
Tangent Vectors as Derivation Lecture- 14

Recall . The definition of co(p)
Define, (o(p= L(CO(P) , 1) (the dual) · Abuse of notation, $([f,VI) = 0 (t) ·

ef
Derivation: VER" be open Set. We dine

,
derivation on CO(P) is the Set of

SecO(p)* Satisfy ,

f(fg) = f(t)g(p) + f(p) S(9) .

Note
,

Der (C0(p) CO(p*.

Example. / ((* (Well defined)
Proposition : VER"-open ,

Per . Let, se, ...,ens be the cannonical
basis of IR? define a linear map

Ep : TU - Der(cO(p)

&Cirpe
,
(0) [cituil

Furthermore, Fo is one-one.

Proof : Just need to prove [tilp] is linearly independent set

of Der (co(p)) · ii

-> Infact the map #p is onto aswell . So, Der (O(p) EvsTpV .

- The diagram TpUfp > Der (CO(P))
commutes:

Df(P) DEP) : = Fp)Df(p) Ep

TERM DEC

Remark : From now, we identify tangent space as space of derivation
-

and view the derivative Df() as linear map Df(P as above·

Ifs foU"-> IRM
,
then Df(P : TpU-> TpIM a linear map . If

skis is coordinate on U" and 34;3 Co-ordinate on 1m then

Tpu" = SpanSilp) , Fukm = Spani
DfID() = [ [Yfj(p) ,

v> +p ·



Proposition : for"-1RM,
Then for all ge co(f(P)) ,

we have
,

Df(p) (v) (g) = v (gof)

Defi : Let
,

M be a K-manifold of RY and peM.

a Define,(p) = E(iv) : Vis open Subset of M and foV-R (O)
b Define equivalence relation on) as before.

- ci(p)=/-
& Derivation

,
Der (((p)) = (b (* (4)*: SCg) =S(fg(p) + +(p)f(g))

Local parmetrization (U, 4) . Define, (W are coordinates on U)

Xil : = DPH) (Eila)
*Yn(g) := D4(n) (File) (g)
= (g04)(x) .

Proposition : Let
, M be a kmanifold in Rh and (U, 4) is local param .

Then ,(X4 : =,.., k) is a basis of TpM.

Proof : TpM = Image (D4(U+ (P))) · So the dim TpM is K.

Warning : The def of X (ner) depends on choice of (V,T).

Theorem : Let, M be a R-manifold in IR" and PeM . Let, (U, i) be
a co-ordinate around p.

: Tup(V) -> Der (cm(P))
& (v) (f) = v (fo) ·

Define
, O : = F : Der(c()-> Trp(U) -> Check that it is

F(f)(f) = S (for-1) inverse of above map.

coroll .M be a K-manifold in 12 TpM = Der (C*(1) T

& extendes to a Smooth funct fiv N
&re foM->N is Co . Define,

Df(p) : TpM- > TAN

bf(p)(v)(g) := v(gof)
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Recall . UCR" (open) then, Etilp) is basis of TpU .

Vector Fields

⑧or -X)=C) Fi
Defi : X : U-UTU
So, X(PETpU . How does it looks like ?

A smooth vector field . X :U- TU (Bundle So that , G(x) (as above
are clu) function ·

· Set of all Vector field is denoted by H(V) ·

Proposition. O Let
,
X- H(U) and feco(u) · Define, f.X : -TV

by fox (P) = f(pX(p . Then
,

fox - (t(r)

⑪ (Freeness Condition) . If XECt(U)
,
then E 1 Smooth function

G ..., in Such that,
X = Zi(x)i

·The above proposition says , H(U) is a cor)-module of rank n.

With S as a basis

- Vector Field on Manifold M .

Same Def" as above with the additional condition, MIUEI!

ETangent Vector field. Vector field it , X(P) -> TpMpfM.

Normal Vector field. A vf X on M is called a normal Vof if, x(p)E(TpM)p-M.

-> H(M) = Stangent Vf] . Note that c)(M) may-not bea free module over

Co(M) ·

-> Mis R-manifold in M Now
, TpM & TpR? So

, ItpM makes sense. Similarly ,

we can define everything for manifold.

-> Example . Sift(a), regular K-1s
. Then #, is Normal vector field.

Noraiaregularled Surface in h a unitonis

[X(p) ,
X(p)Xpintu= EptS .

Examp : n-reglevels iRCH ,
5=(0) · Xilu)=ll



#show that yeu-uey is a tangent field.

# X =-- tangentf on
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#ef Her, then topological boundary
2A = & +I :So, BRA

Buena + q)
Examples . O D=1&I 2D = S . Exercise . ASIRY then

&A is closed in

② A= QER
,

GA= 1. IRP

& seth is said to have n-dim content o if, given Exo, 75K , .... kr]

of s by closed rectangles in I Such that,
&vol (Ki) <E

i= 1

· .. THEET Loose Sheet 500 ·
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Warm Up

① Suppose WSIRY W = 3(-- xm
>0.0) : XiEIR) · Then n-dine measure 0

② subset of measure zero is Lebesque measureable and have measure 0.

