Tangent Vectors as Derivation

Lecture-14

Recall. The definition of $C^{\infty}(P)$ Define, $C^{\infty}(P)^{\times} = \mathcal{L}(C^{\infty}(P), \mathbb{R})$ (the dual). Abuse of notation, $\phi(\mathbb{I}(P)) = \phi(P)$.

Derivation: $U \subseteq IR^n$ be open Set. We disine, derivation on $C^n(P)$ is the Set of $\delta \in C^n(P)^*$ Satisfy, $\delta(fg) = \delta(f)g(P) + f(P)\delta(g)$.

Note,

Der $(C^{\infty}(P)) \leq C^{\infty}(P)^{*}$.

Example. $\frac{\partial}{\partial x_i}\Big|_{\mathbb{R}} \in C^{\infty}(P)^*$ (Well defined)

Proposition: $U\subseteq \mathbb{R}^n$ open, $P\in V$. Let, $\{e_1,...,e_n\}$ be the Cannonical basis of \mathbb{R}^n , define a linear map

Fp: TpU -> Der (ca(p))

 $\sum C_i \gamma_{P,e_i}(0) \mapsto \sum C_i \frac{\partial}{\partial \chi_i}|_{P}$

Furthermore, & is one-one.

Proof: Just need to prove { \frac{2}{3\circ}, \p} is linearly independent Set of Der (ca (P)).

- Infact the map F_P is onto aswell. So, $Der(C^{\bullet}(P)) \cong_{V-S} T_P U$.
- The diagram $TPU \xrightarrow{\Sigma} Der(C^{\infty}(P))$ Commutes:

 $Df(P) \longrightarrow Df(P) := f_{f(P)} Df(P) f_{P}^{-1}$ $F_{f(P)} R^{m} \longrightarrow Der(C^{\infty}(f(P)))$

Remark: From now we identify tangent space as space of derivation and view the derivative Df(P) as linear map Df(P) as above. If, $f: U^n \to \mathbb{R}^m$ then $Df(P): T_P U^n \to T_{f(P)} \mathbb{R}^m$ a linear map. If $\{X_i\}_{i:s}: Co\text{-ordinate}$ on U^n and $\{Y_i\}_{i:s}: Co\text{-ordinate}$ on \mathbb{R}^m , then $T_P U^n = Span \{\frac{\partial}{\partial x_i}|_{P}\}_{P}$, $T_{f(P)} \mathbb{R}^m = Span \{\frac{\partial}{\partial y_i}|_{f(P)}\}_{P}$.

```
Proposition: f: U^n \to IR^m, Then for all g \in C^{\infty}(f(P)), we have,
                                   Df(P)(v)(g) = v(g \circ f)
Defn: Let, M be a k-manifold of \mathbb{R}^n and p \in M.
a Define, CM(P) = {(f, V): Vis open Subset of M and f: V→IR CO}
    Define equivalance relation on C_{M}^{\infty}(P) as before.
C C_M^{\infty}(P) = C_M^{\infty}(P) / \sim
Derivation, Der (C_M^{\infty}(P)) = \begin{cases} \delta \in C_M^{\infty}(P)^* : \delta(fg) = \delta(f)g(P) + f(P)\delta(g) \end{cases}
Local pormetrization (U, Y). Define, (U, one Co-ordinates on U)
                              X_{i}^{\Psi}|_{x} := D\Psi(x)\left(\frac{\partial}{\partial u_{i}}|_{x}\right)
                              X_{i}^{*}(\delta) := DA(x) \left(\frac{\partial A}{\partial x}\right)^{*}(\delta)
                                       = \frac{\partial}{\partial u} (g_0 \psi)(x)
Proposition: Let, M be a k-manifold in IRn and (UY) is local param.
Then, {X; i=1, , k} is a basis of TpM.
Proof: TpM = Image (DY (Y-'(P))). So the dim TpM is k.
! Warning: The def n of X: 1/2 (xEU) depends on choice of (U,Y).
  Theorem: Let, M be a k-manifold in IR" and PEM. Let, (U, 4) be
    a co-ordinate around p.
                                     \Phi: T_{\Psi^{-1}(P)}(U) \rightarrow Der(C_{M}^{\infty}(P))
                                            \Phi(\mathcal{Y})(t) = \mathcal{Y}(f \circ \Psi) \circ
   Define, \Phi:= F: Der (C_M^n(P)) \longrightarrow T_{Y^{-1}(P)}(U) \longrightarrow Check that it is inverse of above map.
  Coroll. M be a k-manifold in IRn. TpM > Der (Cm(P))
               extendes to a Smooth funct f: U - N)
  Defn: f: M→N is co. Defines
                                         Df(p): TpM -> TpN
                                              Df(P)(v)(q):= v(gof)
```

Recall. $U \subseteq \mathbb{R}^n$ (open) then, $\{\frac{\partial}{\partial x_i}|_{p}\}$ is basis of $T_p U$.

Vector Fields

Defin: $X: U \rightarrow \bigcup_{q \in U} T_q U$ $X(x) = \sum_{i=1}^{n} \zeta_i(x) \frac{\partial}{\partial x_i} |_{x_i}$

So, X(P) ∈ TpU. How does it looks like?

A Smooth vector field. $X: U \to TU$ (Bundle) so that, $C_1(x)$ (as above) are $C^\infty(U)$ function.

- Set of all vector field is denoted by X(V).

Proposition. ① Let, $X \in \mathfrak{X}(U)$ and $f \in C^{\infty}(U)$. Define, $f \cdot X : U \to TU$ by $f \cdot X(P) = f(P)X(P) \cdot \text{ Then, } f \cdot X \in \mathcal{X}(U)$

(I) (Freeness Condition). If $X \in \mathcal{X}(U)$, then $\exists !$ Smooth function C_1, \ldots, C_n Such that, $X = \sum C_1(x) \frac{\partial}{\partial x}$

The above proposition Says, X(U) is a C∞(U)-module of rank n, With $\left\{\frac{\partial}{\partial x_i}\right\}$ as a basis.

Vector Field on Manifold M.

Same Defⁿ as above with the additional Condition, $M \subseteq U \subseteq \mathbb{R}^n$.

Tangent Vector field. Vector field if, $X(p) \in T_pM$ $\forall p \in M$.

Normal Vector field. A $\forall f \in X$ on M is called a normal $\forall f$ if, $X(p) \in (T_pM)^{\frac{1}{2}}$ $\forall p \in M$.

- $\chi(M) = \{ \text{tangent } V \cdot f \}$. Note that $\chi(M)$ may not be a free module over (M).
- M is k-manifold in \mathbb{R}^n . Now, $\mathsf{TpM} \subseteq \mathsf{TpR}^n$. So, $(\mathsf{TpM})^+$ makes Sense. Similarly we can define everything for manifold.
- Example. S=f-(a), regular k-1.5. Then ∇f_i is Normal vector field.

Moral. If Sis a k-regular level Surface in IRntk, I a unit normal Vector. field X on S, So that,

 $\langle X(P), X(P) \rangle_{T_{P} R^{NHK}} = 1 \quad \forall P \in S.$

Examp. n-reg Level. S in \mathbb{R}^{n+1} , $S = f^{-1}(o)$. $X_i(x) = \frac{\nabla f(x)}{\|\nabla f(x)\|}$

```
# Show that y = - x = is a tangent field.
    # X = -x_2 \frac{\partial}{\partial x_1} + x_4 \frac{\partial}{\partial x_2} - x_4 \frac{\partial}{\partial x_3} + x_3 \frac{\partial}{\partial x_4} is tangent V \cdot f on S^3 \subseteq IR^4.
     Lecture - 16
 Defn: ACIRn, then topological boundary
                                 \partial A = \left\{ \begin{array}{c} \alpha \in \mathbb{R}^n : \ \forall \, \epsilon > 0, \quad B(\alpha, \epsilon) \cap A^c \neq \emptyset \\ B(\alpha, \epsilon) \cap A \neq \emptyset \end{array} \right\}
 Examples. (1) D = \overline{B(0,1)} \subseteq \mathbb{R}^2, \partial D = S^1. Excercise. A \subseteq \mathbb{R}^n, then
                                                                         DA is closed in
 2) A= Q ⊆ R, DA= R.
                                                                          \mathbb{R}^n
  Def: SCIRM is Said to have n-dim content 0 if, given Exo, I { K, ..., Kn}
  of S by closed stectangles in 1873, Such that,
                                            > Vol (K;) < E
                                                 • • ZIPAGT Loose Sheet A...
Lecture - 17
                                                                                           Date: 19/09/24
                                     Warm Up
(1) Suppose W \subseteq \mathbb{R}^n, W = \{(x_1, -, x_m, o, o) : x \in \mathbb{R} \}. Then n-dim measure 0.
2) Subset of measure zero is Lebesque measureable and have measure 0.
(3) A \subseteq W, then m(A) = 0. Example: S' \subseteq \mathbb{R}^3 has measure Zero.
(4) S \subseteq \mathbb{R}^n \Rightarrow \partial S = \partial \left(\mathbb{R}^n | S\right) (5) \Omega Thegion \Rightarrow S \subseteq \Omega is a region.
© Let, S be a set of content Zero, then int(S) = \phi. So, S \subseteq \partialS.
(TFAR) S has content zero and {k, , kn} one cover of 5, then {k, , kn} also covers os. If S has content zero then S is negion.
                                                          FREE PAL.
 Warm up. () (Step 1) Choose, \varepsilon > 0; k_{\varepsilon} = \prod_{i=1}^{\infty} [a_i, b_i] \times \left[ -\frac{\varepsilon}{2\delta}, \frac{\varepsilon}{2\delta} \right]. Cavity on.
                                                 Vol(KE) = E.
                                  m=mH
 (I) (Step 2) W = \bigcup_{N=1}^{\infty} [-N,N]^{m} \times \{o\}^{n-m} [Countable union of measure Zero] <math>\Rightarrow m(w) = 0
```

