) \parallel op) \parallel h \parallel \text{ when } |T(\alpha) \text{ if } \alpha \text{ and } |T(\alpha) \text{ if } \alpha \text{ and } |T(\alpha) \text{ if } |T(\alpha) \text
$$

Proof:	Choose in the image
To prove: $38>0$ of: $11h1166$	
⇒ $119.4(a+h) - 96.6(a) - 99.6(b) - 09.6(a) (4h)1$	
10	11
11	12
12	13
13	14
14	15
15	16
16	17
17	18
19	19
10	19
10	19
10	19
10	19
10	19
10	19
10	19
10	19
10	19
10	19
11	19
10	19
11	19
10	19
11	19
10	19
11	19
10	19
11	19

T(nm)0*6*4:0 ≤ Rⁿ−9R^m, (U ≤ Rⁿ−9R^m)
\nLet us write f = {f₁f₂, ..., fm
\nTuen, f is diff at a ∈ U ff f₁f₁, ..., fm are differ at
\na and moreover,
\n
$$
0.01
$$
 d m (10)(8) = 0
\n 0.01 d m (10)(8) = 0
\n 0.01 eⁿ (10)(8) = 0
\n 0.01 eⁿ

= $\sum_{i=1}^{n} (f_i \cdot (a+n) - f_i \cdot (a) - p f_i \cdot (a) (n)) e_i$ $So, 11 f(a+n) - f(n) - T(n)11$ $S \sum_{i=1}^{n} ||f_{i}(a+h) - f_{i}(a) - D f_{i}(a)(h) ||f||^{2}$ Done! Since, all fi are tift at a. CD Cemplete the [Con] suppose f.g: UCIRn, DR are diff at a, Tue^n , $(D_{D(f+g)(\alpha)}=Df(\alpha)+Dg(\alpha)$ $D(f.g)(a) = g(a)Df(a) + f(a)Dg(a)$ (3) If $g(\alpha) \neq 0$, then $D(f)(\alpha) = \frac{g(\alpha)Df(\alpha)}{f(\alpha)}$ $- f(\alpha) D g(\alpha)$ $\n *proof:*\n EX \n $Hint: \n *0* $4 + 8 = So(4, 9)$ \n$$ $\theta(a)^2$ $Qf-g = p(f, g)$

Definition: Let,
$$
f e_0
$$
 and $f e_0$ from which back of R^n . The *initial* devivative $D_{e,f}(e)$, if the directional clockwise exists.
\nNotation: $f: U \rightarrow R$, then $D_{e,f}(x) =: \frac{\partial f}{\partial t}$ (x)
\n \exists Theorem: Suppose, $f: U \rightarrow R^m$ be differ at $a \in U$. Let, $f \in (f_0, ..., f_m)$. $W \cdot H$ be used best of R^m , R^m (b) is given by,
\n $\begin{pmatrix} \frac{\partial f_1}{\partial t}(\alpha) & \frac{\partial f_1}{\partial t}(\alpha) & ... \\ \frac{\partial f_m}{\partial x}(\alpha) & \frac{\partial f_m}{\partial x}(\alpha) & ... \\ \frac{\partial f_m}{\partial x}(\alpha) & \frac{\partial f_m}{\partial x}(\alpha) & ... \end{pmatrix}$
\n \Rightarrow $\begin{pmatrix} \frac{\partial f_1}{\partial t}(\alpha) & \frac{\partial f_m}{\partial t}(\alpha) & ... \\ \frac{\partial f_m}{\partial x}(\alpha) & \frac{\partial f_m}{\partial x}(\alpha) & ... \end{pmatrix}$
\n \Rightarrow $\begin{pmatrix} \frac{\partial f_m}{\partial t}(\alpha) & \frac{\partial f_m}{\partial t}(\alpha) & ... \\ \frac{\partial f_m}{\partial t}(\alpha) & \frac{\partial f_m}{\partial t}(\alpha) & ... \end{pmatrix}$
\n \Rightarrow $\begin{pmatrix} \frac{\partial f_m}{\partial t}(\alpha) & \frac{\partial f_m}{\partial t}(\alpha) & \frac{\partial f_m}{\partial t}(\alpha) & \frac{\partial f_m}{\partial t}(\alpha) & ... \\ \frac{\partial f_m}{\partial t}(\alpha) & \frac{\partial f_m}{\partial t}(\alpha) & \frac{\partial f_m}{\partial t}(\alpha) & ... \end{pmatrix}$
\n \Rightarrow $\begin{pmatrix} \frac{\partial f_m}{\partial t}(\alpha) & \frac{\partial f_m}{\partial t}(\alpha) & \frac{\partial f_m}{\partial t}(\alpha) & \frac{\partial f_m}{\partial t}(\alpha) & ... & \frac{\partial f_m}{\partial t}(\alpha) & ... \\ \frac{\partial f_m}{\partial t} & \frac{\partial f_m}{\partial t}(\alpha) & \frac{\partial f_m}{\partial t}(\$

 r partials exists
 $\begin{pmatrix} f: (z+te): \\ -f \end{pmatrix}$ $Proof of claim: \frac{1}{\pi} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (z + i c_i) - f_j(z) = y_i^2$ y= $D_{ej}f(z) = (y_i, ..., y_m)$
 $\leq \sum_{j=1}^m \frac{1}{\pi}$ same stuff = $\int_0^1 \frac{f(x+t e_i)-f(x)}{t} - y \Big|_0^2$ = || f(x+te;) - f(x) - y ||

