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Abstract

In this talk, we will discuss the homological properties of intersection homology like pushforward maps,
excision and Mayer-Vietoris. We will compute the intersection homology of cones. We then discuss Whitney
stratifications for complex quasi-projective varieties and the associated pseudomanifold structure on their
underlying topological space. We will conclude with a discussion of Poincaré duality, Lefschetz hyperplane
and hard Lefschetz theorems in the context of intersection homology. Main references [Max19], [KW06].

1. Functoriality of Intersection Homology
In the last talk we have seen the definition of Intersection Homology, including some examples. Now we want
to see how different Intersection homology theory is from ordinary homology theory. In order to see this we
will begin with ‘functoriality’. Suppose we have a continuous map f : X → Y . Does it naturlly induce a map
f∗ : I

pS∗(X) → IqS∗(Y ) in ‘intersection chain complexes’? where p and q are different perversity (GM) for the
spaces X and Y . For any σ ∈ IpSi(X) we expect f ◦ σ ∈ IqSi(Y ). We will see with an example, it is not the
case. What can go wrong?

Filtration ofX and Y could be arbitraty and perversity depends on filtration, so does p̄-allowable chains.
For example, consider the space X = {pt} with natural stratification and Y is a stratified space. f :
X → Y be a continuous map. We have ISi(X) = Si(X) and f(σ) will be allowable with respect to S if,
i ≤ i−Codim(S) + q̄(S). But for GM perversity it is not possible.

There is one more problem. We know ordinary homology theory is homotopy invariant but Intersection Ho-
mology is not a homotopy invariant. We will shortly see a result regarding Intersection homology of open cone
of compact manifold. We know open cone over any sapce is contractible but the Intersection homology of open
cone is not same as Intersection homology of point. One more constrcutive example.

Example – Let, X = S4 ∨ S4 and Y = S4 ∪CP 1 CP 2. Now if we look at the inclusion CP 1 ↪→ CP 2, it is a
cofibration. Thus if we contract CP 1 in Y wewill get, S4∨S4 = X . So,X and Y is homotopy equaivalent.
But from talk 3 we know,

IpHk(X) =

{
F⊕ F for k = 0, 4

0 otherwise

Again normalizaion of the space Y is S4 ⊔ CP 2. Both S4 and CP 2 are manifold, so IH∗(Y ) ∼= H∗(Y ).
For index 2 we will have the intersection homology group as F, which doesn’t match with intersection
homology group of X .

To resolve the issue wewill define a special class of map between stratified space so that it will naturally induce
map in intersection chain complexes. Thus we will come up with the following definitions.
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Definition. 1.1 (Stratum-Preserving map)A continuous map between startified spaces, f : X → Y is
called startum preserving, if for each stratum T of Y , the inverse image f−1(T ) is union of strata of X .
Equivalently image f(S) is contained in a single starta of Y .

Definition. 1.2 ((p̄, q̄)-stratified map)A stratum preserving map f : X → Y is said to be (p̄, q̄)-stratum
preserving if for any stratum S ⊂ X contained in startum T ⊂ Y satisfying ,

p̄(S)−CodimX(S) ≤ q̄(T )−CodimY (T )

Example 1.1 – Let, Y = X × I be the space where X comes with it’s stratifications and I is trivially filtered.
The strata of Y have form S× I where S is a strata ofX . The codimension of S inX is equal to codimension of
S × I in Y . Let’s take the perversity q(S × I) = p(S). Let, f : X → X × I be the inclusion x 7→ (x, i0). Then f
is (p, q)-stratified.
Example 1.2 – (Placid Maps) A stratified map f : X → Y is called placid if for ecah stratum T ⊂ Y we have
CodimY (T ) ≤ CodimX(f−1(T )). Now any placid map is a (p, p)-stratified map (using growth conditions of
GM perversity).

