Overview Talk

Notes By: Trishan Mondal **Speaker:** Suresh Nayak [Indian Statistical Institute, Bangalore](https://www.isibang.ac.in)

We will begin with 'cohomology of projective varieties' and we will see for smooth projective varieties many beautiful properties holds for de-Rahm cohomology, singular cohomology which don't get satiesfied for the case of 'singular projective varieties'. We will discuss those with examples in this talk.

Let $X\subseteq \mathbb{C}P^N$ be a projective variety of dimension n (in the sense of Krull dimension which will be same with the manifold dimension for the smooth case). X is given by zeroes of some homogeneous polynomial thus it a closed subspace of $\mathbb{C}P^N$ and hence it is compact. For the smooth case X is a 'smooth manifold'(complex manifold). Some properties of smooth X are described below,

- X is given by zeroes of g_1, \cdots, g_{N-n} with the rank of the matrix $\left(\frac{\partial g_j}{\partial z_i}\right)$ ∂zⁱ \setminus qual to $N - n$.
- \circ Hermitian metric on Tangent space of X.
- \circ X is an orientable manifold of dimension 2n admitting a Riemannian metric g and a 'complex structure' on it's Tangent space.
- \circ There is also an alternating form ω (or Kähler differential).

1. Dualities

As a real manifold X has dimension $2n$. We can compute the singular (simplicial) homology (cohomology) for X with the coefficients in $\mathbb R$. Since X is compact orientable manifold we can talk about the cup product pairing as follows:

$$
H^i(X; \mathbb{R}) \times H^{2n-i}(X; \mathbb{R}) \xrightarrow{\sim} H^{2n}(X; \mathbb{R}) \cong \mathbb{R}
$$

is a 'non-degenerate' pairing. Thus we have **Poincare Duality**,

$$
H^{2n-i}_{\rm Sing}(X;{\mathbb R})\cong H^i_{\rm Sing}(X;{\mathbb R})^*\cong H^{\rm sing}_i(X;{\mathbb R})
$$

Since X is a smooth manifold we can talk about de-Rahm cohomology. In a sophisticated language 'de-Rahm cohomology is a cohomology of soft-resolution of constant sheaf'. In this case also we have the following as non-degenerate,

$$
H_{DR}^i(X; \mathbb{R}) \times H_{DR}^{2n-i}(X; \mathbb{R}) \xrightarrow{\wedge} H_{DR}^{2n}(X; \mathbb{R}) \xrightarrow[\int -\text{vol-form}]{} \mathbb{R}
$$

Thus again we have the duality, $H^{2n-i}_{DR}(X; \mathbb R) \cong H^i_{DR}(X; \mathbb R)^*.$ Connecting de-Rahm cohomology and singular(simplicial) cohomology with coefficients in R, there is a beautiful theorem by de-Rahm stated as follows,

Theorem 1.1 (De-Rahm's Theorem)There is an isomorphism between the singular(simplicial) cohomology with coefficients in $\mathbb R$ and de-Rahm cohomology which is compatible with the product structure on both the V.S.

2. Hodge Theorems

There are two different versions of 'Hodge Theorem'. The metric (Riemannian) on X induces metric on de-Rahm complex $\Omega^{\bullet}(X)$. It is defined by,

$$
(\omega,\eta):=\int_X \left(p\mapsto \left\langle \omega,\eta\right\rangle_p\right)\mathrm{Vol}_X
$$

With respect to this inner product the exterior derivative d has an adjoint δ such that,

$$
(d\omega_1, \omega_2) = (\omega_1, \delta\omega_2)
$$

* We can write down the adjoint explicitly, for any $\alpha \in \Omega^k(X)$, $\delta \alpha = (-1)^k (*)^{-1} d\alpha$ where * is the 'Hodge star operator' $*:\wedge^k(T_pX)^*\to\wedge^{2n-k}(T_pX)^*$, given by $(\theta_1,\cdots,\theta_k)\mapsto(\theta_{k+1},\cdots,\theta_{2n})$ where $\{\theta_j\}$ is an oriented orthonormal basis of $(T_pX)^*$. Set, $\Delta=\delta d+d\delta$ be the Laplacian. **Harmonic** forms are elements of $\Omega^\bullet(X)$ lies in the kernel of ∆. With this setup we are ready to state 'Hodge theorem 1'. This theorem gives us a decomposition of $\Omega^k(X)$.

Theorem 2.1 (Норсе Тнеокем I)Every element of $H^k_{DR}(X; \mathbb{R})$ **is uniquely represented by 'Harmonic** forms' of degree k. Also Ω^k admits the following decomposition,

$$
\Omega^k(X) \cong H^k_{DR}(X;\mathbb{R}) \oplus d(\Omega^{k+1}) \oplus \delta\left(\Omega^{k+1}\right)
$$

We have perviously mentioned there is a 'complex structure' on the Tangent space of X . As of now we have not used this structure.