- continuity of partial (Similar Computation) Γ roof for m=1. f:U^m \rightarrow π , foutial exists and <mark>continuous</mark> \Rightarrow fis C¹. (So trivial!)

S Warm Up

• Suppose V f-d-i-p-s then there is an isomorphism $\vee \rightarrow \vee^* = \mathcal{L}(\vee, \mathbb{R})$. 1) prove that $\forall z \vee \rightarrow \vee^*$ is isometric. $\|\phi_z\|_{op} = \frac{S_{up}}{y*0} \frac{|\langle s, z \rangle|}{\|y\| \|z\|}$. $\|z\| = \|z\|$ 2) Suppose $\oint \in V^* = \mathcal{L}(V, \mathbb{R})$. What is $Y^{-1}(\oint)$? $\{e_1, ..., e_n\} \leftarrow 0 \cdot n \cdot b$ of V then $Y^{-1}(\oint) = \sum_{k=1}^{n} \oint (e_i) e_i$.

§ Maxima - Minima

Theorem: Suppose
$$
f: U \rightarrow \mathbb{R}
$$
, where U is open and f has global maxima/minima at a
\nIf, $\frac{\partial f}{\partial x}$ (a) exists then $\frac{\partial f}{\partial x}$ (a) = 0 $\forall i$. Conversely, f is false.
\nProof. As U is open $\exists e_i$ Such that $\Pi(a_i-e_i, ai+e_i) \subseteq U$. define $q_i: (ai-e_i, ai+e_i) \rightarrow \mathbb{R}$ by.
\nThen q_i has a maxima at ai. q'_i (ai) = 0 but,
\n q'_i (ai) = $\lim_{h \rightarrow 0} f_i(a_i \cdot p_i(a_h)) - f_i(a_i \cdot p_i \cdot p_i) = \frac{\partial f}{\partial x_i}(a_i) = 0$.

Formula for partial derivative. (chain rule)
$$
q_i: U^{n} \rightarrow \mathbb{R}
$$
. Define, $F(x) = f(q_1(x),..., q_m(x))$; $f: U^{m} \rightarrow \mathbb{R}$
then, $\frac{\partial F}{\partial x_i} = \sum_{j=1}^{m} \frac{\partial f}{\partial y_j} \cdot \frac{\partial g_j}{\partial x_i}(a)$
Proto f. Define, $q = (q_1,..., q_m): U \rightarrow \mathbb{R}^m$ then
 $F: U^{n} \xrightarrow{q} \mathbb{R}^m$ $f \rightarrow \mathbb{R}$

By chain rule F is differentiable and DF(a) =
$$
Df(g(a)) \cdot Dg(a)
$$
 $\Rightarrow \frac{\partial F}{\partial x} = \sum_{k=1}^{\infty} \frac{\partial f}{\partial y_k} \frac{\partial g_k}{\partial x_j}$
 $\left(\frac{\partial f}{\partial x_i}\right)_{|x\eta}$ $\left(\frac{\partial f}{\partial y_k}\right)_{|x\eta}$ $\left(\frac{\partial g_k}{\partial x_j}\right)_{m x\eta}$

E·g. Assuming Sútable differentiability
\n
$$
F(x,y) = f(g(x,y), h(x), k(y)) \longrightarrow \frac{\partial F}{\partial x} = \frac{\partial f}{\partial x_1} \cdot \frac{\partial g}{\partial x_2} + \frac{\partial f}{\partial x_2} \cdot \frac{dh}{dx}
$$
\n
$$
\frac{\partial F}{\partial y} = \frac{\partial f}{\partial x_1} \cdot \frac{\partial g}{\partial y} + \frac{\partial f}{\partial x_2} \cdot \frac{dk}{dy}
$$

§ Mean Value Theorem.

Theorem: Let, $U^m \subseteq \mathbb{R}^m$ such that $L_{x,y} \subseteq U$ and $f: U \to \mathbb{R}^n$ be diff. on U, Then for all $a \in \mathbb{R}^m$, $\exists \overline{x}(a) \in L_{x,y}$ Such that $\langle a, f(y) - f(x) \rangle = \langle a, Df(\overline{z}(a)) \cdot (y \cdot x) \rangle$

As $L_{x,y}$ $\subseteq U$, $\exists \delta$ >0 Such that, $\left\{ \xi \, t \, x \cdot (t-t) y : t \in (-\delta, 1+\epsilon) \right\}$.