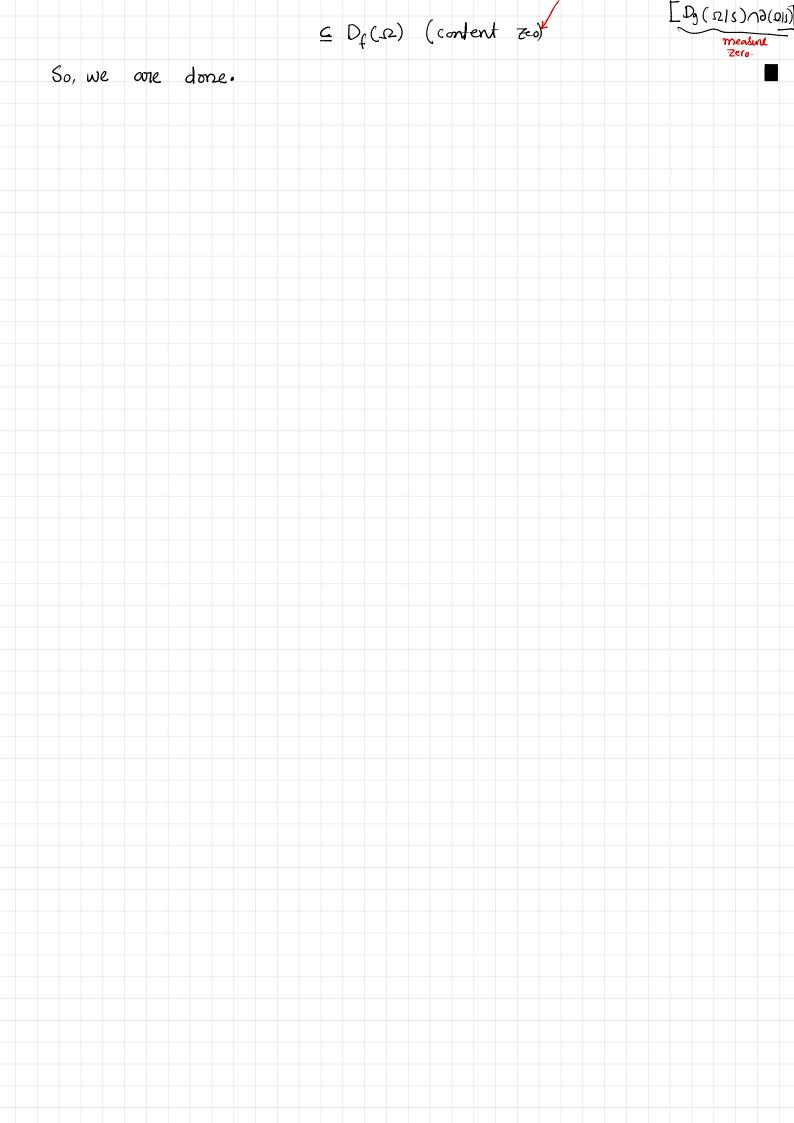
Theorem. (1) Let, $f: U \xrightarrow{n} \mathbb{R}^m$ be cont and $K \subseteq U$ be compact. Then graph (flx) has (n+m)-dim Content Zero. 2 Let, $X \subseteq W$ (an affine subspace of \mathbb{R}^n) with $\dim(W) < n \cdot Then X$ has content zero. (Check Mail) Conollary. Open/closed disk in R2 is region. O 2) Any open/closed/Semi-open m-dim nectangle in IRn is a negion. (m<n) Riemann Integration. (Several Variable) Partition (No Gardhi/Jinnah is harmed). A partition of a closed Mectangle TT [ai, bi] is a clothection $P = (P_1, ..., P_n)$, P_i is partition of [ai, bi]. E.g. [a1, b] x [a2, b2] and P= { a= to < ... < tx = b1} $P_2 = \{ a_2 = 5 \in \cdots \leq S_r = b_2 \}$ Then, $[a_1,b_1] \times [a_2,b_2] = \bigcup [t_i,t_{i+1}] \times [s_i,s_{i+1}]$ It's called Sub-nectangular partition. Defn: (Refinement) If each Sub-rectangle is Contained in a Sub-rectangle of P. Then P is prefinement of P. Upper and Lower Riemann Sum. P be the partition of k. For each Sub rectangle S of P, define $m_s(f) = im f$, $M_s(f) = sup f$.

Lower R. Sam's Upper R. Sum $L(f;p) = \sum_{\substack{S-Sub\\ \text{of } p}} m_s(f) \text{ Vol } (s) \qquad + U(f;p) = \sum_{\substack{S-Sub\\ \text{of } p}} M_s(f) \text{ Vol } (s)$ For refinements, $L(f;P) \leq L(f;P')$ \Rightarrow $Sup L(f;P) \leq \inf_{P} U(f;P)$ \Rightarrow PDefinitely K be a closed nectangle in IRn, fix + IRn is bold function is called Riemann Integral it, Sup L(fip) = Inf U(fip). And this value is denoted by \ \f(\mathbb{z}_1, \tau_n\) dan ndan.

Theorem. Let, f is R.I on closed Set K. Then for given E, we get a partition P So that, U(f;P)-L(f;P) < E. Theorem. K is closed. The f bdd & R(K) iff {x & K : f is discont at x} has measure Zero. Defn: Let, D be a negion in IRn and f is bold on Q. Let, K be closed nectangle Containing Ω , define, $f_{K}: K \rightarrow \mathbb{R}$ as, $f_K(x) = \begin{cases} f(x), & x \in \Omega \\ 0, & x \notin \Omega \end{cases}$ And we define, $\int_{\Omega} f(x_1,...,x_n) := \int_{K} f_{K}(x_1,...,x_n) dx_1...dx_n$ Exc. Show that the above def is independent of the choice of k Theorem. Ω is stegion $f \in R(\Omega) \cap bdd(\Omega)$ iff $\{x \in \Omega : f \text{ is not contact } x\}$ has measure Zero. Lecture - 18 Date: 23/09/24 Warm Up (1) $X \subseteq \mathbb{R}^n$, Prove that $\partial(\bar{x}) \subseteq \partial x$. ② ox çox (E·g X=[0,1]∩Q). 3 If X is a negion X is also a negion. Theorem. Suppose Ω is stegion in \mathbb{R}^n , then a bdd function f on $\Omega \in \mathbb{R}(\Omega)$ iff $D_f(\Omega) = \{x \in \Omega : f \text{ is discont at } x\}$ (Assuming the proof is done for box Hegeon) Proof. Let, K be a closed nectorale Containing Ω . $f(x) = \begin{cases} f(x) \\ 0 \end{cases}$ Since, $f \in R(\Omega) \Rightarrow \tilde{f} \in R(K)$. $D_{\tilde{f}}(K)$ has measure zero $\Rightarrow D_{f}(\Omega)$ has m.z. (=) Df (Ω) has measure Zero. Now, $D\tilde{f}(k) = D_f(\Omega) \cup \{x \in \Omega : \tilde{f} \text{ is not cont of } x \}$ € Dt(V) N 9V measure Zero → feR(K) Ø Theorem. Let, Ω be a negion in R". a) Let, f,g $\in R(\Omega)$, then f+g $\in R(\Omega)$. Then f+g $\in R(\Omega)$.

```
b) If, f \in R(\Omega), then cf \in R(\Omega).
                                                                 e) If, fige R(Q), fige R(Q).
   c) fig & R(Q), fig then Sf & Sq.
                                                                      Hnit: What is
                                                                      Dfg (D)?
   d) If f \in R(\Omega), then \left| \int f \right| \leq \int |f|.
 Theorem. Suppose \Omega = AUB, A and B one Hegions and int(A) \Lambda int(B) = \phi. If, f \in R(\Omega), then
             i) f \in R(A) ii) f \in R(B) iii) \int_{-D} f = \int_{A} f + \int_{B} f (Apostol)
 Mean Value Theorem Fore - Riemann Integral.
 Suppose \Omega is a region and f,g \in R(\Omega) Such that g(x) \gg 0 \, \forall x \in \Omega.

Let, m = \inf_{\Omega} f(x), M = \sup_{\Omega} f(x). Then there exist \lambda \in [m, M] Such that, \int_{\Omega} f \cdot g = \lambda \int_{\Omega} g.
   Proof. (case 1) Ig =0 then, Ifg=0
 (case 2) \int_{\Omega} g > 0. Then, define \lambda = \frac{\int fg}{\int g} Check, \lambda \in [m, M] (trivially follows)
Corollary 1. Let, \Omega be a compact gregion. f,g \in R(\Omega) and g(x) \gg 0 \ \forall x \in \Omega.
 O If Ω is connected and f is cont. Then,
                              \int_{\Omega} f \cdot g(x_1, \dots, x_n) = f(x_n) \int_{\Omega} g.
 2) \int_{\Omega} f = f(x_0) \operatorname{Vol}(\Omega). for some x_0 \in \Omega.
                                                    S is the Set of Content zero and f is any bdd function on S. Then
 Proof. (1) Use I.V.T and M.V.T.
 (1) Prievious part.
                                               f \in R(s) and \int f(x_1, x_n) dx_1 dx_1 = 0
 Corollary 2. Suppose \Omega is a negion and f(R(\Omega)). Suppose, g is bold on \Omega sot. g_{-}(f) on \Omega \setminus R when
                      g = \begin{cases} f & \text{on } -\Omega \mid S, \text{ where } \mid \\ S & \text{has cont. o} \end{cases} then,
  (1) g & R(-a) (2) jg = sf.
Proof. (1) use Dg(\Omega) has measure zero.
            D_g(\Omega) = D_g(\Omega|S) \cup D_g(S) = [D_g(\Omega) \cap (\Omega/S)] \cup [D_g(\Omega) \cap S]
                                                         = Pg(\Omega/s) \subseteq \lceil Pg(\Omega/s) \cap int(\Omega/s) \rceil \cup
```