③ AEW, then m(A) =0 · Example: SER has measure Zero.

① SIR" = 25 = 2 (IMS) region - S&R is a region.

⑥ Let
, I be a set of content zero

,
then int(s)= So

,
S & GS.

⑦ HTFAR) S has content zero and Els ... kns are cover of S ,
then EK ... kn)

also covers as . If sheecontent
zero then S is regiona

Warm up.
O (Step1) Choose

,
30 : Kai , bix[-s,] · Carry on

i
n =mH

Vol(k) = 3 .

⑪(Step 2) W= EN]msn-m [countable union of measure zero] - m(w)=0.



Theorem . O Let
,
fiUz1rm be cont and KEU be compact . Then

graph (f(k) has htm) - dim Content Zero.

② Let
,

X CW (an affine subspace of 12) with dim (W) <n · Then X
has content Zero. (Check Mail)

Corollary . Open/closed disk in R is region . D

② Any open/closed/semi-open m-dim rectangle in IRh is a region . (Man)

Riemann Integration . (Several Variable)

Partition (No Gandhi/Jinnahsharmed) · A partition of a closed rectangle
Tlaibi] is a collection P= (P .

..

..,Pr) · R is partition of Taibi

E.

g . [apbilx[a , be] and P= Sa = to ... <t= bi]
P2= [a2 =3 ... Su = ba)

Then
,
[a , bij x [abc] = U [titin] x[Si , Sin] ·

①[i1K-1

dejxn-

It's called sub-rectangular partition.
of Pl

Defh : (Refinement) If each sub-rectangle , is contained in aSub-rectangle of P. Then Pl
is refinement of P

.

Upper and Lower Riemann Sum.

P be the partition of K. For each Subrectangle S of P,
define

ms(f) =

inxsH)
= cupf .

-Lower R. Sums Upper R. Sum

↓ HiP) = [ms(t) vol(s)r(tip) = [Ms(f)vol(s)
S-Sub

Subanga rectanglea

For refinements, L(iP) L(f; PY
u(tip) > UHip1)] SuhHip) intUHip)P

Defho Let, K be a closed rectangle in MY fil-> RV is bod

function is called Riemann Integral its SupLHip) = IntUiP) . And

this value is denoted by Ste.., dra- ad.



Theorem : Let
,
f is RI on closed set K . Then for given E , we

get a partition P So thats UCiP) - L(fip) < 3.

Theorem : K is closed . The fbddtR(K) if SUEK : f is discont at as has
measure Zero .

Def : Let, i be a region in R" and fisbad on R : Let
,

K be closed rectangle
containing &

,
define,frik-> I as ,

fis (v) = &facel,
see

O R

And we define
,

Sta ...n)i = Str b....,n) deen a

= Show that the above defh is independent of the choice of K.

Theorem .- is region f + R(2)1bdd(2) its quee:f is not cent at x)
has measure Zero .
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Harm Up

① XCIR? Prove that G(x) EUX.

② 22 /Eg X= 10,na).

③ If X is a region is also a region.

Theorem. SupposeI is region in R
,
then a bdd function f on ER(R)

iff Df(l) = SER : f is discont at uS

(Assuming the prof is done for box region)
Prof . Let

,
K be a closed rectangle containing2. F(x) = 2fa) ona

Since
, feR(e) -> JER(K) · Dj(K) has measure Zero - D+ (2) has miz.

(E) Df (2) has measure zero . Now,

DJ (k) = Df(r) U Sear : I is not cart at us

=DUseero
=> FER(k) Al

Theorem . Let
,
If be a region in R!

a) Let f,geR(l) ,
then fegeR(e) · Then fige R(l) ·



b) If,
ff R(l) ,

then CfERL) : e) If, fige R(e) , fig + R(l)

6) fige R(e) , big then St-/g .
Anit : What is

9) If feR(e) ,
then 1ff) = S .

Deg(1) ?

2

Theorem. Suppose -= AUB , A and B are regions and int(A) nint(B) = %.
If, ffR(e) ,

then

: feR(A) i) feR(B) iii)St = If f (Apostols

MeanValue Theorem For-Riemann Integral.

Supposet is a region and figeR(e) such that goo fuel ·
Let

, me int feel ,
M = Supf(x) . Then there exist 1[m,M] Such

R 2

that, f -

g
= 19.

Proof. (Case1g = 0 then
,

Jrg

Kases) 2gzo · Then ,
define -=g

.

Check
, xtmM]trivially follows)

Corollary to Let
,
- be a compact region . F

,gER(R) and gauxo KER.

① IfIt is connected and is cont . then ,

Ifig (....) = f(x) J9 .
R

②If = f(vol(r) - for some no.