Proof: Define, F: (-S.1+S)
$$
\rightarrow \mathbb{R}
$$
 by, F(t) = $\langle a, f(z+t(yx)) \rangle$. Let, $g: (-S,1+S) \rightarrow \mathbb{R}^n$
\ndefine, $\phi_a : \mathbb{R}^{n_i} \rightarrow \mathbb{R}$ given by, $3 \mapsto \langle a, y \rangle$. Then, $F = \phi_a \circ f \circ g \Rightarrow F$ is diff. able
\nNow, $\langle a, f(y) - f(x) \rangle = F(i) - F(o) = F'(\xi)$ [MVT for 1-var, $\xi \in (0, i)$]
\n $= DF(\xi)(1)$
\n $= DF(\xi)(1)$
\n $= DF(\xi)(1)$
\n $= D\phi_f(f \circ g(\xi)) \circ DF(g \circ g(\xi))$
\n $= \langle a, DF(g(\xi)) \circ Dg(\xi) \rangle$
\n $= \langle a, DF(g(\xi)) \circ F(g \circ g) \rangle$
\n $= \langle a, DF(g(\xi)) \circ F(g \circ g) \rangle$
\n $= \langle a, DF(g(\xi)) \circ F(g \circ g) \rangle$
\n**Theorem:** (MVT2) Same Setup, $||f(y) - f \circ g|| \leq \frac{C}{\pi \epsilon |x, y|} |Df(z)|| ||y-x||$.
\nProof: Use the previous Version + Wormup problem + Cauchy-Schwaritz
\n[Nostring: $||F(s)||$ can be infinite.
\nIf f is C' then $||x| \cdot ||F(s)||$ is finite (force it)

 $Z \in L_{\chi, \mu}$

 \Box

Proof : Use the previous Version ⁺ Warmup problem + Cauchy-Schwartz

Warning : (Prove it)

Theorem: Let $v \subseteq \mathbb{R}^n$ is open and connected and $f: U \to \mathbb{R}^n$ is differentiable and $Df(x) = c$

 \forall $x \in U$, then f is a constant function.

Proof: <mark>U is convex.</mark> By MVT, f is constant.

 A ny <mark>Open connected set.</mark> Let, E = {x=U: f(x)=f(xo)}. As f is continuous, E is closed:

 $\#$ Claim: $E \subseteq U$ is open.

Proof: Every point \ast 6E is contained in an openball $B(4, \epsilon) \in U,$ $B(4, \epsilon)$ is convex, using polevious step, We are done as Bly , 3) CE

Finally we can conclude $E = U$. Thus our proof is complete.

Higher Derivative.

- · Recall, If f: Uⁿ→R^m is diff, then Df(x) e L(R"R"). Moreover if Df: U→ L(R"R") is cont. then we say f is $c^!$. We say f is twice diff^{or}able if $Df: U \rightarrow \mathcal{L}(R^n, R^m)$ $R(\mathbb{R}^n, \mathbb{R}^m)$
	- is differentiable.

Explicit description: $\lim_{h\to 0}$ $\frac{\int_{0}^{h}Df(x+h)-f(x)-D^{2}f(x)(h)}{\int_{0}^{2}f(x)^{2}dx}$ $\mathcal{L}_{h\rightarrow o}$ $\mathcal{L}(\mathbb{R}^n,\mathcal{L}(\mathbb{R}^n;\mathbb{R}^n))$
 $\mathcal{L}_{h\rightarrow o}$ $\mathcal{L}(\mathbb{R}^n,\mathcal{L}(\mathbb{R}^n;\mathbb{R}^n))$ $\|\mathcal{L}\|_{\text{on}}$

- · Similarly, one can define higher derivatives.
- \bullet A function is C^{∞} if it is C^{k} for all ken.

Higher Derivative as multilinear maps.

- Same old deft of Bilinear Multilinear/-Map.
- => Example : &: YxYx ...xV - > IR $(x \vee x \cdots x \vee \longrightarrow \mathbb{R}$
 $(0, \dots, 0_n) \longmapsto du (a_{ij})$ \longrightarrow (a_{ij})($e_i \rightarrow e_n$) = $\left(\mathbf{v_{i}},...,\mathbf{v_{n}}\right)$
- Notation: $\mathcal{J}^k(\vee,\omega) :=$ Space of k -mult linear maps

 $\mathcal{F}^{\kappa}(V) := \mathcal{F}^{\kappa}(V, \mathbb{R}), \quad \mathcal{F}'(V) = V^{\kappa}(dual)$

- construction of multilinear map from old: $\mathcal{S} \in \mathcal{T}^k(v)$, $T \in \mathcal{T}^{\ell}(v)$, $\mathcal{S} \circ T(v_1, v_2, w_1, v_2, w_3) = S(v_1, v_2, v_3)$ $T(w_1, \ldots$ $\mathcal{T}(\mathbf{w}_{1},...,\mathbf{w}_{L})$
	- $S\otimes T \in \mathcal{T}^{k+l}(V)$.

