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Introduction

This book contains mathematical results from three distinct subject areas. These
correspond to the three parts of the book. Part I contains a systematic explora-
tion of the natural extension of Morse theory to include singular spaces. Part II
gives a large collection of theorems on the topology of complex analytic varieties.
Part III presents the calculation of the homology of the complement of a collec-
tion of flat subspaces of Euclidean space.

The reason for including these three disparate subject areas in one volume
is that the results of the second and the third are proved by applying the Morse
theory of the first. However, the statements of the results themselves are indepen-
dent from one part to another. Also the three subject areas may be of interest
to different sets of readers. For these reasons, this introduction is written in
completely independent chapters. Anyone interested mainly in the topology of
complex analytic varieties can skip now to Chap. 2 of the introduction, p. 23.
Readers interested in flat subspaces of Euclidean space may skip to Chap. 1
of Part III of this book, p. 237.



Chapter 1. Stratified Morse Theory

Suppose that X is a topological space, f is a real valued function on X, and
¢ is a real number. Then we will denote by X _. the subspace of points x in
X such that f(x)<c. The fundamental problem of Morse theory is to study
the topological changes in the space X _, as the number ¢ varies.

1.1. Morse-Smale Theory

In classical Morse theory, the space X is taken to be a compact differentiable
manifold. This is best illustrated by the following standard diagram: Consider
a two-dimensional torus .7 embedded in three-dimensional Euclidean space.

P4
Vs

U3

U3

Uy

D1

Let f be the projection onto the vertical coordinate axis. So, f(x) measures
the height of the point x. For any real number ¢, the subspace J_, is the
wet part after the torus has been filled with water to height c.



4 Introduction

We imagine slowly increasing ¢ and we watch how the topology of J_,
changes. We observe that it changes only when ¢ crosses one of the four critical
values v, ..., v, corresponding to the critical points p,, ..., p4. (The critical
points of a differentiable function on a smooth manifold X are the points where
the differential df of f vanishes. The critical values are the values f takes at
the critical points.) This observation about J illustrates Part A of the fundamen-
tal result of classical Morse theory:

Theorem (CMT Part A). Let f be a differentiable function on a compact smooth
manifold X. As c varies within the open interval between two adjacent critical
values, the topological type of X . remains constant.

Next, we want to examine the way in which the topological type of J_,
changes as c¢ crosses one of the critical values v;. If ¢ is less than v,, then
I, is empty. As c crosses v, the space J__  changes by adding a two-disk
(shaped like a bowl). As ¢ crosses v,, the space 7. is changed by gluing in
a rectangle along two opposite edges.

- b =7

Crossing the critical value v,

As ¢ crosses v, another rectangle is glued in along two opposite edges.

Crossing the critical value v,

Finally, as ¢ crosses v,, a two-disk (shaped like a cap) is glued in along its
boundary, thus completing 7.

We define Morse data for a function f at a critical point p in a space X
to be a pair of topological spaces (4, B) where B A with the property that
as ¢ crosses the critical value v=f(p), the change in X _. can be described
by gluing in 4 along B. The descriptions above of the changes in J_. may
be summarized by the following table of Morse data for 7
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Here, D' denotes the closed i-dimensional disk and &' denotes its boundary
i— 1 sphere. (Note that 0-disk is a point and that its boundary is empty.)
This table of Morse data for 7 illustrates Part B of the fundamental result

of classical Morse theory:

Theorem (CMT Part B). Let f be a Morse function (see Sect. 1.3 of the
introduction) on a smooth manifold X. Morse data measuring the topological
change in X ., as c crosses the critical value v of the critical point p is given
by the “handle” (D*x D"~ %, (6D*) x D"~ %), where A is the Morse index of f at
p, i.e., the number of negative eigenvalues of the Hessian matrix of second deriva-
tives at p, and n is the dimension of X.

In the case of Z, the Morse index A is O for p,, 1 for p, and p;, and 2
for p,.

1.2. Morse Theory on Singular Spaces

In this book, we generalize Morse theory by extending the class of spaces to
which it applies. This increase in generality allows us to apply Morse Theory
to several new questions. The most easily understood of these is to the study
of singular spaces.

Consider the following singular space # embedded in Euclidean three space.
(Topologically, # may be obtained from the torus 4 by shrinking the circle
going around the left side to a point and stretching a taut disk across the
circle around the hole.)

As before, let the function f measure the height. It is clear by inspection
that the topological type of #_, changes only when ¢ passes one of the values
vy, ..., U5, and that the cause of the exceptional nature of these values is that
they are the images of the points p’, ..., p5. So to generalize Morse theory
to singular spaces, we need a general definition of critical points which singles
out the five points p}, ..., p’s in this case.



6 Introduction

A Whitney stratification of a space X is a decomposition of X into submani-
folds called strata satisfying the Whitney condition given in Part I, Sect. 1.2.
The intuitive meaning of the Whitney condition is that the topological nature
of the singularities of the space (including the singularities of the stratification
itself) should be locally constant along each stratum. For the space £, the singu-
lar set consists of the circle which bounds the disk. The largest stratum is the
complement of this circle. Although the circle is itself nonsingular, the point
p5 is distinguished by the fact that # has a different kind of singularity there.
This point is the smallest stratum, and the rest of the singular circle is the
middle stratum. ’

Stratification of #

Now suppose that X is a compact Whitney stratified subspace of a manifold
M and that f is the restriction to X of a smooth function on M. We define
a critical point of f to be a critical point of the restriction of f to any stratum.
(In particular, all zero-dimensional strata are critical points.) A critical value
is, as before, the value of f at a critical point. With these definitions, Theorem
CMT Part A now generalizes to give the first fundamental result of stratified
Morse theory, which has the same statement:

Theorem (SMT Part A). As ¢ varies within the open interval between two
adjacent critical values, the topological type of X .. remains constant.

Now we wish to investigate how the topological type of #_. changes as
¢ crosses a critical value v;. As before if ¢ is less than v}, then #_, is empty,
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and as c¢ crosses v}, the space #_. changes by adding a two-disk. Also, as
¢ crosses vs, the space Z . changes by gluing in a two-disk along its boundary.

As c crosses the critical values v}, v’s, and v, the change in # __ is described
by Morse data, as shown by the following sequence of pictures. It is not immedi-
ately obvious what the pattern is, except that the Morse data is determined
by the local picture of Z and f near the critical points.

If X is a Whitney stratified subspace of a manifold M, then we denote
by D(p) a small disk in M transverse to the stratum S containing p such that
D(p)nS=p. (The dimension of D(p) will necessarily be the dimension of the
manifold M minus the dimension of the stratum S.) The intersection of D(p)
with X is called the normal slice at p and is denoted N(p). The normal slice
N(p) is a key construction for a singular space. It has a boundary L(p)=0D(p)n X
which is called the link of the stratum S. Topologically, N (p) is the cone over
the link of S with its vertex at p. The topological type of the link may be
thought of as measuring the singularity type of X along the stratum S. If X
is nonsingular along S, then the link L(p) is a sphere. The Whitney conditions



8 Introduction

guarantee that the connected component of S containing p has a neighborhood
which is a fibre bundle over S and whose fibre is N (p).

Consider D(p) and N(p) for the points p}, ..., ps in our example %. The
disk D(p3) is a three-ball around p’ since p’ lies in a zero-dimensional stratum,
so the normal slice N (p%) is a regular neighborhood of p5 in 4.

The point p; is equal to its normal slice since it lies in a top dimensional
stratum; likewise for p. The following picture shows the disks D(p,) and D(p,)
for #, along with the normal slices at p, and p),.

For any critical point p in X with critical value v, we define normal Morse
data at p to be the pair of spaces (4, B) where A4 is the set of points x in
the normal slice N(p) such that v—e< f(x)<v+¢ and B is the set of points
x in N(p) such that f(x)=v—e¢, for very small &. We may think of normal
Morse data at p as Morse data for the restriction of f to the normal slice
at p. We define tangential Morse data at p to be Morse data for the restriction
of f to the stratum S of X containing p. Tangential Morse data may be computed
using Theorem CMT Part B of the last section. Now we are in a position to
state part two of the fundamental theorem of stratified Morse theory.

Theorem (SMT Part B). Let f be a Morse function (see Sect. 1.4 of the
introduction) on a compact Whitney stratified space X. Then, Morse data measur-
ing the change in the topological type of X .. as ¢ crosses the critical value
v of the critical point p is the product of the normal Morse data at p and the
tangential Morse data at p.

The notion of product of pairs used in this theorem is the standard one
in topology, namely (A4, B)x(4’, B)=(Ax A, Ax B UBx A'). This theorem is
illustrated by the following table of Morse data for our example £.
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Theorem SMT Part B, although very natural and geometrically evident in
examples, takes 100 pages to prove rigorously in this book. We are interested
in applying it to establish results about the topology of X. This is possible
since X is built up in a series of steps, one for each critical point of f, and
the change brought about by each step is given by Theorem SMT Part II.
However, in order to use it we must have information about both the normal
Morse data and about the tangential Morse data for each critical point. The
quest for this information is complicated by the fact that the normal Morse
data can differ for various critical points in a connected stratum, as observed
above.

In this book, we describe two classes of spaces X for which miraculous
accidents give us a priori information on the normal and the tangential Morse
data. One is complex varieties, described in Sect. 1.5 of the introduction. The
other is complements of collections of flat subspaces of Euclidean space,
described in the introduction to Part III of this book.
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1.3. Two Generalizations of Stratified Morse Theory

So far, we have only considered stratified Morse theory for a function defined
on a compact Whitney stratified space. The extension of this to the case of
a proper function on a noncompact space requires no further modification of
the results of the last section. (A function is proper if the inverse image of
each closed interval is compact.) We now wish to consider two extensions of
stratified Morse theory. The first is to certain nonproper functions. The second,
which we call relative Morse theory, is to composed functions.

These two extensions broaden the range of questions to which stratified
Morse theory may be applied, beyond the study of singular spaces. In fact
some of the most important applications in this book (for example in proving
Deligne’s conjecture (Part II, Sect. 1.1)) are about nonsingular spaces.

(a) Morse theory for nonproper functions. Consider the example of the open
unit disk with the origin removed. We call this space 2.

As usual, we study the height function f. There are three values v,, v,, and
v; with the property that the topological type of 2 _, changes as ¢ crosses
them. (At v;, although there is no change in homotopy type, it changes from
a manifold with boundary to a manifold without boundary.) So, by the general
philosophy of Morse theory, there should be three critical points. However
2 is nonsingular, and f has no critical points in & at all. So the philosophy
of Morse theory would not appear to apply to this example. (Even if we try
to apply Morse theory to the closure 2 of 2 in the plane, it will not work
since the function f on the closure has only two critical points.)

The trick is to consider the closure & with an appropriate stratification:
a stratification such that the original space 2 is one of the strata. The simplest
such stratification has three strata: a two-dimensional stratum — the open punc-
tured disk 2 itself; a one-dimensional stratum — the circle at its edge; and
a zero-dimensional stratum — the origin. The origin is forced to be considered
as a separate stratum, even though the space & is nonsingular there, by the
requirement that & should be a stratum. The function f on & with this stratifica-
tion has three critical points as we wanted. (Even though & is nonsingular
at the origin, it has a critical point there in the sense of stratified Morse theory,
since any zero-dimensional stratum is a critical point.)
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Note that these critical points for the height function on 2 lie outside 9.

In general, to study a nonproper Morse function f on a stratified space
X, we require that X is a dense union of strata in some other stratified space
Z, and that the function f extends to a proper Morse function on Z. We call
the resulting diagram ;

XcZ—R

the setup for Morse theory of nonproper functions. Now f has two types of
critical points: those that lie in X and those that lie in the complement Z~\ X.
In either case, the topological type of X _. can change as ¢ crosses the corre-
sponding critical value. However, between two adjacent critical values, the topo-
logical type of X .. remains the same, so we still have the first fundamental
result of stratified Morse theory.

We will complete the fundamental theorem for nonproper Morse functions
by giving a result which calculates the change in X _, as ¢ passes a critical
value. Before doing this, we make our second generalization:

(b) Relative Morse theory. We replace the setup for Morse theory of non-
proper functions by a more general diagram:

x—z 1R
This diagram is called the relative stratified Morse theory set-up if f is a proper
Morse function (see Sect. 1.4 of the introduction) and = satisfies the following
technical condition: = has a factorization X = X — Z such that X is a union
of strata of X, and X — Z is a proper stratified mapping. (A stratified mapping
is defined in Part I, Sect. 1.6. The idea behind the definition is that over each
stratum of Z, the map should be a fibration in a stratum-preserving way.)

Any algebraic map n: X » Z admits stratifications of X and Z such that
this technical condition is satisfied. One use of the additional generality of relative
stratified Morse theory is to study the topology of a complex algebraic variety
X mapping to a complex projective space Z through Morse functions on Z
(see Part I, Sects. 2.6 and 3.4). Also, the quotient map for a compact group
action satisfies this condition, so relative Morse theory could be used to study
equivariant Morse functions.

For the relative stratified Morse theory setup, we define a critical point
p of f in Z, and tangential Morse data for f at p just as before: it is the
Morse data at p of the restriction f|S, where S is the stratum of Z which
contains the critical point p. For this setup, however, normal Morse data at
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p is defined differently. For any critical point p in Z with critical value v, we
define normal Morse data at p to be the pair of spaces (4, B) where A is the
set of points x in the inverse image of the normal slice =~ *(N(p)) such that
v—e<n(f(x))<v+e and B is the set of points x in =z~ *(f(p)) such that n(f(x))
=v—¢, for very small &. Here the normal slice at p, N(p) = Z is defined as before.
Note that normal Morse data is defined as a pair of subspaces of X, whereas
tangential Morse data is constructed using only the behavior of f on Z.

We can now state most general version of the fundamental theorem of strati-
fied Morse theory. Here X _, refers to the composed function fom, ie., X,
is {xeX|fr(x)<c}.

Theorem (SMT for the relative and nonproper cases). Assume that the compo-

sition
x5z ,R

is a relative stratified Morse theory setup.

Part A. As c varies between two adjacent critical values, the topological type
of X .. remains constant.

Part B. Morse data measuring the change in the topological type of X ., as
¢ crosses the critical value v of the critical point p is the product of the normal
Morse data at p and the tangential Morse data at p.

In the case that n: X — Z is the identity, this theorem specializes to Theorem
SMT of Sect. 1.2 of the introduction.

The reader can easily check (in the case n: X - Z is the inclusion of the
example 2 into its closure &) that this theorem correctly describes the changes
in & .. which occur as ¢ crosses the critical values v,, v,, and v5.

1.4. What is a Morse Function?

The object of this book is to give the natural generalization of classical Morse
theory on a manifold X to stratified spaces. We have shown how the fundamental
theorem relating the singularities of a function to the topology of X generalizes
to the stratified context. Now we examine the class of functions to which this
analysis applies. These are called Morse functions. They are the natural general-
ization of classical Morse functions on a manifold. We recall the classical case
first.

In classical Morse theory, Morse functions are singled out from all proper
smooth functions on a differentiable manifold X by two requirements:

0. The critical values of f must be distinct.

1. Each critical point of f is nondegenerate, i.e., the Hessian matrix of second
derivatives has nonvanishing determinant.

It follows from this definition that the set of critical points is discrete in
X and the set of critical values is discrete in IR.

In addition to leading to the beautiful fundamental theorem of Morse theory
described in Sect. 1.1 of the introduction, Morse functions have two further
desirable properties. The first is that they are plentiful. There are several theorems
of this type. For example, Morse functions form an open dense set in the space
of all proper smooth functions with the appropriate (Whitney) topology, so



Chapter 1. Stratified Morse Theory 13

any proper smooth function on X may be approximated by a Morse function.
Another example is that if X is embedded in a Euclidean space R* as a closed
proper subspace, then for almost all points e in IR¥, the function measuring
the distance to e is a Morse function. The second desirable property of Morse
functions is that they are C* structurally stable. In other words, if f is Morse
and if f’ is close enough to f in the Whitney topology, then there exist C*
diffefomeorphisms h and &’ such that the following diagram commutes:

x—' LR
h h’
7,

The existence of such a commutative diagram means that f and f' have the
same C® topological type.

In stratified Morse theory we consider Whitney stratified spaces X embedded
in some smooth manifold M. In order to find the analogue of the definition
of Morse functions in this context, we first need an analogue of the class of
smooth functions. A function on X is called smooth if it is the restriction to
X of a smooth function on M. If X is an algebraic variety, then this notion
of smoothness is intrinsic to X, since it can be seen to be independent of the
choice of an algebraic embedding of X in M. By definition (due originally to
Lazzeri and Pignoni), Morse functions are singled out from all proper smooth
functions on a Whitney stratified space X by three requirements:

(0) The critical values of f must be distinct.

(1) At each critical point p of £, the restriction of f to the stratum S containing
p is nondegenerate.

(2) The differential of f at any critical point p does not annihilate any limit
of tangent spaces to any stratum S’ other than the stratum S containing p.

It follows from this definition that the set of critical points is discrete in
X and the set of critical values is discrete in IR.

Conditions (0) and (1) together imply that the restriction of f to each stratum
is Morse in the classical sense. Condition (1) is a nondegeneracy requirement
in the tangential directions to S, while Condition (2) is a nondegeneracy require-
ment in the directions normal to S.

The geometric significance of Condition (2) is illustrated by the following
example. On the left and on the right are cusps stratified with a zero-dimensional
stratum at the cusp point. In each case, we consider the height function:




14 Introduction

The height function is not Morse on the left, but is Morse on the right. Consider
a sequence of tangent spaces to the one-dimensional stratum at a sequence
of points approaching the zero-dimensional statum.

< <L

The limit lines to these sequences of tangent are shown in the following diagram.

~ <

The function on the left is not Morse, because the limit on the left is horizontal
and is annihilated by the differential of the height function. The limit on the
right is not.

The fundamental result of stratified Morse theory of Sects. 1.2 and 1.3 of
the introduction relating the topology of X to the critical points of f holds
for Morse functions as just defined. In addition, these Morse functions satisfy
the two further desirable properties of classical Morse functions described above.
They form an open dense set in the space of all proper smooth functions with
the appropriate (Whitney) topology. So as before, any proper smooth function
on X may be approximated by a Morse function. As with classical Morse func-
tions, if X is embedded in a Euclidean space IR* as a closed proper subspace,
then for almost all points e in R¥, the function measuring the distance to e
is a Morse function. Also, Morse functions are C° structurally stable [P1].
In other words, if f is Morse and if f’ is close enough to f in the Whitney
topology, then there exist (C°) homeomorphisms & and A’ such that the above
diagram commutes, i.e., f and f’ have the same topological type. (In general,
there are no C*® (or even C') structurally stable functions on a Whitney statified
space.)

The fundamental theorems of stratified Morse theory (Sects. 1.2 and 1.3
of the introduction) remain valid for a wider class of functions than Morse
functions. Condition (1) of the definition of Morse functions can be replaced
by a condition that we call nondepraved (see Part 1, Sect. 2.3). This is a Whitney-
like condition on a critical point of a function on a smooth manifold, which
may prove useful in other contexts.
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1.5. Complex Stratified Morse Theory

In Sect. 1.2 of this introduction, we saw that in order to use stratified Morse
theory to study the topology of a space X, we need to know properties of
both the tangential Morse data and the normal Morse data for the critical
points of a Morse function on X. In general, this knowledge may be as difficult
to obtain as the knowledge of the topology of X itself. However, if X is a
complex analytic space, then two miracles of complex geometry allow a partial
calculation of the Morse data.

For purposes of exposition, in this introduction we will consider only the
case that the space X has an embedding in C* as a closed subspace, and the
function f that we are considering is the distance function to a point e in
C*. The first miracle is this:

Lemma. Suppose that S = C* is any complex submanifold of complex dimension
s and that f is the distance function to a point eeC*. Then, any nondegenerate
critical point p of f on S has Morse index A at most equal to s.

Viewed as a real submanifold, S has dimension 25, so we would expect
all Morse indices from O up to 2s to be possible, but this statement says that
half of these possibilities are ruled out for reasons of complex geometry. This
lemma may be deduced from the fact that if the Hessian quadratic form is

negative on a tangent vector v, then it is positive on I/TI-U (but not conversely).

This lemma was first applied to classical Morse theory by Thom, who exploit-
ed it to prove results about complex varieties. For example, suppose that X
itself is nonsingular and that it has complex dimension s. Then for a generic
center point e, the distance function f is Morse and all of its critical points
have Morse index at most s. This gave the first proof that a Stein manifold
of complex dimension s has homotopy dimension at most s, i.e., has the homotopy
type of a cell complex of dimension at most s [AF1] (since any Stein space
is homeomorphic to a closed subspace of some T¥).

This lemma enables us to find bounds on the homotopy dimension of tangen-
tial Morse data in certain cases, because tangential Morse data are precisely
the classical Morse data of the stratum.

The second miracle of complex geometry is that the normal Morse data
at a critical point p depend only on the stratum S in which p lies, not on
the function f or the point p. In fact there is a geometric construction of the
normal Morse data in terms of an auxilliary complex variety associated to
S which we call the complex link of S.

The complex link #(S) of a stratum S of X is constructed as follows: Let
N be a complex analytic manifold in €* transverse to the stratum S at some
point peS such that NnS=p. (The dimension of N will necessarily be k—s
where s is the dimension of the stratum S.) Let D(p) be a small disk in N
around p. Let H be a generic codimension one hyperplane in N that passes
very close to p but not through p. Then, Z(S) is the intersection X N D(p)n H.
This is illustrated in the following diagram (which gives a real analogue of
the situation).
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We believe that the complex link #(S) is a very important construction
in its own right. It is a complex analytic space with a boundary 0.2 (S)=
X ndD(p)n H. Its interior Z(S)~0.Z(S) is a Stein space. Up to homeomorph-
ism, both the complex link and its boundary depend only on the stratum S;
they are independent of all the other choices in its construction. Just as the
ordinary link of a stratum in a real stratified space measure the singularity
at that stratum, the complex link #(S) measures the singularity at S. For exam-
ple, if X is nonsingular at S, then the complex link will be a complex disk.
If X is the complex cone over Y= CIP*~! and S is the vertex, then the complex
link is Y minus a neighborhood of the hyperplane section. If X is a curve
and S is a singular point, then the complex link is a set of points of cardinality
the multiplicity of X at S.