Proof. O Use I. VT and M . V-T. Sis the set of content zero and

f is any bod function on S . Then

⑪ previous part. fERES) andSF-) da ,
... dam no

Corollary 2. SupposeI is a region and feR(e) · Suppose, g is bod

one Sot .

gz If on ols
,wehe " then

,
s has cont. o

① ge RG2) ②Ig =If
Proof . O use Dg(+) has measure zero ·

Pg() =

Dg(s)uDg(s)ess
f



& Dale) (content zol [suls
So

,
we are done. ·



Fubini's theorems

Theorem . SupposeI is Riemann integrable and ets function 30.-= [ky) : notaib] , ocy f(x)
Then

, i) - is region (ii) Volle)=Stud

Proof I)I is region as bounded and Gr has content Zero.

ii) Vol() =S . (Homework)

Theorem . Sis compact region ,
fiS-1 cont0 : Then,

->E , 7) : its
, ocysfcut) is a region and vol(R)

= If() do

S

Theorem. (Fubini's Theorem) Suppose , RabiTEI fiR-IR is an integrable
also assume that the integrals,

9,(2 .. sent) = J f (2- ... xn-is Yn) den<ya) exists
an but

92(---sUn-2) =Sgkx--junYn dem (n) exist

Then
, S d=zden)de)- .)

Q. Let, I be a region in IR3 lying over the triangle 10,
0 ,0)

,
(40,0) ,

(1, 1 , 0).
and bod above by Zeny · Find vol()

Theorem 2 => Vol() =Stuydudy-; f :-

-
Extend F: F-Rby YMY) = 30it Y MA : o
Now ,

=F)dudyhe
In (y) = Guy why hgale
Q S= [cyer : Cya , yo) fis-Ri fly) = y.

D = Ea , aT X[o, aJ ; FiD-> R ·
= I

N

July =

2yyegu(y(d= h()

-her) = Tidy= a

= (a)- . 293 = 9



Q. 2 = [myz) : 140 ; %70 ; utyz143 ; flita. f: --IR.

D= [0, 2]x[0,2] x to, 4] -

-> extend there -·

& me
(7)=
2aa

-

so
,
hmy) = Y9myzdz =gudz = x)-sg

ho(y) =

2h(,9) ·

vinya R(x) = Te-=yz)
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Corollary2. MYT for Riemann integral) proved in Lec-19
Warm Up : XCRR"

,
then 2()2X , If X is a region So is X.

Recall
,
last theorem in Lec-18.

① region in R f:-Ris continuous then , (Fund
Furthermore, fl...diff(z) d

#Complete the proof of Corollary 2.

Change of Variables .

Theorem : Suppose, U"is open region and g :U-IL a one-one c-function
such that, def (Dgal) to theU? Moreover we assume,

1) g(u) is region
2) feR(g(u)
3) The map -1

, y+ fogly) (detg(y)) is R-integrable

ThenSu =( togly,) I detD-el d.

check . a) IMT says, g(u) is open.

b) Suppose thatU is open , g :U-I" is one-one a function St. det(bgcr) to
neU and that glu is a region . Assume,

1) g extends to a c-map on an open Set V containing J
.

i) - extends to a cont map on an open set W containing.

Prove that
, 2) and 3) of the theorem automatically follows.

Example.

1) h : [0,1-> 12 (Let a< b) · h(t =(l-t)b ++a, 0) ; Then Ran(h) = [a, b] x 503
which has 2-dim content Zero .

2) h : to , 17 -> 12, the (1 -H + +b
, 0) ·

why these examples ?
3) 4 : (0.2)-> IRE

,
> (cost

, Sint) S Scheck Later)

4) P: (PR) x(0 ,1)- 13 ; (40) + Lucoso, usino, 0) .

Recall
, Assignment (6)-

->



Defa) Supaparametrized n-Surface in and fi(-is

f(x-n) die) Fo(U , Un) detaTim
b) We define , Vol(4(1)) :=d= detmu T
~ Back to examplem

1) Vol(h[0 ,17) = ? Steps- 1) (10 , 17
, h) is parametrized 1-surface in I?

11) The Coordinate vf X=ab
N--

IIDX()= -SinN) =- Sinc

Vol(Mo)) =I !
==

-

IV) Xtro-cost Sinoy + 0 . z I'timeii
⑱

Xo(ro) = fsino + cos Ey to . Ev vol(4(- x-))=Nr, 0 =
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Alternating Tensors on a f.d. YS

Recall
, tk(r) := Mult(VR) and T() = V. If, seTk(v) and

terys(u) ,
then set -yet (V)

· Basis of TK(V) ·

·Sbypermuting coordinates (.) =- .
Nowa

· T (V, . . . , (k) : = + (0+ (ux --- - Vr))
· Defh : 12 , an element TK(V) is calledternating it for all V... ... Ok -Y,

#( -;Vij , Pk) = - 0 (Vi ---j ...,di,k)

· Def: Let, Y be a fid . Vis

① N0() = IR

⑪NV) = V*

⑪ Ak(v) : = k-alternating maps from VVX... X-R

Example .

DY - YOU-YOYER()



⑪ det : V-R (here n-dimv) eAn() .

· Dimension of AK(v = (k)
Prop. (/1(v) < J" (v) 2Yer) Y (, , .

.