 $=$ dim $(f^k(v,w)) = dim(v)^k dim(w)$.

 $\begin{array}{|l|c|c|c|}\hline \text{precf} & \text{for} & \text{dim} & \text{w=1} & \text{Note} & \text{that,} \\\hline \end{array}$ $\oint \oint$ is basis of $V^* = \int (V, \mathbb{R})$ $\mathbf{N} \circ \mathbf{I} \mathbf{c}_2 \quad \Phi \otimes \Phi \otimes \Phi \otimes \Phi$ $\in \mathbb{C}^k(\mathbb{V})$.

 $\begin{tabular}{| l | l | l | l | l | l | } \hline \textbf{Incupk} & \textbf{to} & \textbf{1} \\ \hline \textbf{15} & \textbf{Inimes} & \textbf{15} & \textbf{15} & \textbf{16} & \textbf{10} & \textbf$ $proc$

 $\frac{1}{\sqrt{2}}$

Therem:	d_{k} : $\mathcal{I}(v_{1},...,\mathcal{I}(v_{N}))$	$T^{*}(v_{N})$ is an <i>isomorphism</i> .																							
Proof:	$\mathbb{E} \text{XerC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	$\mathbb{E} \text{VarC.566}$	\math

Shemma: Suppose, t: U-R is such that all potential derivative of order ¹ and ² exist and are continuous then, ^f is ((r). Proof of Lemma: Enough to prove, third and fourth point. ↓ ↓ (true Because of C) Conly this proof is (written here

$$
\begin{cases}\nD^{2}f: U \rightarrow \mathcal{I}(\mathbb{R}^{n}, \mathcal{I}(\mathbb{R}^{n}, \mathbb{R})) & \text{is} \quad \text{Cont.} \\
\downarrow & \downarrow \\
D^{2}f() (e_{i}): U \rightarrow \mathcal{I}(\mathbb{R}^{n}, \mathbb{R}) \nparallel \mathbf{1} \rightarrow D^{2}f(\mathbf{z}) (e_{i}) \text{ is} \quad \text{Cont.} \\
\downarrow & \downarrow \\
\text{The function } U \rightarrow \mathbb{R}, \quad \mathbf{1} \rightarrow D^{2}f(\mathbf{z}) (e_{i}) \text{ is} \quad \text{Cont.} \\
\end{cases}
$$

C the function $0 \rightarrow \mathbb{R}$, $x \mapsto 0$ f(2)(e) is conc.
Proof of lemma 2: Clearly, the function is C' By warmup RoDf is C' \Rightarrow Df is C' \Rightarrow $\frac{\dot{s}^2}{2\lambda_0 s_0}$ are c' III/,

differentiable.

Lemma. If f:Uⁿ → R is Such that all partial derivatives of order
$$
\langle m \rangle
$$
 are diff. Then f is m-times
differentiable.
Proof: Expand to show for $m \ge 2$. All $\left\{\frac{\partial f}{\partial x_i}\right\}$ exist and continuous. $\Rightarrow f$ is C^1 ... f is C^{m-1} .
Consider the V.S. Isomorphism, T: $\mathcal{I}(\mathbb{R}_3^n...,\mathcal{I}(\mathbb{R}_7^n)\mathbb{R}) \xrightarrow{\simeq} \mathbb{R}_4^{n_{m-1}}$.
Now, $\theta_{4}, \frac{1}{2m_1} \circ T_0 \cdot D^{m-1}(f)(x) = D^{m-1}f(x) (e_{1}, \ldots, e_{2m-1}) = \frac{D^{m-1}f(x)}{\partial x_{4}, \ldots, x_{2m_n}} \Rightarrow T_0 D^{m-1}(f)$ is diff.