Fubini's theorem

Theorem. Suppose fix Riemann integrable and cts function $\sqrt{20}$. $\Omega = \{(x,y): x \in [0,1], 0 \le y \le f(x)\}$ Then, i) Ω is negion. (ii) $Vol(\Omega) = \int_{0}^{1} f(x) dx$

Proof. i) Ω is region as bounded and DQ has content Zero.

ii)
$$Vol(\Omega) = \int_{\Omega} 1$$
. (Homework)

Theorem. Sis compact stegion, f: S-R cont >0, Then,

$$\Omega = \{(\overline{z}, y) : \overline{z} \in S, o \leq y \leq f(\overline{z})\} \text{ is a stegion and } Vol(\Omega) = \int f(\underline{z}) d\underline{z}$$

Theorem. (Fubini's Theorem) Suppose, $R = \prod_{i=1}^{n} [a_{ii}b_{i}] \subseteq \mathbb{R}^{n}$ $f: R \to \mathbb{R}$ is an integrable also assume that the integrals, b_{n} $f: R \to \mathbb{R}$ is an integrable $g_{1}(x_{1},...,x_{n-1}) = \int_{0}^{n} f(x_{1},...,x_{n-1},y_{n}) dx_{n}(y_{n})$ exists

$$g_{1}(x_{1}, x_{n-1}) = \int_{0}^{b_{n}} f(x_{1}, x_{n-1}; y_{n}) dx_{n}(y_{n})$$

$$a_{n} b_{n-1}$$
exists

$$g_2(x_1,...,x_{n-2}) = \int g_1(x_1,...,x_{n-2},y_{n-1}) dx_{n-1}(y_{n-1}) = x_{n-1}(y_{n-1})$$

Then,
$$\int_{\mathbb{R}} f(\vec{x}) d\vec{x} = \int_{a_1}^{b_1} (\cdots (\int_{a_n}^{a_n} f(\vec{x}) dx_n) dx_{n-1}) dx_{n-1} dx_$$

Q. Let, Ω be a negion in \mathbb{R}^3 lying over the triangle (0,0,0), (1,0,0), (11,0). and bdd above by Z=xy. Find $vol(\Omega)$

Theorem
$$2 \Rightarrow \text{Vol}(\Omega) = \int f(x,y) dx dy$$
; $f: \Delta \rightarrow \mathbb{R}$

Theorem
$$2 \Rightarrow Vol(\Omega) = \int_{\Delta} f(x,y) dx dy$$
 ; $f: \Delta \rightarrow \mathbb{R}$

Extend $f: \square \rightarrow \mathbb{R}$ by $f(x,y) = \begin{cases} 0 & \text{if } y > \chi \\ f(x,y) & \text{if } y \leq \chi \end{cases}$

Note .

Now,
$$\int f = \int \tilde{f}(x, x) dx dy \xrightarrow{\text{check}} \frac{1}{8}$$

$$g_{x}(y) = \begin{cases} xy & \text{when } y \le x \\ o & \text{when } y > x \end{cases}$$

$$\int_{0}^{\infty} h(x) = \int_{0}^{\infty} g_{x}(y) = \frac{x^{3}}{2}$$

Q.
$$S = \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 \le a, y > 0 \right\}$$
 $f: S \rightarrow \mathbb{R}$; $f(x,y) = y$.

$$D = [-a,a] \times [0,a] ; \widehat{f}: D \to \mathbb{R}$$

$$\int_{0}^{\infty} \widetilde{f} = \int_{0}^{\infty} f$$

$$g_{x}(y) = \begin{cases} y & \text{if } y \leq \sqrt{a^{2} \cdot x^{2}} \\ o & \text{if } y > \sqrt{a^{2} \cdot x^{2}} \end{cases} \Rightarrow \begin{cases} g_{x}(y)d_{y} = h(x) \\ o & \text{if } y > \sqrt{a^{2} \cdot x^{2}} \end{cases} \Rightarrow h(x) = \begin{cases} y & \text{of } y = \frac{a^{2} - x^{2}}{2} \end{cases}$$

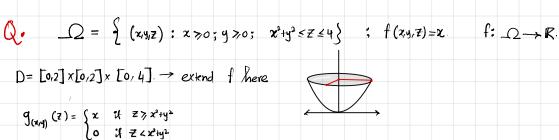
$$\int_{-a}^{a} h(x) = \frac{a^2}{2} (2a) - \frac{1}{6} 2a^3 = a^3 - \frac{a^3}{3} = \frac{2a^3}{3}$$

$$= h(x)$$

$$= x^{2}$$

$$= x^{2}$$

$$c) = \int_0^1 y \, dy = \frac{a^2 - a^2}{2}$$



$$g_{(x,y)}(z) = \begin{cases} x & \text{if } z > x^2 + y^2 \\ \text{o if } z < x^2 + y^2 \end{cases}$$

$$50, \quad h(x,y) = \int_{0}^{4} g_{(x,y)}(z) dz = \int_{0}^{4} x dz = x(4 - x^2 + y^2)$$

$$h_{x}(y) = \langle h(x,y) - x^2 + y^2 \rangle_{0}^{4}$$

$$V(x) = \int_{0}^{4} x(4 - x^2 + y^2)$$

$$V(x) = \int_{0}^{4} x(4 - x^2 + y^2)$$

$$h_{\nu}(y) = \zeta h(x,y)$$
 $\chi^{\nu} + \chi^{\nu} + \chi^{\nu}$

Corollary 2. (MVT for Riemann integral) Proved in Lec-18.

Warm Up: $X \subseteq \mathbb{R}^n$, then $\partial(X) \subseteq \partial X$, If X is a gregion So is X.

Recall, last theorem in Lec -18.

① Ω is stegion in \mathbb{R}^n , $f: \overline{\Omega} \to \mathbb{R}$ is continuous then, $\int_{\overline{\Omega}} f(x_1, -, x_n) d\overline{x} = \int_{\mathbb{R}^n} f(x_1, -, x_n) d\overline{x}$

Furthermore, $\int_{\Omega} f(x, -iz_n) d\vec{z} = \int_{\Omega} f(x_1, -iz_n) d\vec{z}$

Complete the proof of Corallary 2.

Change of Variables.

Theorem: Suppose, U^n is open stegion and $g: U^n \to \mathbb{R}^n$ a one-one c' - function. Such that, $\det(Dg(x)) \neq 0 \quad \forall x \in U^n$ Moreover we assume,

1) g(v) is stegion 2) PER(g(v))

3) The map U + K, y + fog(y) | det(og(y)) | is R-integrable

Then, $\int f(x_1, x_n) = \int f_{0}g(x_1, ..., x_n) | det (Dg(x_1, ..., x_n)) | dy$.

Check a) IMT Says, g(u) is open.

- b) Suppose that U is open, $g: U \to \mathbb{R}^n$ is one-one C^1 function. St. $\det(Dg(x)) \neq 0$ $\forall x \in U$ and that g(U) is a stegion. Assume,
 - i) g extends to a c'-map on an open Set V containing U.
 - ii) f extends to a cont map on an open Set W containing $\overline{g(u)}$.

Prove that, 2) and 3) of the theorem automatically follows.

Example.

1) $h: [0,1] \rightarrow \mathbb{R}^2$ (Let a < b). h(t) = ((1-t)b + ta, o); Then $Ran(h) = [a,b] \times \{o\}$ Which has 2-dim Content Zero.

2) $h: [0,1] \rightarrow \mathbb{R}^2, t \mapsto (a(1-t)+tb,0).$

3) $\psi: (0. \pi/2) \rightarrow \mathbb{R}^2, \ t \mapsto (\text{Cost}, \, \text{Sint})$

4) $\Psi: (o_1R) \times (o_1\pi_1) \to \mathbb{R}^3; (r,\theta) \mapsto (r\cos\theta, r\sin\theta, \delta).$

Why these examples? (Check Later)

Recall, Assignment (6).

 $\mathbb{E} \mathbb{E} [[x]] := \{ = N(x), N(x), x_{(n)}, x_{(n)}, y_{(n)}\} = 1.$

Defn: a) Suppose (Ω, Ψ) is a parlametrized n-surface in \mathbb{R}^{n+1} and $f: \Psi(\Omega) \to \mathbb{R}$ a Smooth function, We define $\int_{\Omega} f(x_1,...,x_n) d\vec{x} = \int_{\Omega} f_0 \Psi(u_1,...,u_n) det \begin{pmatrix} x_1(u_1,...,u_n) \\ \vdots \\ N(u_1,...,u_n) \end{pmatrix} d\vec{u}.$ b) We define, $Vol(\Upsilon(\Omega)) := \int \int d\vec{x} = \int det(X_1(u_1,...,u_n)) d\vec{x}$.