Prop 1.1: IfX and Y are filtered space and f : X → Y is (p, q)-stratified then f induces amap of intersection
chain complexes (singular) f∗ : IpS∗(X) → IqS∗(Y ).
proof. If σ : ∆i → X is a p-allowable simplex then for composition f ◦ σ we must consider (fσ)−1(T ) =
σ−1f−1(T ) for singular strata of Y . Now,

σ−1f−1(T ) ⊂
⋃

S:f(S)⊂T

σ−1(S)

For each such S we have,

σ−1(S) ⊂ {i−Codim(S) + p(S)} − skeleta of ∆i

⊂ {i−Codim(T ) + q(T )} − skeleta of∆i

Thus f ◦ σ is q-allowable. Thus we get a map f∗ : I
pS∗(X) → IqS∗(Y ). ■

Now we note that, this map is natural i.e. the following diagram commutes ,

IpSi(X) IqSi(Y )

IpSi−1(X) IqSi−1(Y )

∂X
i ∂Y

i

f∗

f∗

So, cyclemaps to cycle and boundary goes to boundary, in otherwords f induce amap is Intersection homology
groups f∗ : IpH•(X) → IqH•(Y ). Just for technicality we must mark this result that, a placid map f , induce
f∗ : I

pH•(X) → IpH•(Y ). As a corollary to the previous proposition we can say,
Corollary. If f is a startified homeomorphism and the perversities of X corespond a perversity q on Y (i.e.

p(S) = q(T ) if f(S) = T ), then IpH∗(X) ≃ IqH∗(Y ).

Now we will strenthen the conditions on the map so that we can obtain a version of homotopy invariance for
intersection homology.

Definition. 1.3 (Codimension Preserving)A stratumpreservingmap is codimension preserving, if for
each stratum T of Y we have

CodimY T = CodimXf−1(T )
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As an Example we can note, the map f : X → X × I by x 7→ (x, i0) is codimension preserving. With this we
are ready to define stratum-preserving homotopy equivalance.

Definition. 1.4 (Stratified Homotopic maps)Let, X,Y are filtered spaces with perversities p, q and
X × I has product filtration (as we discussed above) and by abuse of notation p(S) = p(S × I). Two
codimension preserving map f and g from X to Y are homotopic if, there is a codimension preserving
map

H : X × I → Y

with f = H|X×{0} and g = H|X×{1}.
A stratum preserving homotopy equivalance between pseudomanifold X and Y is a pair of codimen-
sion preserving map f : X → Y and g : Y → X so that f ◦ g and g ◦ f are homotopic via stratified
homotopies,

H : X × I → X and K : Y × I → Y

Theorem 1.1 (Friedman [Fri03])If f is a stratum-preserving homotopy equivalance, then the natural
map

f∗ : I
pHi(X)

≃−→ IpHi(Y )

(Kunneth) As an application to the theorem we can say, the inclusionX ↪→ X × (0, 1) is a stratum preserving
homotopy equivalance. Thus for a perversity pwe must have,

IpHi(X) ≃ IpHi(X × (0, 1))

Remark: All the definition above depends on a stratification of the space. We could re write the definitions conditionally.
For example the definition of placid maps. We will prove that intersection homology is a topological invariant using sheaf
theoretic intersection homology. This in particularlly means intersection homology is independent of startification.

2. Relative Intersection Homology and Mayer-Vietoris sequences
Recall. For a topological space X and Y ⊂ X , the relative chain complex Si(X,Y ) = Si(X)/Si(Y ) makes
sense. Thus we can define relative homology groups easily. But for intersection homology there is a problem
of defining the quotient IpSi(X)/IpSi(Y ).

The problem in this case is that, p-allowable chains of Y depends on the filtration of Y which might not
be related to the startification ofX . For Example,X be a stratified space with a perversity p and Y = {x}
is a subspace ofX . For Y , the filtration should be same as a 0-dim manifold. And {x} is the only regular
starta of Y . So for any perversity p, p({x}) = 0. So, IpS∗(Y ) = S∗(Y ). If Y was in the singular starta of
X , the intersection chains of X can’t pass through {x} = Y . Then we will not have,

Ip(Y ) ⊂ Ip(X)

This is the problem!
In order to resolve it we might take a subspace Y so that it adopts the filtration from filtration of space X
(If the subspace adopts filtration from the space X , then it will automatically adopts perversity of X). For
simplicity we will take Y to be the open set of X . Let, ∅ ⊂ X0 ⊂ · · ·Xn = X be the filtration (stratification) of
pseudomanifold X . Then Y admits the following filtration,

∅ ⊆ X0 ∩ Y ⊆ · · · ⊆ Xn ∩ Y = Y

Then, IpSi(Y ) can be trated as sub-complex of IpSi(X) andwe can talk about relative intersection chain complex
IpSi(X,Y ) := IpSi(X)/IpSi(Y ). We will have the following short exact sequencefor each i,