.,
Vy . . .0,

. -

-,(k) =0

3) k> dim (n) = JK(V) = SoS ·

Proposition : TETK(V) TFAE,

①Ho
,
T (vol . .... Vol) = Syn (ot T(n ..., (k)

② of Xk(v)

Defho Alt : TK(V)-> Th(V) Note that
Im (Alt) =** (v) #EAlt()(0 ,, .

. .

., 0x) =

EgoT...)gu

Proposition : (Alt is projection)

① Alt (Alt (+) = Al(T) .

Pullback of Alternating Tensor.
Let

,
feL(vw) and it TETY(W) ,

we define f*(t) (0p . ., (k) = T(f(wi)
,

. . . , f(wid)
Now it

,
TE Ak() then f * (t) EXPV. So,

fr ·Ak(w) -> x() ·

Defi (Wedge product) TEAK(V) and SeX(v) we define,

1) TAS = TS , we define 10(V) = IR

2) TNS := (k+1) ! Al (TQS)
W

Remark : ①TASE Al(v) ② #*

(V) := (v) Ygraded ring
Theorem. TEN"(V) ,

se NP(V)

1) (Sts) XT= SNT+ SXT

2) TX (sts') = TNs + Ms

3) (xT)XS = TX(XS) = A (+S)

- TX S = (1)1k SXT.

f* (Tys) = f+ (T)xf* (s)
6) TNsXs) = (TNSXS =emA

->Theorems .
V is a vector space with basis See ... eng · Let 30...

be the dual basis . Then,

2-x :Ki- kn] Basis
, #N)



~
proposition : V. ---

, inEV and let
, U=are . Let A(a

InT
Then

, (1....) (n....) = det 2k*minorofAb a)
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emma: Let, Y be a fidvs then,
1) Let seTh(y) Sit . Alt(s) = 0

Alt(AM(Tes(es) = Alt(Tess) =

Al(TA)istopresent
.

Exercise . 17 $1 . ...x = k1 Alt (000 -...&) /Induction)
2) 11 (errs) = (e)(v , vs) (Expand and definition)

corollary . 1) Suppose, dim(v) = n.
Then /(v) is generated by det.

2) See,.., as be bases of V and T-A(V) · If Witje , then

T(Wi
, . .. . ..Wh) = det (a) Tlen ... en)

Differential Forms

Let
,
UEIR" be open, we define 10(v) = co(V) · Let, Stuilps be basis of TpU

and[9 ..., I be the dual basis . Forms are given by

w : u-> Y(x (+))

So
, w() = [Ci(q)p) .

Now a differential form (one-form) is a map

was above with 1) W(ENTpU) 2) /... in are co functions.

De-Kham diff. on zero forms : fe((u) . We define of : U- Y N(Tqu)
by df(p) (r) = Df(p)(v) ·

PROPOSITION : dftfi(u) and df(p)= (t)

Let
,
UER" ; be open and Consider the Co-maps P : RL-IR and Y--syn)Ye

Denote the dP = d;

PROPOSITION . 1 duilp= (p)

2) df= dri er, (v)

Remark . [duy a.... dee : 1n-Even] is basis of N* (Tpr).

Def" : Let
, Un Then a differential k-form on U is a map wiv-UNITq0) st

1) W(p)E /(Tpr) 2) dri... Advik is a k-form on U. Check that it's smooth

Ex . Show that &"(r) is a free ((0) - module.
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(Last day : TA-Dekham differential) Recall
, d(way) = drwh + Cydegr wad

Prop : (Recall last proph of Les 2) [
Exc: (Done Yesterday) Suppose , w : U >U * Such that w(p)e(T

then wor"(v) if the map U-R : P1 < Wptylp, ..., ) is colpinji)

Pullback of differential forms

Recall, Suppose T:V-W ; we have:(w)- M(v)

Defn : Let
,
VOIR" and VIIRM and fix-u is so it we r(U)

we define f * (w) eeK(v) by,

f(w) (p) = Df(p
* (W+)

Observe that, V...., Un &TV ,
we have (f+ w) (p) (V . . . .

, uk) =

Wf(p) (Df(p)Un ...,Df(pU
Proposition : f and was above there fweek(v).

Proof : (Not doing)

· Df(p) (Eilp) = Fil
Proposition : Let

, VER-VIRM is a co-functions and f= (f ... , fu)
then
1 f* (d)= d

11)W , We &* (u)
, f * (W +wa) = f* (wi) + f* (w))

III) f* (gow) = (gof) f* (w) ; geCO(V) and Werk (v)

(v) f *

(wxh) = f+ X f*

y
v) f* (h dra... Ndkn) = (hof) det (Df) dign....dan
v) The following diagram commutes :

zk(u) d
> -k+ (u)

· fx(dg) = d(gof)
· food(Wadxi) fX R f

~
=> do f* (wadxi) &" (v)

d
= ()

Proof. (Not writing)
⑪ f* (dw) = f* )d)[hi ... den...den)

= f↑ (I d (his ... is) a drin .... a din) (

- f * (d (hy ... i) a f* (dxi, a-.. dr)



= [d(hin
.... inof) Xf* (dui , a ...adri)

- [d(hu-of) f * (dmix...a drik) + [hiof) &(f*

(d; a. ndune)
-

= d)(hi -) of f * (d - drin) As it'sa of) n ... N(07)
= d(f+ ) Zhiz dain .... drin))

Example . G:R-IRS ; g(u) = (a cost
, usinve v)

w = (+yz)deady + a dexdz + y dyndz

g(w) = u
=

g
+ (dundy) + ucvg

+ (dundz) + usinv gt(dyndz)
- U2 (ducosv) dusinv) + ucov (d(ucov)/dv) + usiuv (d(usiu) ndv)

= ur [for du-usinv dula (sinvdutucasvd)] + ucor(cardundr) +u sind dund

= 43 dundv + Ucav(undv) + u sinv du Adv

= (43 +u)dundv

· Integration of forms .