Notation

 $\bigcup\nolimits^{K}\Bigl\{\Bigl(\mathbf{\tilde{x}}_{/}\t\bigr\}\Bigr.=\sum_{i_{1},\dots,i_{k}=1}^{m}\frac{\partial^{k}f(\mathbf{x})}{\partial x_{i_{1}}\dots\partial x_{i_{k}}}t_{i_{1}}\dots t_{i_{k}}\;.$

Theorem. Conditions Same as lemma, a,b\in U,
$$
\exists \overline{z} \in L_{a,b}
$$
 Such that,
\n
$$
f(b)-f(a) = \sum_{k=1}^{m-1} D^{k} \underline{f(a_{j}b-a)} + \frac{1}{m!} D^{m} f(z_{j}b-a)
$$
\nProof:
\nSince, U is open, there exist 800 , Such that, $a+t(b-a) \subseteq U$ $\forall t \in (6,116)$
\nDefine, $\overline{f(s,t;s)} \rightarrow \mathbb{R}$ by $t \mapsto f(a+t(b-a))$. Taylor theorem for one Variable \Rightarrow
\n
$$
g(i)-g(o) = f(b)-f(o) = \sum_{k=1}^{m-1} \frac{1}{k!} g^{(k)}(o) + \frac{1}{m!} g^{m}(0); \Theta \in (0,1).
$$

$$
q = f \circ P \Rightarrow q'(0) = D(f \circ P)(0)(1) = \frac{1}{1!}Df(a:b-a) \text{ Inductively,}
$$

$$
q(t)(t) = \sum \frac{\partial^t f(p(t))}{\partial x_i \cdots \partial x_{i}} (bc_i - a_i) \cdots (bc_i - a_i)
$$

Def Suppose f: U CIRⁿ > IR be differentiable. Then denote the vectors (df(x), 1-1/27(x) by the symbol Vf(sc)

(Lecture-8)

 $13/8/2029$

worm up

1) suppose f: U CIRM > R be twice diff. Let a EU and let n70 be s-t. Blain CU. Let vEIRM be $S-t-1111=r$ Define $g_v: (-1, 1) \longrightarrow \mathbb{R}$ by $g_v(t) = f(a + tv)$ Then, $\bigcirc g'_V(t) = \langle \nabla f(a+tV), V \rangle$ 2 $g''(t) = \sum_{i,j=1}^{n} \frac{\partial^{2}f}{\partial x_{j} \partial x_{i}} (a+tV) U_{j}U_{j}$ $=$ < HLf) [a=ev] V , V)

$$
\begin{array}{ll}\n\text{where } p: (-11) \rightarrow 18^{\circ} \\
 & t \rightarrow a \pm t\n\end{array}\n\qquad g_V = f \circ P
$$
\n
$$
\begin{array}{ll}\n\text{By channel: } g_V(t) = p f(a \pm t\nu)(U) & \text{Let } v = \frac{1}{2}v_{ie}, \\
 & \left(\frac{1}{2} \sum_{i=1}^{25} (a + tv) \cdot e^{iA}\right) \cdot \left(\frac{1}{2}v_{ie}, v_{ie}\right) \\
 & = \left(\frac{1}{2} \sum_{i=1}^{25} (a + tv)v_{i}\right) \\
 & = \left(\frac{1}{2} \sum_{i=1}^{25} (a + tv)v_{
$$

$$
\begin{array}{ll}\n\text{By } \text{for } \text{supp } 3, \text{ and } \text{By } (0) = \text{arg}(s\omega y) \\
\text{The function } 0 \rightarrow f_{\text{eff}}(R^n)(R^n) & \text{is } \text{cont.} \\
\text{the function } 0 \rightarrow f_{\text{eff}}(R^n)(R^n) & \text{is } \text{cont.} \\
\text{if } H(f)(\alpha + \omega) - H(f)(\alpha) || < \frac{\text{arg}}{2\pi 2} \\
\hline\n\text{Gain} \text{ If } \text{oc}(H(C \cdot \frac{6}{17}, \text{ then } f(\alpha + t\vee)) > f(\omega) \\
\text{if } H(f)(\alpha + \omega) - H(f)(\omega) || < \frac{\text{arg}}{2\pi 2} \\
\hline\n\text{Gain} \text{ If } \text{oc}(H(C \cdot \frac{6}{17}, \text{ then } f(\alpha + t\vee)) > f(\omega) \\
\text{if } H(f)(\alpha + \omega) - H(f)(\omega) || < \frac{\text{arg}}{2\pi 2} \\
\text{if } H(f)(\alpha + \omega) - H(f)(\alpha) || < \frac{\text{arg}}{2\pi 2} \\
\text{if } H(f)(\alpha + \omega) - H(f)(\alpha) || < \frac{\text{arg}}{2\pi 2} \\
\text{if } H(f)(\alpha + \omega) - H(f)(\alpha) - H(f)(\alpha) \\
\text{if } H(f)(\alpha + \omega) - H(f)(\alpha) - H(f)(\alpha) \\
\text{if } H(f)(\alpha + \omega) - H(f)(\alpha) - H(f)(\alpha) \\
\text{if } H(f)(\alpha + \omega) - H(f)(\alpha) - H(f)(\alpha) \\
\text{if } H(f)(\alpha + \omega) - H(f)(\alpha) - H(f)(\alpha) \\
\text{if } H(f)(\alpha + \omega) - H(f)(\alpha) - H(f)(\alpha) \\
\text{if } H(f)(\alpha + \omega) - H(f)(\alpha) - H(f)(\alpha) \\
\text{if } H(f)(\alpha + \omega) - H(f)(\alpha) - H(f)(\alpha) - H(f)(\alpha) \\
\text{if } H(f)(\alpha + \omega) - H(f)(\alpha) - H(f)(\alpha) - H(f)(\alpha) \\
\text{if } H(f)(\alpha + \omega) - H(f)(\alpha) > \frac{t^2}{2} \text{arg } \alpha - \frac{t^2}{2} \text{
$$

