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We will begin with ‘cohomology of projective varieties’ and we will see for smooth projective varieties many
beautiful properties holds for de-Rahm cohomology, singular cohomology which don’t get satiesfied for the
case of ‘singular projective varieties’. We will discuss those with examples in this talk.

LetX ⊆ CPN be a projective variety of dimension n (in the sense of Krull dimension which will be same with
the manifold dimension for the smooth case). X is given by zeroes of some homogeneous polynomial thus
it a closed subspace of CPN and hence it is compact. For the smooth case X is a ‘smooth manifold’(complex
manifold). Some properties of smooth X are described below,

◦ X is given by zeroes of g1, · · · , gN−n with the rank of the matrix
(
∂gj
∂zi

)
ij
equal to N − n.

◦ Hermitian metric on Tangent space of X .

◦ X is an orientable manifold of dimension 2n admitting a Riemannian metric g and a ‘complex structure’
on it’s Tangent space.

◦ There is also an alternating form ω (or Kähler differential).

1. Dualities

As a real manifoldX has dimension 2n. We can compute the singular(simplicial) homology(cohomology) for
X with the coefficients in R. SinceX is compact orientable manifold we can talk about the cup product pairing
as follows:

H i(X;R)×H2n−i(X;R) ⌣−→ H2n(X;R) ∼= R

is a ‘non-degenerate’ pairing. Thus we have Poincare Duality,

H2n−i
Sing (X;R) ∼= H i

Sing(X;R)∗ ∼= H
sing
i (X;R)

Since X is a smooth manifold we can talk about de-Rahm cohomology. In a sophisticated language ‘de-Rahm
cohomology is a cohomology of soft-resolution of constant sheaf’. In this case also we have the following as
non-degenerate,

H i
DR(X;R)×H2n−i

DR (X;R) ∧−→ H2n
DR(X;R) ∼−−−−−−−→∫

− vol-form
R

Thus again we have the duality, H2n−i
DR (X;R) ∼= H i

DR(X;R)∗. Connecting de-Rahm cohomology and singu-
lar(simplicial) cohomology with coefficients in R, there is a beautiful theorem by de-Rahm stated as follows,

Theorem 1.1 (De-Rahm’s Theorem)There is an isomorphismbetween the singular(simplicial) cohomol-
ogy with coefficients in R and de-Rahm cohomology which is compatible with the product structure on
both the V.S.
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2. Hodge Theorems

There are two different versions of ‘Hodge Theorem’. The metric (Riemannian) on X induces metric on de-
Rahm complex Ω•(X). It is defined by,

(ω, η) :=

∫
X

(
p 7→ ⟨ω, η⟩p

)
VolX

With respect to this inner product the exterior derivative d has an adjoint δ such that,

(dω1, ω2) = (ω1, δω2)

∗ We can write down the adjoint explicitly, for any α ∈ Ωk(X), δα = (−1)k(∗)−1dα where ∗ is the ‘Hodge
star operator’ ∗ : ∧k(TpX)∗ → ∧2n−k(TpX)∗, given by (θ1, · · · , θk) 7→ (θk+1, · · · , θ2n) where {θj} is an oriented
orthonormal basis of (TpX)∗. Set,∆ = δd+ dδ be the Laplacian. Harmonic forms are elements of Ω•(X) lies in
the kernel of∆. With this setupwe are ready to state ‘Hodge theorem 1’. This theoremgives us a decomposition
of Ωk(X).

Theorem 2.1 (Hodge Theorem I)Every element of Hk
DR(X;R) is uniquely represented by ‘Harmonic

forms’ of degree k. Also Ωk admits the following decomposition,

Ωk(X) ∼= Hk
DR(X;R)⊕ d(Ωk+1)⊕ δ

(
Ωk+1

)
We have perviously mentioned there is a ‘complex structure’ on the Tangent space of X . As of now we have
not used this structure.