Back to example $\Upsilon(\Omega) = \Omega$ 1) $Vol(hE_{0,1}) = ?$ Steps-1) ([0,1],h) is parametrized 1-Surface in \mathbb{R}^2 .

11) The co-ordinate $V \cdot f = \frac{\partial h_1}{\partial u} \frac{\partial}{\partial y_1} + \frac{\partial h_2}{\partial u} \frac{\partial}{\partial y_2} = (a-b)\frac{\partial}{\partial y_3}$. $N = -\frac{\partial}{\partial y_2}$ $V_{0}I\left(\Psi(0,\frac{\pi}{2})\right)=\frac{\pi}{2}$ Arme -77 $X_{\gamma}(\tau,\theta) = \cos\theta \frac{\partial}{\partial x} + \sin\theta \frac{\partial}{\partial y} + \cos\frac{\partial}{\partial z}$ $X_{\theta}(Y,\theta) = \left(Sim \theta \frac{\partial}{\partial X} + Cos \theta \frac{\partial}{\partial Y} + O \cdot \frac{\partial}{\partial Z} \right) Y$ $Vol(\Psi(-x-)) = \frac{\pi r^2}{4}$ $N(\theta) = \frac{97}{9}$ Lecture - 20 Date: 30/09/24

Alternating Tensors on a f.d. V.S

Recall, $T^{k}(v) := Mult(V^{k}, \mathbb{R})$ $t \in J^{s}(v)$, then $s \otimes t \in T^{k+1}(v)$. and $T'(v) = V^* \cdot If$, se $J^k(v)$ and

- · Basis of Tk(V).
- $S_k S V^k$ by permuting co-ordinates. σ $(v_1, ..., v_k) = (v_{\sigma(i)}, ..., v_{\sigma(i)})$. Now we define $S_k S J^k$.

 $\overline{O} \cdot T(\mathcal{Y}_{1},...,\mathcal{Y}_{k}) := T(\overline{O} \cdot I(\mathcal{Y}_{1},...,\mathcal{Y}_{k}))$

- Defn: k>2, an element Tk(V) is called alternating if for all Vi, , Jk EV, $\phi(v_1,...,v_{i,-1},v_j,v_k) = -\phi(v_1,...,v_{i,-1},v_i,v_k)$
- · Defn: Let, V be a fd. v.s
 - (1) 10(v) = R
 - $(1) \quad V_1(\Lambda) = \Lambda_*$

Example.

 $\textcircled{1} \ \forall_1, \forall_2 \in \vee^* \ \Rightarrow \ \ \forall_1 \otimes \forall_2 - \forall_2 \otimes \forall_1 \in \wedge^2(\circ)$

```
(1) det: V^n \to \mathbb{R} (here m = \dim V) \in \Lambda^n(V).
   • Dimension of \Delta^{k}(v) = \binom{n}{k}.
    Prop D \Delta^{k}(v) \leq J^{k}(v) 2) \Psi \in \Delta^{k}(v)
3) K > \dim(n) \Rightarrow J^{k}(v) = \{o\}.
                                                                               Ψ(v,,,,v,,,,,,,,,,,,,,,,,)=0
    Proposition: T \in \mathcal{T}^{k}(V) TFAE,
          2 σ ∈ Λ<sup>k</sup>(ν)
     Defn: Alt: \gamma^{k}(v) \longrightarrow J^{k}(v)
                                                                                                                    Note that
Im (AU) = \Delta^{K}(V) + AU(T) = \sum_{\sigma \in S_{K}} \frac{1}{K_{F}} Sg_{W}(\sigma) \sigma^{-1}T
                      Alt (T)(\mathfrak{d}_1,...,\mathfrak{d}_{\kappa}) = \sum_{\sigma \neq \iota_{\kappa}} \underset{\kappa_1}{\bot} \operatorname{sgn}(\sigma) T(\mathfrak{d}_{\sigma(\iota)},...,\mathfrak{d}_{\sigma(\kappa)}).
     Proposition: (All is projection)
          (T) All (ALL (T)) = ALL (T).
  Pullback of Alternating Tensor.
      Let, f \in L(V, w) and if T \in T^k(w), we define f^k(T)(v_1, v_2, v_k) = T(f(w_1), v_1(w_2))
Now if, T \in \Lambda_k(w) then f^k(T) \in \Lambda^k V. So,
                                                   f_x: \nabla_{\mathsf{k}}(\mathsf{M}) \longrightarrow \nabla_{\mathsf{k}}(\mathsf{A})
   Defr (Wedge product) T \in \Delta^{k}(V) and S \in \Delta^{k}(V) we define,
            1) T \wedge S = T \cdot S, we define \wedge^{\circ}(V) = \mathbb{R}
2) T \wedge S := \frac{(k+l)!}{k! \; l!} \; All (T \otimes S)
  Remark: 1) TAS \in \Delta^{lik}(V) 2 \Delta^{*}(V) := \bigoplus \Delta^{k}(V) graded string
   Theorem. TE \Lambda^{k}(V), Se \Lambda^{\ell}(V)
              1) (S+S') AT = SAT+ S'AT
              2> T / (S+S') = T/S+ T/S'
              3) (\lambda T) \wedge S = T \wedge (\lambda S) = \lambda (T \wedge S)
               4) T \wedge S = (-1)^{1k} S \wedge T

5) f^*(T \wedge S) = f^*(T) \wedge f^*(S)
              6) TA (SAS') = (TAS)AS' = (K+l+m)! All (T&S&S')
Theorem. V is a vector Space with basis \{e_1, ..., e_n\}. Let \{\phi_1, ..., \phi_n\}
               the dual basis. Then,
                                                \left\{ \phi_{i} \wedge A \phi_{i} : 1 \leq i_{1} \leq \dots \leq i_{k} \leq n \right\} \xrightarrow{\text{Basis}} \Lambda^{k}(V)
```

Proposition: $v_1, ..., v_k \in V$ and let, $v_i = \sum_{k=1}^{n} a_{ik} e_k$. Let $A = (a_{ik})_{\substack{1 \le k \le n \\ 1 \le i \le k}}$.

Then, $(\phi_i \land ... \land \phi_k)(v_1, ..., v_k) = \text{det } \{k \times k \text{ minor of } A \text{ by } \}$.

Lecture - 21

emma: Let, V be a f.d. V.s then,

1) Let $S \in \mathcal{T}^{k}(V)$ s.t. All(S) = O2) $All(All(T \otimes S) \otimes S') = All(T \otimes S \otimes S') = All(T \otimes All(S \otimes S'))$ (use this to prove 2^{nd} last theorem of loast day

of loast day

...

Exercise. $\Rightarrow \phi \land \land \land \phi_{\kappa} = k!$ Alt $(\phi \otimes \phi_{2} \otimes \cdots \otimes \phi_{k})$ (Induction) $\Rightarrow \phi \land \phi_{2} \land \phi_{3} (e_{1}, v_{2}, v_{3}) = (\phi_{2} \land \phi_{3})(v_{2}, v_{3})$ (Expand and definition)

Corollary. I) Suppose, $\dim(v) = n$, Then $\Lambda^n(v)$ is generated by \underline{det} .

2) $\{e_1, e_2, \dots, e_n\}$ be basis of V and $T \in \Lambda^n(v)$. If, $w_i = \sum_{j=1}^n a_{ij} e_j$, then; $T(w_1, \dots, w_n) = \det(a_{ij}) T(e_1, \dots, e_n)$

Differential Forms

Let, $U \subseteq \mathbb{R}^n$ be open, we define $\Omega^{\circ}(U) = C^{\circ}(U)$. Let, $\left\{\frac{\partial}{\partial \mathcal{U}}\Big|_{p}\right\}$ be basis of $T_{p}U$ and $\left\{\phi, ..., \phi_{n}\right\}$ be the dual basis. Forms are given by, $W: U \longrightarrow \bigcup_{p} \left(\Lambda^{\circ}(T_{p}U)\right)$

So, $W(q) = \sum C_i(q) \phi_i(P)$. Now a differential form (one-form) is a map W as above with $W(P) \in \Lambda'(T_P U)$ 2) G_1, G_2 are C^∞ functions.

De-Rham diff. on zero forms: $f \in C^{\infty}(U)$. We define $df : U \longrightarrow U \land (T_q U)$ by df(P)(V) = Df(P)(V).

Proposition. df $\in \Omega'(U)$ and df(p) = $\sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(p) \not p|_{p}$.

Let, $U \subseteq \mathbb{R}^n$; be open and Consider the \mathbb{C}^{∞} -maps $p: \mathbb{R}^n \to \mathbb{R}$ and $(y_1, \dots, y_n) \stackrel{p}{\longmapsto} y_i$. Denote the $dp = dx_i$.

Proposition. $\forall dx_1|_{p} = \phi(p)$ 2) $df = \sum \frac{\partial f}{\partial x_1} dx_1 \in \Omega_1(v)$.

Remark. { dxi 1 ... 1 dxik: 1 \is in \is in \is basis of 1 \tau(TpU).

Defⁿ: Let, $U \subseteq \mathbb{R}^n$. Then a differential k-form on U is a map $w: U \to \bigcup \Lambda^k(T_q U)$ sit $I \to U(P) \in \Lambda^k(T_P U)$ 2> diffin addit is a k-form on U. Check that it's Smooth $I \to U$. Show that $\Omega^k(U)$ is a free $I \to U$.