0 → IpSi(Y ) → IpSi(X) → IpSi(X)/IpSi(Y ) → 0
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[GMre] combining these short exact sequencewe must have the Long exact sequence

· · · → IpHi(Y ) → IpHi(X) → IpHi(X,Y ) → IpHi−1(Y ) → IpHi−1(X) → · · ·

The relative groups also have the following excisive property which can be proved easily by sheaf theoretic
treatments (we will see later). Otherwise we can just adopt the proof of sigular homology theory.
Prop 2.1:(Goresky and MacPherson [GMre]) Suppose U is an open subset of a topological pseudomanifold X and
A ⊂ U is a closed subset of U such that X \A is still and topological psudomanifold (and hence U \A). Then there is a
natural isomorphism

IpHi(X,U) ≃ IpHi(X \A,U \A)

Prop 2.2: (Mayer-Vietoris sequences) If U and V are two open set so that X can be written as union of two open sets
X = U ∪ V . Let, A be an open set and A ⊆ U ∩ V , then we have the following Long exact sequence,

· · · → IpHi(U ∩ V,A) → IpHi(U A)⊕ IpHi(V,A) → IpHi(U ∪ V V,A) → · · ·

3. Intersection Homology of a cone
One of the reasons to introduce the definition of intersection homology was to resolve Poincaré duality for sin-
gular spaces. In the case ofmanifold (of dimension sayn) in order to talk about orientations the key calculations
were,

Hi(Rn) =

{
F i = 0

0 i ̸= 0
and Hi(Rn,Rn \ {0}) =

{
F i = m

0 i ̸= m

(This was important as manifolds are locally euclidian) Here we are interested in n-dimensional topological
pseudomanifold, spaces which are locally cone on a compact pseudomanifold manifold of dimension n − 1.
Thus the key calculations for us will be IHi(̊cL) and IHi(̊cL, c̊L − {pt}). In order to do the calculations we
will use the Kunneth formulawe derived in the first section. If a topological pseudomanifoldX has the given
stratification,

X = Xn ⊇ Xn−2 · · · ⊇ X0

Then the cone c̊X (open cone in X) is also a pseudomanifold with startification,

c̊X = c̊Xn ⊇ · · · ⊇ c̊X0 ⊇ {v}

Theorem 3.1 Suppose X is a compact topological pseudomanifold of dimension n ≥ 1. Then for any
perversity p,

IpH (̊cX) ≃

{
IpHi(X) i < n− p({v})
0 Otherwise and IpH (̊cX, c̊X \ {v}) ≃

{
IpHi−1(X) i > n− p({v})
0 Otherwise

Proof. First note that the cone point {v} has co-dimension n+ 1 in c̊X . For ξ ∈ IpCi(øcX) we have,

dim (|ξ| ∩ {v}) ≤ i− (n+ 1) + p({v})

Thus ξ can not be p-allowable for i ≤ n− p({v}). Therefore in this range IpCi(̊cX) ≃ IpCi(̊cX \ {v}). Thus for
i < n− p({v}) we must have

IpHi(̊cX) ≃ IpHi(̊cX \ {v})
≃ IpHi(X × (0, 1))

≃ IpHi(X) (Kunneth theorem)
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On other hand, for i ≥ m−p({v}) a p-allowable chain ξwith ∂ξ = 0 satisfies ξ = ∂(cξ) [why? For any simplex σ
note that ∂(cσ) + c(∂σ) = σ(upto sign)]. Thus IpHi(̊cX) = 0 for these indices. The computation of the relative
guroups follows from the following Long exact sequence,

· · · → IpHi(̊cX \ {v}) → IpHi(̊cX) → IpHi(̊cX, c̊X \ {v}) → · · ·

Corollary. Let X be a (2k − 1) dimensional pseudomanifold. We can use the Mayer-Vietoris sequences and
the above result on cone to compute intersection homology of ΣX . With respect to the middle perversity we can say,

ImHi(ΣX) =


IHi(X) i < k

0 i = k

IHi−1(X) i > k

Remark: We can do the similar calculation as above for homology with closed support (or) Borel Moore ho-
mology to get,

IBMHp(̊cX) ≃

{
IpHi(X) i > n− p({v})
0 Otherwise

4. Poincaré Duality

Theorem 4.1 (Poincaré Duality for Pseudomanifolds, Chain Version)If Xn is an oriented n-
dimensional topological pseudomanifold, and p̄ and q̄ are complementary perversities, then there is a
non-degenerate bilinear pairing

IH p̄
i (X)× IBMH q̄

n−i(X)
⌢−→ Q.