§ The presence of complex structure I
The complex structure gives rise to Eigen decomposition of complexified tangent/co-tangent bundles on X .
Thus we have,

Ω1
X,C := Ω1

X ⊗ C ∼= Ω1,0
X ⊕Ω0,1

X

Then, Ωk
X,C = ∧kΩ1

X,C
∼=

⊕
p+q=k Ω

p,q
X . Here, Ωp,q

X = ∧pΩ1,0
X ⊗ ∧qΩ0,1. Thus, Ωp,q

X is the V.S of the smooth
(p, q)-forms dz1 ∧ · · · ∧ dzp ∧ dz̄p+1 · · · ∧ dz̄p+q. we can note ¯Ωp,q = Ωq,p. With this setup we are ready to note
the Hodge theorem II.

Theorem 2.2 (Hodge Theorem II) EveryHarmonic form inHk(X;C) decomposes as a sumof harmonic
(p, q)-forms of a bi-degree, where p+ q = k. Thus,

Hk
DR(X,C) ∼= ⊕p+q=kH

p,q(X;C)

Corollary. If k is odd then dimC(H
k
DR(X;C)) even.

3. Hard Lefschetz Theorem

The hermitian metric h on TX via its decomposition gives rise to an alternating 2-forms can be shown to be a
(1, 1)-form, call it ω. Using this we get a linear map,

L : Hk
DR(X;R)

product with ∧ω
−−−−−−−−−−→ Hk+2(X;R)

Hard Lefschetz Theorem – The map, Ln−k : Hk
DR(X,R) → H2n

DR(X;R) induces an isomorphism for k ≤ n.

Corollary. L is injctive for k < n. Thus the odd degree Betti number hi := dimRHk(X;R) increases upto the
middle degree and then decreases there after.
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Thus we have the following hodge diagram.

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

hn,0 h0,n

hn,n

In the above diagram i-th row sums up to give i-th Betti numbers of X . One more interesting result due to
‘Lefschetz’ is ‘Hyperplane Theorem’.

Theorem 3.1If H is a generic Hyperplane in CPN then the natural map H i(X;C) → H i(X ∩ H;C) is
isomorphism for i < n and for i = n it is injection.

4. All results stated above fails for Singular varieties

Example 1: For, X = v(yz) the ‘Poincare duality’ fails.

We can writeX = V (y)∩V (z) and P = [1, 0, 0] is the point of intersection of V (y) and V (z). It’s not hard
to see V (y) and V (z) are CP 1 thus the space X is wedge of two CP 1 in other words it’s homeomorphic
to S2 ∨ S2. We can note that,

H i(X;C) =


C i = 0

0 i = 1

C⊕ C i = 2

clearly, the ‘Poincare duality’ fails in this case. But if we normalize the space X to get two disjoint union
of S2 in this case the duality will hold. (We will see this normalizaion helps in more general case when
we will deal with intersection homology).

Example 2: For X = V (x3 + y3 − xyz). it doesn’t admit the ‘Hodge decomposition’.

By change of variable (kind of Grobner basis) we can seeX = V (y2z − x2(x+ z)). It can be shown there
is a blow-up map π : CP 1 → X serves as a ‘quotient map’ with π−1[0 : 0 : 1] is two point. So, X is a S2
with two points being pinched. Thus,

H i(X;C) =


C i = 0

0 i = 1, i > 2

C i = 2

In this case, there is no ‘Hodge decomposition’ of X . As dimension of H1 is 1(odd).
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Example 3: For X = V (xixj : i ∈ {0, 1}, j ∈ {3, 4}), ‘Lefschetz intersection’ theorem do not hold.

X is unioun of two copies of CP 2. X = {x0 = x1 = 0} ∪ {x3 = x4 = 0}, meets in single point [0 : 0 : 1 :
0 : 0]. Thus,

H i(X;C) =


C i = 0

C⊕ C i = 2, 4

0 otherwise

Take a generic hyperplaneH inCP 4. ThenX ∩H is disjoint union of twoCP 1. The cohomology ofX ∩H
is C⊕ C for i = 0, 2 and trivial for other indices. Thus ‘Lefschetz intersection theorem’ fails here.

Through-out this redaing seminar we will try to develop the notion of Intersection homology, IH∗(X) so that
the properties (mentioned above) can be generalized for ‘singular projective varieties’ with this homology
theory.

————————-
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