 $= \sum f^*(d(n_i \cdot i_k)) \wedge f^*(dx_i, \lambda - dx_{ik})$

```
= \( d \left( hin \cdot 
                                                                  = d ( \( \sum_{\mu} \) of f (d \( \mu_{\mu} \) \) d \( \mu_{\mu} \)
                                                                                                                                                                                                           15 4's d2 (x40+) A... Ad2(x40+)
                                                                  = d (f* ( \( \sum_{ik} \) dx; \( \lambda_{ik} \))
       Example. g: \mathbb{R}^2 \to \mathbb{R}^3; g(u,v) = (u \cos v, u \sin v, v)
                                            \omega = (x^2 + y^2) dx \wedge dy + x dx \wedge dz + y dy \wedge dz
                   g^*(w) = u^2 g^*(dx \wedge dy) + u \cos v g^*(dx \wedge dz) + u \sin v g^*(dy \wedge dz)
                                    = U2 (d(ucosv) Ad(usinv)) + ucosv (d(ucosv) Adv) + usinv (d(usinv) Adv)
                                    = u2 [(cosv du -usinv dv) \ (sinv du + ucosv dv)] + ucosv (cosv du ndv) + u sin2d du ndv
                                   = u3 du A dv + u cosv (du Adv) + u sin3v du Adv
                                  =(u3+u) du AdV
Trategration of forms.
              Defn: Let, I CIRn be a region and let {21,...,2n} be the ordered basis on IRn
                W = \int dx \wedge A dx_n then,
                                                                              \int_{\Omega} w := \int_{\Omega} f dx_{n} dx_{n}
              Theorem: Let, \Omega \subseteq \mathbb{R}^n be a negion and let g: \Omega \to \mathbb{R}^n be one-one C^n map with \det(Og(x)) > 0 \quad \forall x \in \Omega
                 Moreover assume,
                  i) g(\Omega) is Hegion
                                                                           where, f \in R(g(\Omega)).
                  W = f dx \wedge dx_n
                  iii fog det(Dg) f R (\Omega) Then,
                                                                                     \int_{\Omega} w = \int_{\Omega} g^{*} \omega.
             Lecture - 23
            Integration of k forms on parametrized k-form.
             Let (\Omega, \Psi) be a parametrized k-Swrface in \mathbb{R}^n and let \omega \in \Omega^k(\Psi(\Omega))
              [\omega defined on an open set V \supseteq \psi(\Omega) in \mathbb{R}^n]; \int \omega := \int \psi^*(\omega).
                Remark: Note that the above definition depends on parametrization.
              E.g. \Psi, \Psi' : [0,1] \longrightarrow [a,b] \times \{0\} \subseteq \mathbb{R}^2; \quad \Psi(t) = (1-t)b+ta \quad \int \psi'(dx) \neq \int \Psi'^*(dx)  \Psi'(t) = (1-t)a+tb
              Theorem: Let, (\Omega_1, Y_1) and (\Omega_2, Y_2) be two poolametrized Surface Such that
```

= > d (hy ix of) Af* (dx:, n... Adx:k)

- A basis of $\{v_1, \dots, v_k\} \in T_k M$ is said to be tve-ly oriented if $W(v_1, \dots, v_k) > 0$. Similarly we can define -ve orientetion.
- A local co-ordinate (U, Ψ) of M is called orientation possessing if $\{X(P), ..., X_k(P)\}$ is a positively oriented basis of $T_{\Psi(P)}M \ \forall P \in U$. [Recall: $X_i(P) = D_{\Psi(P)}(\frac{2}{3\pi i}|_P)$]

Example: S = f'(c) be a riegular n-bs in IR^{n+1} . Then Sis orientable.

Proof: Let, V be an open Set in 1RnH Containing S. Define,

$$\omega: V \longrightarrow \bigcup_{P \in V} (\Lambda^n T_P \mathbb{R}^{nH})$$

 $\omega(z)(v_1,...,v_n) := \det \begin{pmatrix} v_1 \\ v_n \\ \nabla f(x) \end{pmatrix}$; prove that it's Smooth and non-vanishing.

*Lemma: Suppose (M,w) is an oriented R-manifold. Then I a local parametrization (U,4) arround x which is orientation preserving.

Partition of unity.

Suppose M is a compact-manifold and (U; Y;) ove local parametrization. St UY; (U;)=M Let, {fi,...,fs} be a partition of unity Sub-ordinate to Y; (U;); by this we ist mean the following:

1) $f_1, \dots, f_5: M \longrightarrow \mathbb{R}$; co and $f_1 > 0$.

- 2) \sum f; (q) = 1 \tag \in M
- 3) Supp (f;) ⊆ 4;(v;)

Integration of k-forms on Manifold:

Assume (Mw) is oriented. Consider a position of unity \{\(\int_{1},...,\(\int_{5} \) \} Sub ordinate to orientation preserving local coordinates (As proved in *). Then,

$$\int_{M} h := \sum_{i=1}^{n} \int_{U_{i}} \mathcal{C}_{i}^{*}(f_{i}, h)$$

* Theorem: The above defin is independent of the orientation preserving local coordinates and the Choice of partition of unity.

Lecture - 24

Date: 23/10/24

Theorem: Let, (M, ω) be oriented k-manifold in \mathbb{R}^n and $x \in M$. Then there is an orientation preserving local co-ordinate (U, Ψ) around x.

Warton up:

① det $(\langle v_i, v_j \rangle) > 0$ ② $T \in \Lambda^n \vee S_0$ that $\dim(v) = n$ and $\{v_1, ..., v_n\}$ is

- Defn: Let, V be a fid V.S and $T \in \Lambda^{K}(V)$, $T \neq 0$, A linearly independent set $\{\mathcal{Y}_{1},...,\mathcal{Y}_{K}\}$ is Said to be trely oriented with T if $T(\mathcal{Y}_{1},...,\mathcal{Y}_{K}) > 0$
- (3) Warmup: Let, dim (v) = n and $w \le V$ of dim $k \le n$. Let, $T \in \Lambda^{k}(v)$ s.t $T \ne 0$ as an element of $\Lambda^{k}(w)$. For any basis $\{v_1, ..., v_k\}$ of w, $T(v_1, ..., v_k) > 0$ or $T(v_1, ..., v_k) < 0$.
- Proof of Theorem*. Let, (U, Y) be a local parametrization. WLOG, U is Connected open negion.

The map $\Phi: U \mapsto \mathbb{R}$ given by $u \mapsto \omega(\Psi(u))(X_1(u), \dots, X_k(\Psi))$ is continuous, here, X_i are cont. V_i along Ψ . As $\{X_i(u)\}$ forms a basis of $T_{\Psi(u)}M$ and $\omega(\Psi(u)) \neq 0$ as an element of $\Lambda^k(T_{\Psi(u)}M)$; So by warm up -3.

 $Ran(\Phi) \subseteq (0,\infty)$ or $(-\infty,0)$ [using connectivity]

- If, Ran (Φ) ⊆ (ora) there is nothing to do-
- If, Ran $(\Phi) \in (-\infty, 0)$, define $U' = \{(x_1, \dots, x_k) \in \mathbb{R}^k : (x_1, x_1, \dots, x_k) \in U\}$ define $\Psi' : U' \to M$ in the natural way, call the local co-ordinate X_1', \dots, X_k' . So,

W(Y'(u))(X'(u),..., xx'(u))>0 ∀u∈U.

The Volume Form.

Defn: Let, W be a Subspace of V, $\dim(W) = k$, $\dim(V) = h$, Suppose $T \in \Lambda^k(V)$ Such that $T \neq 0$ as an element of $\Lambda^k(W)$. Then the Signed Volume of the parallelopiped Spanned by k-vectors $\{v_1, \dots, v_k\}$

+ \det(\langle v_i, v_i \rangle) if the orientation

w.r.t T

- \det(\langle v_i, v_i \rangle) if -ve orientation

w.r.t T:

- * Example: (M, ω) oriented manifold of \mathbb{R}^n . Let, $V:= \operatorname{Tp} \mathbb{R}^n$; $W:= \operatorname{Tp} M$; $T=\omega_p \in \Lambda^k$ (T_{PM}) . Now,
- Fif {v₁,..., v_κ} is linearly dependent ⇒ ωρ(v₁,..., v_κ) =0
- * if linearly dependent >> Fallow the defn (two cases)