Before discussing the proof, let us explain the geometric intuition behind the above Theorem. Fix a strat-
ification X = Xn ⊇ Xn−2 ⊇ . . . ⊇ X0 ⊇ ∅, and assume, for simplicity, that X has a compatible triangula-
tion. For a ∈ IH p̄

i (X) and b ∈ IBMH q̄
n−i(X) one can choose simplicial intersection chains ξ ∈ IC p̄

i (X) and
η ∈ IBMC q̄

n−i(X) (representatives of a and b resp.) so that |ξ| ∩ |η| ⊂ X −Xn−2 and |ξ| ∩ |η| is a finite number
of points. The number of these points counted with multiplicities (depending on coefficients of ξ, η, and on the
orientation) does not depend on the representatives ξ, η for a and b. This number is a ⌢ b.
A proof of Poincaré duality for pseudomanifolds, similar to the one for manifolds, would consist of the follow-
ing steps:

(a) Induction for proving (local) Poincaré duality for open cones ◦
c L.

(b) Show that Poincaré duality holds for conical neighborhoods of the form ◦
c L× Rk.

(c) CoverX by conical neighborhoods and patch local Poincaré dualities for such neighborhoods by aMayer-
Vietoris argument.

Proof. We only deal here with the first step (the theorem will be proved later on by using sheaves, which are
designed to relate local and global information). We prove that, if L is a compact n-dimensional pseudoman-
ifold, and if Poincaré duality holds for L, then Poincaré duality holds also for c◦L. Recall the calculation of
intersection homology of cones from the previous section:

IH p̄
i (

◦
c L;Q) ∼=

{
IH p̄

i (L;Q), i < n− p̄({v}),
0, otherwise. and IBMH p̄

i (
◦
c L;Z) ∼=

{
0, i ≤ n− p̄({v}),
IH p̄

i−1(L;Z), otherwise. .

Assume now that L satisfies Poincaré duality, i.e.,

IH p̄
i (L;Q) ∼= IH q̄

n−i(L;Q)∗



Trishan Mondal
for p̄ and q̄ complementary perversities. Then, if i < n− p̄({v}), one has:

IH p̄
i (

◦
c L;Q) ∼= IH p̄

i (L;Q) ∼= IH q̄
n−i(L;Q)∗ ∼= IBMH q̄

n+1−i(
◦
c L;Q)∗,

while if i ≥ n− p̄({v}) one has
IH p̄

i (
◦
c L) = 0 = IBmH q̄

n+1−i(
◦
c L),

since n− 1 = p̄({v}) + q̄({v}). This proves the claim. ■

5. Intersection homology of Quasi projective variety
We started this reading seminar with the concern, that a lot of beautiful result fails for singular complex vari-
eties. Till now, we have developed Intersection Homology theory for stratified spaces and pseudomanifold. In
order to discuss intersection homology for quasi projective varieties, we need to give them a stratification so
that we can talk about intersection chains and etc.
A complex affine variety is subset of CPN defined by the simultaneous vanishing of polynomial equations. A
Complex projective variety X is a subset

X ⊆ CPN

defined by the vanishing of homogeneous polynomial equations. A Quasi-projective varieties X is a subset
of CPN of the form

X = Z − Y

where Z and Y are projective varieties. By noetherian property we can say there is homogeneous polynomial
f1, · · · fi so that P ∈ X satisfies all of them simultaneously and there is g1, · · · gj so that P doesn’t staisfy atleast
one of them.

Example 5.1 – CN can be identified with the Quasi-projective variety

{[x0 : · · · : xN ] : x0 ̸= 0}

via the mapping (x1, · · · , xN ) → [1 : x1 : · · · : xN ] and inverse map is, [x0 : · · · : xn] →
(
x1
x0
, · · · , xN

x0

)
.

Example 5.2 – Any affine variety can be identified with quasi projective varieties. If X = V (f1, · · · , fm)
where fi has deg fi = di. Then

X ∼=
{
[x0 : · · · : xn] ∈ CPN : x0 ̸= 0, f̂i(x0, · · · , xN ) = 0

}
where f̂i = xdi0 fi(x1/x0, · · · , xn/x0).

Example 5.3 – Any projective variety is quasi projective variety.