Def : Let
,
- ER" be a region and let S - -- n] be the ordered basis on RL

W = f dX .. ... den then,

w : = (fdz ... den

Theorem : Let
,
REM" be a region and let gir-IR"be one-one co . map with det(ag()>0str

Moreover assume,

i) g(r) is region
I) W = f drx.... dan where

, fER(g(r).
iii) fog def(pg) tR(2) Then,

=/g.
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Integration of forms on parametrized form.

Let (2
,N) be a parametrized Resurface in IRh and let week(4)

Tw defined on an open Set VC4(1) in RnJW := *.
Remark : Note that the above definition depends on parametrization.

Eg . P
,
Y :[-> Lab]X0] ; YH = -A bita Juca + /4* (du)

↑'(t) = (1-Ha + +b

Theorem: Let
, (4) and (etc) be two parametrized SurfaceSuch that



↑ (2) = Y(c) and det (b) (Yok) (2) >0 fastes . Then for week(4
, (r))

SWIT

Proof./M
*

W
=So

*

Ye

=>S (
= /Tw ·

&

Defh . Suppose Vitab]-> Ith is so set

1) v(a) = V(b)

2) v is one-one in (a, b)
3) Dr(t) has Mank 1 * te[a,b]

If wer (v[9]) defineSWIN
Def : (Piecewise Smooth parametrized curve) it's a set C = CUGU .... U ; where

= V(Vi) ; v; are open Set (Region) in 1 : If we r'(gr ... ua) ,
then define

=
Integration of r-form on oriented Manifold

Def: By a l-form onamanifold MER" ; we mean an element of(v) where V is open
Set in IRh containing M.

Recall. If peM ; TpMETpIRh so if well (M),peM Wipe NCTpM) ·

Defi Let
, M be a manifold in M

.
A non-vanishing k-form on M is an element

werR(M) such that
, given peM , ENETpM Such that

Wp (Vis . . .

. (k)to PEM

Lemma : Suppose, we e"(M) non-vanishing . Let ueM, if (v . . ., us any
basis of TuM then,

(p) (Up-- ..,UK) #0

Proof : Let, Up ..., uk bea basis for which WK) (n .. ·Pk) = 0.

Then for wi , rk we have Any St Amri-wi So
, wel (w. . . ., wk) = det (A) ((x)(V, ,

. . .,)
=O ·

Def: A manifold is orientable if 7wte" (M) ,
non-vanishing
.-

· An orientedmanifold Min R is a pair where wis non-vanishing
.



· A basis of Ev ....., Uk]ETuM is said to be tely oriented if W(. . . , (k) 70.

similarly ,
we can define-ve orientation ·

· A local Coordinate (4) of M is called orientation preserving,
if (x() , ..... Xx()) is a

positively oriented basis of TrpM Aper . [Recall : Xi(P) = DY() (File)]

Example : S = #(d) be a regular nts in H · There Sis orientable.

Proof: Lets Y be an open set in R Containing S. Define,

w : V-> Nev)/2Toli)

w()(i... .,in) if det (vi) prove that it's Smooth and non-vanishing
a

#

-emma: Suppose (M, w) is an oriented K-manifold. Thena local parametrization
(u

,4) arounds which is orientation preserving .

Partition of unity .

Suppose M is a compact-manifold and (ViY) are local parametrization St
Let, It ... ts] be a partition of unity sub-ordinate to P

,
(vi); by this we mean

the following :

1) fl. -- fs : M-IR ; 1 and fix,0 .

2) [f(q) =1qEM

3) Supp(fi) < Pi (vi)

Integration offorms on Manifold :

Assume (M, w) is oriented. Consider a partition of unity It, ..., fi3 subordinate to orientation preserving
local co-ordinates (Asproved in *). Then,

:
* Theorem : The above def is independent of the orientation preserving local co-ordinates and the

choice of partition of unity.
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*
Theorem: Let, (M,w) be oriented K-manifold in M and xeM . Then there

is an orientation preserving local Co-ordinate (v,N) around x.

Warne up :

It fol 7

① det (vir;)) 0 . ② TEAY So that dim (v) =n and EV,...., Und is



basis of V then TWis. .., in) >0 or <0·

Defe Let
,

Y be a fod vs and TEXK(V) ,
To

,
A linearly

independent set [s-- - UKS is said to be trely oriented
Writ T if T(r ...., uk) > o

③ Warmup : Let
, dim(v) =n and WIV of dim KIR . Lets TERM

Sot TtO as an element of NK(W) . For any basis Ev...,3 of
W , Trp ...., uk) >0 or TC. <Uk) 10 ·

Proof of Theorem*. Let
, (V, Y) be a local parametrization . WLOG, U is

connected open region.