Defn: Let, (M,w) be oriented manifold in IRn. A volume form on is a k-form dvoly on M Such that teem and for any trely oriented basis of $T_x M$ (wit $\omega(x)$), a Volm (x) (vis...., Jk) = Signed Volume of parallelo pipale. 2 712.... 2 7K } REMARK: (.) If (M, w) is an oriented manifold then I a Volume form and it's unique Fig. Consider the 2-lis \mathbb{R}^2 in \mathbb{R}^3 ; $S=f^{-1}(0)$, $f:\mathbb{R}^3 \to \mathbb{R}$ $(x,y,z) \mapsto z$. Then $\omega(x)(v_1,v_2) = \det\left(\begin{array}{c} v_1 \\ v_2 \end{array}\right)$ is a non-vanishing form of (\mathbb{R}^2, ω) is dx ady. Example. Let, S=f-(c) be a n.l.s in IRnt. Let, w be the orientation for m' on S defined by, $\omega(x)(v_1,...,v_n) = det(v_1...,v_n, \nabla f(x))^t$; then the volume form for (s, ω) is $dvol(x)(v_1, v_k) = det(v_1, v_n, \frac{\nabla f(x)}{\|f(x)\|})$ Claim that $\left[\operatorname{dvol}(x)\left(v_1,\dots,v_n\right)\right]^2 = \det\left(\langle v_1,v_1\rangle\right)$ and complete the poloof. For negular K-level Surface: det (); Volume form Defn: Let (M, w) be oriented k-manifold in IRn and dvoly be the volume form 1) If, $f \in C^{\infty}(M)$, we define $\int_{M} f := \int_{M} f \, dvol_{M}$ 2) $Vol(M) := \int f.$ Theorem: $f \in C^{\infty}(M)$ and f > 0, then $\int f dvol_{M} > 0$. Flemma: (M, w) be oriented k manifold in 1R" and (U, Y) be an orientation preserving local parametrization. Such that U is a region and the { X; are V.f } $\det g: U \longrightarrow \mathbb{R} \qquad \text{det } \left(\langle X; (x), X; (x) \rangle \right)$ is bdd on U_3 then $\int f dvol_M = \int (f \circ Y) \int det g(\overline{u_1}, u_k) du_k du_k$ Remember: $g_{ij}(x) := \langle X_i(x), X_j(x) \rangle$ Riemannian Metric on M. Proof (U, Ψ) be orientation preserving local parametrization around $x = \exists r_x > 0$, $B(\Psi^{-1}(x), \tilde{r}_x) \subseteq U$. $\Psi_x := \Psi |_{U_x}$ So, $\det(g)$ is bold on $B(\psi^{-1}(x), \tau_{x}) \Rightarrow \det g$ is bold on $B(\psi^{-1}(x), x)$. As { Yx(Ux) } Covers M; it has a finite cover and a partition of unity Sub-ord to the cover. Then,

$$\int_{M} f \, dVol_{M} = \sum_{i} \int_{U_{x_{i}}} f \, dVol_{M}$$

Now apply the lemma.

proof of lemma:

$$\int f \, dVol_{M} = \int \Psi^{*}(f \, dVol_{M})$$

$$\Psi(v) = \int h \, du_{A} \, Adu_{K} \left[As, \Psi^{*}(f \, Vol_{M}) \in \Omega^{K}(v)\right]$$

Now
$$_{2}$$
 $h(u) du, \wedge \cdot \cdot \wedge du_{k} \left(\frac{\partial}{\partial u_{i}}, \dots, \frac{\partial}{\partial u_{k}} \right) \Rightarrow h(u) = (f_{0}\psi)(u) dval_{m}(u) \left(x_{i}(u), \dots, x_{k}(u) \right)$

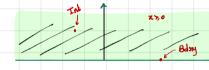
$$= + (f_{0}\psi)(u) dut \langle x_{i}(u), x_{j}(u) \rangle$$

Lecture - 25

Date: 28/10/24

- 1

Example: (The closed upper half plane in 182)



Boundary of UHP CIR3 is UHP.

Regular n-level Surface in 18nH With boundary.

Defn: It is a Subset of RnH of the form,

$$S = f^{-1}(c) \cap \left(\bigcap_{i=1}^{k} q_{i}^{-1}(-\infty, c_{i}) \right)$$

① \(\frac{1}{p}\) \$\diam 0\, \diam p \(\epsilon\) f(\(\epsilon\))

3 \(\delta\) \(\epsilon\) \(\delta\) \(\del

We define the manifold boundary of S to be $\partial_M S := S \cap (\overset{\circ}{\cup} g_i^{-1}(c_i))$ and int $M = S \setminus \partial_M S$.

Example: UHP in 182 is a 2-l.5 in 183 with boundary.

Exercise: (The closed upper half plane in \mathbb{R}^n) $\mathbb{R}^n_+ := \{(z_1, ..., z_n): z_1 \neq 0\}$ Now, IR = f-1(0) ∩ g-1(-00,0]; f: Rn+1 → IR is defined by, f(x,...,xn) = xn+1; g(x,...,xn) = -xn Example: (closed apper hemisphore) $f: \mathbb{R}^3 \to \mathbb{R} \quad ; \quad (x_1, x_2, x_3) \quad \longmapsto \quad x_1^2 + x_1^2 + x_2^2$ S = f-1(1) ng-1 (-00,0] g: R3 → 1R; (x1,x2,x3) → -x3 CHECK TO TO THE CONTOR TO THE Example: (Gylender) f: x2+y2-1 8= f-(0) ng-1 (-0,0] ng-1 (-0,0] g: -Z Remark: Repeatation of the definition. + { 79; (P), 79; (9)} is not LI. ! Worning. Topological boundary of SCRnH maynot be OMS. Note. gi'(ci) ns is negular-(n-1)-level Surface in 1RH. Tangent Spaces. Defn: Let, S be a n-list on \mathbb{R}^{nH} with boundary as above. If, $P \in S$ we define, $T_P S := \{ v \in T_P | \mathbb{R}^{nH} : \langle \nabla f(P), v \rangle = 0 \}$. Note, dim (Tps) = n + pe S. Remark: If PEDMS, then I! ie {1,... k} sit pegil(ei) ns Defn: Let, PEDMS and NETps. Let, ie {1,..., k} St pegio(Gi) OS 1> v is called outward pointing if (v, vg.(P)) >0 2) & is called inward painting if < v, \quad \quad \text{\$\gamma_1 \text{\$\text{\$\gamma_1 \text{\$\gamma_2 \text{\$\gamma_2 \text{\$\gamma_1 \text{\$\gamma_2 \tex 3> 9 is tangent to boundary if $\langle 9, \nabla g, (P) \rangle = 6$ 4> 9 is normal to below if $\langle 9, w \rangle = 0 + \omega \in T_PS$ that are tangent to boundary. • Tp (∂MS) = { v∈ TpS: <v3 vg; (P)> =0 } = { vf(P), vg; (P)} • Normal VETPS iff VE(TPOMS) (Tps) • I! unit vector o normal to the boundary and pointing outwood i.e. (v, $\nabla g_i(P)$) >0 if $P \in g^{-1}(G_i) \cap S$. Further more, $\nabla f + \nabla g$; then the unit vector is, $\frac{\nabla g}{\|g_i(p)\|}$.

Ex (cylinder over n-Sunface in RnH)

Let, $f: U \subseteq \mathbb{R}^{n + 1} \longrightarrow \mathbb{R}$ be a C^{∞} set $S = f^{-1}(c)$ is a gregular $n - l \cdot S$ in $\mathbb{R}^{n + 1}$. Define, $f: U \times \mathbb{R} \to \mathbb{R}$ by $\tilde{f}(u, x) = f(u)$. Define, $g_1, g_2: U \times \mathbb{R} \to \mathbb{R}$ by, $g_1(x_1, x_2, \dots, x_{n + 2}) = -x_{n + 2}$; $g_2(x_1, \dots, x_{n + 2}) = x_{n + 1}$. The Cylinder over S is defined as $\tilde{f}^{-1}(c) \cap g_1^{-1}(-\infty, 0) \cap g_2^{-1}(-\infty, 1) = S$. Prove that it's a tregular $(n + 1) - l \cdot S$ in $\mathbb{R}^{n + 2}$ with boundary.

Contraction of a form by a Vector field

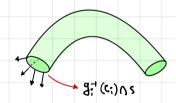
Suppose $V \subseteq \mathbb{R}^n$ -open, $X \in \mathfrak{X}(U)$, $\omega \in \Omega^k(V)$. The contradiction of ω by X is defined as $i_X \omega : V \longrightarrow U \wedge^{k+}(T_q V)$ by,

$$(\mathring{\iota}_{x}\omega)(P)(v_{1},...,v_{k}) = \omega(P)(x(P),v_{1},...,v_{k-1})$$

Ex. Check that ix ω ε ΩK-1 (V) [ε.t.P: P ix ω (P) (3 y | P,..., 3 y | P) is co

Induced orientation on the boundary

Let, S be a fregular. Is with boundary. Let, $x \in \partial_{M}S$ and i be Such that $x \in g^{-1}(c_{i}) \cap S$. The induced orientation on $\partial_{M}S$ is given by $i_{x_{i}} \cap i_{x_{i}} \cap i_{x_{i}}$



The example of upper half plane.

$$|R_{+}^{n} = \{(x_{1}, x_{2}, ..., x_{n}): x_{n} \geq 0\} \qquad f: |R^{nH} \longrightarrow R \qquad (x_{1}, ..., x_{nH}) \mapsto x_{nH}$$

$$g: |R^{nH} \longrightarrow |R \qquad (x_{1}, ..., x_{nH}) \mapsto -x_{n}$$

The orientation form on IR", is $dy_1 \wedge \dots \wedge dy_{n+1}$. Suppose, $x \in \partial m$ IR", As $\nabla f(x) \perp \nabla g(x)$, So the unique outward painting unit vector normal to the boundary is $\nabla g(x) = -\partial y$

 $\frac{\nabla g(x)}{\|\nabla g(x)\|} = -\frac{\partial}{\partial y} \Big|_{\chi} = N$

Then the induced orientation on ∂MR_{+}^{n} is given by in (dy_{1}, \dots, dy_{n}) . Now, in (dy_{1}, \dots, dy_{n}) (x) = $i - \frac{\partial}{\partial y_{n}}$ $(dy_{1}|_{x}, \dots, dy_{n}|_{x})$. Observe that,

$$i_{N}\left(dy_{1}|_{x}, A - Ady_{n}|_{x}\right)\left(x\right)\left(\frac{\partial}{\partial y_{1}}|_{x}, \dots, \frac{\partial}{\partial y_{n}}\right) = \left(dy_{1}, A - Ady_{n}\right)\left(-\frac{\partial}{\partial y_{n}}, \frac{\partial}{\partial y_{1}}, \dots\right)$$

$$= (-1)^{n}$$

n=even

n-ald

in (-) = dy, n- ndyn-1

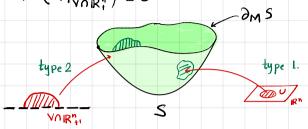
in(-) = -dy, 1. 1dyn1

+ ve oriented basis { \frac{3}{2}y_1, \frac{3}{2}y_{n1}} + ve oriented basis { \frac{3}{2}y_1 \pi_2, \frac{3}{2}y_{n1}}

Let, S be as above. A local parametrization of S is a map of the following tupes:

i) $\psi: U \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^{nH}$; Such that $\operatorname{Ran}(\psi) \subseteq S$ and (U, ψ) is a local parametrization in the usual Sense.