We can now state the fundamental theorem of complex stratified Morse
theory:

Theorem (CSMT Part A). Suppose that p is a critical point for a proper Morse
function f on a complex analytic variety and ScX is the stratum containing
p. Then, the normal Morse data for f at p is homotopy equivalent to the pair
(Cone Z(S), Z(S)) consisting of the cone on the complex link of S and the base
of the cone.

As an illustration of this theorem, consider the curve singularity given by
three lines meeting at a point. An embedded real picture is given on the left,
and a topologically correct but not embedded complex picture is given on the

A=
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The complex link of the singularity consists of three points. The theorem shows
that homotopy Morse data for the singular point is given by the pair

(AL

There is a calculation of the normal Morse data at p in terms of the complex
link of S which is precise up to homeomorphism (Part II, Sect. 2.5). This is
more complicated and involves a “monodromy map”.

Theorem CSMT Part A is particularly useful in inductive proofs. As an
example, we give a sketch of the proof of the theorem of Hamm and Karchyaus-
kas that any Stein space X has homotopy dimension at most equal to its complex
dimension, (Part II, Sect. 1.1*). Embed X topologically as a closed subspace
of some C*, and use as a Morse function f the distance function to an appropriate
point e. We need a bound on the homotopy dimension of the Morse data
for all of the critical points. The lemma gives bounds on the homotopy dimension
of the tangential Morse data. Theorem CSMT Part A bounds the homotopy
dimension of the normal Morse data in terms of the homotopy dimension of
the complex link #(S). However, the complex link is homotopy equivalent
to its interior, which is a Stein space of smaller dimension. So, by induction
on the dimension, we are done. The detailed argument is carried out in Part II,
Sect. 5.1*.

We wish to make a philosophical point about this sort of induction, which
is prototypical for most of the applications of Morse theory in this book. The
study of the topology of X by Morse theory always involves passage from
local information (Morse data at a critical point peX) to global information
about X. In complex stratified Morse theory, the Morse data at p is calculated
from global information about the complex link .#(S) of the stratum S contain-
ing p. In this induction, the required global information about #(S) is itself
calculated by Morse theory, using a naturally defined Morse function on £ (8S).
Thus, £ (S) is described in terms of local information (i.e., Morse data at a
critical point p, € Z(S)). Intuitively, points in the complex link represent complex
directions away from S, so local information in the complex link is “local in
the space of directions from p”. In the language of Hormander [H6], “local”
in the complex link is called microlocal in X. Morse data at p, is in turn calculat-
ed using global information about .#,, the complex link in #(S) of the stratum
containing p,. The induction proceeds further to calculate this by Morse theory,
reducing it to local information in ., (Morse data at a point p,e.%;). This
is micro-micro-local or (micro)*-local information. This information is obtained
from (micro)3-local information, and so on. This accumulation of micro’s seems
essential to stratified Morse theory, and indeed to the study of nonisolated
singularities in general.

We may also use stratified Morse theory to study nonproper Morse functions
in the complex case. The setup for the complex version of this is a diagram

xcz—1,R
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Here n: X < Z is an inclusion of complex analytic varieties stratified by complex
analytic strata such that X is a union of strata of Z, and f: Z >R is a proper
Morse function on Z. The critical points of f are of two types: those in X
and those in the complement Z~ X. Normal Morse data for the first type is
given up to homotopy by Theorem CSMT Part 1 above. For the second, the
corresponding result is the following:

Theorem (CSMT Part B). Suppose that p is a critical point for a Morse function
f on a complex analytic variety and the stratum S containing p does not lie
in X. Then, the normal Morse data for f at p is homotopy equivalent to the
pair (Z(8S), 8 Z(S)) x (D', aDY).

This theorem may be illustrated by considering the square of the distance
function to a point e in the variety € consisting of the complex line with the
origin removed. The origin is now a critical point, and the space %.. looks
like this before and after ¢ crosses the corresponding critical value:

The complex link of the origin is a point with no boundary, so homotopy
Morse data predicted by the theorem is the pair (D!, dD?).

1.6. Morse Theory and Intersection Homology

At this point, the reader may be feeling nostalgia for classical Morse theory,
where all the information about the Morse data (4, B) was contained in one
number: the Morse index. The Morse index may be homologically characterized
as the unique integer i for which H;(A4, B) is nonzero. This characterization
of the Morse index as the unique degree in which the homology of the Morse
data does not vanish is the only fact Morse used to prove Morse inequalities.
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Such a simple situation is impossible for singular spaces, as is shown by
taking X to be the suspension of an arbitrary Y:

/p\
\/
The homology of the Morse data at p, is, up to a degree shift by one, the
reduced homology of Y. This can be nonzero in many degrees. Such a simple
situation is even impossible for complex varieties, as shown by the complex
cone over a complex algebraic variety Y embedded in projective space. For
these, the homology of the Morse data at the vertex is, up to a degree shift
by one, the reduced homology of the complement of the hyperplane section
of Y, which can have arbitrarily great homological complexity.

As is often the case, however, the essential simplicity of the nonsingular

case may be restored by considering the intersection homology of a complex
variety.

Uy

Uy

Theorem (see Part 11, Sect. 6.4). Let f be a proper Morse function on a purely
n-dimensional complex analytic variety X. If (A, B) denotes the Morse data for
a critical point p in a stratum S of dimension s, then the intersection homology
group ITH (A, B) vanishes for all i except for i=Ag+n—s, where Ag is the Morse
index of the restriction of f to S.

So for intersection homology, critical points have a true analogue to the
classical Morse index, namely A=Ag+n—s. It is no longer true, however, that
the group IH,(A, B) is one-dimensional. Instead, it is an important and poorly
understood invariant of the singularity of X along the stratum S.

In order to prove this result, we need the full calculation of the Morse
data up to homeomorphism, since intersection homology is not a homotopy
invariant.

1.7. Historical Remarks

The paper in which Morse introduced Morse theory to the world [Mo4] was
submitted in 1923 and published in 1926. By an interesting coincidence, this
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was exactly when Lefschetz published his work on the topology of algebraic
varieties [Lefl] (1924), which was the starting point of the other main theme
of this book. This original version of Morse theory was the homological version.
It related the critical points of a proper differentiable function on a smooth
manifold X to the homology of X.

At this time, algebraic topology was, in the words of Lefschetz, “hardly
further along” than “its infancy” ([Lef2], p. 15). Homology theory had long
since been created by Riemann, Betti, and finally Poincaré [Pol], [Po2] (1895,
1899). The first book on algebraic topology (at that time called analysis situs)
had just been written by Veblen [Veb] (1922). However, the theory did not
yet have rigorous foundations.

The theory of Riemann, which was never published, was based on an intuitive
notion of a k-cycle in a space X, as an oriented k-surface with singularities
contained in X, and an intuitive notion of a homology between two cycles,
a (k+ 1)-surface with singularities bounding their union which establishes their
homological equivalence. These notions of a cycle and a homology were not
defined precisely, but their properties were established by pictures and an appeal
to geometric intuition. Poincaré attempted to rigorize them by defining cycles
and homologies as semianalytic subsets, an idea that was carried to completion
in 1975 [Hal]. Morse refers to Veblen’s rigorous book, which concerns cellular
homology of regular cell complexes. However, to establish that his version of
homology is a topological invariant rather than a combinatorial one, Veblen
refers to [Ax] of Alexander. This contains an attempt at defining what is now
called singular homology (finally achieved by Lefschetz [Lef3] and Eilenberg
[E]). But, Alexander implicitly assumes that space filling curves do not exist,
as was noticed by Lefschetz [Lef3]. Furthermore, even to apply Veblen’s cellular
homology, Morse must use the fact that a differentiable manifold with boundary
can be cell-decomposed, which he asserts without proof. Morse must have been
aware that there was a difficulty here, since the year after the paper was published
he suggested it as a thesis problem to Cairns ([Bo2], p. 913). The century-long
story of the taming of homology theory is one of the greatest in mathematical
history, and has not yet been adequately recorded by historians. In any case,
it was far from over when Morse and Lefschetz began their pioneering work.

If mathematical journals in 1924 had the same standards of rigor that they
have today, neither Morse theory nor Lefschetz theory could have been pub-
lished. Morse and Lefschetz both attributed their success to their use of intuitive
homology theory without insisting on adequate foundations. In 1951, as the
taming of homology theory was reaching its completion, Morse wrote “Mathe-
maticians of today are perhaps too exuberant in their desire to build new logical
foundations for everything. Forever the foundation and never the cathedral”
([Mo6], p. 58). (We feel a kinship with this sentiment. We developed intersection
homology through free use of intuitive cycles. It took us four years to find
a rigorous version for public presentation.) In conversations, Morse and Lefs-
chetz were both often critical of the highly algebraic turn that topology took
after World War II.

Like most mathematical advances, Morse theory had its precursors. Poincaré
had a Morse inequality for vector fields in two dimensions ([Po3], p. 129, 1885),
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i.e., half of the “Hopf Index Theorem”. The first indication that there is a
connection between critical points of a function and the topology of its domain
of definition was G.D. Birkhoff’s “minimax principle” ([ Bir], p. 240). This gives
a lower bound on the number of saddle points of a function defined on a
2-manifold in terms of the number of relative minima and the homoloy of
the manifold. Morse’s work was inspired by Birkhoff’s, but it is far enough
beyond its predecessors to call it qualitatively new.

Morse’s original work inspired a long history of later developments. Smale
has termed Morse theory the most significant single contribution to mathematics
by an American mathematician. It has been extended many times, always main-
taining its original flavor. These extensions have usually consisted of generalizing
the setup or of finding new techniques to calculate the Morse data. The exten-
sions have usually been made with a view of giving new applications. Since
Morse theory relates the singularities of the function f to the topology of the
space X, applications consist of knowing something about one of these two
so as to deduce something about the other. What follows is only a sketch
of some highlights. More complete versions have been recorded in several places
[Bo4], [Sma3], [Maz], [Bo2].

The first extension was by Morse himself, almost immediately after his origi-
nal work. This was to spaces X which are infinite-dimensional, such as the
path space of a manifold, and to functions f which are functionals in the sense
of calculus of variations, like the length [Mo5]. He also found a technique
to calculate the Morse index in terms of Jacobi vector fields, the Morse Index
Theorem. He was able to prove, for example, that two points on a sphere
with any metric are joined by infinitely many geodesics. Bott extended Morse
theory by allowing certain nonisolated critical points of the function f, called
nondegenerate critical submanifolds. He also found group theoretical methods
for calculating Morse indices on Lie groups and their path spaces. This led
to the first proof of the periodicity theorem [Bo5], [Bo6]. Thom first exploited
the fact that complex geometry can be used to bound Morse indices [T9].
This led to results on the topology of complex analytic spaces, of which this
book contains many more.

In the original version of Morse theory, only the homology of X entered.
Lysternik and Schnirelmann extended this to an invariant which can be finer,
the category of X [LS]. Thom ([T8], 1949) showed the existence of a cell complex
structure on X, with one cell for each singular point of f. This gave results
on the homotopy type of X. Then Smale introduced his “Handlebody decompo-
sition” of X, with one handle for each critical point of f. This gives results
on the difffomorphism type of X. (It is the version that we presented in the
beginning of the introduction.) This led to many developments in differential
topology such as the proof of the Poincaré conjecture in dimension five or
more. This is summarized in [Sma2], [Sma3], and [Maz]. Smale and Conley
have developed the idea of extending Morse theory by replacing the function
f by a dynamical system ([Smal], [Co]) and used it, for example, to show
the existence of fixed points and closed orbits. More recently, Atiyah and Bott
have developed equivariant Morse theory and applied it to equivariant cohomol-

ogy [Bo4].
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Morse theory on manifolds with boundary, originally due to Baiada and
Morse [BaM ], has been applied by Thom to give bounds on the Betti numbers
of a real algebraic variety [T10]. Morse theory extended to manifolds with
boundaries and corners was further developed by Hamm, Karchyauskas, L&
and Siersma ([Kr1], [Kr2], [H3], [H4], [HL2], [H13], [S]) and was applied
to the study of the homotopy type of Stein spaces and to Lefschetz theorems
for quasiprojective varieties.

Finally, the extension of Part I of this book to stratified spaces X, and the
applications in Parts II and III, can be considered to be part of this line of
development.

1.8. Remarks on Geometry and Rigor

As is shown by the above history of Morse theory or by the history of stratifica-
tion theory (Part I, Sect. 1.0), there is often a creative tension between geometry
and rigor. Rigor follows the initial conception with a much greater time delay
in geometry than it does in algebra. Also, when it comes, true geometers often
feel its language misses the essential geometric ideas. Language is not well
adapted to describing geometry, as the facilities for language and geometry
live on opposite sides of the human brain. This perhaps accounts for the presence
in the current literature on singularities of expressions like “using the isotopy
lemma, it can be shown” without the forty pages of geometric constructions
and estimates needed to apply the isotopy lemma.

Nevertheless, a geometrically apt rigorization of a geometric idea can actually
add to its ease of visualization. Major examples of this are the final versions
of singular homology and of stratified spaces.

We have tried to alleviate the incredible complexity of the arguments in
this book with two technical innovations that we hope are geometrically apt.
The first is moving the wall (Part I, Sect. 4), a technique for rigorously construct-
ing isotopies of stratified spaces by examining pictures of “characteristic vectors”
in an auxiliary space. The second is fringed sets (Part I, Sect. 5), a method of
handling estimates geometrically. We hope that the combination of these allows
us to approach the geometer’s ideal of giving proofs that are both rigorous
and visual.



Chapter 2. The Topology of Complex Analytic Varieties
and the Lefschetz Hyperplane Theorem

One of the main sets of mathematical results proved in this book is a collection
of theorems on the topology of complex analytic varieties. There are generaliza-
tions of the Lefschetz hyperplane theorem for complex projective varieties, and
generalizations of the theorem that the homotopy dimension of a Stein manifold
is bounded by its complex dimension. In this section of the introduction, we
give a sketch of the statements of the theorems with motivation and some
history. Technically precise statements of the theorems in their most general
form are grouped together in Chapter 1 of Part II of the book.

The proofs of these theorems are applications of stratified Morse theory.
However, both this section of the introduction and Chapter 1 of Part I may
be read without any knowledge of stratified Morse theory.

2.1. The Original Lefschetz Hyperplane Theorem

The idea of the Lefschetz hyperplane theorem is that a complex projective variety
resembles its hyperplane section:

Theorem (the LHT) [Lef1]. Let X be a closed nonsingular purely n-dimensional
algebraic subvariety of complex projective space, and let H be a generic hyperplane.
Then, H(X, X nH)=0 for i<n.

Combined with the long exact sequence of the pair (X, X n H) and Poincaré
duality, this theorem implies that all of the Betti numbers b; of X are determined
by those of X nH except for three: b,_,, b,, and b, ; and that b,_, and
b,., are bounded by the n—1* Betti number of X n H. The primary use of
this theorem is in studying projective varieties by induction on their dimension.

The Lefschetz hyperplane theorem has a dual (in a sense explained in Sect. 2.7
of the introduction). This states that a nonsingular complex affine variety has
the homology of a space half its real dimension:

Theorem (the LHT*). Let X be a closed nonsingular purely n-dimensional
algebraic subvariety of complex affine space. Then H,(X)=0 for i> n.

A tremendous amount of effort has gone into generalizing these two funda-
mental theorems. Significant contributions have been made by many mathemati-
cians: [AF1], [AF2], [Art], [Barl], [BL], [Ber], [Bol], [C1], [Ch2], [D1],
[Fa], [FK1 to FK5], [Fr1],[FH], [FL1], [FL2], [GK], [GM2], [GM3], [Grl1],
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[Gro], [H1 to H6], [HL1], [HL2], [HL3], [Kr1], [Kr2], [Kr3], [Kpl to Kp5],
[KW], [L], [La], [Mil], [Mi2], [N], [Og], [Oka], [Okol to Oko3], [R], [Sm1
to Sm6], [SV], [SoV], [T9], [Wa], [Z1]. These authors have used widely differ-
ing techniques.

This book contributes further generalizations to the list. But, the main advan-
tage of stratified Morse theory is that, at least for complex varieties, it provides
a unified approach through which a wide variety of generalizations can be proved
and understood. What follows is a nonhistorical account. Original references
to the literature for specific results are given immediately after their statements
in the main portion of the text.

2.2. Generalizations Involving Varieties which May be Singular
or May Fail to be Closed

One of the most dramatic generalizations is that the LHT holds for quasiprojec-
tive varieties and the LHT* holds for singular varieties, both without modifying
the statements:

Theorem. The hypothesis “closed” may be omitted from the statement of the
LHT and the hypothesis “nonsingular” may be omitted from the statement of
the LHT*,

The reverse is not true. Easy examples show that it is not possible to omit
the hypothesis “nonsingular” from the LHT or the hypothesis “closed” from
the LHT* (see Part II, Chap. 8).

So, singularities of X can cause failure of the LHT. We want to measure
quantitatively the effect of singularities on the validity of the theorem. Local
complete intersection singularities have no effect on its validity. We define a
measure S(p) of the degree of singularity of X at a point p to be (the number
of equations needed to define X near p) minus (the codimension of X in projective
space). The number S(p) is zero when X is a local complete intersection at p.

Theorem (the LHT for singular spaces). Let X be a purely n-dimensional
algebraic subvariety of complex projective space, and let H be a generic hyperplane.
Then H;(X, X " H)=0 for i<n—sup S(p).

peX

Similarly, removing a subvariety V from X can cause failure of the LHT*.
Again, we want a quantitative measure of this. Removing a Cartier divisor
from X has no effect. We define a measure S*(p) of the degree to which V
fails to be a Cartier divisor near p to be one less than the number of equations
needed to define V as a subvariety of X near p.

Theorem (the LHT* for non-closed subspaces). Let X be a closed purely
n-dimensional algebraic subvariety of complex affine space and let V be a subva-
riety of X. Then H,(X —V)=0 for i>n+sup S*(p).

peV
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2.3. Generalizations Involving Large Fibres

Another direction of generalization is to consider varieties X that are mapped
to complex projective space or affine space, rather than subvarieties. Recall
that any algebraic map n: X — Y has the property that X can be finitely decom-
posed into subvarieties V; of varying dimension, each of which maps to Y with
constant fibre dimension. Suppose that X has pure dimension so that codimen-
sions make sense. We call n semismall if for each i, its fibre dimension in ¥
is at most the codimension of V; in X. If the map of X to complex projective
space or affine space is semismall, then the LHT and the LHT* remain true.
We define a measure D(n) of deviation of = from semismallness to be the supre-
mum over i of (the fibre dimension of n in V;) minus (the codimension of V;
in X).

Theorem (the LHT with large fibres). Let n: X — CP" be a (not necessarily
proper) map of a nonsingular purely n-dimensional algebraic variety into complex
projective space, and let H be a generic hyperplane. Then H;(X, n~'(H))=0 for
i<n—D(m).

The above theorem (or rather the homotopy refinement of it; see Part II,
Sect. 1.1) was conjectured by Deligne [D1]. It contains as a special case the
classical Bertini theorem (Part II, Sect. ‘1.1).

Theorem (the LHT* with large fibres). Let n: X —» €V be a proper map of
a purely n-dimensional (possibly singular) algebraic variety into complex affine
space. Then H;(X)=0 for i>n+ D(n).

2.4. Further Generalizations

Many refinements of the above statements can be made, and are incorporated
into the sharper statements of Part II, Chap. 1 of this book. First, the above
homology statements all have homotopy analogues. The statements that relative
homology groups vanish can be strengthened to statements that the correspond-
ing relative homotopy groups vanish. The vanishing of homology groups of
X of degree greater than n can be strengthened to the assertion that X has
the homotopy type of a CW complex of dimension n. (We shall shorten this
by saying that X has homotopy dimension n.) In the LHT*, X need only be
analytic. This leads to the same statement for a complex Stein space.

The assumptions on the singularities or the size of the fibres in the LHT
statements need only be imposed on the singularities of fibres away from the
hyperplane. The hyperplane need not be taken to be generic, provided that
it is replaced in the statement by a small tubular neighborhood. The hyperplane
may be replaced by an arbitrary linear subspace, provided that the range of
vanishing in the conclusion is appropriately modified. More generally, the projec-
tive space and the linear subspace may be replaced by any pair such that the
subspace is the zeros of a nonnegative function with a suitable Levi form. Dually,
in the LHT* statements, the complex affine space may be replaced by complex
projective space minus a linear space, with a similar modification of the conclu-
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sion. Or, it may be replaced by any analytic manifold that admits a real valued
function with a suitable Levi form.

Finally, the LHT may be strengthened to a local version. To give a projective
variety X is the same as to give a conical variety K of one more dimension,
namely the cone on X. Philosophically, any statement about the projective vari-
ety or its embedding really comes from a statement about the singularity at
the point of the cone. Theorems about projective varieties should be conse-
quences of more general theorems about singularities which are no longer
required to be conical. This is the case for the LHT, which is a consequence
of the following:

Theorem (Local LHT). Suppose that K is a purely (n+ 1)-dimensional analytic
subvariety of complex affine space with an isolated singularity at p, H is a generic
hyperplane through p, and 0B, is the boundary of a small enough ball around
p. Then, n(X n0B,, XnHndB,)=0 fori<n.

The local LHT comes with generalizations for the case that K has singulari-
ties aside from the one at p, or that it is no longer embedded but is mapped
in with large fibres just as in the generalizations of the LHT above. It also
has a dual version, the local LHT*.