The mapt : U+R given bya -w((u) (X, (u) ,
-

..., Xv()) is continuous,
here

, : are cont. If along 4 . As [xir3 forms a basis of TruM and

circul to as an element of N(TruM) ; So by warm up-3 .

Ran() ((0,0) or
.

(0 , 0) Fusing connectivity
· If

, Ran(E) (0 ,0) there is nothing to do.

· If , Ran (1)(0, % , define U = &( , ...)ERK : (m ....., x)EU) define Y : U-M

in the natural way , call the local co-ordinate Xi ...... So,

WCY(n)) (Xi (u), . . . .

.
X (u)>0 new! ·

The Volume Form.

Defh : Let
,

W be a subspace of I dim (W) = k
,
dim (V) =R ,

Suppose TEAK(V) Such that Too as an element of
M (w) . Then the signed Volume of the parallelopped
spanned by R-vectors [rx-in)

+etki)) if the orientation
Worst TS-iv) if-ve orientation

worz
T

.

* Example : (Mr) - oriented manifold of RV
Let

, V := Tph ; W = TpM ;T= wpe/"(TpM) · Now,

#if So ..., Uk] is linearly dependent - Cop(v --.,viz) = 0

* if linearly dependent > Follow the def (two cases)



Defh : Let, (M
,c) be oriented manifold in 1P. A volume form on M

is a k-form dvoly on M such that HeeM and for any trely
oriented basis ofTh M (covit w(r)),

&volM(x) (.......un) = signed volume of
parallelo pipde.
Ev, .. ... Uk]

REMARK :.. If (M , w) is an oriented manifold thena volumeform
and it's unique.

E.g. Consider the 2-1s R in IR3 ; S = #) , filR-IR (4,z1 z . Then

w(r)(vV2) = det) is a non-vanishing form of (w) i day. .

Example . Let S= f+ (c) be a nes in RM Let
,

w be the orientation

form onI defined by ,
Wh (v..., un) = det (V...., Un , Yf(x))t ; then

the volume form for (S, c) is dvole (vi...,v) = det (Up--., un, )

& claim that Idvol (V- , in)]" = det (<Vi ,
U
;)) and complete the proof.

For regular K-level Surface : det Volume fr

T
Def : Let (M ,w) be oriented k-manifold in 1h and drol be

the volume form

1) If, feCO(M , we define If :=It dvon
at

2) Vol (M) : = If.

Theorem : fecolil and fo , thenIfavoia 30i

/Compact
-Lemma : (M

,
w) be oriented k-manifold in 1" and (4, Y) be an orientation

preserving local parametrization . Such that U is a region and the

function

detg : V-> 1 u-det((i() ,
X
; (x))) & Xarefee

his bod onr
, then dvom = (f)d

u

Remember : Gg() := (Xi()
, (4)-Riemannian Metric on M.

· Proof . (44) be orientation preserving local parametrization
around. Fro , B,

ru) & U
. B : =Pl

Up
Us

So
, det(g) is bod on BLY(K) , ru) -> detg is bod on B(4+

(a),x) . As

SY(Un)) Covers M ; it has a finite cover and a partition of unity Sub-ord



to the cover. Then,

↓ A dvol z ES dona

Now apply the lemma. ·

proof of Lemma :

Jfdvola =P
* (fdvolv)

P(u)

= h dra... nou [As,
Y * (Evolva) Ev(r)]

Nows h(u) dun... nduk (Eu, .... - En) = ha) = (fop)(4) dvatm(u) ( , (4) . -
- - - Xx(u)

= Hor) (n) detxicu
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Example : (The closed upper half plane in12)

UHP := ((y) : y 30] EIR3 · f
, giR- (yizz ,

(y,El-y
UHP = f+ (0)1g+ 70, 07. There are two type of points in UHP,

Int M

dry
Boundary of UHP EIR3 is UHP.

Regular n-level Surface in IRH With boundary .

Deth : It is a subset ofput of the form,

S = f+ ()1)0,
Where

, 8 UER] all are c wit,a

①f(p) to,pef(e)

② g() 195) 15-6 is it;

③ VieSliz, ....k) , E*f(pg , (p] is linearly independentpeg:"cns.

We define the manifold boundary of s to be GMS : = Se (g) and

intrS = SloMS ·

Example : UHP in 12 is a 2-1s in 13 with boundary.



Exercise:The closed upper half plane in RL) IRI : = [..-) : un30]
Now, IRI = f+ (0) 19-1. 0

,0] ; f :R*
-I is defined by ,

flo .... un) = Unt : g(-- - 4m) = - Un.