 $\Psi: V \cap \mathbb{R}^n_+ \to S$; V open in \mathbb{R}^n and $\Psi: V \to \mathbb{R}^{nH}$ is local parametrization. Such that $\mathbb{R}^n(\Psi|_{V \cap \mathbb{R}^n}) \subseteq S$



Theorem: Let, S as above . If, $p \in S$ then \exists a local parametrization in the Sense of above def^n . If $p \in Int(s)$, then the parameter can be chosen to be of form is.

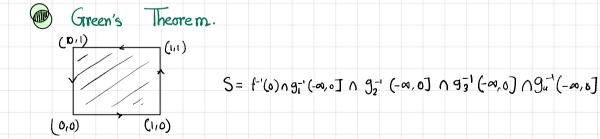
If, peops then the parametrization is of the for ii). Thus S can be covered by images of local parame of the form i) or ii). If, S is oriented and zes, Jan orientation preserving local parametrization around z.

Stoke's Theorem

Theorem: Let, S be a compact oriented π -n.l.S in \mathbb{R}^{nH} with boundary and equip $\partial_M S$ with the induced orientation. Let, $\omega \in \Omega^{n-1}$. Then

$$\int_{S} dw = \int_{S} \omega$$

Corollary. $S = [a_1b]$; $\partial S = \{a_1b\}$. $\int df = \int f' dx = \int f = f(b) - f(a)$. (FTA)



$$f(xy,z) = z$$

$$g_1() = -y$$

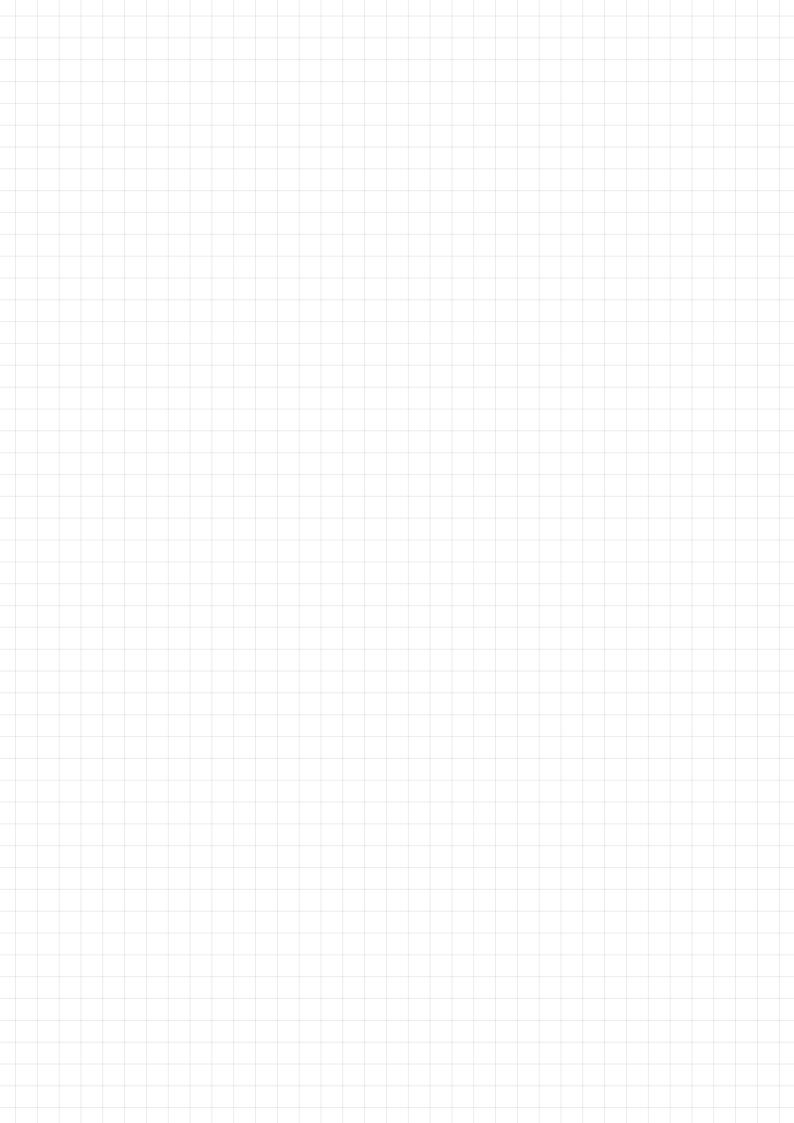
$$g_2() = z-1$$

$$g_3() = -x$$

$$g_4() = y-1$$

Since the boundry component meets S is not a regular 2-1.5 in \mathbb{R}^3 with boundary. If S is given the orientation d x d dy, d S can be given. Counter clock wise orientation.

$$\Upsilon_{1}(t) = (t_{1}0)$$
 $\Upsilon_{3}(t) = (1-t_{1}1)$ Orientation on $\Upsilon_{1} = dx$
 $\Upsilon_{1}(t) = (1/t)$ $\Upsilon_{4}(t) = (0/1-t)$



is well defined.

Let, Dom(f) = U, $Dom(g_i) = U_i$. Show that $\exists open sets \ \tilde{U}_i \subseteq U_i \cap U$ so that, \tilde{U}_i are open in \mathbb{R}^{nH} , $\tilde{U}_i \cap \tilde{U}_j = \emptyset$. If, $i \neq j$ such that

V: LIÙ; --- U Te Rail

Then, $\nabla(x) = \mathcal{V}_{i}(x)$ if $x \in \mathcal{V}_{i}$ and $\mathcal{V}_{i}(x) = \nabla g_{i}(x) - \langle \nabla g_{i}(x), \nabla f(x) \rangle$ $||\nabla f(x)|| \nabla f(x)$

2 Show that if $x \in g_i^{-1}(c_i) \cap S$, then $J_i(x)$ "Norm of the above" the outward painting vector normal to the boundary.

Answer (1) $g_{i}(c_{i}) \cap g_{j}(c_{j}) = \emptyset$; whose v_{i} are disjoint. Now take, v_{i} be the open set where $\{\nabla g_{i}(x), \nabla f(x)\}$ are L.I. (3) Do it by yourself $v_{i}(x) \neq 0$ (why?)

@ Divergence Theorem.

Defn: Let, $U \subseteq \mathbb{R}^n$ be open and $X \in \mathbb{X}(U)$ Such that $X = \sum_{i=0}^n \frac{\partial}{\partial x_i}$.

Then $div(x) = \sum \frac{\partial f_i}{\partial x_i}$. If, $X, Y \in \mathcal{X}(U)$; define $\langle X, Y \rangle : U \to IR$ by $P \mapsto \langle X(P), Y(P) \rangle$

 Δ wavning: If, M is a manifold and $X \in X(M)$, then the def n of div (X) is different.

" d(ix dvolm) = div(x) dvolm

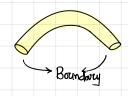
Then show that all these subsets have the following property (for a certain choice of n in each of the cases), which we shall call **Property** \circledast for the moment:

S is a compact regular n-surface with boundary in \mathbb{R}^{n+1} of the form $f^{-1}(0) \cap (\bigcap_{i=1}^k g_i^{-1}(-\infty, c_i])$ with $f: \mathbb{R}^{n+1} \to \mathbb{R}$ defined by $f(x_1, \dots, x_{n+1}) = x_{n+1}$.

Note that if S satisfies property *, then $S \subseteq \mathbb{R}^n \times \{0\}$.

Example: Closed ball, annulus

Non example: (Something non-flat) (Riemann auvalure tensor=0) in course



Exc. 1) If Sis a compact It n.l.s in 1RnH, then Show (n+1)-dim. Content Zero.

- 2) Suppose S has property (*). Let, $S_i = S \cap g^{-1}(c_i)$ then S_i is $\pi. (n-1) l \cdot S_i$ in $\mathbb{R}^n \times \{0\}$.
- 3) Shas property (*). Let, S is seen as Subspace of $\mathbb{R}^n \times \{0\}$. Otop S := the top bound any of $S \subseteq \mathbb{R}^n \times \{0\}$.

OtopS = OMS

Theorem.

Let, S has the property (x). Suppose X is a Vif defined on an open. Subset V' of IR" x {o} Such that SCV'. Let, v denote the orientation preserving unit Vif normal to the boundary. Then

 $\int_{S} div(x) dvol_{S} = \int_{MS} \langle x, v \rangle dvol_{MS}$

Lemma.

- (a) Suppose V is a vector space of dimension n and $\{e_1, \dots e_n\}$ is an orthonormal basis of V. If $X, Y \in \Lambda^n(V)$ are such that $X(e_1, \dots e_n) = Y(e_1, \dots e_n)$, then prove that X = Y as elements of $\Lambda^n(V)$.
- (b) Suppose M is a compact k-manifold in \mathbb{R}^n and ω, η are k-forms on M. Recall that this means that there exists an open set W in \mathbb{R}^n which contains M and that $\omega, \eta \in \Omega^k(W)$.