2.5. Lefschetz Theorems for Intersection Homology

The (middle perversity) intersection homology IH;(X) of a singular complex
algebraic variety X behaves in many ways like the ordinary homology of a
nonsingular one. The LHT and the LHT* are examples of this phenomenon.

Theorem (the LHT for intersection homology). Let X be a possibly singular
purely n-dimensional quasiprojective algebraic subvariety of complex projective
space, and let H be a generic hyperplane. Then IH,(X, X nH)=0 for i<n.

Theorem (the LHT¥* for intersection homology). Let X be a possibly singular
n-dimensional complex Stein space. Then IH; (X)=0 for i>n.

Note that as a result of the refinements of the LHT* above, we already
knew that an n-dimensional Stein space has the homotopy type of an n-dimen-
sional CW-complex. However, this does not imply the LHT* for intersection
homology, since intersection homology is not a homotopy invariant.

2.6. Other Connectivity Theorems

So far, we have described results that we prove directly by Morse theory. Many
other very interesting results on the connectivity of algebraic varieties can be
proved by using one of the above theorems together with an auxiliary construc-
tion. The subject of connectivity theorems was pioneered in recent times by
W. Fulton and several other mathematicians, especially P. Deligne, G. Faltings,
T. Gaffney, J. Hansen, K. Johnson, J.P. Jouanolou, R. Lazarsfeld, J. Roberts,
and F.L. Zak. This body of work was one of our primary motivations for under-
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taking this book. We particularly recommend the survey article by Fulton and
Lazarsfeld [FL1] to readers interested in this subject. We will only give a few
examples of results here.

The first example is a further generalization of the LHT. It addresses the
question, “what happens to the LHT if the linear space H is replaced by a
more general variety?” Of course if the more general variety is a complete
intersection, then it is a linear section of some embedding of the projective
space in some larger projective space, so the LHT applies directly. If it is only
a local complete intersection, then we have the following statement of Fulton,
proved in [FL1]:

Theorem. Suppose that X and H are closed local complete intersections in
complex projective space CPP™, that X has dimension n and H has codimension

d. Then the map
7;(X, X n H) - =;(CIP™, H)

is an isomorphism for i<n—d and is surjective for i=n—d+ 1.

This theorem simultaneously generalizes the LHT and the strong homotopy
version of the Barth theorem: for a local complete intersection X, n,(CIP™, X)=0
for i<2n—m+1. (The latter follows by taking X =H.) It generalizes to the
case that X is mapped in by a finite map.

The second example is the connectedness theorem, a generalization by
Deligne of a theorem of Fulton and Hansen:

Theorem. Let X be a closed connected purely n-dimensional local complete
intersection in CIP™ x CIP™, and let A be the diagonal.

@) If n—m=>=1, then =, (X, X n4)=0 and X N A is connected.

(b) If n—m=>2, then there is an exact sequence

(X NnA)»1,(X)>Z >, (XnA)-> 7, (X)—-0.
(c) If 2<i<n—m, then m;(X N 4)=0.

A similar result holds if the subvariety X is replaced by a finite morphism
from X to CIP" x CIP™. Even the statements for n, and =, (which were proved
without using any results of this book) have spectacular geometric applications.
For example, every immersion into projective space CIP™ of a variety of dimen-
sion more than m/2 is an embedding (Fulton and Hansen). For every branched
covering of projective space CIP™ with at most m+1 sheets, there is a point
over which all the sheets come together (Gaffney and Lazarsfeld). The fundamen-
tal group of the complement of a plane curve with only node singularities is
abelian (Fulton and Deligne).

2.7. The Duality

There is a duality which pervades the whole of complex stratified Morse theory
and Lefschetz hyperplane theory. We have emphasized this by the notation
* in the numbering of statements in the introduction, and of the sections in
Part II. This duality is in some sense a form of Poincaré duality.
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The simplest case of Theorem LHT* of Sect. 2.1 in the introduction actually
follows from theorem LHT by duality. The affine space €* of LHT* is compacti-
fied by projective space CIP*. Consider first the case that the subvariety X = C*
of theorem LHT* has a nonsingular closure X in CP* and the hyperplane
H at infinity is in general position with respect to X. Then, Poincaré duality
(or more properly Lefschetz duality) says that H(X)~H,,_;(X, X n H). Theo-
rem LHT says that this vanishes for i>n, and by the universal coefficient theo-
rem, this implies that H;(X) vanishes for i>n. The unwanted hypotheses on
X in this proof can be dispensed with if appropriately stronger versions of
LHT and Lefschetz duality are used.

In general, the duality is not a consequence of Poincaré duality, although
it seems related to both this and the duality between nonsingularity and com-
pactness in mixed Hodge theory. The more complicated dual pairs of statements
do not imply each other, although they often have dual proofs. It is hard to
formulate the duality precisely, but one can give a rough dictionary:

Vanishing of low homology groups Vanishing of high homology groups

or low homotopy groups

Vanishing of low degree intersection homology Vanishing of high degree intersection homology
Nonsingular, or local complete intersection Closed in Affine space, or Stein

The singularity defect S(p) The local noncompactness defect S*(p)

Large fibres Large fibres

The Morse function f The Morse function —f

Distance from a codimension ¢ subspace Distance from a subspace of dimension ¢

We have used this duality as a guide to discover several of the theorems of
this book, as well as their proofs.

2.8. Historical Remarks

The Lefschetz hyperplane theorem first appeared in Lefschetz’s book L'Analysis
Situs et la Géométrie Algébrique published in 1924, simultaneously with Morse’s
creation of Morse theory. The main technique of proof in Lefschetz’s book
was the local topological study of generic singularities of a pencil of hyperplane
sections. These generic singularities are locally equivalent to quadratic singulari-
ties of a complex function. So their study, which is commonly called Picard-
Lefschetz theory, is the complex analogue of Morse theory, viewed as the local
topological study of quadratic singularities of a real function.

Lefschetz’s book initiated the topological study of nonsingular projective
varieties. It was known since Riemann that any oriented 2-manifold is homeo-
morphic to a projective curve, so nonsingular projective curves have no special
topological properties. Lefschetz asks the question whether the analogous state-
ment could be true in higher dimensions, and finds that already nonsingular
projective surfaces have homological properties not shared by general oriented
4-manifolds ([Lefl], p. 306). In addition to the hyperplane theorem, Lefschetz’s
book originated two other staples of modern mathematics — the intersection
product in homology, and the hard Lefschetz theorem (which states that on
a nonsingular projective n-fold, intersecting with a generic i-plane induces an
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isomorphism between H, ;(X, Q) and H,_;(X, Q)). One must agree with Lef-
schetz’s own asessment that this book “planted the harpoon of algebraic topolo-
gy into the body of the whale of algebraic geometry” ([Lef2], p. 13).

As was already described in Sect. 1.7 of this introduction, algebraic topology
was in a very primitive state at this time. Lefschetz credits the fortunate fact
that he “made use most uncritically of early topology a la Poincaré” to his
relative mathematical isolation in Nebraska and Kansas. Lefschetz spent the
next eighteen years of his life largely devoted to the program of rigorizing alge-
braic topology, culminating in his 1942 Colloquium lectures [Lef4].

It should be noted that noone has ever filled a gap in the original proof
of the hard Lefschetz theorem ([Lef2], p. 316 in the middle of the proof of
Theorem 13 of Chapter II). In fact, in spite of two other attempts at geometric
proofs ([AF2] and [Wa]) it is still unknown whether or not there exists a
proof which does not use analysis. (See [Lam].) Of the two known proofs,
the one of Hodge uses harmonic analysis and the one of Deligne [D4] uses
p-adic analysis.

The dual train of theorems LHT* is much more recent. The theorem that
the integral homology of an affine variety vanishes above the complex dimension
must have been evident to Lefschetz, since it is a direct combination of Lefschetz
duality with the Lefschetz hyperplane theorem. The first published result that
we have found was a theorem of Serre in 1953 that the homology with complex
coefficients for a nonsingular Stein space vanishes above its complex dimension
(together with the above observation for affine varieties). Serre’s proof was an
application of Cartan’s Theorems A and B [C1], [C2]. Serre poses the problem
of whether the torsion similarly vanishes, which was shortly answered by Morse
theory throught the work of Thom [T9] and Andreotti and Frankel [AF1].

The idea of applying topology to algebraic geometry was not due to Lef-
schetz. It was, in fact, one of the prime motivations of Riemann and Poincaré
for developing homology theory (as is made clear in [Pol]). Picard and Simart
in 1897 had studied the homology of affine algebraic surfaces using Picard-
Lefschetz theory [PS] (so their book should be viewed also as a precursor
of Morse theory). The realization that the homology of nonsingular projective
varieties has such incredibly beautiful properties is, however, due to Lefschetz.

The history of developments after Lefschetz could be seen as the whole
history of algebraic geometry, and is too vast for treatment here. Since one
of the themes of this book is singular spaces, however, we include one observa-
tion. The beautiful picture of the homology of a nonsingular projective variety,
as completed by Hodge with his (p, g) decomposition, has now been completely
reproduced for the intersection homology of a singular projective variety (see
[MP2]). The Lefschetz hyperplane theorem is in this book, Poincaré duality
is in [GM4], the hard Lefschetz theorem is in [BBD], and the Hodge decomposi-
tion is in [Sai].
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Chapter 1. Whitney Stratifications and Subanalytic Sets

1.0. Introduction and Historical Remarks

In this chapter we develop the tools from stratification theory which are needed
in the proof of the main theorems of PartI (Sects. 3.7, 3.10, 9.5, 10.5, 11.5,
12.5). Sections 1.2 through 1.8 constitute a short course on the main results
and techniques of stratification theory, and they summarize the work of many
people: [Ab], [AR], [BW], [Ch], [G1], [Hal], [Ha2], [Hil], [Hi2], [Hi3],
[J], [La], [LT2], [Lol], [Lo2], [Mal], [Ma2], [O], [P1], [P2], [T1], [T2],
[T3], [T4], [T5], [T6], [Trl], [Tr2], [V], [Vel], [Ve2], [W1], [W2], [W3].
Sections 1.8 through 1.10 contain the results on characteristic covectors which
are used along with “moving the wall” (Chap. 4) in creating the deformations
which are the heart of our main theorems. Section 1.11 is a basic result in
stratification theory that is often quoted and whose proof turns out to be sur-
prisingly tricky: the transversal intersection of a manifold M and a Whitney
stratified space W admits a “tubular neighborhood” in W, i.e., a neighborhood
which is homeomorphic to the total space of a vectorbundle E - Wn M.

Historical Remarks on Stratification Theory. Singularities were observed by
the algebraic geometers of the nineteenth century, and Poincaré in his first
paper on homology [Pol], exhibits a singular space and indicates that the
singular point destroys Poincaré duality. The natural idea of dividing a singular
space into manifolds was at least partially realized in the study of simplicial
complexes and regular cell complexes ([ Veb]), even before the notion of a mani-
fold was well defined. In fact, there were a number of early attempts to triangulate
algebraic sets, including Poincaré [Po2], Lefschetz [Lef3] (1930), Koopman and
Brown [KB] (1932), and Lefschetz and J.H.C. Whitehead [LW] (1933). (It is
now known that Whitney stratified sets can be triangulated ([G1], [J]), and
so up to homeomorphism, the class of Whitney stratified sets coincides with
the class of simplicial complexes.)

Perhaps the first attempt at an abstract theory of stratifications appears
in Whitney’s concept of a “complifold”, or complex of manifolds [W4] (1947).
However, we will concentrate on the history of stratification theory during the
period between 1950 and 1970, when complete proofs of the isotopy lemmas
appeared. Although stratification theory developed together with the theory
of singularities of smooth mappings, it quickly became an important tool with
a broad range of applications which extends well beyond the study of singulari-
ties of mappings (see, for example, [Lo3] (1959), [Sc] (1965), [W2] (1965), [Fel]
(1965), [Fe2] (1966), [Z3] (1971), [MP1] (1974)).
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Whitney discussed the program of trying to understand the singularities
of a generic smooth map during a lecture in Strasbourg in 1950. He announced
that he could show that folds and cusps were the only generic singularities
for maps from the plane to the plane. His results were not published until
[W1] (1955).

As part of this program to understand the topology of a generic smooth
map, R. Thom [T1] (1955) defined the iterated singularity sets S;(S;(f)) of a
smooth map f: IR"->IR™ and showed that for certain generic functions these
were manifolds. Thus, the domain of a smooth function was decomposed into
a collection of naturally defined manifolds. These were called “manifold collec-
tions” in Whitney [W3] (1955), and this name remained for the next ten years.
(See Thom [T1] (1955-56), [T7] (1956), Haefliger [Hael] (1956/57), Fox [Fox]
(1957), Whitney [W5] (1958), Feldman [Fel] (1964).) It is shown in [W6] (1957)
that every real algebraic variety can be decomposed into a finite collection
of smooth manifolds. None of these papers suggest any conditions on how
the strata of a stratification should fit together, other than that they satisfy
the axiom of the frontier. In [Lo3] (1959), Lojasiewicz (following ideas of Osgood
[Os] (1929)), decomposed real analytic sets into a locally finite collection of
manifolds, and obtained inequalities on the distance between points in these
“strata”. He used this geometric result to prove the division conjecture of
L. Schwartz: the result of dividing a distribution by a real analytic function
is again a distribution. See also [Lo4] (1961).

Until at least 1958 it was hoped that the smooth maps which were transverse
to a natural stratification of the jet space would be smoothly stable. Thus,
the transversality lemma of Thom [T7] (1956) would imply that the smoothly
stable maps were dense in the space of all smooth functions. This was hinted
at in Thom [T7] (1956) and was explicitly conjectured by Whitney in [WS5]
(1958). Whitney even carried out this program in special cases: for Morse func-
tions, for maps from the plane to the plane, and for maps to large dimensional
spaces.

In his 1959 book on singularities of maps (which was never formally pub-
lished), H. Levine [Lev] recorded Thom’s example showing that smoothly stable
maps did not form a dense subset of the space of all maps. This example must
have come as a shock for all concerned, for it meant that completely new tech-
niques would be needed in order to study the topology of generic smooth maps.

In the paper [T6] of 1962, R. Thom outlines his enormous program for
showing that generic smooth maps are topologically (rather than smoothly)
stable, thus resolving the questions raised by this counterexample. He introduces
the word “stratification” and proposes a “regularity” condition on how the
strata of a stratification should fit together: each stratum should have a neighbor-
hood which fibres over that stratum, which should be controlled by a “fonction
tapis”, and these various fibrations should be compatible with each other. He
states that algebraic sets admit regular stratifications. He then goes on to give
an early version of mappings “sans eclatement” (or Thom mappings, as they
are now known): that the dimension of the fibre over a point p should not
increase as p specializes to a smaller stratum. He conjectures that such maps
can be triangulated (this conjecture is still open, but believed to be true), and
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states the first and second isotopy lemmas, applying these to show that functions
which are transverse to the natural stratification of the jet space would be
topologically stable! The amazing vision which is indicated in this paper was
not fully realized until almost eight years later.

These ideas were reiterated with a little more detail in [T3] (1964), in which
he proposes a condition — let us call it condition T — on a stratification of
an algebraic set. His condition is that a smooth function which is transverse
to one stratum of a stratification should consequently be transverse to nearby
strata. (This is now known [Tr2] (1979) to be almost equivalent to Whitney’s
condition A4, which had not yet appeared.) Thom also indicates that such a
stratification of a real algebraic variety should be locally trivial (or “regular™)
in the above sense.

It is not surprising that such a visionary paper might contain gaps. In [W2]
(1964) Whitney replaced Thom’s condition T with his own condition A4, and
showed that A implies T. (See also Feldman [Fel] (1965).) Whitney also gave
an example to show that condition A alone is not sufficient for local triviality
of a stratification, and then proposed his condition B as a candidate sufficient
condition. Besides showing that complex analytic varieties admit stratifications
satisfying 4 and B, Whitney showed that these conditions implied semianalytic
local triviality in low codimensions, and conjectured that any complex analytic
variety admits a stratification which is semianalytically locally trivial. (This con-
jecture has only recently been verified by R. Hardt.) The details of Whitney’s
theorems appear in [W1] (1965), which was the last paper he wrote on the subject.

Triangulations and Whitney stratifications of semianalytic sets were con-
structed in [Lo2] (1964) and [Lo1] (1965) respectively.

During the period between 1965 and 1969, while J. Boardman [Boa] and
J. Mather [Ma3], [Ma4] were working out the details of the theory of smooth
stability of smooth maps, Thom worked on realizing his program. In his land-
mark paper [T5] of 1969, he makes the daring steps of abandoning Whitney’s
ideas for semianalytic local triviality, and of considering instead discontinuous
(but “controlled”) vectorfields on a stratified set, showing that they have a
continuous flow! (This idea is briefly mentioned in [T6] (1962).) He thus obtains
topological local triviality of Whitney 4 and B stratifications. (This paper con-
tains many more ideas: the modern definition of a Thom (4,) mapping, proofs
of the isotopy lemmas, definition of subanalytic sets, stratification of analytic
maps, and another more complete outline of the proof that topologically stable
maps are dense.)

Mather’s 1970 Harvard notes [Mal] are a detailed working out of some
of these ideas, complete with multiple inductions and a number of valuable
improvements and simplifications (for example, Thom’s fonction tapis is replaced
by a distance function). Although these notes are still the best reference on
Whitney stratifications, they were not published because they were meant as
the first chapter of a book on topological stability of smooth maps, which
has not been completed. .

O. Zariski (who was working since 1962 on algebraic notions of equisingular-
ity) apparently followed these developments closely, as can be seen in his papers
on equisingularity [Z2] (1965, 1966), [Z3] (1971).
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Although we arbitrarily end this history at 1970, it should be noted that
tremendous advances in both stratification theory and singularities of maps
have been made since.

1.1. Decomposed Spaces and Maps

Each of the spaces in this paper (for example, the spaces 4 and B making
up the local Morse data) have both a Whitney stratification and a coarser
decomposition called an &-decomposition. Here & is a partially ordered set
which indexes the strata of Z, and the %-decomposition of the local Morse
data is given by its intersection with the strata of Z. The attaching maps and
homeomorphisms of the theorems in Chapter 3 respect the #-decompositions.
Keeping track of this additional data is important when considering nonproper
Morse functions on a space X, since our approach to this situation is to embed
X as a union of strata in a space Z, i.e., as a union of pieces of the #-decomposi-
tion.

The spaces which are derived from Z using the Morse function also have
Whitney stratifications, which are finer than the stratification of Z. For example,
the space Z_, has “boundary strata” where f(z)=c (in other words, pieces
of the #-decomposition have codimension 1 strata). The local Morse data has
boundary strata at the edge of the ball and where f(z)=v+¢ so it has “corner
strata” (which are codimension two in the & pieces) where these intersect. The
attaching maps and homeomorphisms of Theorems 3.5.4 and 3.7 do not respect
these Whitney stratifications. This may already be seen in the nonsingular case:
adding a handle to a manifold with boundary creates corners which are new
strata. In Smale’s theory of the diffeomorphism type of Morse data, these corners
must be smoothed by “straightening the angle”.

Definition. Let % denote a partially ordered set with order relation denoted
by <. An &-decomposition of a topological space Z is a locally finite collection
of disjoint locally closed subsets called pieces, S;=Z (one for each ie %) such
that

1 z=\s;

ies

(2) SinS;+¢<=8,c8;<i=jori<j(and we write S;<8S))

A decomposed map f: A — Z between two &-decomposed spaces

A=JR, and Z=1|JS;
ies ies

is a continuous map such that f(R;)<S; for each ie# Any subspace B of an
&-decomposed space A inherits an %-decomposition and the inclusion Bc 4
becomes an #-decomposed map. In this case we say that the pair of spaces
(A, B) is #-decomposed. .

If (4, B) and Z are &-decomposed spaces and if f: B— Z is an &-decom-
posed map, then the adjunction space Y=ZugA (which is obtained from the
disjoint union Zu A by identifying each aeB with f(a)eZ) is canonically %-



Chapter 1. Whitney Stratifications and Subanalytic Sets 37

decomposed by subsets Q;=S;uUr R; for each ie& (where S;, T;, and R, are
the pieces of the decomposition of Z, B, and A respectively).

If 7 =& is a partially ordered subset and if Z is & decomposed, we define
Z n|J | to be the corresponding 7 -decomposed subset of Z, i.e.,

ied
An &-decomposed homeomorphism f: Z, — Z, induces homeomorphisms

Z, T |- Zyn\T|

for each subset 7 < &

Suppose F: ¥ — & is a morphism of partially ordered sets (i.e., for each
i<j we have F(i)<F(j)). Let {S;} be an &-decomposition of a topological space
Z, and let {S;} be an &’ decomposition of Z. Then the {S;} is called a refinement
of the {S;} if, for each ie ¥ we have S;c S ;.

1.2. Stratifications

Let Z be a closed subset of a smooth manifold M, and suppose that

z=Js,
e
is an ¥-decomposition of Z, where & is some partially ordered set. This decom-
position is a Whitney stratification ([T5]) of Z provided:

(1) Each piece S; is a locally closed smooth submanifold (which may or
may not be connected) of M.

(2) Whenever S, <S8, then the pair satisfies Whitney’s conditions 4 and B:
suppose x;€S; is a sequence of points converging to some yeS,. Suppose y;€S,
also converges to y, and suppose that (with respect to some local coordinate
system on M) the secant lines Z;=Xx;y; converge to some limiting line #, and
the tangent planes T, .S; converge to some limiting plane 7. Then

(2a) T,S,ctand

(2b) £ .

(It is easy to see [Mal] that (2b)=>(2a).) The Whitney conditions are important
because:

(1) Any closed subanalytic subset of an analytic manifold admits a Whitney
stratification ([Hal], [Hil]).

(2) Subanalytic maps admit “Whitney stratifications” (see Sects. 1.6, 1.7).

(3) Whitney stratifications are locally topologically trivial along the strata
(see Sect. 1.4).