Example : (closed apper hemisphere)
filR3-IR ; (43)- xi+xi+x

gi"-> IR ; (2, 43) + -

43

s = f19 70
,07

Example : ) Cylinder) Eit *XI1199111-

f : x+ y
=
-1
·
- ·

g ,i
- z S = f(0) 19"( - 0 , o] 192")-x,0] *D

9 : Z

Remark : Repeatation of the definition . + [Ng;
(1,9; (9)) is not ↳I .

! Warning . Topological boundary of Set maynot be WMS .

Note . g: is is regular-h-1-level Surface in MH .

Tangent Spaces .

Defi : Let she a n-lirs on Ru with boundary as above . It
bes we defines TpS := [ueTpIR : <Yep ,v = 0. ·

Note
,
dim (ips) =n PES .

Remark : If peans , then it E , .... K] Sit peg.
"(ins

Defn : Let
,
peams and vetps . Let, its ...,k St peg") es

10 is called outward pointing it (v,gi(P))o
2) P is called inward pointing it <V,gick)o
3 v is tangent to boundary it (v, vg; (P)) = o

↳ V is normal to bary if <V, w) =o Welps that are tangent

· T (2ms) = queTps : (vg() =03 = [f() ,Tg, (St to boundarym-

· Normal reTpS iff veTpans)
+

NTps)

· It unit vectora normal to the boundary and pointing outward

I. e . [,g,
(p)) >o if pegt() 15.

Furthermore,f + Ng ;
then the ⑪HUnit Vector is

, Mg: (p)
*

11 g.Cp)II
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Ex. (Cylinder over n-Surface in RM4(

Let
,
fir PR- R be a cost Sof is a regular nls in MNH. Define

,

↑: UXIR- > R by Flu, x) = flu) · Define
, 9. 092 : UXR-1 by , g ,

bas...., Un+ 2) = - Untz : gg(k .... kn+z) = UnH · The

Cylinder overs is defined as F19: 70, 07 1920, 17 = S . Are that it's a regular (m)-l·S in IRh+2

with boundary.

w Contraction of a form by a lector field

Suppose VSIR"-open , XECt(U) ,
wer (v). The contradiction of w by X

is defined as ixw : Y- > UXK(TqV) by
qEX

(ic) (p) (v, , . . .

.,vi) = W(p) (X (P)
,
Y . .. ..

, Vis-1)

Ex . Check thatwel (v) [Stip : PLEXW(p) (Etilp, .....Yelp) is co

"Induced orientation on the boundary
Let

,S be a regular-Is with boundary. Let, reams and I be such that

Yegki) 15 · The induced orientation on Gras is given by ixy ,
where

X is at (2) the unique outward vestor normal to the boundary .

-

-
· g(ei) IS

The example of upper half plane .

IR = 3 ...., 4) : Unz0] foS--R ( ....unit)> Knit

giRIT-I (1e...., Unn) +-en

The orientation form on IR is dy,...dyn · Suppose, KAMIR
As Yf() /Tgc) , so the unique outward pointing unit vector normal to the

boundary is

-
Then the induced orientation on GMT is given by in(dy ,--adyn)

Now
, in (dy ,

n .... dyn)() = i
- Ey (dyla ... dynta) · Observe that

in (dyilun . - . dynku)(x) (Eles -..ynt) = (dy...dyn)(

·
S 2. = Fin

n = even n= odd

in)-) = dy ,
a... Adyn-1 in)) = -dy,... dyn-1

↓ Y

the oriented basis Eyes) the oriented basis 2-Eyilm--Eyn)



Let
, she as above . A local parametrization of s is a map of the following

types :

1) 4 : VERY < Rh ; Such that Ran (4) ES and (U, M is a local

parametrization in the usual sense.

i) P : VIR* -S ; X open in IRh and : V-RM is local parametrization
such that Ran (Munri) ES

-AmS

C
type 2 ⑤ type 1

.

= S
·

in

Theorems Let
,
S as above . If, bes then I a local parametrization in the

sense of above defh . If peInt(s) ,
then the param can be chosen to be of

form i) ·

If , peop then the parametrization is of the for i). Thus I can be covered by

images of local param of the form 1) or If · If, s is oriented and xes
, Ian

orientation preserving local parametrization around 2.

"II Stoke's Theorem

Theorem : Let, I be a compact oriented r-ml. S in IM with boundary and

equip2MS with the induced orientation . Let , wer". Then

Saw=I w

Corollary .
S = [a,b] ; as = Gai b)
·JdSdu =St = f(-fa. CFT

III Green's Theorem.
(10 , 1)

f (my , z) = z= 190192(0 ,
019700900I

9)((= x- 1

93() =-

10, 0) "(110) gu(( = y +

Since the boundry component meets Sis not a regular 2-1s in R3 with boundary .

If sis given the orientation dundy ,
as can be givenCounter clock wise orientation.

u(t) = (t, 0) B(t) = (- t, ) Orientation on V = dx

Va(t) = (t) ((t) = (0 , 1 - t)
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Let S = f+(c) (g , ]) be a rouls in E with boundaa

Let,DomDomShow thatopenSetsinu stis

I

~: Lui- Y Tara
Then

, ((K) = Vice) it new and Vi(n)=9:(n)-f) well defineda
-

2 Show that it neg :" (i) 15 , then 5: (4) "Norm of the above"

the outward pointing yeator normal

to the boundary. -

Answer ① gililrg!(; ) = & : WLOG U; are disjoint . Now take,I be the open set

where [19: () , Xf(r) are 1%.
③ Do it by yourselfSike) to (way ?)