$$
\begin{array}{ll}\n\textcircled{1} & \text{proof} & \text{exactly} & \text{sum as } \omega \\
\textcircled{2} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{3} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{4} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{5} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{6} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{7} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{8} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{9} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{9} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{1} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{2} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{3} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{4} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{5} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{7} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{9} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{1} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{3} & \text{1} \vee \ldots \vee \text{?} \\
\textcircled{4} & \text{1} \vee \ldots \vee
$$

- nverse Function Theorem .

- Suppose, $f: \mathbb{R}^n \to \mathbb{R}^n$ is C'_2 let $x_0 \in U$ Such that, $Df(x_0)$ is invertible. Suppose, $f: \mathbb{R}^n \to \mathbb{R}^n$ is $C,$ let $x_0 \in V$ Such that, $Df(x_0)$ is invertible
Then, \exists an open Set Containing x_0 s.z. $f: \vartheta \to f(\vartheta)$ is c^1 -differm.
- Remark: If, f is assumed to be c^{∞} , the the local inverse is also C^{∞} .
- Corollary: If, f: U- \mathbb{R}^n , st. Df(e) is invertible, \forall e then fis open map.
- $-$ Example: Consider the function $f: M_n(\mathbb{R}) \rightarrow M_n(\mathbb{R})$ by $A \mapsto A^2 \rightsquigarrow \text{IFT}$ at \mathbb{I}_n
- $-$ Example? $F: U^n \rightarrow \mathbb{R}^n$, F=(t₁,..,*t*2), DF(20) is invertible at Some 20⁰(). DF(20) is inv $\exists V(\exists x_0)$ Such that $\forall y \in F(y)$ (we can say, $f_i(z_1, \ldots, z_n) = y_i$ $f_n(x_1, x_n) = y_n$

Definition: Suppose, f: $0 \le R^{m_1} \longrightarrow R$ be a c then, $S = f'(P)$ is called Regular n -level Surface
in R^{m_1} if, a) $S \neq \overline{\Phi}$ b) $Df(x)$ has rank 1. $\forall x \in \bigcup$.

 $Example: 0 $|S'|$ is 1 -level. Suppose$

 $|(\widehat{u})|$ $\leq n^{-1}$ is $(n+1)-$ level surface

(i) S^{n-1} is $(n+)-$ level sonface
(ii) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ $(x_1, x_2, x_3) \longmapsto x^2 \cdot x_2^2$ $f'(1) = infinite$ glinder

Definition: An affine subspace of \mathbb{R}^{n+1} is of the form $z \in \mathbb{R}^{n+1}$ and $W \subseteq \mathbb{R}^{n+1}$ is v.s Codimension :)=(: (n+1)-dim W

Definition: (locally Hyperplane) scir^{us i}s locally hyperplane, if given xes, JUCR^M open such that xeU.
JVCR^M and a ^{(a-}difeom p: U-V st,

4 (Uns) = {yev<mark>: y_{nti} =</mark>o}

locally hyperplane

 $\mathop{\sim}\nolimits\limits \phi\mathstrut(\mathsf{uns})$

- Corollory (of IFT): S=f⁺(c) is siegular n-level Surface. Let, xeS, and Df(x) to (by Rank) $\frac{1}{2}$
forollory (of IFT): S=f⁺¹c) is siegular n-level surface. Let xes, and land WLOG, $\frac{\partial L}{\partial x_{n}}(c)$ fo. Consider $\Phi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$, $(A, \cdots, x_{nn}) \mapsto (x, \dots, x_{n}, f(x_{n-1})$ and WLG_3 , $\frac{\partial f}{\partial x_{n+1}}(x)$ to Consider $\Phi: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$, $(A_1, ..., X_{n+1}) \mapsto (x_1, ..., x_n + (x_1, ..., x_{n+1}))$, $D\Phi(x_1, ..., x_n)$ is invertible \downarrow $\Phi: U \to \Phi(V)$ is a c^{oo}-diff in Some $U \in \mathbb{R}^{m}$ and $\Phi(v \wedge s) = \{(u_0, ..., u_m) \in \Phi(v): y_{m_1} = o\}$

Implicit function Theorem.