Suppose for all $x \in M$ and for all $\{v_1, \dots v_n\}$ in T_xM , we have

$$\omega(x)(v_1,\cdots v_n)=\eta(x)(v_1,\cdots v_n).$$

Prove that $\int_M \omega = \int_M \eta$.

- (c) If S has the property * as in the previous problem, and X is a vector field defined on an open subset V of \mathbb{R}^n containing S, then prove that X can be extended to a smooth vector field on the set $V \times \mathbb{R}$ which is an open set in \mathbb{R}^{n+1} .
- (d) Suppose S has the property * as in the previous problem. If x_1, \dots, x_n, x_{n+1} denotes the co-ordinates on \mathbb{R}^{n+1} and the orientation form on \mathbb{R}^n is defined to be $dx_1 \wedge dx_2 \wedge \dots \wedge dx_n$, then prove that

$$dvol_S = dx_1 \wedge dx_2 \cdots dx_n.$$

(e) Suppose S has the property * as in the previous problem so that we have $dvol_S = dx_1 \wedge dx_2 \cdots \wedge dx_n$. Prove that

$$i_{f_{j}\frac{\partial}{\partial x_{j}}}(\operatorname{dvol}_{S}) = (-1)^{j}f_{j}dx_{1} \wedge dx_{2} \wedge \cdots \wedge \widehat{dx_{j}} \wedge \cdots \wedge dx_{n}, \Rightarrow \overbrace{div(x) \, dvol_{S}} = d(ix \, dvol_{S})$$

where the symbol $\widehat{dx_j}$ means that dx_j is not present in the term.

Remark: (By the above lemma) $\int_{S} \left(\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}} \right) dx_{i} dx_{n} = \int_{MS} \left(\sum_{i} f_{i} \partial_{i} \right) dv_{n} dx_{n}$ Proof of Divergence Theorem. Let, $X = \sum f_i \frac{\partial}{\partial x_i}$ where $f_i \in C^{\infty}(Y^i)$. Define, $\tilde{X} = \sum_{i=1}^{n} \tilde{f}_i \frac{\partial}{\partial x_i} + 0 \cdot \frac{\partial}{\partial x_{n+1}} \in X(Y \times \mathbb{R})$ $\tilde{f}_i : V \times \mathbb{R} \longrightarrow \mathbb{R}$ $(x_1, \dots, x_n, x_{n+1}) \mapsto f(x_n, \dots, x_n, x_n) \mapsto f(x_n, \dots, x_$ Now, $\int_{S} div(x) dvol_{S} = \int_{S} div(\tilde{x}) dvol_{S}$ = \int d (ix dvols) (by (e) of the lemma) = $\int_{\delta_{MS}} i_{\tilde{X}}(d \text{ vols})$ (Stoke's theorem) By part (b) of the above lemma enough to Show, (ixelvols) (x) (vi,..., Jn-1) = $(\langle x, v \rangle)$ dvol_{2m}S)(z) $(v_1, ..., v_{n-1})$ ¥ {v₁,..., v_{n-1}} ∈ Tx dms Enough to check for $\{v_1, \dots, v_{n-1}\} = \{e_1, \dots, e_{n-1}\}$. So, $\{e_1, \dots, e_{n+1}, \Im(x)\}$ is one of $T_{\infty}(\mathbb{R}^n \times \{0\})$. So, $X(x) = \sum_{i=1}^{n-1} \langle x(x), e_i \rangle e_i + \langle x(x), \Im(x) \rangle \vartheta(x)$. Then, $i_{x}(dvol_{s})(x)(e_{1},...,e_{n+1}) = (dvol_{s})(x)(x(x),e_{1},...,e_{n+1})$ $=\left(\mathsf{d}\,\mathsf{Vol}\,\mathsf{s}\right)(\mathsf{x})\left(\left(\sum \left\langle \mathsf{X}(\mathsf{x}), e_{i}^{\mathsf{x}}\right\rangle, e_{i}, \dots, e_{\mathsf{N}-1}\right) + \left(\left\langle \mathsf{X}(\mathsf{x}), \mathsf{V}(\mathsf{x})\right\rangle \mathsf{V}(\mathsf{x}), e_{i}, \dots, e_{\mathsf{N}-1}\right)\right)$ = $\langle x(x), v(x) \rangle (i_v \, dvols)(x) (e_1, \dots, e_{n-1})$ = $\langle X(z), V(x) \rangle$ d Vol_{MS} . Corollary: Let, $\Omega \subseteq \mathbb{R}^n \times \{0\}$ and $V' \subseteq \mathbb{R}^n \times \{0\}$ be as above. Let, $f \in C^\infty(V')$. Then $\int \frac{\partial f}{\partial x_i} dx_i dx_2 - dx_n = \int f \cdot v_i dv d \partial_{m\Omega}$ Integration by Parts. (Same Situation as above) 1) $\int \frac{\partial f}{\partial x_i} g dx ... dx_n = - \int f \frac{\partial g}{\partial x_i} dx_i ... dx_n + \int f \cdot g \cdot v_i dv dx_n \int \partial M \Omega$ 2) If for g is Compactly Supported in int(12), then $\int \frac{\partial f}{\partial x_i} g dx_i dx_n = -\int \frac{\partial g}{\partial x_i} f dx_i dx_n$ (Not writing the proof) Gircen's Theorem. Laplacian. $\Delta f = \text{div}(\nabla f)$

1) Gauss law. $\int_{\Omega} \Delta f \, dx_1 \cdot dx_n = \int_{\partial m} \frac{\partial f}{\partial v} \, dval_{\partial ms}$; $\frac{\partial f}{\partial v} = \sum_{i} \frac{\partial f}{\partial x_i} v_i$; Green's Identity 151: $\int \langle \nabla f, \nabla g \rangle dx_1 ... dx_n = -\int f \Delta g dx_1 ... dx_n + \int \frac{\partial g}{\partial v} f dvol_{\partial m} s$ 3 Green's Identity and: $\int_{\Omega} \left(f \Delta g - g \Delta f \right) dx_{m} dx_{m} = \int_{\partial M \Omega} \left(f \frac{\partial g}{\partial v} - g \frac{\partial f}{\partial v} \right) dvol_{\partial M \Omega}$ (Complete the proof) Lecture- 28 Compactly Supported Smooth Junction. Date: 07/11/24 f,9 € Cc (Rn) Prove that for all i-1,2,...,n 1) Suppose, $\int \frac{\partial f}{\partial x_i} g \, dx_i \dots dx_n = - \int f \frac{\partial g}{\partial x_i} \, dx_i \dots dx_n \quad (Choose \Omega)$ 2) Suppose Ω has property (*) and fig $\in C^{\infty}(\Omega)$. Grant Li for b) $\Delta f = \Delta g = 0$ P.T. $\int \frac{\partial f}{\partial v} = 0$ Green Li for b) $\Delta f = \Delta g = 0$ P.T. $\partial m\Omega$ $\int f \cdot \frac{\partial f}{\partial v} = \int ||\nabla f||^2 dvol\Omega$ Answer: (1) Choose 1>0 S.t., Supp(f), Supp(g) $\subseteq B(0,T)$. Note that f, g are zero on $\partial_{m}(B(0,T))$. Apply integration by parts to $\Omega = \partial_{m}(B(0,T))$. Defn: (Harmonic function). $f \in C^{\infty}(\mathbb{R})$ is called harmonic if $\Delta f = 0$. A k-form ω is closed if, dω=0
A k-form ω is exact if, Jh sit dw=h Exact forms are closed. No the otherway around. Poincare Lemma: U CIRM is Store Shaped wiret 0, then any closed form is exact. $\Lambda U = IR^2 |\{0\}\}$. $\omega = -\frac{y}{x^2+y^2} dx + \frac{z}{x^2+y^2} dy$ on $U \cdot \text{Then } \omega \text{ is closed but not exact.}$ $\int \omega = 2\pi, \quad \gamma : [0,2\pi] \longrightarrow |R^2 \setminus \{0\} \qquad \text{So, } \omega \text{ Can't be Closed form.}$ $\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow (Cost, Sint)$ Computing area of open disk in a wierd way! U2 (open poram - 2- Surface) 10 → Cover the open disk by UU;.

Choose portelion of unity {fi,..., fo}

 $Vol(M) = \sum_{i} f_{i} \circ \psi_{i} + \psi_{i}^{*}(dvol_{M}) < \pi + \beta(\epsilon)$

Next Step. Support $(f_i) \subseteq \Psi_i(U_i)$ to get; $f_i = 1$ on $(\Psi_i(U_i) \setminus \Psi_i(U_i) \setminus \Psi_i(U_i))$.

2.1.5 with bdry

Prop. Ω has property (*). X a $Y \in G$ on $V' \subseteq \mathbb{R}^3 \times \{0\}$, Y' - Open. The flux of $\nabla \times X$ outward across Ω is given by, $\int div(X) dvol_{\Omega}$.

Proof. Flux = $\int 1 \quad \Phi_{\nabla xx}$ flusk form

= $\int dWx$ = $\int Wx = \int \langle x, T \rangle \quad dVol_{\partial_{m}}\Omega$ = $\int div(x) \quad dVol_{\Omega}$.

Ass, 3,4,6,7,8

45→ aftermédsem 15→ premidsem