(4) Whitney stratified spaces can be triangulated ([G], [J], [Vel]).

(5) The transversal intersection of two Whitney stratified spaces is again
a Whitney stratified space, whose strata are the intersections of the strata of
the two spaces [Ch].
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1.3. Transversality

1.3.1. Definitions. If Z, =M, and Z, = M, are Whitney subsets of smooth mani-
folds and if f: M, > M, is a smooth map, we shall say the restriction f|Z,:
Z,—> M, is transverse to Z, if, for each stratum A4 in Z, and for each stratum
B in Z, the map f|A: A— M, is transverse to B (ie., df (x)(T, A)+ T, B
=Ty M,). It follows ([Mal], [MaZ2]) that the map f: M; - M, takes a neigh-
borhood of Z, transversally to Z, and that

Z1mf~1(Z2)=(f|Zl)_l(Zz)

is Whitney stratified by strata of the form A~ f~!(B), where A4 is a stratum
of Z, and B is a stratum of Z,. (We will write Z, " Z,.)

1.3.2. Transversality is open and dense. Recall [Ma3] that if M, and M,
are smooth manifolds, then the Whitney C* topology on the space C* (M, M,)
of smooth maps, is the topology whose basis consists of the open sets

M@U)={f: M~ M,|j*f(M,)=U}

where 1 <k< oo and U is an open subset of the bundle J*(M,, M,) > M, x M,
of k-jets of maps.

Proposition ([G2], [Tr2]). If Z, =M, and Z,=M, are closed subsets with
Whitney stratifications, then

T={feC*(M,, M,)| f|Z, is transverse to Z,}
is open and dense (in the Whitney C® topology ) in C* (M, M ).

1.3.3. Remarks. We do not assume that Z; or Z, is compact. However,
the stratifications must satisfy Whitney’s condition A4, otherwise the set T will
fail to be open. This is in contradiction to [GG] Exercise 3, p. 59: see [Trl]
or [KT] for interesting counterexamples. In fact, it is shown in [Tr2] that
the set T is open if and only if the stratifications of Z, and Z, satisfy Whitney’s
condition A.

1.34. Proof that T is open. Fix a point (x,,x,, &)eJ (M, M,), ie,
(eHom(T,, My, T,, M,). Let us say that & is not transverse if x,€Z,, x,€Z,,
and &(T,, S,)+T,,S,+T,M,, where S; is the stratum of Z; which contains
the point x;. Then the set of nontransverse points is closed in J'(M, M,).
If (x$2, x4, é9) is a sequence of nontransverse points which converge to the
point (x,, x,, £), then by taking subsequences if necessary, we can assume that
(for 1<i< o) the points x? all lie in the same stratum S; of Z,, and the
tangent spaces T,, S; converge to some limiting plane 7,. We may also assume
that x§ all lie in the same stratum S, of Z,, and the tangent spaces T, S,
converge to some limiting tangent space 7,. It follows that &(t,)+1,+ T, M,.
However, if 7 and S, denote the strata of Z, and Z, which contain the limit
points x; and x,, then (by Whitney’s condition A) we have t,>T,, S; and
7,2 T,,S,. Thus, (x,, x,, &) is not transverse. It follows that the complement
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U of the nontransverse jets is open in J' (M, M,). Therefore the set

. T={feC*(M,, My)|j'f(Z))=U}={f | f(M,)= U}
is open.

Next we shall prove that the set T is dense, i.e. that any smooth function
f:M;—> M, can be perturbed so as to take Z, transversally to Z,. In fact,
such a perturbation can be found within any “submersive family” of self maps
of M,:

1.3.5. Definition. A family (P, @) of self maps of a manifold M is a smooth
manifold P together with a smooth mapping &: Px M — M. For each peP
and me M we associate the partial maps,

¢,M—->M by &,(x)=P(p, x)
" P>M Dby d"(y)=d(y, m).

The family (P, ) of self maps will be called submersive if, for each me M the
differential

. L d®™(p): T, P = Top,m M

1S surjective.

1.3.6. Theorem. Let (P, ®) be a submersive family of self maps of M,. Then
the set
U={peP|®,of |Z, is transverse to Z,}
is dense in P. If Z, is compact then U is also open.

1.3.7. Examples. Take M, =M,=P=IR" and f=identity, to see that any
two Whitney stratified subsets of Euclidean space can be made transverse by
an arbitrarily small translation. Take M, = M, =CIP", and P =the manifold of
projective transformations, to see that any two projective algebraic varieties
can be made transverse by a projective transformation. The same method works
if we replace CIP" by any space which is homogeneous under the action of
a Lie group G; such an action is automatically a submersive family of self
maps. This gives the characteristic 0 part of the Kleiman transversality theorem
([K11, 1974). More generally, every smooth manifold M admits a submersive
family of self maps: choose finitely many vectorfields V;, V,, ..., V. on M such
that at each point me M the vectors V,(m), V,(m), ..., V,(m) span the tangent
space T,, M. Take P to be the r-dimensional vectorspace of formal linear combi-
nations (with IR coefficients) of the V; and let @, be the time=1 flow of the
corresponding vectorfield. Thus, Proposition 1.3.6 shows that the set T consid-
ered above is dense.

Proof. Our proof that U is dense follows the ingenious method of Abraham
([Ab]) and Morse ([Mo2]), as recalled in [AR] and [GG]. This is by now
a standard technique. Consider the following diagram

PXMI—_W_)M2



40 Part I. Morse Theory of Whitney Stratified Spaces

where n(p, m)=p and ¥(p, m)=®(p, f (m))=(P,o f)(m). Since @ is a submersive
family, each ¥,: P—- M, is transverse to Z,. Thus PxZ, is transverse to
¥~1(Z,) and the intersection (P x Z,)n ¥ ~'(Z,) can be Whitney stratified by
strata of the form (Px A,)n¥~1(A4,), where 4, is a stratum of Z, and A,
is a stratum of Z,.

For each such pair of strata we define

J(A,, Ay)={peP|p is a critical value of 7|(P x 4;)n ¥~ 1(4,)}
K(Ay, A))={(p,m)e(Px A)n ¥~ (4,)|{0} x T, 4,
+7;p,m)'I’_I(A2):t= T, P x T,M,}.

It is easy to see that the following four statements are equivalent:
1. peJ(A,, A,)ie. pis a critical value of T |(Px A4,)n ¥~ 1(4,).
2. pen(K(A,, A,)) ie. {p} x A, is not transverse to ¥~ !(4,).
3. The restriction ¥: {p} x A; - M, is not transverse to 4,.
4. The partial map ¥,: A, — M, is not transverse to 4,.

By Sard’s theorem [Sal], [Sa2] the set J(A4,, A,)= P has measure 0. Thus
the set
J=U{J(4,, A,)| 4, is a stratum of Z,}

also has measure 0. By (4) above, U=P—J is the set of parameter values p
such that ¥, takes Z, transversally to Z,. Thus, U is dense in P.
To see that U is open, it suffices to show that

K=U{K(4,, A,)| A; is a stratum of Z,}

is closed in P x M,. But, this is the same argument (using Whitney’s condition
A)as 1.34. O

1.3.8. Remark. If the spaces P, Z,, and M, and the maps ¢ and f are
complex algebraic, and if Z, is compact, then the set K is Zariski closed so
the set U is Zariski open in P.

1.4. Local Structure of Whitney Stratifications

Fix a point p in a Whitney stratified subset Z of some smooth manifold M.
Let S denote the stratum of Z which contains p. Let N’ be a smooth submanifold
of M which is transverse to each stratum of Z, intersects the stratum S in
the single point p, and satisfies dim (S) + dim (N’)=dim (M). Choose a Riemann-
ian metric on M and let r(z)=distance (z, p) for each ze M. Let B,(p) denote
the closed ball
By(p)={zeM|r(:) <5}
with boundary
0Bs(p)={zeM |r(z)=4}.

By Whitney’s condition B, if § is suﬁ’icienfly small then 0B;(p) will be transverse
to each stratum of Z, and it will also be transverse to each stratum in ZnN'.
Fix such a 6>0.



Chapter 1. Whitney Stratifications and Subanalytic Sets 41

Definition. The normal slice N(p) through the stratum S at the point p is
the set
N(p)=N'nZ n B;(p).
The link L(p) of the stratum S at the point p is the set
L(p)=N'nZ n0By(p).

These spaces are canonically Whitney stratified since they are transverse
intersections of Whitney stratified spaces. They are also canonically %-decom-
posed by their intersection with the strata of X. The Whitney stratification
is a refinement of the &-decomposition. For ¢ sufficiently small, the topological
type of the pair (N(p), L(p)) is independent of the choice of §, the Riemannian
metric, the choice of N’, or the choice of the point p within a single connected
component of the stratum S. (The proof follows from Thom’s first isotopy lemma
(Sect. 1.5) and the fact that any two choices of 9, metric, N’, and p are connected
by a one parameter family of such choices. See [Mal]. In Chap. 7 we will
prove a collection of similar independence results.)

There is a homeomorphism between the normal slice N (p) and the cone

¢(L(p)=L(p) x [0, 1]/(x, 0)~(y,0)  for all x, yeL(p)

which takes the point pe N(p)n S to the cone point. This homeomorphism is
stratum preserving when c(L(p)) is stratified so that L(p)x {1} is a union of
strata, the cone point is a stratum, and the remaining strata are of the form
A x (0, 1) where A is a stratum of L(p).

The point peS has a (closed) neighborhood which is homeomorphic (by
a stratum preserving homeomorphism) to R® x cone(Lg) where s=dim(S). In
fact, S has a (closed) neighborhood Ts in Z and a locally trivial projection
n: Ty — S such that the fibre n~!(p) is homeomorphic to the cone over Lg ([T5],
[Ma1l)).

1.5. Stratified Submersions and Thom’s First Isotopy Lemma

Suppose Z is a Whitney stratified subset of a smooth manifold M. Let f: M > N
be a smooth map such that

(@) f|Z is proper.

(b) for each stratum A of Z, the restriction (f| 4): A — N is a submersion.
Such a map is called a (proper) stratified submersion. For each telR”", the set
Z nf~1(t) is Whitney stratified by its intersection with the strata of Z.

Theorem (Thom’s first isotopy lemma [T5], [Mal], [Ma2]). Let f: Z—>R"
be a proper stratified submersion. Then there is a stratum preserving homeomor-
phism,

h: Z->R*x(f~1(0)n2Z)
which is smooth on each stratum and commutes with the projection to R". In
particular the fibres of f|Z are homeomorphic by a stratum preserving homeo-
morphism.
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Proof. The complete proof takes over fifty pages in Mather's 1970 notes
[Mal], but here is an outline: it is possible to find a system {T,, n,, p,}
of control data on Z. This consists of, for each stratum 4 of Z, a tubular neighbor-
hood T, of A in M, and a tubular projection n,: T, - 4 and a tubular “distance
function” p 4: T, — [0, €] such that p ;! (0)= A, and so that for any stratum B> A4
we have:

(1) (my, p))|BNnT,: BNT,— A x(0, &) is a smooth submersion.
(2) n omp=mngzom, whenever both sides are defined.
(3) p,omp=p4 whenever both sides are defined.

Furthermore, such a system of control data can be found which is compatible
with f, i.e., so that

(4) fom,=f for each stratum A of Z.

Any vectorfield ¥V on R" has a controlled lift to a vectorfield W on Z. This
means that W is tangent to the strata of Z, and whenever A <B are strata
we have

(1) (o) (WIBNT)=W]A.

(2) dp (p)(W(p))=0 for all pe BN T, (i.e., Wis tangent to surfaces of constant

Pa)-
3) fx(W)=V.
It turns out that the integral curves of such a controlled vectorfield W fit
together (stratum by stratum) to give a continuous one parameter family of
stratum preserving homeomorphisms of Z which commute with f. Furthermore,
commuting vectorfields V;, V,, ..., ¥, on IR¥ can be lifted to commuting con-
trolled vectorfields W;, W,, ..., W, on Z. This exhibits Z as a topological product
Z=f"10)nZxR" O

1.6. Stratified Maps

Suppose Y; < M, and Y, <M, are Whitney stratified subsets of smooth mani-
folds M, and M,. Let f: M, - M, be a smooth map such that f | Y; is proper
and f(Y,)cY,. Then f|Y, is a stratified map provided that, for each stratum
A,cY,, the preimage f~!(A4,) is a union of connected components of strata
of Y, and f takes each of these components of strata submersively to 4,.

Such a stratified map has several local triviality properties along any con-
nected component B of a stratum in Y,. The restriction f|f~!(B) is a proper
stratified submersion and hence (by Thom’s first isotopy lemma) is topologically
a locally trivial fibre bundle in a statum preserving way. Therefore, the fibres
over any two points in B are homeomorphic. The homeomorphism type of
the inverse image f (N (b)) of a normal slice N(b) through a point beB is
independent of the choices made in the definition of N (b), and is also independent
of b. However it is not true that the topological type of the map f ~ (N (b)) = N (b)
is independent of the choices, nor is it independent of the point b. See [T6]
and [Nak] for interesting counterexamples.
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1.7. Stratification of Subanalytic Sets and Maps ([Hal], [Ha2], [Hil])

A semianalytic subset A of a real analytic manifold M is a subset which can
be covered by open sets U= M such that each U A is a union of connected
components of sets of the form g~ 1(0)—h~!(0), where g and h belong to some
finite collection of real valued analytic functions in U. A subanalytic subset
B of a real analytic manifold M is a subset which can be covered by open
sets V<M such that VA B is a union of sets, each of which is a connected
component of f(G)— f(H), where G and H belong to some finite family ¥ of
semianalytic subsets of an analytic manifold M’, and where f: M'—> M is an
analytic mapping such that the restriction f | closure (U %) is proper. A subanalyt-
ic map between two subanalytic sets is one whose graph is subanalytic.

Theorem. Suppose A and B are subanalytic (resp. real semialgebraic, resp.
complex analytic, resp. complex algebraic) subsets of real analytic (resp. real
algebraic, resp. complex analytic, resp. complex algebraic) smooth manifolds M
and N. Suppose f: A— B is a proper subanalytic (resp. proper real algebraic,
resp. proper complex analytic, resp. proper complex algebraic) map. Then there
exist Whitney stratifications of A and B into subanalytic (resp. semialgebraic,
resp. complex analytic, resp. complex algebraic) smooth manifolds, such that f
becomes a stratified map. Furthermore, if € is a locally finite collection of subana-
Iytic (resp. semialgebraic, resp. complex analytic, resp. complex algebraic ) subsets
of A, and if 9 is a locally finite collection of subanalytic (resp. semialgebraic,
resp. complex analytic, resp. complex algebraic ) subsets of B, then the stratification
may be chosen so that each element of € and each element of 2 is a union
of strata of the stratification.

Proof. As mentioned in the introduction to this chapter, this theorem (as
stated) has never appeared in print, although several proofs may be synthesized
from the literature. The first outline of a proof is in [T5] Theorem 3.5.1, where
he effectively defines subanalytic sets (“P.S.A” sets).

For M=IR™and N=R"and f: M — N analytic, and A, B subanalytic subsets,
see [Hi2] p. 215. His method easily globalizes to the situation where M and
N are arbitrary analytic manifolds. (Alternatively one can choose embeddings
of the analytic manifolds M and N as analytic submanifolds of Euclidean space
and extend the map f: M — N to the ambient Euclidean spaces). The complex
analytic case is covered by Theorem 1, Sect. 4 of [Hi2].

The second most complete reference is Theorem 2.1 and Applications 2.4,
and Theorem 4.1 of [Ha2]. However, Hardt does not verify the Whitney condi-
tions but mentions instead (in the introduction) that his stratifications can be
refined so as to satisfy the Whitney conditions, using the method of [Lo]. This
is true, but is not simple: one must use a double induction (on the dimension
of the stratum and on the dimension of its projection), applying Hardt’s Theorem
2.1 at each stage.

Another outline of proof appears in [V] Sect. 3.6, and similar results may
be found in [Ma2], [Hil], [Hi2], [Lo], [Ha2], [Gi], [DS], [DSW].

Caution. If the map f is algebraic and the sets 4 and B are real algebraic
(resp. real analytic, resp. semianalytic) then we cannot conclude that the strata
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of the resulting stratifications are real algebraic (resp. real analytic, resp. semiana-
lytic). A counterexample is given by f: R —» R, f(x)=x? in the first two cases,
and by [Lo] p. 135 in the semianalytic case.

1.8. Tangents to a Subanalytic Set

Fix an analytic Whitney stratification of a subanalytic subset Z of some analytic
manifold M. Suppose peZ. Let S be the stratum of Z which contains p.

Definition. A cotangent vector (e T* M is conormal for Z at p if £(T,5)=0.
The conormal bundle T M of S in M is the subbundle of (T* M)|S consisting
of all conormal covectors at points in S, i.e.,

T M=) {¢e T M| &| T,5=0}.
qeS
By Whitney’s condition A, the conormal covectors of Z (i.e., the union of the
conormal bundles to all the strata of Z) form a closed subset of T* M, which
is also called the set of characteristic covectors of Z.

Remark. If M is a complex analytic manifold then there is a canonical

isomorphism
Ty M =Homg (T, M, R)~Hom¢(T, M, €)

and so, if S=M is a complex analytic submanifold we may unambiguously
refer to the conormal bundle T M — S as a complex vectorbundle.

Definition. A generalized tangent space Q at the point p is any plane of
the form
Q=1lim T, R
pPi—p
where R>S is a stratum of Z and p;eR is a sequence converging to p. The
cotangent vector ¢ is degenerate if there exists a generalized tangent space Q
%+ T, S such that £(Q)=0.

Proposition (see [W1]). The total space of the conormal bundle T M is a
manifold whose dimension is equal to m= dim (M). The degenerate covectors which
are conormal to S form a conical subanalytic subvariety of codimension >1 in
the conormal bundle T M. If Z is a complex analytic variety, then the set of
degenerate covectors form a conical complex analytic subvariety of complex codi-
mension > 1 in the conormal bundle Tg* M.

Proof. Fix any stratum R which contains the stratum S in its closure. Let
r=dim(R), and m=dim (M). By choosing local coordinates for M about the
point p, we may replace M with R™

Consider the image of the Gauss mapping

g: R->R"xG,(IR™)

which assigns to each point xeR the pair (x, T, R). The image of g is a subanalytic
variety of dimension <r, so its closure is obtained by adding some subanalytic
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variety of dimension <r-—1. (This is the Nash blowup of R.) Thus, the set of
generalized tangent spaces of dimension r at the points of S form a subanalytic
variety Vin G,(R™) of codimension >r(m—r)—r+1.

Let IP(T3* M) denote the projective bundle of conormal directions. A direction
EeP(T¢¥ M) is degenerate (for the stratum R) if G, (ker &)= G,IR™ has nonempty
intersection with this variety V. Consider the Grassmann bundle of r-planes
in the kernel bundle, KER over IP(Tg* M),

G,(KER)—— G, (R™)
J ¢ ]
P(TF M) Vv
The map ¢ is induced by the inclusion ker (&) =IR™ for each ¢{eP(TgF M), and
it is a submersion. Thus, ¢ is transverse to (each stratum of a Whitney stratifica-
tion of) ¥, so ¢~ *(V) is a subanalytic subvariety in G,(KER), of dimension
<m—2. Thus, the degenerate cotangent directions n(¢ ~!(V)) form a subanalytic
subvariety of dimension <m—2 and so the degenerate covectors (for the stratum
R) form a conical subvariety of dimension <m—1 in T¢ M. The collection
of all degenerate covectors is the union of the covectors which are degenerate

for the various strata R>S, so this dimensional estimate holds for the set of
all degenerate covectors. [

Discussion. One might expect the set of degenerate covectors in T M to
form a locally trivial fibre bundle (with conical fibre) over the stratum S. Unfortu-
nately, this is not true. There may be certain “exceptional” points peS where
every conormal vector e T¢F M at p is degenerate! [OT1]. No Morse function
is allowed to have such a point as a critical point, so from the point of view
of Morse theory, they may be ignored.

Definition. Let Z be a Whitney stratified subanalytic set, and let S be a
stratum of Z. A point peS is exceptional if the degenerate conormal vectors
at p form a codimension 0 subvariety of the conormal space at p.

Teissier [Tel] (Proposition 1.2.1, p. 461) has proven that a Whitney stratifica-
tion of a complex analytic variety has no exceptional points, and every real
analytic variety admits Whitney stratifications with no exceptional points (in
fact, the strata need only be the real points of a Whitney stratification of the
complexification of the variety). Theorem 4.1 of [O] states that the exceptional
points are precisely the “b 4, faults” in the sense of [OT1], [Tr3], [LT2].
If Z is subanalytic and either

(1) dim(S)=1

(2) dim(S)=dim(Z)—1

(3) Kuo’s ratio test (v) holds on S([Ku]), or

(4) Verdier’s test (w) holds on S([V])
then S has no exceptional points. See [NT] in case (1), (3), or (4), and [Hi4]
in case (2). For complex analytic varieties Z, Whitney’s condition (b) implies
Kuo’s criterion (v) by [HM], which gives another proof of the nonexistence
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of exceptional points in this case. At present, there is no known example of
exceptional points on a Whitney (b) stratification of a subanalytic set.

1.9. Characteristic Points and Characteristic Covectors of a Map

Let f: M > N be a smooth map between smooth manifolds and let Z<=M be
a Whitney stratified subset. Suppose f | Z is proper.

Definition. A cotangent vector (e T*(N) is characteristic (for f and Z) if,
for any peZnf~'(q), the pullback f*(&)e T M is characteristic for Z. A point
geN is characteristic for the map f, if there exists a nonzero characteristic co-
vector (e T;* N.

By Whitney’s condition A, the characteristic covectors £€ T* N of the map
f form a closed subset of T* N, and the characteristic points ge N form a closed
subset of N.

Remark. Suppose W is a submanifold of N and suppose that ge W. Then,
the map f takes Z transversally to W at the point q if and only if T, W is
not contained in the kernel of any characteristic covector £&.