A point x of X is called Non-singular if there is an open nbd. U of x in CPN and homogeneous polynomials
f1, · · · , fm such that,

X ∩ U = {[x0 : · · · : xN ] : fj(x0, · · · , xN ) = 0}

and the jacobian matrix of partial derivatives ∂fj
∂xi

has rank m. XNon-sing is the set of all non-singular point of a
variety. It can be proved that if XNon-sing is non-empty then it is open and dense in X .
Example 5.4 – If we take the projective variety X = V (x3 − y2z) ⊆ CP 2, at the point [0 : 0 : 1] we will get,
∇(x3 − y2z) = (0, 0, 0) i.e. it don’t have rank 1. So it has a singularity at that point.



5.1 Whitney Stratification Trishan Mondal
A variety said to have pure dimension n if the connected components ofXNon-sing is manifold of dimension

n. A variety is said to be irreducible if it can’t be expressed as union of two closed sub-varieties Y and Z.
Example- X = V (yz) is not irreducible (topologically it looks like)

Any quasi projective variety is union of finitely may irreducible quasi-projective variety. It is easy to check that
X has pure dimension n if and only if,

(Xj)Non-sing = Xj − {singular points of Xj}

is a complex manifold of dimension n. Xj are irreducible components of X . [Then talk about curve and
surface]. Now we will introduce a special stratification for the quasi projective varieties.

§ 5.1Whitney Stratification

A Whitney Stratification of X (a quasi projective variety of pure dimension n) is given by a filtration

X = Xn ⊇ Xn−1 ⊇ · · · ⊇ X0

of closed subvarieties Xj such that for each j, Xj −Xj−1 is either empty or is a non-singular quasi projective
variety of pure dimension j. This stratification requires to staisfy the following two conditions.

• Whitney condition (a) If a sequence of points ai ∈ Sα converge to a point c ∈ Sβ then the tangent space
TcSβ is contained in the limit of the tangent space TaiSα, provided the limit exist.

• Whitney condition (b) If a sequence of points of bi ∈ Sβ and ai ∈ Sα both tend to the same point c ∈ Sβ

then the limit of the lines joining ai and bi is contained in the limit of the tangent spaces to Sα at ai,
provided both limit exist.

Roughly these conditions are to ensure that the normal structure to each stratum Sβ is constant along Sβ .
Remark: It turns out that the condition (b) implies condition (a). This was proved my Mather. But condition (a)
do not imply condition (b).
Example 5.5 – (Whitney’s Umbrella) Let,X = V (x2 − y2z). This space has singularity along the whole z-axis.
Thus take the filtration with X0 = {0}, X1 = {z − axis} and X2 = X . It can be show that, it is a Whitney
startification of X .

Figure 1: Whitney’s Umbrella
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WARNING ! Any stratification may not be Whitney Stratification. The following is the example for that and it
will also prove that condition (a) do not implies condition (b).
Example 5.6 – X = V (x4 + y4 − xyz). This variety also have singularity along whole z-axis. If we take the
startificationX0 = ∅,X1 = {z − axis} andX2 = X . Here, there are two strata, Sβ = X1 and Sα = X \X1. This
satisfies the condition (a) but fails to satisfy condition (b).

Figure 2: Condition (b) fails

To obtain a Whitney stratification we take X0 = {c} and rests are as previous. The next two theorems will
conclude that any quasi projective variety is a pseudomanifold.

Theorem 5.1 ([Whi65] Whitney)Any quasi projective variety of pure dimension n has a Whitney starti-
fication.

Theorem 5.2 ([Bor] Borel)Any Whitney startification,

X = Xn ⊇ Xn−1 ⊇ · · · ⊇ X0

of complex quasi projective variety of pure dimension n makes X into a topological pseudomanifold of
dimension 2n with filtration,

X = Y2n ⊇ Y2n−1 ⊇ · · · ⊇ Y0

defined by Y2j = Y2j+1 = Xj

§ 5.2 Normalisations

For the computational purpose we have defined normalisation of psudomanifold and we have seen there is an
isomorphism between the intersection homology groups of the space and the normalised space. Now we will
talk about normalizsation of algbraic variety.

Definition. 5.1 (Normal variety)A quasi-projective complex variety X is called normal if the stalk at
x of the sheaf of regular functions on X is an integrally closed ring for every x ∈ X . i.e. local ring
OX,x ↪→ k(X) is integrally closed.