- $\mathsf{Q1:}$ Can S' be watten as graph of function? Q S'
- Q2: $(x,y) \in \mathbb{R}^2$ and $f(x,y_0) = 0$, Does 3 open mbd Ω ; of (x_0,y_0) in \mathbb{R}^2 such that $\Omega_1 \cap S'$ is graph of 15 invertione:
 $\frac{1}{2}$ $\frac{1}{2}$: $\frac{1}{2}$ and $\frac{1}{2}$ fixed in Som
and the contribution is $\frac{1}{2}$
and $\frac{1}{2}$ (x, y,) ϵ κ^2 and $\frac{1}{2}$ (x, y,) = 0, Does 3 open mbd 21: Con 5' be worther as graph
22: (2.,13) ER² and f(2.01)
Some function. Special

Implicit Function Theorem.

Notation: O Suppose m, z
$$
R^n
$$
. $R^n = R^n \times R^n \times R^n$ $\rightarrow z = (x, y)$
\n
$$
Q = f: U^* \rightarrow R^n
$$
 be -diffable. $R^n = \text{Cord } z = (x_1...x_{n,m}, y_1...y_m)$. Then
\n
$$
Df(x_1x_2) = \begin{pmatrix} \frac{3f_1}{2m} & \frac{2f_1}{2m} & \frac{2f_1}{2m} & \frac{2f_1}{2m} & -1 \\ \frac{2f_1}{2m} & \frac{2f_1}{2m} & \frac{2f_1}{2m} & -1 \end{pmatrix} =: \begin{pmatrix} D_{R^{n}}f \\ D_{
$$

 $\overline{}$ \rightarrow \pm

 $\overline{}$

 $\overline{}$

 $\overline{}$

 $\overline{}$

 $\overline{\mathcal{A}}$

 $Lect$ une $|2$

arm up: Let, $U,V \subseteq \mathbb{R}^n$ open, $f: U \rightarrow V$ be a C^n -map, $\exists g: V \rightarrow V$, C^n -map with $g = f$: prove that $Df(P)$ (TpU) = $T_{f(p)}V$. $\text{Proof: } q \circ f = 1$ du \Rightarrow $D_{d}^{*}(f(p)) \cdot D_{f}^{s}(p) = 1$ d $_{Top}$... Tangent Spaces. TpM: DY(Y'(P))(Tr'(p))
TpM: DY(Y'(P))(Tr'(p))
dim K
as a v:s of M
as a v:s of M
Type VSR' the choice of openSet. $\frac{v}{v}$ of $\frac{w}{v}$ $\frac{v}{v}$ $\frac{v}{v}$ $\frac{v}{v}$ $\frac{v}{v}$ $\frac{v}{v}$ $\frac{v}{v}$ $\frac{v}{v}$ $\frac{v}{v}$ $\frac{v}{v}$ Proposition . The choice of (44) do not matter for the definition of TpM. U_1 V_2 $V_1 \rightarrow V_2$
 V_1 V_2 $V_1 \rightarrow V_2$
 $V_1 \rightarrow V_1$ V_2 $V_1 \rightarrow V_1$ V_1 V_2 V_1 V_2 V_2 V_1 V_2 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 V_2 V_1 v_{z} Theorem. D M S R^h, YpeM, J B ^{open} R^h, and a ^{co-}function g:V->R^{h+K} St.
Mn B = T(g(x) (Permutation of Gordinates allowed) And TpM = {(v,Dg(p)(v)):VerR^k} ² ^M locally looks like level set of function. Ie. $\forall p \in M$, \Box $\exists A$ -open in \mathbb{R}^n , $P \in A$ and C^{∞} function $f: A \rightarrow \mathbb{R}^{n-k}$ Such that, $f'(0) = M \wedge A$ and rank $(\mathrm{Pf}(x)) = n-k$, for all $x \in A$. And Ker $(\mathrm{Df}(p)) = T_P M$. $Proof: 0 \nexists A \quad local \text{ parameterisation}, \quad \forall (x) = (x.g(x)) \quad g: v^k \rightarrow \mathbb{R}^{n-k}, \quad \top_P M = Range \quad D \forall (\forall^{\neg(p)})$ $= \{ (v, Dg(v)(v)) : v \in \mathbb{R}^k \}$ 2) f¹(0) = MnA is an open subset of M Containg P. Choose a Co-ondinate (v, y) around 2) t'(o')= MMA is an open. Subset of M Containg P. Choose a Co-ordinate (U,Y) arjound
p Such that, Y(U)⊆M∩A. Thus, foY:U→Rⁿⁱl is Canstant. Use Rank nullity blah... Prep. for Corollary 2. There is a Cannonical Innerproduct on τ_{κ} R^n ; $\left\langle \sum_{i=1}^{\infty} a_i r_{\kappa, e_i}(0), \sum_{i=1}^{\infty} b_i r_{\kappa, e_i}(0) \right\rangle$ If, MCRⁿ; $T_P M \subseteq T_P R$ ⁿ, $(T_P M)^+$ makes Sense. Corollary 2. $S = f^{-1}(a)$ and $f = (f_1, ..., f_n)$. If, $P \in S$, $T_P S = (S_{pan} \{ \nabla f_1, ..., \nabla f_n \})^{\perp}$ $\frac{\partial}{\partial x}$: Since, Df(a) has rank full, $\overline{\nu}(f_1(a),...,\overline{\nu}(f_k(a))$ are 1. I. Note, $\overline{\nu}\in T_p$ S = kerpf(p) $\Rightarrow \overline{\nu}\in \overline{V_f}$. so, τ_{ρ} s \subseteq ∇_{ℓ} . to get equality check dimension. I