1.10. Characteristic Covectors of a Hypersurface

Let M be a smooth manifold and pe M. Let g: M >R be a smooth map with
dg(p)+0. Let N=g~ ! g(p) be the level hypersurface of g. Suppose n: M —IR?
is a smooth map such that dn(p): T, M — IR? is surjective.

Proposition. Suppose the restriction ©|N : N —R? has a singularity at p, i.e.,
for some numbers a, beR, the form adu+bdv pulls back to 0 on T N. Then,
dg(p) is a multiple of the covector n*(adu+bdv).

Proof. Let {dg) denote the subspace of T;f M which is spanned by dg(p).
Then we have an exact sequence

0-<dg)>T})M->T}*N—-0
(where the surjection is given by restriction, r), and an injection
*: T ,R* > T* M.
But, rz*(adu+bdv)=0, so n*(adu+bdv)=kdg for some number k. [

1.11. Normally Nonsingular Maps

In this section we recall the definition and basic properties of normally nonsingu-
lar inclusions [FM1], [G2], [GMS5]. The main theorem in this section has
been stated without proof in the literature several times.

Definition. An inclusion of locally compact Hausdorff spaces, i: X —» Y is
normally nonsingular if there is a vectorbundle E — X and a neighborhood U c E
of the zero section (which we also denote by X), and a homeomorphism j: U - Y
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of U to an open subset j(U) in Y, such that the composition X - U —Y is
equal to i.

Suppose M is a smooth manifold and Y= M is a (closed) Whitney stratified
subset of M. Let NcM be a smooth submanifold and suppose that NAY,
ie, N is transverse to each stratum of Y. The space X=NnY is stratified
by its intersection with the strata of Y.

Theorem. The inclusion X =N Y — Y is normally nonsingular. Moreover,

(1) The vectorbundle E — X in question is equivalent to the restriction to X,
(TM/TN)| X of the normal bundle of N in M.

(2) The neighborhood U E can be taken to be any sufficiently small e-neigh-
borhood E, of the zero section (with respect to any smoothly varying inner product
on the fibres of TM/TN ).

(3) The image neighborhood j(U)cM can be taken to be the intersection
P(E)NY, where ¢: E,—~ M is any smooth embedding of E, into a neighborhood
of N in M, so that ¢ | N is the identity.

(4) These choices may be made so that the projection j(U)— E — X is stratum
preserving. Consequently, for any union Y' of strata in Y, the inclusion X'=Nn
Y'— Y’ is also normally nonsingular.

The following two diagrams illustrate this theorem. The Whitney object
Y consists of three pages of a book which meet at the binding. It is embedded
in the manifold M =IR3. The manifold N is the plane which is illustrated in
the diagram on the left, and the intersection X is shown in the figure on the
right. The vectorbundle neighborhood U of X (in Y) is shaded, and the lines
used in the shading represent the fibres of the vectorbundle.

A normally nonsingular inclusion and its tubular neighborhood

Corollary. Let A be any (not necessarily closed) algebraic subvariety of CIP".
Let BcCIP" be a smooth manifold. Then there is a Zariski open subset V in
the space T of projective transformations such that for any feV the inclusion
f(BYn A — A is normally nonsingular.
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Proof of Corollary. Choose a Whitney stratification of the closure 4 of A4,
so that A is a union of strata. If fe T is a projective transformation such that
f(B)@® A4, then the inclusion f(B)n A — A is normally nonsingular by the preced-
ing theorem. However, the set of such transformations f is Zariski open in
the set of projective transformations, by the transversality theorem, Sect. 1.3. []

Discussion of Theorem 1.11. One might try to prove this theorem as follows:
Define g: M — IR by g(p)=distance (p, N). The restriction g| Y: Y- R is a strati-
fied submersion (in some neighborhood of g~*(0)) and g~ '(0)=X. Therefore,
there is a controlled lift V of the unit vectorfield —d/dt on IR. The limits of
the integral curves of V define a projection from some neighborhood of X
to X. Unfortunately, these limits may not exist, and even if they do exist the
resulting map to X may not be continuous.

If the normal bundle of N in M is trivial (Ex N x R*), then the projection
U —»R* of a tubular neighborhood U of N to the fibre, defines a stratified
submersion n: U Y—R¥, which is therefore topologically trivial. In fact,
Thom’s first isotopy lemma (Sect. 1.5) gives kK commuting controlled vectorfields
which are lifts of the unit vectorfields 6/0x,, 0/0x,, ..., 6/0x, on IR¥. Using
these vectorfields, it is easy to see that X has a product neighborhood U=~ X x R*
in Y. Unfortunately, if the normal bundle of N in M is not trivial, then the
controlled vectorfields which are constructed with respect to one local trivializa-
tion of E may not agree with the controlled vectorfields which are constructed
with respect to a different local trivialization of E. Furthermore, it may not
be possible to patch these vectorfields together using a partition of unity.

It is possible to give a proof of Theorem 1.11 by developing a theory of
“controlled foliations” which is parallel to the theory of controlled vectorfields,
but does not suffer from the patching difficulties described above. We will instead
use a trick analogous to the “deformation to the normal bundle” [BFM].

Proof of Theorem 1.11. Choose a tubular neighborhood V of N in M. This
consists of a smoothly varying inner product on the fibres of the normal bundle
n: E— N of N in M, together with a smooth embedding ¢: E, > M of some
neighborhood

E,={ecE|{e, ep<e}
of the zero section N, onto the neighborhood V; with the property that ¢ |N
is the identity. Since N is transverse to Y we can (by shrinking ¢ if necessary)
assume that ¢ is transverse to (each stratum of) Y. Now define the following
one-parameter family of maps

VY:Ex(—0,1+0)»M

by ¥(e, t)=y,(e)=¢(te). Clearly ¥, =¢, and Y= ¢on. If 6>0 is chosen suffi-
ciently small, then each map , is also transverse to Y. This means that
¥-1Y(Y)c(—46, 1+5) is a Whitney stratified set which projects to the interval
(—0, 14 9) as a stratified submersion (Sect. 1.5). By Thom’s first isotopy lemma,
there is a stratum preserving homeomorphism H between g !(Y)
=" Y@ U INNY)NE, and y; 1 (Y)=¢ (YN V). Furthermore, 5 *(Y) is the
disk bundle over X=N Y of the vectorbundle E|X. By defining j: yo *(Y)
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— YV to be the composition j= ¢ o H, we have shown that the inclusion X -» Y
is normally nonsingular. Furthermore, the composite projection

Zav iy @) ey 2 S x M

is stratum preserving. []



Chapter 2. Morse Functions
and Nondepraved Critical Points

2.0. Introduction and Historical Remarks

Classical Morse theory is concerned with the critical points of a class of smooth
proper functions f from a manifold Z to the real numbers, called Morse func-
tions. For our generalization, we will let Z be a closed Whitney stratified space
in some ambient smooth manifold M. We will need analogues for the notions
of smooth function, critical point, and Morse function for this setting. A smooth
function on Z will be a function which extends to a smooth function on M.
A critical point of a smooth function f will be a critical point of the restriction
of f to any stratum S of Z. A proper function f is called Morse if (1) its
restriction to each stratum has only nondegenerate critical points, (2) its critical
values are distinct, and (3) the differential of f at a critical point p in S does
not annihilate any limit of tangent spaces to a stratum other than S. This third
condition is a sort of nondegeneracy condition normal to the stratum. If Z
is subanalytic (which includes the real and complex analytic cases), then the
set of Morse functions forms an open dense subset of the space of smooth
functions, and Morse functions are structurally stable, just as in the classical
case [P1].

Nondepraved critical points. The Morse functions described above are
required to have nondegenerate critical points on each stratum. This condition
is more restrictive than is required for the truth of our topological theorems.
To provide the natural generality, we define a condition on a critical point
called nondepraved (see Sect. 2.3). This is a kind of Whitney condition which
is new even for functions on a smooth manifold. Having only nondegenerate
critical points is a condition which holds off a set of codimension one in the
space of smooth functions. Having only nondepraved critical points holds off
a set of infinite codimension.

We do not need the generality of “nondepraved critical points” for any
of the results or applications of stratified Morse theory. However, it is the natural
generality for the techniques and theorems of stratified Morse theory, because
the proofs are exactly the same whether we consider nondegenerate critical
points or nondepraved critical points. The notion of a nondepraved critical
point may also be of some independent interest to specialists in singularity
theory since the nondepravity condition is like a “Whitney — B” condition
on the values of the function.
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The main results (Sect. 3.7) of this part apply to arbitrary functions with
nondepraved critical points which are defined on arbitrary Whitney stratified
spaces. However, in order to prove that such functions exist (Sect. 2.2.1) it is
necessary to assume that the Whitney stratified space is subanalytic. This is
the only place in Part I where the subanalyticity assumption is necessary.

Historical remarks on Morse functions and transversality. In [Mo4] (1925),
M. Morse showed that any smooth function could be approximated by one
which has only nondegenerate critical points (we will call this the Morse approxi-
mation lemma), and that such a function could be expressed (locally near a
critical point) as a linear combination of squares of coordinates.

In 1936, H. Whitney [W7] proved that a smooth map f: M — N between
two manifolds could be perturbed so as to miss a submanifold W< N, provided
that dim (M) <codimy (W). This may be considered an early form of the transver-
sality theorem. (The notion of general position had, of course, been considered
much earlier by the Italian school of algebraic geometry (see the historical com-
ments in [Fu]) and later by Lefschetz and other topologists studying intersec-
tions of chains.)

The program to study the singularities of a generic smooth map was pushed
by Whitney, who gave a seminar in Strasbourg during 1950, in which he
announced that folds and cusps were the generic singularities of a smooth map
from the plane to the plane. These results were published in [W3] (1955), in
which he used his 1936 version of transversality to give another proof of the
Morse approximation lemma.

In 1953, R. Thom [T11] introduced the modern definition of transversality
and used the theorem of Sard [Sal] (1942) to show that transversality could
be attained by arbitrarily small perturbations. (Sard’s lemma was preceded by
the result of A.P. Morse on the critical values of a real valued function.) Thom
later extended his transversality lemma to include the case of transversality
in the jet space [T7] (1956), [T1] (1955), in which he showed, using Sard’s
theorem, that locally any smooth function could be approximated by one which
“encounters its own singularities transversally”, i.e., which is transverse to natu-
rally defined submanifolds of the space of all possible derivatives. He also men-
tions that the Morse approximation lemma is a special case of this transversality
result. (See Haefliger’s 1956 article [Hael] for a beautiful exposition and global-
ization of these results, translated into the modern language of jet bundles.)

Until 1963, all versions of the transversality and Morse lemmas were proven
by modifying the function locally by a polynomial, and then patching the modifi-
cations together using a partition of unity. (See, for example, Sternberg [Stel]
(1964) p. 65.) However, in 1963, R. Abraham [Ab], [AR] gave a simple, elegant,
and powerful proof of the jet transversality lemma, which is still the model
for modern extensions (eg., [GG] (1973), [K1] (1974)), and is reproduced in
this chapter. Abraham’s paper was apparently unknown to Morse, who rediscov-
ered the method in [Mo2] (1967).

Morse functions which are obtained as the distance from a generic point
in Euclidean space were considered in [AF1], [Mo3], [Mil].

Maps which are transverse to a “manifold collection” were also considered



52 Part I. Morse Theory of Whitney Stratified Spaces

in a variety of papers from [T7] (1956) to [W5] (1968). Although Thom’s trans-
versality lemma shows that the smooth maps which are transverse to a manifold
collection form a dense subset of the space of all smooth maps, it was apparently
missed (see [Tr1], [Tr2]) that the stratification must satisfy Whitney’s condition
A in order that the transversal maps form an open set. In 1965, Whitney [W2]
and Feldman [Fel] showed that the smooth maps which are transverse to
a Whitney (a)-regular stratification form an open and dense set.

Morse functions on a stratified space are defined (for the case of isolated
singularities) in Lazzeri’s important paper [La] (1973), where he indicates the
essential reason why such Morse functions are dense in the space of all functions,
provided the stratified set is analytic. In [Be] (1977), Benedetti established the
density of Morse functions on a complex analytic space in order to complete
the proofs of the finiteness theorems of [ AG]. Pignoni [P1] (1979) generalized
the density theorem to real analytic spaces and also showed that Morse functions
on a stratified space are structurally stable. Recent work on Morse functions
for Whitney stratified spaces includes [O], [Ot1], [Ot2], [Bru]. (Note Sect.
2.2.2 that the Whitney conditions are not sufficient to guarantee that the Morse
functions on a stratified space are dense in the space of all smooth functions.)

2.1. Definitions

Throughout this chapter we fix a Whitney stratification of a subset Z of some
smooth manifold M. We will consider a function f: Z — IR which is the restriction
of a smooth function 7: M -»R. A critical point of such a function f is any
point ze Z such that df (p)| T,5=0, where S is the stratum of Z which contains
p. The corresponding critical value v=f(p) will be said to be isolated provided
there exists £>0 such that f~ '[v—e¢, v+¢&] contains no critical points other
than p.

Definition. A Morse function ([Be], [La], [P1], [P2]) f: Z — R is the restric-
tion of a smooth function /: M — R such that

(a) f=F|Z is proper and the critical values of f are distinct.

(b) For each stratum S of Z, the critical points of f|S are nondegenerate
(ie., if dim (S)>1, the Hessian matrix of f | S is nonsingular).

(c) For every such critical point pe S, and for each generalized tangent space
(Sect. 1.8) Q at the point p, the following nondegeneracy condition holds:
df (p)(Q)+0 except for the single case Q =T, S (i.e., the cotangent vector df(p)
is characteristic but nondegenerate in the sense of Sect. 1.8).

Remarks. Whether or not a point peZ is a critical point of f depends as
much on the stratification of Z as on the function f. For example, every zero-
dimensional stratum of Z is a critical point of f. If peM is a critical point
for the function f: M —» IR, and if p is a singular point of Z, then it is a degenerate
critical point of f; so f is not a Morse function. The critical points of a Morse
function are isolated. Morse functions which are defined on a real analytic
set are topologically stable (see [P1], [ Bru}).

For notational convenience we shall no longer distinguish between f and 7.
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2.2. Existence of Morse Functions

The results in Part I of this book apply to any Morse function which is defined
on an arbitrary Whitney stratified set. However, we can only be guaranteed
of the existence of Morse functions if the set is subanalytic.

2.2.1. Theorem ([Mol], [Mo2], [T7], [W1], [Be], [P1], [P2], [O]). Suppose
Z is a closed Whitney stratified subanalytic subset of an analytic manifold M.
Then the functions f: M —IR whose restrictions to Z are Morse, form an open
and dense subset (in the Whitney C*® topology (Sect. 1.3.2)) of the space
Cy (M, R) of smooth proper maps.

2.2.2. Example. The rapid spiral
Z={(x, y)eR?*|r=exp(—0?),0>0}

is a Whitney stratified subset of R? (see Thom [T5]) which has no Morse func-
tions.

For many applications it is not enough to know that a given function can
be approximated by a Morse function. One may have a certain collection of
approximations available and it may be necessary to find a Morse function
within this collection. For this reason, we give the following version of the
density theorem for Morse functions:

Let Z be a closed subanalytic subset of an analytic manifold M. Let P
be a finite-dimensional smooth manifold (the “parameter space”) and let
F: PxM —R be a smooth function. We think of F as a family of functions,
f,=F(a,.): M >R which is parametrized by P. Define @: Px M - T*M by
D (o, x)=d(f)(x)e T} M.

2.2.3. Theorem. If the map @ is a submersion, then for almost any aeP, the
corresponding function f,: M >R is a Morse function on Z. If Z is compact,
then the parameter values o such that f, is Morse form an open subset of P.

Proof. We must find functions f, which achieve two conditions, for each
stratum S of Z:

(@) f,|S has nondegenerate critical points.
(b) df,(s)is a nondegenerate covector (Sect. 1.8) for each seS.

Let Dgc TF¥ M < T* M| S < T* M denote the set of degenerate covectors at points
se8§, and define @g: P xS — T*S by &4(a, s)=d(f,|S)(s). Consider the following

diagram:

P

\ o

Px§S——T*S§

PXxM —2 T* M>T*M|S>Dg

Since @ is a submersion we have
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(A) &g is transverse to the zero section (which we also denote by S) in
T*S. (In fact, &g is a submersion, as may be seen by expressing it in local
coordinates, and differentiating.)

(B) @ is transverse to each stratum of any Whitney stratification of Dy.

By (A), the set V; =5 !(S) is a smooth submanifold of P x S. Furthermore,
aeP is a critical value of n|V;:V; > P if and only if f,|S has a degenerate
critical point (<>d(f,|S): S— T*S is not transverse to S). By Sard’s theorem,
the set of such bad critical values o has measure 0 in P.

By (B) above, the set V,=® (D) is a Whitney stratified subset of P x M
whose dimension is less than or equal to dim(P)—1. (This is because
dim (Dg) <dim (M) —1 by Sect. 1.8.) Consequently, the image n(V,) has measure
0. But aen(V,)<=d(f,|S) kills some limiting tangent space.

We conclude that if a¢n(V,)un(V,), then f, satisfies conditions (A) and
(B) above. Since X has at most countably many strata, there is a dense subset
of parameter values ae P such that f, is a Morse function.

Note that (B) implies that for any stratum R>S, the restriction f,|R has
no critical points in some neighborhood of S. It follows that f, has finitely
many critical points on any compact subset of Z. Thus, if Z is compact, the
set of “Morse” parameter values a€ P is open. []

2.24. Examples. (1) Suppose Z<R" and F: R"xR"—1R is the function
F(p, q)=distance?(p, q). It is easily seen that the corresponding map @ is a sub-
mersion. We conclude ([P1], [Mo02], [Mi2]) that the distance from a generic
point in Euclidean space is a Morse function on Z.

(2) Let Z<R" and let P=G,(IR") denote the Grassmannian of all k-dimen-
sional subspaces of IR". Take F: P x R" >R to be F(Q, x)=distance?(Q, x). The
resulting map @ is a submersion, so we conclude that the distance from a generic
k-dimensional subspace of Euclidean space is a Morse function on Z.

2.3. Nondepraved Critical Points

The nondegenerate critical points of a Morse function are a particular kind
of nondepraved critical point.

Definition. An isolated critical point pelR" of a smooth function F: R*—> R
is nondepraved if it satisfies the following property: Suppose p;eIR" is a sequence
of points converging to p. Suppose the vectors v;=(p;,— p)/|p;—p| converge to
some limiting vector v, and suppose the subspaces ker d F(p;) converge to some
limiting subspace 7. Suppose also that v is not an element of 7. Then for all
i sufficiently large,

dF (p)(vy)-(F(p)— F(p))>0.

It follows that a critical point p is depraved if there exists a sequence p; — p
such that v; —» v, ker dF(p;) — 7, vé¢1, and either (1) dF(p;)(v;) <0 and F(p;)> F(p)
for all i, or (2) dF(p;)(v;)>0 and F(p;) < F{(p) for all i.

The following diagram illustrates the second possibility. It consists of
the level curves of an isolated depraved local maximum of a smooth function f-
IR% - R. The points p; are indicated by the sequence of dots in this figure.
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Level curves of a function with a depraved critical point

Remark. Although it is not needed for any of our applications, we will
show in Sect. 2.6 that this condition is preserved under diffeomorphism. Thus,
we may speak of nondepraved critical points of a smooth function F: S—>R
which is defined on a smooth manifold S.

Now suppose (as above) that Z is a Whitney stratified subanalytic subset
of an analytic manifold M, that f: Z - 1R is the restriction of a smooth function
defined on M, that peZ is a critical point of f and that S is the stratum of
Z which contains the point p.

Definition. A critical point peZ of the function f: Z— R is nondepraved
provided:

(a) the critical point p is isolated

(b) the restriction f | S has a nondepraved critical point at p

(c) For each generalized tangent space Q at the point p, the following nonde-
generacy condition holds: df(p)(Q)=+0 except for the single case Q= 1,8 (ie.,
the cotangent vector df(p) is characteristic but nondegenerate for Z, in the
sense of Sect. 1.8).

2.4. Isolated Critical Points of Analytic Functions

In this section we show that isolated critical points of an analytic function
defined on Euclidean space are necessarily nondepraved. It follows that the
critical points of Morse functions are nondepraved also.

Proposition. If F:IR" >R is a (real) analytic function, and if peR" is an
isolated critical point of F, then it is a nondepraved critical point.

Proof. Suppose the critical point p is depraved. Choose a sequence p; —p
which violates the nondepravity conditions, i.e., such that

(a) the vectors v;=(p; —p)/|p;— p| converge to some vector v

(b) ker dF(p;) converge to some subspace t

(©) vér '

(d) for all i, dF (p;)(vy)- (F (p)— F (p))<0.

First let us assume that for all sufficiently large i, we have F(p;)+ F(p). By
taking a subsequence, if necessary, we may assume that for all i, F(p;)—F(p)
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will have a constant sign s= +1, so dF(p;)(v;) will have the opposite sign, —s.
Let 6 denote the angle between v and 7. Define Q to be the subset of R"—{p}
consisting of all points g which satisfy the following conditions:

W ara(=" |) (F@—F(p)<
@) sien (4 @3]} =~

lg—p
Then Q is a nonempty semianalytic set which contains p in its closure.
By the curve selection lemma ([Hil] Lemma 1.3.3, [Mi2] Lemma 3.1, [BC],
[Wa]), there is a (real) analytic curve a: [0, 1]— @ such that a(0)=p, a(t)=+p
unless t=0. The (germ near p of the) image of this curve satisfies Whitney’s
condition B. Choose ¢>0 so small that

tsgzangle( o' (t), (| 8_5'))<5/4.