"Divergence Theorem .
Defho Let

,
UEIR" be open and XECt(V) such that X= Ifizai ·

Then div() =I If, X
,YfCt(r) ; define (X,) : U- 1 by pro (x(P,Y(p)

#Warning : If, M is a manifold and Xect(M)
,
then the defh of dir (x)

is different .

·

dixdvolma) -div(X) &Vol

Example : closed ball, annulus

-> Not defined

Non example : (Something non-flat) (Riemann Givature tensor =o)
in course.

EF

->Boundary



Exc. 1) If s is a compactr us in R then S has (uH)-dim
Content Zero .

2) suppose S has property (A) . Let, Si-1g"(i) then Si M. (h) los
in 1RnX 90s

3) Shas property (A) . Let, S is seen as subspace of R2x10] ·

StopS it the top. boundary of S & &"x203.

OtopS = CmS

Theorem
.

Let
,
I has the property (x) . Suppose X is a yof defined on an open

Subset V of IRx50] Such that Sev · Let, I denote the orientation preserving
unit vf normal to the boundary . Then

& div(x) drols =Y <XV) dv son

Lemma
.

=> div(X) drols
= d(ixdvols)



Remark : (by the above lemma) J) duden=(Etii) dolis
· Proof of Divergence The orem .

Let X= [fiz Where fitco() Define
,
Y=Enco · EH(VXR) F : XR-> IR

(.... Un, Kat) #f
Now
, &div(x)dvols = /div(* ) drots

-Jd(ixdrols) (by (e) of the lemma
S

= /ix(vols) (Stoke's theorem)
OmS

By part (b) of the above lemma enough to show, (ixdvols) (x) (V . . . . .,un)
=> ([X ,2) drolS((x) (ie..,n
* [Up ...., Un EFLMS

Enough to check for Ev... um] = Se , -..., e+ 3 . So
,
El, e , (c) is onb of Tr (RX50s) ·

n-1

So
,

X(r) = [ (xm, ei) e + <x(,0()) U(K) · Then,

ix (dvolg((x)(e , , . . . , ent) = (dvols)(x) (X(x) , e , -- .. enr)

= (dvols)(n)((m(, (i) , C ... .. en -1) + ((x(x), 0(x)) v(x) , e, . . .,ent))
= 8

= (x(x)
,v(4))(iv dvols)(x) (e, . . . . .. ene)

= <X(u) ,0(k)) & Votems

Corollary : Lets & E Rixso and VERx(03 be as above. Let , felo(v). Them
* i = 1, .., n

Set dudz---den St. Ve daaa

Integration by Parts . (Same situation as above)

1 dr---den = -Judg due
& Ima

2) If forg is compactly supported in inter) , then

g de ... dan = -If de.

R

(Not writing the proof)
~ Green's Theorems .

Laplacian. Af = div(f)



-> Normal derivative

I Gauss law. Af d..dendum
a Green's Identifyst((T , xg] du-dren = -/fAgdr - den + dvos-

-

3 Green's Identity2nd (fAg-9Af)dm-dun =y dvoana

(Complete the proof)

Lecture- 28
Date : 07/11/24 compactly supported Smooth function.

1) Suppose, fige (RL) Prove that for all 121 ,2, ... n
-- den f- den (chose

&

2) Suppose- has property (*) and fige Co(t) ·

Gauss Laua) If Af= o , P.T
Greenformb) Af= 19 = 0 P.

TIf de,

Answer : (t) Choose vso Sit , Supp(f) , Supp(g) [B(O) · Note that fig are zero on 2m(B(O,1)

Apply integration by parts to 1 = &m (B(QM)·

Defh : (Harmonic function) . FECO(R) is called harmonic if Af = 0.

· A -form wis used it, dw = 0

· A -form w is exact it, FG Sot dwth

Exact forms are closed . No the otherway around.

Poincare Lemma : UEMh is star shaped writ O
,
then any closed form is

exact.

* U = 1103 . W=-de dy on U . Then wis closed but not exacta

Sw = 2
,
v : 50,2 - 1103 So , w can't be closed form.
+(Cost , Sint)

Computing area of open
disk in a wierd way·must b

↓
Choose partition of unity (f) .., for

j

↓
Vol(M) =[ for 4 * (dvolm) < #+ h(s)



#extStep · Support (fi) [P(vi) to get ; f-1 on (4, (vi)). (Us) /To(vi)) ·
↓

2 . 1s with bary
=
ver

prop . I has property (M) . X a Vf on VERBX903 , v-open . The flux of MX outward across -

is given by,Joiv(x)
drol.-

Prof. Flux=
flusk form

= JdwX
& ↓2

=SWx = do n

=(dir() dvol

Ty

↑
Ass, 3, 4, 617,0

45- aftermidem
15- premidsen