It can be shown using Zariski’s Main Theorem ([Har13], Ch. V Thm. 5.2) that if a quasi-projective complex
variety X is normal in the algebraic sense then it is topologically normal.
Any quasi-projective variety X has a normalisation π : X̃ → X . Here X̃ is a normal quasi-projective variety
and π is a finite-to-one surjective-holomorphic map (with a suitable universal property) which restricts to an
isomorphism over the non-singular part Xnonsing of X . (Resolving singularity of Codim ≥ 2)
The normalisation X̃ of a curve X is always non-singular (Hartshorne [79, Ch. III Ex. 5.8]), and hence by
results from previous lecture we have,

IHi(X) ∼= Hi(X̃).
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In general this does not hold for higher-dimensional varieties since the normalisation need not be non-

singular.

§ 5.3 The Kähler package

We noted in lecture-1 that the intersection homology of a complex projective variety satisfies a set of theorems
collectively termed the Kähler package

Lefschetz hyperplane theorem. Following the idea of Deligne there is a proof using Morse theory and
sheaf theory. This proof holds for a wider range of perversities than middle. Precisely, Let X be an
n-dimensional complex projective variety,H a hyperplane which is transverse to the strata of some Whitney strati-
fication of X , and p a perversity for which p(c) ≤ c for all c. Then the map

IpHi(X ∩H) → IpHi(X)

is an isomorphism for i < n− 1 and a surjection for i = n− 1

• Some interesting consequences for a normal complex projective variety X .

(a) Take p to be the zero perversity. Using last Proposition of lecture-3 we can deduce that the natural
map

H i(X ∩H) → H i+2(X)

is an isomorphism for i > 1 and surjective for i = 1.
(b) We can show that IH1(X) ∼= H1(X). By repeatedly applying the Lefschetz hyperplane theorem we

deduce that IH1(X) is isomorphic to the first intersection homology of a surface Y with isolated
singularities. Direct computation shows that this group is H1(X), has even dimension.

Hard Lefschetz Theorem. The hard Lefschetz theorem states that multiplication by the Euler class of E
induces a map

L : IH i(X) → IH i+2(X)

which is injective for i < n, surjective for i+ 2 > n and such that

Li : IHn−i(X) → IHn+i(X)

is isomorphism for i ≥ 0.

• There are many interesting consequences of this theorem. One simple exmaple is given below - Suppose
X is an n-dimensional complex projective variety in CPN and that Y is the complex cone on X , i.e. Y is
the affine variety in CN+1 cut-out by the homogeneous polynomials in N + 1 variables which define X .
Let E be the tautological line bundle onX whose fibre over x ∈ X is the line in CN+1 represented by the
point x ∈ CPN .

The vertex {0} of the complex cone is a singularity of real codimension 2(n+ 1) and so

IH i(Y ) =

{
IH i(Y − {0}) i ≤ n

0 otherwise.

We have a rank 1 complex vector bundle, which is therefor 2-dimensional. Thus there is a ‘Thom isomor-
phism’ says for any orientated dimension n (in this case n = 2) vector bundle there is an isomorphism

T : IHk(X) → IHk+n(E,E \X)

We have LES of cohomology for pair (E,E \X)as follows -

· · · → IH i−1(E \X) → IH i(E,E \X) → IH i(E) → IH i(E \X) → · · ·
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It can be shown that π∗ : IH i(X) → IH i(E) is an isomorphism (using stratified homotopy invariance
property). It can be shown the square in the following diagram commutes,

· · · IH i−1(E \X) IH i(E,E \X) IH i−1(E) IH i(E \X) · · ·

IH i−2(X) IH i(X)
⌣e(E)

π∗T

and thus we have a LES,

· · · IH i−1(E \X) IH i−2(X) IH i(X) IH i(E \X) · · ·⌣e(E)

The LES corresponds to of SES (using Hard Lefschetz)

0 → IH i−2(X)
⌣e(E)−−−−→ IH i(X) → IH i(E \X) → 0

for i ≤ n. Now note that Y \ {0} and E \X are naturally isomorphic. So we have for i ≤ n,

IH i(Y ) ≃ IH i(E \X) ≃ IH i(X)/ ImL ≃ IH i
prim(X)

where IH i
prim(X) is primitive part of IH i(X), that is not multiple of e(E).

Remark: E can be viewed as blow up of Y at origin. The above method will be helpful to compute intersection Homology
of a space we get by doing successive blow-ups.
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