Thus, angle (o' (t), ker dF (x(t))) > d/4 for all t<e. But this is a contradiction be-
cause

(3) angle ((—) ker dF(q))>5/2

sign (F (a(g)) — F (o (0))) =sign f F'(a(t)-o (t) dt

t=0
Cvon b . [ 2O—P
_51gnt:§0 F'(a(2)) (le(t)——pl) dt

=—5
which is a contradiction.
The other possibility is that F(p;)=F (p) for all i sufficiently large. In this
case the same argument gives a contradiction provided we replace the set Q
by the set of points satisfying (1') F(q)= F (p) and also condition (3) above. [

Remark. The functions with degenerate critical points form a set of codimen-
sion 1 in the space of all smooth functions. The functions with depraved critical
points form a set of infinite codimension in the space of all smooth functions.
This follows from the fact that any finitely determined smooth function (ie.
a function with a k-sufficient jet, for some k) is locally C®-equivalent to an
analytic function (its k-jet) so its critical points are nondepraved. But the set
of functions whose jets are not k-sufficient for any k form a set of infinite codi-
mension ([Ma4] Theorem 3.5, [T3], [DuP]). Nevertheless, there do exist smooth
functions with depraved critical points.

2.5. Local Properties of Nondepraved Critical Points

In this section we prove several technical lemmas about nondepraved critical
points which will be needed in Chapter 5.
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25.1. Lemma. If F: M >R is a smooth function with a nondepraved critical
point peM and if no other critical point of F has the same critical value, then
F~'F(p) is a smooth submanifold of M (except possibly at the point p), and
the pair (F~' F(p)— {p}, {p}) satisfies Whitney’s condition B at the point p.

Proof. Assume not. Then there is a sequence of points p,e F~! F(p) converging
to p so that the secant lines pp; converge to some limiting line ¢, the tangent
planes T, (F~' F(p))=ker dF(p; converge to some limiting plane 7, and ¢ ¢t.
Let v;=(p;—p)/|p;—p| in some local coordinate system about p. Then,
dF(p;)(v))-(F(p;)— F (p))=0. Thus, the critical point is depraved. [J

Suppose peM is a nondepraved critical point of a smooth function
F: M- R. Let r: M >R denote the distance from the point p, with respect
to some smooth Riemannian metric on M.

2.5.2. Lemma. There is a neighborhood U of p in M with the following proper-
ty: for each point qe U (q = p), either

(a) dF(q) and dr(q) are linearly independent or
(d) adF(q)+bdr(q)=0=>the sign of ab is opposite that of F(q)— F(p).

Proof. Choose a sequence of points p; — p which fail both conditions. Choose
a subsequence if necessary, so that

(1) the vectors v;=(p;— p)/|p; —p| converge to some limiting vector v
(2) the hyperplanes ker d F (p;) converge to some plane .

Then, v¢t by condition (a) above, and there are numbers a; and b; so that
a;dF(p)+b;dr(p)=0. The nondepravity condition quarantees that F(p,)
—F(p)#+0 for sufficiently large i, so we may assume that F(p,)— F(p) has a
constant sign s= =+ 1. For sufficiently large i, we have

(c) dr(p;)(v;)> 0 (since v; points away from p)

(d) dF(p;)(v) has the same sign as F(p;)— F (p)
by the nondepravity condition. However,

a;dF (p)(v)= —b;dr(p)(v) so b;a;= —aidF(p)(v)/dr(p)(v)
which has the opposite sign to F(p;)— F(p). This is a contradiction. []

2.5.3. Corollary. Suppose local coordinates x, x,, ..., x, on M have been cho-
sen so that
rP=x{+xi+..+x;
is the distance from a nondepraved critical point peM of a smooth function F:
M - R. Then at each point q in the neighborhood U described above, either
(a) dF(q) and dr(q) are linearly independent, or

(b) xi (((;i)(q) has the same sign as F(q)— F(p) (or is undefined ).

Proof. The equation adF(q)+ bdr(q)=0 becomes in local coordinates,
‘ OF X;
i; (a o (@+b 7) dx;=0

1
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so for each i we have

1 (6F

X; 0x;

< (5 @=—bar

which is negative when a and b have the same sign, and is positive when a
and b have opposite signs [].

2.6. Nondepraved is Independent of the Coordinate System

It is easy to check that the following is an equivalent statement of the nondeprav-
ity condition. (It uses the inner product in IR"):

Suppose F:(R", 0)— (IR, 0) is a smooth function with an isolated critical
point at 0. This critical point is nondepraved provided the following occurs:
suppose p;—0 is a sequence of points and suppose that F(p;) has the same
sign s= = for all i. Suppose the unit vectors p;/|p;| converge to a unit vector
7eS8" !, and suppose that the unit covectors dF (p,)/|dF(p;)| converge to a unit
covector A. Suppose A(7) 0. Then the sign of A(7) is equal to the sign s.

Proposition. Suppose that ¢: (R", 0) - (R", 0) is a diffeomorphism. Then the
point 0 is a nondepraved critical point of a smooth function F:(R", 0) - (R, 0)
if and only if the point ¢~ 1(0) is a nondepraved critical point of the function
Fo¢.

Proof. We shall show, for example, that F nondepraved=-Fo-¢ is nonde-
praved. Suppose ¢;€IR” is a sequence of points converging to 0, and that

(a) the vectors m;=g,/|q;|, converge to a limiting vector ,
(b) the planes 7;=ker d(F - ¢)(q;) converge to a limit 1, .
(c) M is not contained in 1.

We will assume for simplicity (the other cases being entirely similar) that
Fo¢(0)=0, and that for all i, Fo¢(q;)>0. We must show that, for sufficiently
large i,

d(F o ¢)(q:)()>0.
Let p;=¢(gq;). We may suppose that

(a) the unit vectors £, = p,;/|p;| converge to some limiting unit vector 7,
(b) the unit covectors 1;=dF(p,)/|dF(p;)| converge to some limiting covec-
tor A.

Since F is nondepraved, we have A(7)>0. Thus, there is a neighborhgod
V of A in the n—1 sphere of unit covectors, and a neighborhood U of ¢ in
the n— 1 sphere of unit vectors so that

veV and ueU =v(u)>0.
We can find an integer I so large that
izI=dF(p)/|dF (p)leV.
Since ¢ is smooth, the map y: R"— S"~ ! given by
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¥ (q)=do(q)()/|dd(q)(h)]

is continuous and takes the origin to 7. Find a neighborhood W of the origin
so that (W)= U. Choose J so large that

i>J=q,eW.
Thus, if i>max (I, J), we have
d ¢(q;) ()
)= PPy
V=106 @om) ©

_AF(¢(q) dé@)th) _
|dF (¢(q))] |d¢(q) ()]
=dF(¢(q:))(d ¢(4))(h)>0

as desired. []



Chapter 3. Dramatis Personae and the Main Theorem

3.0. Introduction

In this chapter the main objects of interest: local Morse data, normal Morse
data, and tangential Morse data will be defined. The main theorems are stated
in Sects. 3.7, 3.8, and 3.9.

Classical Morse theory studies the relation between the critical points of
a Morse function and the topology of Z. Specifically, if Z__  denotes the set
of all points in x where the value of f is <c, then as c varies, the topology
of Z _. remains constant unless ¢ passes a critical value, in which case the change
in the topology is determined by the local behavior of f near the corresponding
critical point. Exactly the same statement is true in our context. We want to
study this change in the topology of Z_, as ¢ passes the critical value v of
a critical point p. We measure it by a pair of spaces (4, B) which we call local
Morse data for f at p. The definition of local Morse data is as follows: Let
B; be the intersection of Z with a small round ball in M centered at p. Then
for small enough ¢>0,

Ais ZnBsnf [v—e v+e] and Bis ZnBynf '(v—e).

(The topological type of the pair (4, B) is independent of the choices of the
ball and of ¢.)

Theorem 3.5.4. If v is the only critical value between v—e and v+¢, then
Z .. is obtained as a topological space from Z_,_, by attaching the space
A along the space B.
For example, if Z has only one stratum (the classical case) then local Morse
data is just
(D*x D" % 9D*x D"~ %
where 4 denotes the Morse index and D* is the k-dimensional disk.

The goal then becomes to study the local Morse data (4, B) at p. In order
to do this, we define two auxiliary concepts pertaining to the critical point
at p. The first, tangential Morse data, is just local Morse data for the restriction
of f to the stratum S containing p. The second, normal Morse data, is local
Morse data for the restriction of f to ‘the intersection of Z with a smooth
transversal slice to S at p. Tangential Morse data and normal Morse data are
pairs of topological spaces that are independent of the choices involved in their
definition. Together, they determine the local Morse data, and hence the change
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in the topology of Z . as ¢ passes the critical value v, by the following result
whose proof occupies the bulk of the first part of this book:

The Main Theorem (see Sect. 3.7). As pairs of topological spaces, the local
Morse data is the product of the tangential Morse data with the normal Morse
data.

The relevance of theory just sketched to singular analytic varieties is clear,
since they can be Whitney stratified. The relevance to noncompact varieties
X is the following: Even if X is nonsingular, if the Morse function is not proper,
then the topology of X _. can have anomalous changes as ¢ varies, even though
¢ does not pass a critical value. To remedy this, we suppose that X embeds
as a union of strata in a larger analytic variety Z on which f is proper. (This
can often be done. For example, if X is algebraic, it embeds as a union of
strata in a compact variety.) Now we will have new critical values, arising from
critical points on strata “off the edge” of X (in Z— X) which account for the
anomalous changes in the topology of X_.. We will be able to analyze the
effect of these new critical points on the topology of X by observing that the
two theorems stated above respect the decomposition of Z by strata (see Chap.
10).

Another generalization of classical Morse theory that interests us is the
relative case: we suppose that we have a map n of X to Z; we wish to study
the topology of X by proper Morse functions f defined on Z. It turnes out
that this can be done if # is a stratified map. If we define X _, to be the set
of points in X where the composition fr is <c, then it is still true that the
topological type of X _. changes only when ¢ passes a critical value for f. The
change in the topology occuring at the critical values can be analyzed through
results analogous to the two theorems stated above (see Chaps. 9 and 11).

Notational Definition. Suppose that B 4 and W< W’ are topological spaces
and that there exists an attaching map h: B— W such that the identity
map W— W extends to a homeomorphism

W' WU, A.

Then we shall say that W’ was obtained from W by attaching the pair (A4, B)

and we will write
W'=Wu (A, B).

We will supress the particular map h, although in all our applications h will
be an embedding and B will be a closed subset.

3.1. The Setup

Throughout this chapter, we will assume that Z is a Whitney stratified subset
of a smooth manifold M, and that the strata of Z are indexed by some partially
ordered set & Let f: M >R be a proper smooth function and suppose that
peZ is a nondepraved (Sect. 2.3) critical point of the restriction f|Z: Z—>1R.
(For example, f might be a Morse function.) We shall use X to denote the
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stratum of Z which contains the critical point p, v=f(p) to denote the critical
value, and Z _, to denote the space Z nf ~'(— oo, a]. Similarly, we shall denote
the set Znf~'[a,b] by Z, ;. These spaces are canonically S~decomposed
(Sect. 1.1) by their intersection with the strata of Z.

3.2. Regular Values

In this section we will assume f: Z — R is a proper function.

Proposition. Suppose the interval [a, b] contains no critical values of f|Z.
Then Z ., is homeomorphic to Z_, by a homeomorphism which preserves the
F-~decompositions.

Proof. The proof will appear in Chap. 7.

3.3. Morse Data

Fix £¢>0 so that the interval [v—e, v+¢] contains no critical values of f|Z
other than v=f(p).

Definition. A pair (4, B) of ¥decomposed spaces is Morse data for f at
the point p if there is an embedding h: B—»Z_,_, such that Z_,,, is homeo-
morphic to the space Z_,_,ugA (which is obtained from Z _,_, by attaching
A along B using the attaching map h) and the homeomorphism preserves the
S-decompositions (see Sect. 1.1). A pair (4’, B') is homotopy Morse data if it
is homotopy equivalent to some choice (A4, B) of Morse data.

Remarks. If (4’, B') is homotopy Morse data for f at p, then the space
Z_,.. is homotopy equivalent to the space Z_,_,u(4’, B') for some choice
of attaching map.

Morse data is not a well-defined topological type. However, the homotopy
type of the quotient A/B is well-defined and is the Conley Morse index (see
[Co]). If (A4, B) is Morse data for f at p for some choice of £¢>0, then it is
Morse data for f at p, for any other ¢’ <¢ (see Proposition 3.2).

Morse data satisfies the following excision property:

Lemma. If (A, B) is Morse data for f at p and if C is a subset of B such
that C cinterior (B), then (A— C, B— C) is Morse data for f at p.

Proof. The space ZugA has a basis for the topology, which consists of
open sets U such that either UnC=¢ or UcB. []

3.4. Coarse Morse Data

Suppose f: Z — R is proper and the critical value v=f(p) is isolated.

Definition. The coarse Morse data for f at p is the pair of S-decomposed

spaces
(A4, By=(Znf '[v—e v+e], Znf 1 (v—g)
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where £>0 is any number such that the interval [v—e¢, v+ ¢] contains no critical
values other than v=f(p). The coarse Morse data has a canonical ~decomposi-
tion which is given by its intersection with the strata of Z.

Remark. The homeomorphism type of the coarse Morse data is independent
of the choice of &, (see the proof in Sect. 7 of Proposition 3.2) and the homeo-
morphisms may be chosen to preserve the S~decomposition. The coarse Morse
data is Morse data.

The following pair of spaces illustrates the coarse Morse data for the critical
point p3 of the example in Sect. 1.2 of the introduction:

?

Coarse Morse data for p)

3.5. Local Morse Data

Suppose the point peZ is a nondepraved critical point of the proper function
f1Z—-IR. Choose a (smooth) Riemannian metric on M and let B¥(p) denote
the closed disk of radius 6 in M, which is centered at p. For J sufficiently
small, the Whitney conditions imply that the sphere dBY (p) is transverse to
each stratum of Z. Thus the transverse intersection

B;=B}(p)nZ
is canonically Whitney stratified, and its “boundary”
0B;=0B¥(p)nZ
is a closed union of strata in B;.

3.5.1. Lemma. There exists 0y >0 such that for any 0 <9 <0, we have:

(a) 0BM(p) is transverse to all the strata in Z and

(b) none of the critical points of f | Bs have critical value v, except for the
critical point p, i.e., for any stratum S <Bj and for any critical point q of f |8,
we have f(q)+v unless q=p.

Remark. Part (b) of this lemma is not completely obvious because B; contains
(new) strata of the form S=Xn0B¥(p), where X is a stratum of Z. Even if
f 1 X has no critical points, it is possible that f | S has critical points.

Proof. The proof will appear in Sect. 6.2.

3.5.2. Definition. Choose 6> 0 as in the above lemma. The local Morse data
for f at p is the coarse Morse data for f | B; at p, i.e., it is the pair

(Bsnf [v—e v+e], Bsnf v—eg)
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where ¢>0 is so small that the interval [v—e¢, v+¢] contains no critical points
of f'| By other than v. The local Morse data is &-decomposed by its intersection
with the strata of Z.

Example. Consider the critical point p’5 of the space % described in the
introduction (Sect. 1.2). The local Morse data is the pair of spaces which is
illustrated in the following diagram:

D,

?

Local Morse data for p3

3.5.3. Proposition. Suppose the function f: Z >R has a nondepraved critical
point at peZ. Then the local Morse data for f at p is well defined, i.e., independent
(up to F-decomposed homeomorphism of pairs) of the choice of the Riemannian
metric and the choice of ¢ and ¢ provided these are chosen in accordance with
the procedure of Sects. 3.4 and 3.5.1.

3.54. Theorem. If v=/{f(p) is an isolated critical value, then the local Morse
data for f at p is Morse data.

Proof. The proofs will be delayed until Sects. 7.4 and 7.6.

Remark. It follows from the Morse-Bott-Thom-Smale theory of nondegener-
ate critical point analysis, that local Morse data at a critical point peM of
a smooth Morse function f: M — R is difffomorphic to the pair

(D*~*x D,, D" *x oD%

where D* denotes the closed k-dimensional disk, dD* is its boundary, A is the
Morse index of f | M at the point p, and s is the dimension of M. It is shown
[Mil] that this pair is homotopy equivalent to the local Morse data for M
at p (considering M to be stratified with a single stratum). In Sect. 4.5 we
will show that local Morse data is homeomorphic to the above pair, using
the powerful technique of moving the wall.

3.6. Tangential and Normal Morse Data

Let Z be a Whitney stratified subset of some smooth manifold M and let
f:Z - R be a proper function with a nondepraved critical point p. Let X denote
the stratum of Z which contains the critical point p. Let N be a normal slice
at p (see Sect. 1.4), ie, N=ZnN nB¥(p), where 6>0 is so small that
OB (p)A(Z~ N') and where N’ is a submanifold of M which is transverse to
Z and intersects the stratum X in the single point p, and satisfies dim(X)
+dim (N")=dim (M).
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3.6.1. Definition. The tangential Morse data for f at p is the local Morse
data for f| X at p. The normal Morse data for f at p is the local Morse data
for f|N at p.

The tangential Morse data is trivially #decomposed. The normal Morse
data is #-decomposed by its intersection with the strata of Z.

3.6.2. Proposition. The F-decomposed homeomorphism type of the tangential
and normal Morse data are well defined (i.e., independent of the choices which
were made in their construction).

Proof. The proof will appear in Sects. 7.4 and 7.5.

Remarks. By [Mil] the tangential Morse data is homotopy equivalent to
the pair (D*~*x D* D*~*x oD%
where 4 is the Morse index of the restriction of f to the stratum which contains
the critical point, and where s is the dimension of that stratum. We will show
in Sect. 4.5 that the tangential Morse data is homeomorphic to this pair.

The normal Morse data is thus constructed as follows: choose §,>0 so
that for all §<é,, 0BY(p) is transverse to each stratum of N, and none of
the critical points of f'| N~ B¥(p) have critical value v (except for the critical
point p). Then choose ¢,>0 so that f| N n Bs(p) has no critical values (other
than v) in the interval [v—eg,, v+5,]. Fix 0<e<eg,. The normal Morse data
is the pair

(J,, K)=(NnBY(p)nf '[v—& v+el, NoBY (p)nf ™ (v—e)).

The #decompositions of the tangential (resp. normal) Morse data are refined
by canonical Whitney stratifications of the tangential (resp. normal) Morse data,
which are given by strata of the form

XnB2p)nf Y(v—ev+e)  (resp. ANN nBY(p)nf Yv—e, v+e)

XnBi(p)nf Hvte) (resp. ANN' A B (p)nf ™' (v+e)
XnoB;(p)nf t(w—e v+e) (resp. AN NIBs(p)nf *(v—¢, v+¢)
XnoB;(p)nf Yv+te) (resp. ANN' nOBs;(p)nf " L(v+e)

where BJ(p) denotes the interior of the ball B¥(p), and A denotes a stratum
of Z. The tangential, local, and coarse Morse data are Whitney stratified in
a similar manner.

3.7. The Main Theorem

For a fixed stratification of Z and a fixed function f with a nondepraved critical

point pe Z, there is a S~-decomposition preserving homeomorphism of pairs:
Local Morse data=~(Tangential Morse data) x (Normal Morse data).

In other words, if (P, Q) denotes the tangential Morse data and if (J, K) denotes
the normal Morse data, then the local Morse data is the pair (PxJ, Px Ky

0 x J).
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Proof. The proof will appear in Chapter 8.

Remark. Although both sides of this homeomorphism have canonical Whit-
ney stratifications, the homeomorphism cannot be chosen so as to be stratum
preserving, due to the extra strata in the tangential and normal Morse data
which appear as “corners”.

Remark. Similar results in the nonsingular case were obtained in [Kil],
[Ki2].

3.8. Normal Morse Data and the Normal Slice

Theorem. The total space of the normal Morse data is homeomorphic (by an
S-decomposition preserving homeomorphism) to the normal slice.

Proof. The proof will appear in Sect. 7.8.

3.9. Halflinks

The halflink is a real version of the “complex link” (which is a pair of spaces
defined for any complex analytic variety [GM1], [GM3]). Like the complex
link, it is a stratified space which is naturally associated to any Morse function,
and it almost determines the link of the stratum X: In the complex case it
is also necessary to know the monodromy; in the real case it is also necessary
to know the lower halflink.

As above, let Z be a Whitney stratified subset of a manifold M, let f be
a function with a nondepraved critical point peZ and let X be the stratum
of Z which contains p. Choose ¢<d <1 according to the procedure outlined
in Sect. 3.5. Let N=N'nZn BY(p) be a normal slice through the stratum X
at the point p (see Sect. 1.4).

3.9.1. Definition. The upper halflink of Z at the point p (with respect to
the function f) is the pair of spaces

(", 0T )=(NnBY(p)nf ™' (v+e), NndB (p)nf ' (v+e)
and the lower halflink of Z is the pair of spaces
(¢, 8¢7)=(NnBY(p)nf ™ (v—e), NndBi'(p)nf ™' (v—e)).

These spaces are canonically #-decomposed by their intersection with the strata
of Z, and they are canonically Whitney stratified (by the same procedure as
was used to stratify the normal Morse data in Sect. 3.6).

3.9.2. Proposition. The upper and lower halflink are well defined, i.e., indepen-
dent (up to S-decomposition preserving homeomorphism of pairs) of the choices
of normal slice, Riemannian metric and choice of & and & which were made in
their definition.

Proof. The proof will appear in Sect. 7.5.



Chapter 3. Dramatis Personae and the Main Theorem 67

Remark. The lower halflink for Z at p corresponding to a function f is
precisely the upper halflink of Z at p which corresponds to the function —f.

3.9.3. Theorem. If Z is a complex analytic variety, then the halflink is indepen-
dent of the Morse function. If Z is a real analytic variety, then there are finitely
many possibilities (up to stratum preserving homeomorphism) for the halflink at
the point p.

Proof. The proof will appear in Corollary 7.5.3 and 7.5.4.