§ The presence of complex structure I

The complex structure gives rise to Eigen decomposition of complexified tangent/co-tangent bundles on X. Thus we have,

$$
\mathbf{\Omega}^1_{X,\mathbb{C}}:=\mathbf{\Omega}^1_X\otimes\mathbb{C}\cong\mathbf{\Omega}^{1,0}_X\oplus\mathbf{\Omega}^{0,1}_X
$$

Then, $\mathbf{\Omega}_{X,\mathbb{C}}^k \,=\, \wedge^k \mathbf{\Omega}_{X,\mathbb{C}}^1 \,\cong\, \bigoplus_{p+q=k}\Omega_X^{p,q}.$ Here, $\mathbf{\Omega}_X^{p,q} \,=\, \wedge^p \mathbf{\Omega}_X^{1,0} \otimes \wedge^q \mathbf{\Omega}^{0,1}.$ Thus, $\mathbf{\Omega}_X^{p,q}$ is the V.S of the smooth (p, q) -forms $dz_1 \wedge \cdots \wedge dz_p \wedge d\overline{z}_{p+1} \cdots \wedge d\overline{z}_{p+q}$, we can note $\Omega^{\overline{p}, q} = \Omega^{q, p}$. With this setup we are ready to note the Hodge theorem II.

Theorem 2.2 (Норсе Тнеокем II) Every Harmonic form in $H^k(X;\mathbb{C})$ decomposes as a sum of harmonic (p, q) -forms of a bi-degree, where $p + q = k$. Thus,

$$
H^k_{DR}(X,\mathbb{C}) \cong \oplus_{p+q=k} H^{p,q}(X;\mathbb{C})
$$

 $\operatorname{Corollary.}$ If k is odd then $\dim_\mathbb{C}(H^k_{DR}(X;\mathbb{C}))$ even.

3. Hard Lefschetz Theorem

The hermitian metric h on TX via its decomposition gives rise to an alternating 2-forms can be shown to be a $(1, 1)$ -form, call it ω . Using this we get a linear map,

$$
L: H^k_{DR}(X;\mathbb{R}) \xrightarrow{\text{product with } \wedge \omega} H^{k+2}(X;\mathbb{R})
$$

Hard Lefschetz Theorem – The map, $L^{n-k}: H^k_{DR}(X, \mathbb{R}) \to H^{2n}_{DR}(X; \mathbb{R})$ induces an isomorphism for $k \leq n$.

 C око \mathtt{L} лаку. L is injctive for $k < n.$ Thus the odd degree Betti number $h^i := \dim_\mathbb{R} H^k(X;\mathbb{R})$ increases upto the *middle degree and then decreases there after.*

Thus we have the following hodge diagram.

In the above diagram i -th row sums up to give i -th Betti numbers of X. One more interesting result due to 'Lefschetz' is 'Hyperplane Theorem'.

Theorem 3.1If H is a generic Hyperplane in $\mathbb{C}P^N$ then the natural map $H^i(X;\mathbb{C}) \to H^i(X \cap \mathcal{H};\mathbb{C})$ is isomorphism for $i < n$ and for $i = n$ it is injection.

4. All results stated above fails for Singular varieties

Example 1: For, $X = v(yz)$ the 'Poincare duality' fails.

We can write $X = V(y) \cap V(z)$ and $P = [1, 0, 0]$ is the point of intersection of $V(y)$ and $V(z)$. It's not hard to see $V(y)$ and $V(z)$ are $\mathbb{C}P^1$ thus the space X is wedge of two $\mathbb{C}P^1$ in other words it's homeomorphic to $\mathbb{S}^2 \vee \mathbb{S}^2$. We can note that,

$$
H^{i}(X; \mathbb{C}) = \begin{cases} \mathbb{C} & i = 0 \\ 0 & i = 1 \\ \mathbb{C} \oplus \mathbb{C} & i = 2 \end{cases}
$$

clearly, the 'Poincare duality' fails in this case. But if we normalize the space X to get two disjoint union of \mathbb{S}^2 in this case the duality will hold. (We will see this normalizaion helps in more general case when we will deal with intersection homology).

Example 2: For $X = V(x^3 + y^3 - xyz)$. it doesn't admit the 'Hodge decomposition'.

By change of variable (kind of Grobner basis) we can see $X = V(y^2z - x^2(x+z))$. It can be shown there is a blow-up map $\pi:\mathbb{C}P^1\to X$ serves as a 'quotient map' with $\pi^{-1}[0:0:1]$ is two point. So, X is a \mathbb{S}^2 with two points being pinched. Thus,

$$
H^{i}(X; \mathbb{C}) = \begin{cases} \mathbb{C} & i = 0 \\ 0 & i = 1, i > 2 \\ \mathbb{C} & i = 2 \end{cases}
$$

In this case, there is no 'Hodge decomposition' of X. As dimension of H^1 is $1(odd)$.

Example 3: For $X = V(x_i x_j : i \in \{0, 1\}, j \in \{3, 4\})$, 'Lefschetz intersection' theorem do not hold.

X is unioun of two copies of $\mathbb{C}P^2$. $X = \{x_0 = x_1 = 0\} \cup \{x_3 = x_4 = 0\}$, meets in single point $[0:0:1:1:1]$ $0:0$. Thus,

$$
H^{i}(X; \mathbb{C}) = \begin{cases} \mathbb{C} & i = 0 \\ \mathbb{C} \oplus \mathbb{C} & i = 2, 4 \\ 0 & \text{otherwise} \end{cases}
$$

Take a generic hyperplane $\cal H$ in ${\mathbb C}P^4.$ Then $X \cap \cal H$ is disjoint union of two ${\mathbb C}P^1.$ The cohomology of $X \cap \cal H$ is $\mathbb{C} \oplus \mathbb{C}$ for $i = 0, 2$ and trivial for other indices. Thus 'Lefschetz intersection theorem' fails here.

Through-out this redaing seminar we will try to develop the notion of Intersection homology, $IH_*(X)$ so that the properties (mentioned above) can be generalized for 'singular projective varieties' with this homology theory.

————————-