 12 Date: $2/9/24$

Date: 05/09/24

 \blacksquare

Proof. $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto (x^2+y^2)$. $S = f^{-1}(3)$. Take $V = \mathbb{R}^2 | \{0\}$, then $S \subseteq V$. Let, (x_0,y_0) be a point of maxima/minima of g on S. By the above theorem, \exists ne IR, s_{\cdot}

$$
\nabla_{\alpha}(x_0,y_0) = \lambda \nabla f(x_0,y_0) \Rightarrow (2x_0,y_0,x_0^2) = \lambda (2x_0,2y_0)
$$
 ① $x_0=0 \Rightarrow \lambda=0$
\n
$$
\nabla_{\alpha}(x_0,y_0) = \lambda \nabla f(x_0,y_0) \Rightarrow (2x_0,y_0^2) = \lambda (2x_0,2y_0)
$$
 ② $x_0=0 \Rightarrow \lambda=0$
\nNow check that, ② has maxima 2 and minima -2.

Proof of the Theorem. E:TP 79(1) e N_PS. Let,
$$
(W,Y)
$$
 be a local param. of
\n $V \rightarrow W$ 5 around p, $\Psi(W) \land Y \Rightarrow P$ 25
\nopen subsets of S. Thus $\Psi^{-1}(V(W) \land Y)$
\n $W = W$ 3 open in W. So, $(\Psi^{-1}(\Psi(W) \land Y) \lor \Psi)$
\n $W = W$ 3 local povlan. of P.

Let, $\vartheta \in \mathbb{R}$ So, $\exists \, \omega \in \mathbb{T}_{\mathsf{Y}^{\mathsf{u}}(\mathfrak{p})}$ (Y⁻¹(Y(w)nv)) So that, ϑ = DY(Y-1(p)) ω . Let, i be the curve stelating ^W . Note that, So that, $\sqrt{3} = DY(\psi^{-1}(P))$ i. Let, i be the curve sided in
maxima at 0.
 $\Rightarrow D_{\beta}(P) \cdot 3 = 0 \Rightarrow \langle \nabla_{\beta}(P), 3 \rangle = 0$
 $\nabla_{\beta}(P) \in T_{P}S^{+} \subseteq T_{P}R^{n+k}$. So, the proof is complete.

goYor : (3,3) - >R has local maxima at 0.

$$
3^{o\psi\circ\gamma}: (\epsilon,\epsilon) \to \mathbb{R}
$$
 has local maxima at 0.
•• Dg(e) · D\Psi(\psi'(r)) · DY(o) = 0 \Rightarrow Dg(r) v = 0 \Rightarrow $\langle \forall g(\rho), \vartheta \rangle = 0$

This is true for any $v \in \overline{165}$. Thus $\nabla g(r) \in T_p s^+ \subseteq T_p R^{n+k}$. So,

Theorem (Lagrane Multipliers) Let, Unix is open and $f:U\to\mathbb{R}^n$ be $\subset\mathbb{R}^n$ such that, $f=(f_1,\ldots, f_n)$. Let, $S = f'(0)$. Assume $Df(z)$ has full rank....

$$
\nabla g(\rho)+\sum\lambda_{i}\nabla f_{i}(\rho)=0
$$

Defⁿ: Uⁿ and peu, a) We define $\widetilde{C^{\infty}(\mathfrak{p})}$ to be the Set all pairs (f,v) and $p \in V(SU^n)$ and $f: V \to \mathbb{R}$ is a C^∞ function.

and per(su) and f.v \rightarrow in is a c function.
(b) We Say, $(f, v_1) \sim (q, v_2)$ in $e^{\infty} (p)$ of $\exists w \in V$, $f(x) = g(x)$ for $x \in W$. and $p \in V(SU^*)$ and $f: V$
(b) We Say, $(f: V_1) \backsim (q, V_2)$
This is equivalance relation.

$$
(c) C^{\infty}(P) := C^{\infty}(P)
$$

Exercise. $C^n(P)$ is $V:S$