3.10. The Link and the Halflink

Theorem. There is a #-decomposition preserving homeomorphism between £+
and d¢~. The union /* u,,/~ is homeomorphic (by an #decomposition pre-
serving homeomorphism) to the link of the stratum X which contains the critical
point p.

Proof. The proof will appear in Sect. 7.7.

Remark. These homeomorphisms cannot be taken to be taken to be stratum
preserving due to the “corners” in the stratification of the halflink.

3.11. Normal Morse Data and the Haiﬂink

3.11.1. Theorem. The normal Morse data for f at p is homeomorphic (by an
SF-decomposition preserving homeomorphism) to the pair of spaces (cone
(¢F Uset ™), £7), where the S-decomposition of the cone is given as follows: the
cone point is one piece (corresponding to the stratum X of Z) and the other
pieces are of the form A x(0, 1] where A is a piece of the S-decomposition of
ARCI

Proof. The proof will appear in Sect. 7.9.

3.11.2. Corollary. The normal Morse data for f at p has the homotopy type

of the pair
(cone(¢7), £7).

Proof. The proof follows directly from this result in homotopy theory (with
A=¢"and B=¢"):

3.11.3. Sublemma. Suppose (A, 0 A) and (B, 0 B) are compact pairs of topologi-
cal spaces. Suppose 0A has a collared neighborhood U=~0Ax[0,1] in A, and
suppose there is a homeomorphism h: 0 A — 0 B. Then there is a deformation retrac-
tion from the pair (cone(A U,4B), B) to the pair (cone(B), B). Furthermore, if &
is a partially ordered set and if A and B are ¥-decomposed spaces such that
the collaring U=0A x [0, 1] is an Sdecomposition preserving homeomorphism,
then we obtain natural S-decompositions of cone(A U, B) and cone(B), and the
above deformation retractions may be chosen so as to preserve the S-decomposi-
tions.
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Notation. A point in cone(4u B) will be denoted as a pair (x, r), where
xeAU B, and re[0, 1] denotes the “distance” from the cone point. Points x
in the collared neighborhood U will be denoted as pairs (y, s), where se€[0, 1]
denotes the “distance” from the boundary 04, i.e., the points (y, 0) lie in 0A.
We will use the variable t€[0, 1] to denote the “time” parameter in the homo-
topy.

Proof of sublemma. In fact, we will find a deformation retraction

H: (cone(A U,B, B) x [0, 1] — (cone(B), B)

which is the identity on cone(B) x [0, 1], is the identity at t=1, and collapses
the first space to the second space when t=0, and which preserves the #-
decompositions. If xecone(B), define H(x, r, t)=(x, r). If xecone(4 —U) define
H(x,r, t)=(x,rt). If (x, r, t)=(y, s, 1, t)econe (U), define H as follows:

S:]': H(yﬂsﬂrﬂt):(y’si tr)

(1—t)r(1—s) tr)

<s<1: H )= —
<s< . 8,1, 1) (y,s >

OSSS%: H(y, s, 7, )=, ts, r—2s(1—1))

S:0: H(y’ S7r7 t)=(y’ Sﬂr).

This deformation is illustrated in the following diagram:

of the space cone(Au B). The cone on B is the dark shaded region, and the
collared neighborhood U of 04 is indicated. [

3.12. Summary of Homotopy Consequences

(See also Sects. 10.8 and 11.8 for generalizations to nonproper and relative
Morse functions.) Suppose Z is a Whitney stratified space, f: Z —IR is a proper
Morse function, and [a, b]<IR is an interval which contains no critical values
except for a single isolated critical value ve(a, b) which corresponds to a critical
point p which lies in some stratum S of Z. Let A be the Morse index of f|S
at the point p.
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Theorem. The space Z _, has the homotopy type of a space which is obtained
from Z _, by attaching the pair (Sect. 3.0)

(D%, 6D*) x (cone(£7), £ 7).

Proof. By 3.5.4, the local Morse data is Morse data. By Sect. 3.7, this is
a product of normal and tangential Morse data. By remark 3.5.4, the tangential
Morse data has the homotopy type of the pair (D%, 6D%). By 3.11.2, the normal
Morse data has the homotopy type of the pair (cone(£7),¢7). [

3.13. Counterexample

The following example illustrates that the delicate estimates made in Chapter 6
have nontrivial content: local Morse data=normal Morse data x tangential
Morse data for arbitrary analytic functions.

Stratify Z=IR? with a singular stratum S = the x-axis. Consider the function
f(x, y)=x?>—y? This has a nondegenerate (in the classical sense) critical point
at the origin and the restriction f|S has a nondegenerate critical point at the
origin. However, the normal Morse data at (0, 0) is not well-defined, and this
may be attributed to the fact that df (0, 0) kills a limiting tangent plane from
the large stratum.

Even if we make the assumption that the normal and tangential Morse
data should be well-defined, it may still fail that the local Morse data is the
product of the two: Let Z=IR?, stratified with one singular one-dimensional

stratum,
S={(x, y)eR?| y=x?}.

Let N be the normal slice through S at the origin,
N={(x, y)elR?*|x=0}.

Define f: Z—>R by f(x,y)=y*—x° This has a singular point at the origin.
The following facts are easy to verify:

(1) fis a real algebraic function.

(2) 1S has a nondepraved critical point (a minimum) at the origin; the
tangential Morse data is the pair (D?, ¢).

(3) f|N has a minimum at the origin; the normal Morse data is (D!, ¢)
and is independent of the choice of the normal slice N.

(4) The origin is a saddle point of f i.., the local Morse data is (D' x D?,
oD! x DY).

Thus, the local Morse data is not equal to the product of the normal and
tangential Morse data. This failure can be attributed to the fact that df(0)
kills a limiting tangent plane from the large stratum.



Chapter 4. Moving the Wall

4.1. Introduction

This chapter and the next contain the main technical tools which will be used
in Part I. Moving the wall is a rigorous but intuitive technique for verifying
the hypotheses and expressing the conclusions of Thom’s first isotopy lemma,
which is particularly useful when the isotopy lemma is applied to a complicated
geometric situation. The power of this method even in the nonsingular case
is illustrated in Sect. 4.5, where we reprove the classical result in Morse theory:
crossing a nondegenerate critical point corresponds to attaching a handle.

Many of the (pieces of) spaces which are considered in this book are con-
structed by projecting some Whitney stratified subset Z of some smooth mani-
fold M to some auxiliary manifold N (by a proper smooth map g: M — N)
and then taking the counter-image Z n g~ !(Y,) in Z of some Whitney stratified
region Yy N.

M —5 N
U U
z Y,

(For example, local Morse data at a point peZ is the preimage of a box
Yo={(r, NeR?*|0<r<d;v—¢c<f<v+g}

in the two-dimensional space whose coordinates are f and the distance r from
the point p.) It often happens that the restriction g| Z: Z — N is not a submersion
on each stratum of Z, but that we nevertheless need a criterion which guarantees
that Z n g~ (Y,) is homeomorphic to Z n g~ (Y,), where Y, and Y, are connected
by some one-parameter family of regions Y,. (By this, we mean that there is
a Whitney stratified space Y= IR x N such that the projection to the first factor,
7n: Y- R is a submersion on each stratum and such that Y,==n"1(0) and Y;
=n"1(1)).

Such a criterion is the following: for each te[0, 1] the characteristic covectors
of the map g must be nonzero on each stratum of Y. (Recall from Sect. 1.9
that a covector e Tj* N is characteristic for g|Z if there is a point zeZ such
that g(z)=q and such that the preimage g*(£) vanishes on the tangent space
T, S to the stratum S which contains the point z.)

Thus, the family Y, is restricted not by the characteristic points of the map g,
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but by the characteristic covectors. This allows us to vary Y, in a family which
may pass through singular values of the map g.

Although this criterion is simply a restatement of Thom’s first isotopy lemma
(the deformation Y, gives rise to a controlled vectorfield on Z), the point of
presenting our proofs in this language is that arguments involving complicated
geometry in Z and difficult estimates on the components of controlled vector-
fields are replaced by the simpler geometry of strata in the wall space and
the calculation of the characteristic covectors of the map g.

Remarks. In most of our applications, N will be a Euclidean space R" of
low dimension (n<4) and Y, will be homeomorphic to a closed ball whose
boundary (“the wall™) is stratified in particular ways. For example the local

Morse data
Bs(p)NZf'[v—¢ v+¢], Bi(p)nZf~ (v—¢e))

has “boundary strata” at the edge d B;(p) of the ball and also where f(z)=v+e,
so it has a codimension two “corner stratum” where these intersect. These
boundary and corner strata arise from boundaries and corners of a region in
the wall space. The wall space defining tangential Morse data and the wall
space defining normal Morse data are each two-dimensional, giving rise to codi-
mension two corners in each. The product of tangential Morse data and normal
Morse data, therefore, has codimension four corners and it is defined by a
four-dimensional wall space. To prove the main theorem, we must move the
wall in this four-dimensional wall space, avoiding characteristic covectors at
odd angles. This accounts for the extraordinary complexity of the proof of the
main theorem (see Chapters 6 and 8).

4.2. Example

Let P be the parabola in IR? given by x=y? and let f: P—>IR denote the
projection to the x axis. Let Y, be the closed interval [¢, ¢+ 1]. Then, the charac-
teristic covectors of f are the elements of T;* R. The topological type of f ~'(Y,)
changes only at t=1 and t=0, i.e., when these covectors vanish on the strata
at the endpoints of the interval [¢, t +1].

<

Characteristic covectors are an obstruction to moving the wall

4.3. Moving the Wall: Version 1

Let f: M — N be a smooth map between two manifolds. Let Z< M be a Whitney
stratified subset whose strata are indexed by some partially ordered set . Sup-
pose f|Z: Z— N is proper. Let Y& N x R be a (closed) Whitney stratified subset
such that the projection to the second factor, n: Y- is a proper stratified
submersion. Suppose that for each telR and for each pef(Z)n Y,, and for each
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nonzero characteristic covector Ae T,* N of the map f |Z: Z — N, the restriction

of A to the subspare
T,S,=(ker@n(p)) TS

is nonzero, where S is the stratum of Y which contains the point (p, t) and
S,=n"1(t)n S is the stratum of Y,=n"'(t)n Y which contains the point p. This
is equivalent to the statement that, for each t€IR, the restriction f | Z is transverse
to Y,.

Thus, for each teR, Znf (Y, is S-decomposed by its intersection with
the strata of Z. This #decomposition is refined by the canonical Whitney strati-
fication of Z nf ~1(Y)), which consists of strata of the form 4~ f~!(B), where
A is a stratum of Z and B is a stratum of Y,.

Theorem. There is a homeomorphism
Zof U Yo)=Znf (1)

which preserves the S-decomposition of both sides, preserves the Whitney stratifica-
tion of both sides, and is smooth on each stratum.

Proof. Consider the composition

MxR — s NxR ——
fxI T

U U

Z xR Y

where I denotes the identity map. It is easy to see that Z xR is transverse
to (f x )" 1(Y) and that the composition

no(fxI): ZxRA(f x)"(Y)-»R

is a stratified submersion (unless YN f(Z)=¢, in which case the theorem is
trivial). Thus, the first isotopy lemma (Sect. 1.5) can be applied to this projec-
tion. [

4.4. Moving the Wall: Version 2

Suppose Z is a Whitney stratified subset of M xIR such that the projection
p: Z— R to the second factor is a proper stratified submersion. Let & denote
a partially ordered set which indexes the strata of Z. Let F: M xR —> N xR
be a one-parameter family of smooth functions, F(x, t)=(f;(x), t). Let Yc N xR
be a Whitney stratified subset and let W< Y be a closed union of strata. Assume
that the projections to the second factor =: (Y, W)—IR are proper stratified
submersions, and let (Y;, W)=n"1()n (Y, W). Suppose that for each teR and
for each pef,(Z)nY, and for each nonzero characteristic covector Ae T,;* N of
the map f;: Z, — N, the restriction of 4 to the subspace

T,S,=(ker dn(p)) " T,S

is nonzero, where S is the stratum of Y which contains the point (p, t) and
S,=n"1(t)n S is the stratum of ¥,=n"!(t)n S which contains the point p. This
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is equivalent to the statement that for each teR the restriction f,|Z,: Z,» N
is transverse to each stratum of Y,.

In this case, the intersections Z,nf,”*(Y) and Z,nf,” !(W,) are canonically
F-decomposed by their inclusion in Z, and they are canonically Whitney strati-
fied by a stratification which refines the F-decomposition, whose strata are
of the form 4, f,”1(B,) where 4, is a stratum of Z, and B, is a stratum of Y;.

Theorem. There is a homeomorphism of pairs,
Zonfo '(Yo, W)= Z, nfi (Y1, W)
which preserves the S-decomposition of each side, and preserves the canonical
Whitney stratifications of each side, and is smooth on each stratum.

Proof. The proof is exactly is exactly the same as above: ZnF~ (Y, W)
is a Whitney stratified space such that the projection

pZnF Y Y, W)-»R

is a proper stratified submersion. Thus, p~*(0) and p~ (1) are homeomorphic
(by Thom’s first isotopy lemma Sect. 1.5). [

4.5. Tangential Morse Data is a Product of Cells

To illustrate the power of the technique of moving the wall, we will now prove
the (homeomorphism version of the) following classical result:

Proposition. Suppose - M — R is a smooth function defined on an s-dimension-
al manifold M, and let pe M be a nondegenerate critical point of f with Morse
index A. Then, local Morse data (which equals the tangential Morse data) for
f at p is homeomorphic to the pair

(D*x D*™* 0D*x D*~ %
where D* denotes the disk of dimension A and 0D* denotes its boundary sphere.

Remark. Our method gives the homeomorphism type of the local Morse
data. It is a deeper result, due to Smale, that in fact the above pair is the
difftfomorphism type of the local Morse data. See [Mil] for a careful proof
that the above pair has the homotopy type of the local Morse data.

Proof. By the Morse lemma, there exists a coordinate system (xy, ..., X;,
Vi, ---» ¥s— ) on M, centered at the point p, such that locally the Morse function
is given by 5 .
fooy=—2 xt+ 3 .

i=1 i=s—4

The locally defined functions

A s
Fl(xa y)= Z xi2 and FZ(xs y): Z y12
i=1 X i=s—2
define a map F=(F;, F,): M - R? which has no characteristic covectors (Sect.
1.8) except the origin, and every covector at the origin is characteristic. Since
the local Morse data is independent of the Riemannian metric involved in its
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definition (Sect. 3.6.2), we may take the distance from the point p to be given
by
rz(x: y):Fl(x: y)+F2(x’ y)

With these choices, the local Morse data is (by definition) the preimage under
the map F of the pair (R, E) where R is the region

R={(F,, K,)eR?|F,+ F,<d and —¢<F,—F, <g}
(with e <) and E is the lower edge of the region R,
E={(F,, F,)eR?*|F,+ F,<d and F,—F, = —¢}.
These regions are illustrated in the following diagram of (F,, F,)-space:

F

F

Local Morse data in the wall space

We will show by moving the wall that the pair (F~*(R), F~!(E)) is homeomor-
phic to the pair (F~!(R’), F~!(E')) where

R'={(F, F,)| F;<n and F, <v}

E'={(F, F,)| Fi=n and F,<v}
where n=(d+¢)/2 and v=(6—¢)/2. The regions are illustrated in the following
diagram of (F,, F,)-space, with E’ given by the right hand side of the box. For
technical reasons (see below) we introduce an auxiliary stratum in R’ consisting
of the single point (v, v).

F

(v, v} (1, v)

R’ E

£

Diagram of (R’, E')
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Notice that the pair (F~!(R’), F~'(E')) is precisely
([D} xR ] n[R*x D$™*], [0D} x R*™*]n[R*x D™ *])
which equals (D} x D%, 6D% x D™

where D} denotes the closed ball of radius # in the space R%.

The required deformation by moving the wall is a triviality to find because
the function F has no characteristic covectors except at the origin (or when
s=1, in which case the result is trivial). We will use Sect. 4.3 (Moving the
wall, Version 1) with f: M —» N of Sect. 4.3 replaced by F=(F,, F,): M > R?2,
and with Z=M. Since we are dealing with pairs of spaces (R, E) and (R’, E)
we will need a pair of one-parameter families of spaces (R,, E,) which interpolate
between them. (These are called Y in the statement of Theorem 4.3). It is most
convenient to construct this deformation in two steps:

Step 1: R, varies between R,=R and

R,={(F,, F,)eR?*|F,+ F, <6, F,<n, F;<v}.
The space E, varies between E,=E and
E,=E={(F,, F,)eR?|F,=n, F, <v}.

=
7

7

Moving the wall

N

Step 2. The space R, varies between R, above and R'. The space E,=E,=FE'
does not vary.

e

|

—

£

Moving the wall
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Remark. During the deformation in Step 2, the boundary of the region R,
contains a zero-dimensional stratum at the “kink” in the top of the box. These
form a one-dimensional stratum in the family

Y=)(R,x{t})cR*xR.

In order to satisfy the hypothesis (Sect. 4.3) that the projection Y—-R is a
submersion on each stratum of Y, we must prolong this one-dimensional stratum
throughout the deformation. This gives rise to the zero-dimensional stratum
in R’ which is indicated in the above figure of R'".



Chapter 5. Fringed Sets

The definition of local Morse data involves certain choices of allowable parame-
ters ¢ and 0. The set of all such allowable ¢ and 6 form a region in the (g, 6)
plane of a certain shape, which we call “fringed, of type 0 <&<4”. In this chapter
we study fringed sets: these are open subsets of the first quadrant in R? whose
closure contains a segment of the x-axis ending at the origin, and which are
unions of vertical segments. Fringed sets of this type will appear throughout
the technical discussions in Part 1.
We shall use the symbol R* to denote the positive real numbers.

5.1. Definition

A set A={(x, y)} =R xR" is fringed over a subset S<R provided:

(1) The projection 7(A4) of A to the first factor is equal to S

(2) Aisopenin SxIR™*

(3) If (s, y)e 4 and if 0 <y’ <y then (s, y')e 4.

A set AcR* xR* is of type 0<y<x if it is fringed over some interval
S=(0, xo).

The intersection of finitely many sets of type 0 <y < x is again a set of type
0<y<x. An arbitrary union of such sets is again such a set.

X

i

A fringed set

5.2. Connectivity of Fringed Sets

Lemma. Suppose AcR xR™ is fringed over some closed interval S=[uo, f]<=R.
Then there exists a number yeR™ such that the line segment [a, ] x {y} is con-
tained in A.
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Proof. Suppose not. Then there is a sequence of values y;—0 such that
all line segments [o, B]x {y;} are not contained in A. Choose a sequence of
points (a;, y;} which are not in 4, such that a;e[a, f] converge to some aye[a, S]
and so that y; — 0. By property (1) there is some point (x,, yo)€A, and since
A is open there is a neighborhood U of o, such that (u, yo)e A for all ueU.
It follows from property (3) that U x (0, y,) = A. This contradicts the statement
that for all i, («;, y;) is not contained in A. []

Proposition. Suppose AcIR* xR ™ is a set of type 0<y<x. Then A is con-
nected in the following strong sense: For any two points (x{, y1), (x5, y,) in A
there exists a number y <min(y,, y,) such that the following three straight line
segments are each contained in A:

(1) (x1, y4) to (x4, )

() (x1,¥) to (x2,y)

(3) (x2a y/) to (x25 y2)

Proof. The set A is fringed over the interval [x,, x,], so the preceding lemma
gives a value y'>0 such that the line segment [x;, x,]x {y'}=4. O

|
iIIIIIIIIIIIIIII||II|III|IIIIIIII‘

P

A path connecting two points in a fringed set

Corollary. Any fringed set A is smoothly path connected.

Proof. The piecewise straight paths of the preceding proposition can be
smoothed within 4. []

5.3. Characteristic Functions

To each fringed set A we can associate a characteristic function f: S -»IR* which
is given by
f(s)=sup {y|(s, yeA}.
This function is lower semicontinuous (since A4 is open in S x R™*).
Proposition. Let A be a set of type 0<y<x and suppose (xq, yo)€A. Then

there exists a positive monotone increasing k-times continuously differentiable func-
tion f:IR* -IR™* such that

{(x,y)|y<f(x)and x<x,}<= A4
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A fringed set contains the graph of a smooth positive increasing function

Proof. Define
So(x)=sup{yeR™" |(x, y)e A4, for all X'e[x, x,]}.

The argument of Sect. 5.2 shows that f,(x)>0 whenever x>0. Furthermore,
fo is monotone increasing and satisfies

{(x, »)|0<x<x, and y< fo(x)} = A4.

Now define inductively

1 X
ﬁ(x)=x—0 [ fioi(@)dt.

Each f; is positive, monotone increasing, j—1 times continuously differentiable,
and satisfies f;(x) < f;_,(x) whenever x€(0, x,]. Thus, the function f=f,,, sat-
isfies the requirements of the proposition. []

5.4. One Parameter Families of Fringed Sets

An open subset BcIR* x R* x [0, 1] is a one-parameter family of sets of type
O<y<x if, for each ze[0, 1] the set

B,={(x, y)eR* xR™" |(x, y, z)e B}
is a set of type 0 <y < x.

Proposition. Suppose B is a one-parameter family of sets of type 0<y<x.
Then B is path connected in the following strong sense: for any two points
(x1, Y1,21), and (x,,y,,2,) in B, there are numbers Xx'<min (x,, x,) and
¥y <min (y,, y,) such that the following five segments are contained in B:

(1) (xla Y1, Zl) to (xla y,’ Zl)

() (x4, ¥, zy) to (X, ¥, zy)

(3) (xls yls Zl) to (xls y,a 22)

(4) (xls y,: Z2) to (X2, y,a 22)

(5) (x2,¥', 22) to (x5, y2, 25)-

Proof. First choose x’ as follows: Let n,,: B—R™* x [0, 1] denote the projec-

tion to the xz coordinate plane and let C=m,,(B) denote the image of B. Thus,
C is an open subset of R* x [0, 1] which contains the z-axis in its closure
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and which is a union of lines of the form (tx, z) where 0<t<1. Thus the set
C is fringed over the interval [0, 1]. By Lemma 5.2 there exists x>0 such
that the line segment {x'} x [0, 1] is contained in C. Now consider the slice

D=Bnn. ' ({x'} x [0, 1]).
This is an open subset of the flat
{(x, 5, 2)|x=x,y>0,ze[0, 1]}

which contains the “z-axis”, {(x’,0, z)|ze[0, 1]} in its closure, and which is
fringed over [0, 1]. Thus, there exists a y' >0 such that the segment (x’, y') x [0, 1]
is contained in D (and hence also in B). Finally, diminish y’ if necessary so
as to guarantee that the segments from (x, y’, z;) to (x', ¥, z;) and from (x', ', z,)
to (x,, ¥, z,) are also contained in D. []

5.5. Fringed Sets Parametrized by a Manifold

Let M be a smooth n-dimensional manifold. We shall say that a subset B M
xR* xR" is a fringed set parametrized by M provided

(a) Bis open

(b) for each point pe M the set

B,={(x, yeR" xR™|(p, x, y)e B}

is a nonempty fringed set of type 0 <y < x.
We shall use the symbol n,: B— M to denote the projection to the first
factor.

Proposition. Suppose B is a fringed set parametrized by a manifold M. Then
B has a smooth section, i.e., a smooth map s: M — B such that 7, s=identity.

Proof. Since B is open, for any compact set K; =M it is possible to find
numbers (x,, y;)elR* xR™ which form a section over K,, ie., so that
(p, x;, y1)eB for all peK,. Now choose an exhaustive sequence of open sets
U.c M, with compact closures K, i.e.,

UcK,cU,cK,cU;...

and find corresponding points (x;, y;)eIR* x R* which form a section over K.
By the method of Sect. 5.2, there is for each i a smooth curve (x;(t), y;(t)) joining
(x;, ;) (when t=0) to (x;,, ¥i+1) (When t=1) such that, for each t€[0, 1] the
point (x;(t), y;(t)) is a section of B over the set K;. Use these curves to join
the sections together as follows: Choose a smooth function ¢;: K; — [0, 1] such
that

(1) ¢;(x)=0 for all x in some neighborhood of K;_,

2) ¢:|K;—U=1
and define the section

s(p)=(x;(¢:(p), y:i(d:(p))) if peK;—K;_;.

It is easy to check that this section is smooth and has the required properties. []



Chapter 6. Absence of Characteristic Covectors:
Lemmas for Moving the Wall

This chapter contains the tools needed to prove the main theorems of Part I
(Sects. 3.7, 3.10, 3.11). In order to carry out the “moving the wall” arguments
which are needed in the proof of these theorems, it is necessary to know that
there are no characteristic covectors which might impede the motion of the
wall, ie., that the wall is transverse to the strata of Z. In this chapter we prove
that there are no such characteristic covectors.

6.1. The Setup

Throughout this chapter, Z will denote a Whitney stratified subset of some
smooth manifold M, and f: M - R will denote a smooth function which has
an isolated nondegenerate (or nondepraved) critical point peZ which lies in
some stratum X of Z. Assume that f(p)=0. We choose a tubular neighborhood
Ty of X in M, and a tubular projection n: Ty —» X with the property that for
any stratum Y of Z, either Y n Ty = ¢ or else the restriction

n|(YnTy): YnTy-» X

is a submersion.

In this chapter we will fix a local coordinate system on M with coordinates
{x1, X2, ..., X,y Which are defined in some neighborhood U < Ty of the critical
point p, so that the point p becomes the origin, the stratum X is given by
Xs+1=0, x,,,=0, ..., x,,=0, and so that the tubular projection n: U - X is
the linear projection

n(x17x27 cees xm)z('xla X2y ey Xgs 05 70)

where s=dim (X). We will use the Euclidean metric in this coordinate system
and denote by r(z) the square of the distance between a point ze M and the
critical point p. We will denote by p(z) the square of the distance between
z and =(z). By Pythagorus,

r2)=rn(z)+p(2).

We denote by B;(p) the ball
B;(p)={zeM|r(z) <4}
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and we denote its boundary by
S5(p)=0B;(p)={ze M |r(z)=0}.

We shall use (4, v) to denote coordinates in R% If AcIR* xR™ is a set
of type 0<v<u, we denote by AR xR the closure of the set obtained by
adding to A its reflection about the u axis:

AP ={(u, v)eIR?| there exists a point (u, §)eA with |v] <J}.
p

Recall that a covector A=(u, v, adu+bdv)e T*R? is characteristic for the map
(r, f): Z—R? if there exists a point zeZ such that (r(z), f(z))=(u, v) and
(r, Y*()=adr(z)+bdf(z) vanishes on T,Y, the tangent space to the stratum
which contains the point z (Sect. 1.8).

6.2. Lemma. There exists a fringed set A;,cIR* xIR™ of type 0<v <u, such

that the projection
(r, f): Z—>R?

has no characteristic covectors in the region A%. Furthermore, there exists ro>0
such that if A=(u, v, adu+bdv)e T*R? is a nonzero characteristic covector for
the map (r, f): Z—R? and if u<ry then v#0, a+0, b+0, and the slope —a/b
of ker A has the same sign as v.

Remarks. This result implies Lemma 3.5.1 and more: it says that the kernels
of the characteristic covectors in IR? form a set of tangent lines outside a set
AP which looks like this:

If f and r are real analytic functions, then this result is obvious because the
map (f,r): Z—IR? may be stratified with analytic strata (i.e., with curves in
IR?) which contain the origin in their closures. The tangent vectors to these
strata are the kernels of the characteristic covectors.

Proof. Step 1. First we show that the restriction (r, f)| Z: Z—»IR? has no
characteristic covectors in some fringed set A%. This will use the fact that f
is nondepraved. The set of points (u, v)elR? which have nonzero characteristic
covectors is closed. Thus, it suffices to show that there are no characteristic
covectors over any point (u, 0)elR2. Suppose this is false, i.e., that there is a
sequence of points p;eZ n f~!(0) converging to p such that df(p;) and dr(p;)
are linearly dependent when restricted to the stratum Y of Z which contains
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the point p;. This means that f has a critical point on Y ndB; (p) where 8;=r(p,).

By restricting to a subsequence if necessary, we may assume the points p; are

all contained in the same stratum Y of Z, that the tangent planes T,, Y converge

to some plane @, and that the secant lines £;=p;p (in the fixed local coordinate

system on M) converge to some limiting line £. By Whitney’s condition B,
Q=1im £,® T, (Y "By (p)).

i— o

This limit is a perpendicular direct sum, but f(p)=f(p;)=v, so df(p)(Q)=0.
If Y>X, then this contradicts the assumption that df(p) is a nondegenerate
covector. We may therefore suppose that Y=2X, so

kerd(f|X)(p) =T, (X n0B;(p) =T, (X 0 f ™" (v)).

These kernels converge to a codimension one subspace © of Q=T,X, which
is perpendicular to #. However, /<t since (by Sect. 2.5.1 and the fact that
fis nondepraved), f ~ 1 (v) N X satisfies Whitney’s condition B. This is a contradic-
tion. [

Step 2. If u>0 is sufficiently small, v+0, and A=(u, v, adu+bdv)e T*R?
is a characteristic covector for the map (r, f)| X:X —R2, then the sign of the
slope of ker (4) is equal to the sign of v. This is simply a rewording of Lemma
2.5.2.

Step 3. We now study the slope of the nonzero characteristic covectors arising
from a stratum Y > X in Z. By our choice of local coordinates, we may assume
the ambient space M is Euclidean space R". Suppose there is a sequence of
points ¢;€ Y which converge to peX such that d(f|Y)(g; and d(r| Y)(q;) are
linearly dependent, i.e., a;d(f | Y)(g)+b;d(r| Y)(q;)=0. We must show that a;b;
has the opposite sign to f(g;)—f(p). By choosing a subsequence if necessary,
we may assume that:

(@) f(g)—f(p) has a constant sign s= + 1 (independent of ).

(b) The tangent planes 7;= T, Y converge to some limiting plane .

(c) The secant lines Z;=q;p converge to some limiting line /<1, and the
vectors

v;=projection to t; of (¢;—p)/|q; — p|

converge to some limiting vector ve’.
(d) The subspaces Q;=ker d(r| Y)(q;) =t; converge to some hyperplane Q = .

Now consider the equation
a;df (q)(v)+b;dr(q)(v)=0.
Clearly dr(q;)(v;)>0, so it suffices to prove that, for sufficiently large i, df (¢g;)(v;)

has the same sign as f(gq;)—f (p). Let us suppose, for example, that f(q,)— f(p)>0
for all i. Then

df (p)(v)=lim (f (¢) — f (P))/l9: — p| = 0.
So it suffices to show that df(p)(v)+0. However, we have a limiting direct

sum, =0 @ . But df (p)(Q) =0, while the assumption that df (p) is nondegener-
ate implies that df (p)(z) +0. Therefore, df (p)(v)+0. O
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6.3. Corollary. The map (rr, fn): Ty n Z = R? has no characteristic covectors
in the region A%.

Proof. The map = is a submersion to the stratum X, and the restriction (r, f)| X
has no characteristic covectors in the region 4>. [

6.4. Lemma. There exists r, >0 such that if zeZ satisfies r(z)<r, and z¢X,
then the differentials dn(z) and df (z) are independent, when restricted to the stra-
tum Y of Z which contains the point z (i.e., their kernels are transversally intersect-
ing subspaces of T,Y ).

Proof. The point pe X is an isolated critical point of f, and df (p) is a nonde-
generate covector, i.e., it does not kill any limit of tangent spaces to strata
Y > X. Thus, there is a neighborhood of p with the same property. []

Corollary. If z satisfies the above conditions (i.e., r(z)<r, and z¢X ), and
n(z) %p, the the differentials df (z) and dfn(z) are linearly independent when re-
stricted to the stratum Y which contains z. If r(z)<r,, z¢ X, but n(z)=p, then
df (z)=*0 although dfn(z)=0 (when restricted to the stratum Y ).

6.5. Characteristic Covectors of Normal Slices

We now examine the restriction of the projection (r, f): Z —IR? to the normal
slices through the stratum X (i.e., to the fibres n~*(x) of the tubular projection
. TX i X).

Lemma. There exists a number r,>0 and a region A,cR* xR™* of type
0<v<u, such that for any ze Z which satisfies rn(z)<r,, the map

(o, f=fm)|n" N (n(2)): =~ (n(2)) >R

has no characteristic covectors in the region AY. Furthermore, if A= (u, v, adu
+bdv)e T*R? is a nonzero characteristic covector of this map, then v=+0, a%0,
b=+0, and the slope —a/b of ker A has the same sign as v.

Proof. The proof of this lemma is completely analogous to the proof of
Lemma 6.2. It is only necessary to observe that if df(p) is a nondegenerate
characteristic covector for Z, then it is also a nondegenerate characteristic covec-
tor for Z nn~ (p) (with its stratification induced by transversal intersection). []

Remark. Lemma 6.5 remains valid for any smooth function f: M - R such
that df(p) is a nondegenerate covector — it is not necessary to assume that
the restriction f | X has a nondepraved critical point at p.

Corollary. If rr(z)<r,, z¢ X, and (p(2), f(2) —f7(2))e A, then the differentials
dp(z), df (2), and dr(z) are independent (i.e., their kernels are transversally inter-
secting subspaces of T,Y ). The same holds for the differentials dr(z), df(z), and
dn(z). Furthermore, if n(z)#%p, then each of the following triples of covectors
are linearly independent :

(a) dp(2), df (z), and df7(2)

(b) dr(2), df (2), and dfr(z)
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(c) dp(2),df(z), and drmn(z)
(d) dr(z), df(z), and dr=(z).

Proof. The lemma gives independence of d p(z), d(f — f)(z), and dn(z). But
ker (d p(z)) nker (dn(z))=ker (dr(z)) nker (dn(z))

since r=p+rn. Thus, dr(z), d(f—f7)(z), and d=n(z) are independent. Similarly,
dr(z), df (z), and dn(z) are independent, i.c.,

ker (dr(z))+ (ker (df (z)) nker (dn(2))=T,Y.

If n(z)=* p, then d(fn)(z) is nonzero and ker (d(f7)(z)) oker (dn(z)). Thus, dr(z),
df(z), and dfn(z) are independent. A similar argument holds with fr replaced
byrn. [

6.6. Lemma. For any a>0 and b>0 there exists a fringed set A;cIR* xR*
of type 0 <v <u such that whenever ze Z satisfies

6.6.1. (r(2), f(z)e A}

6.6.2. (rn(z), fr(z))eAf

6.6.3. z¢ X

6.64. n(z)*p
then the covectors adp(z)+bdrn(z), df (z), and d(fr)(z) are linearly independent
when restricted to the stratum Y which contains the point z.

Proof. Assume not. By Whitney’s condition A, the points zeZ such that
adp(z)+bdrn(z). df (z), and d(fr)(z) are linearly dependent when restricted to
the stratum containing z, form a closed subset of Z. Thus, we may assume
there is a sequence z;€ Z which converge to the critical point p, such that f(z;)=0
and f7 (z;)=0, and such that the covectors adp(z;)+b drn(zy), df (z;), d(f7)(z,)
are linearly dependent, for all i. By choosing a subsequence if necessary, we
may also assume that the points z; all lie in the same stratum Y of Z, that
the secant lines pz; converge to some limiting line 7, that the tangent planes
T,, Y converge to some limiting plane 7, that the subspaces

ker(adp(z)+bdrn(zy), ker(df(z)), ker(d(fm)(z)

converge to subspaces A, B, and C of t respectively.

We will now make use of the fact that f and = have smooth extensions
to some neighborhood Ty of the stratum X in the manifold M. There exists
a smooth Riemannian metric on M such that the square of the distance from
the point p is given by

R(z)=ap(z)+br=n(z).

Since £ is a limit of radial lines, we have ¢ is perpendicular to A (in this Riemann-
ian metric), and so /¢ A. But the relation of linear dependence between
adp(z)+bdrn(z), df, and dfn implies that 4 > B+ C. We now claim that /< B
and /<= C, which will be a contradiction.

Let w=1im (z;— p)/|z;— p| (computed in some local coordinate system on M)
denote a unit vector in the limiting line 7. Since df(p)+0 we have B=
lim ker (df (z;))=ker (df (p)). But, df (p)(w)=1im (f(z;)— p)/|z;—p|=0. Thus, £ c B.
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Similarly
C =lim ker (dfn(z;))
=limdn(z)~ ! (ker (df (n(z,))) N Tz X)
=dn(p)” ! (lim ker (df (nz)) N Tz X)
=dn(p)” ' (BN T, X)>ker (dn(p) +(BN T, X).

Let /, be the limit of secant lines z;7(z;) and let £z be the limit of the secant
lines n(z;) p. These are nontrivial lines by Conditions 6.6.3 and 6.6.4, and £ </,
+¢3. However, /,c A and {3 BN T, X. Thus, {c(A+BnT,X)cC. O

6.7. Lemma. There exists a fringed set A,cR* xR™ of type 0<v<u such
that for any ze Z which satisfies

6.7.1. (r(z), f(2))e AL

6.7.2. (r(z), fr(z))e A}

6.73. z¢ X

6.74. n(z)*p
then the covectors

af(z), dfn(z), dr(2),

are linearly independent, when restricted to the stratum Y of Z which contains
the point z.

Proof. Let A, denote the fringed set of Sect. 6.5 such that (p(z), f(z)
—fn(z))e A} implies dn(z), dp(z) and d(f— fn)(z) are linearly independent. Let
Aj denote the fringed set of Sect. 6.6 (corresponding to parameters a=1 and
b=1) such that (r(z), f(z))e A5 and (rn(z), fr(z))e A5 implies drr(z) +d p(z), df (z)
and dfn(z) are linearly independent. Fix v, >0 so that the point (0, vo)e 4, N A45.
For each 6>0 (but 6 <v,) choose M (5)>0 so that the rectangular box of base
6/2 and height 2M(J) is contained in both of these sets, i.e,, so that

B(0)={(u, v)eR?|6/2<u<3 and |v|<2M(5)} = A5~ A8.

Now define
As={(0,e)eR* xR* |5 <v, and < M (J)}.

We claim this fringed set has the desired properties. Note that if zeZ satisfies
z¢ X, n(z)#p, and either

@) (p(2), f(z)—fm(z))e A} or

(b) (r(2), f(2)e A8 and (rm(2), fn(z))e A}
then (by Sects. 6.5 and 6.6) the covectors dr(z), df (z) and dfn(z) are linearly
independent. So we need only show that one or other of the conditions (a)
or (b) is implied by the relations (6.7.1)...(6.7.4).

Suppose p(z)<r(z)/2. Then rn(z)=r(z)—p(z)=r(z)/2. By 6.7.2 we have
(rm(2), fr(z))eB(r(z)) = A4 so condition (b) is satisfied. Similarly if p(z)>r(z)/2,
then (p(z), f— fn(z))e A5 so consition (a) is satisfied. []

6.8. Lemma. Let A, be the set of type 0<e<d from Sect. 6.7 and let r; >0
denote the number found in Lemma 6.4. Then for any (0, §)€ A, such that 6 <r,,
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the projection
(fem f): Zn Bs(p) > R?

has no characteristic covectors in the square
If1<e, |fml<e

except for the following three types of covectors A=(u, v, adu+bdv):

1. Those 2 such that u=0 and v=0.

2. Those A such that u=v and a=b. These occur when ze X.

3. Those 4 such that u=0 and du=0. These characteristic covectors only
vanish on the tangent spaces T,Y of points for which n(z)=p. (In other words,
d(fn)(z) %0 unless z lies in the n-fibre over the critical point p.)

Proof. Let Y denote the stratum of Y B,(p) which contains the point z.
First suppose that zeZ nB2(p), i.., z is not a point on the boundary of the
ball. By Lemma 6.4, if z¢ X then dn(z) and df (z) are independent when restricted
to T, Y. Thus, d(f7)(z) and df (z) are also independent, provided 7(z) = p.

We now examine points ze Z n0B;(p). It is possible that there are no points
zeZ ndB;(p) such that |f(z)|<e and | fn(z)|<e, in which case the lemma is
true for trivial reasons. However, assuming such a point zeZ exists, it then
satisfies the conditions (6.7.1 and 6.7.2) of Sect. 6.7. Thus, (assuming n(z)=+p
and z¢X) the differential forms df(z), dr(z), and d(fn)(z)eT;* Y are linearly
independent. This implies that df(z) and d(f=)(z) are linearly independent when
restricted to the tangent space T,*(Y n dB;(p)) of the surface r(z)=06. [

6.9. Lemma. Let A, denote the fringed set of Lemma 6.7. Fix (0, ¢)e A, and
suppose ze Z satisfies n(z)+p, z¢ X and

69.1. 2<r(z)<o

6.9.2. 6/2<p(2)<d

6.93. |f(z)|<e

6.94. |fr(z)| <.
Fix a, beR with a+0. Then the three covectors

df(z), dfmn(z), adp(z)+bdrn(z)

are linearly independent in T,Y, where Y is the stratum of Z which contains the
point z.

Proof. Since | f — fr| <2¢, we have (see Sect. 6.7) (p(2), f(z2)—fr(2)eB(6) = A8
(where A, is the set defined in Sect. 6.5), so Lemma 6.5 implies that dp(z),
d(f—fn)(z), and d=n(z) are independent (i.e., their kernels are transverse sub-
spaces of T,Y, where Y is the stratum of Z which contains the point z), so
df(z) and dp(z) are independent when restricted to T,Ynkerdn(z). But r=p
+rmn, and d(rm)(z) vanishes on kerdn(z). Thus, d(f—fn)(z), dn(z), and
adp(z)+bdrn(z) are independent, provided a=0. It follows that d(f—fr)(z),
dfn(z), and adp(z)+bdrmn(z) are independent, since the only critical points of
dfn(z) occur when n(z)=p. [
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6.10. Lemma. There exists a fringed set AscIR* xIR™ with the following
property: For any (6,¢)e A5 and for any a, beR with a>0 and b>0, and for
any zeZ which satisfies z¢ X, n(z)+p, and

6.10.1. §/2<r(z)<$d

6.10.2. §/2<rm(z)<d

6.10.3. |f(2)|<¢

6.104. |fr(z)|<e

then the three covectors
df(z), dfn(z), adp(z)+bdrn(z)

are linearly independent in T} Y, where Y is the stratum of Z which contains
the point z.

Proof. First we shall find a fringed set A, such that if ze Z satisfies
2¢X, mw@)Fp,  (r(2),f(2)eAl, and (rz(2), fn(z)eA]

then df (z), dfn(z), and adp(z)+bdrn(z) are linearly independent. By Lemma
6.4 there is a number r, >0 such that if n(z)+p, and z¢ X and r(z)<r, then
df(z) is nonzero on ker(d=(z))| T,Y. By Corollary 6.3 there is a fringed set
A, such that if n(z) % p and (rn(z), fn(z))e A3, then drn(z) and df=(z) are linearly
independent in T, Y. Thus, if r(z)<r,, n(z)%p, z¢ X, and (r=(z), fn(z))e A%, then
df(z), drn(z) and dfn(z) are linearly independent. Since linear independence
is an open condition, there exists a number 1,>0 such that for any A with
|A|< 4, the covectors

df(z), drm(z)+1idp(z), and dfn(z)

are linearly independent for the same set of choices of z. If a/b<4,, then we
are done. Otherwise, by Lemma 6.6, for each value of A€[4,, a/b], there is
a fringed set A,cR*xR"' such that if zeZ satisfies z¢X, n(z)=+p,
(r(2), f(2))e AL, and (rn(z), fn(z))e A% then the covectors

drn(z)+idp(z), df(z), and dfn(z)

are linearly independent. By Sect. 4.5 there is a uniform choice A4, of a fringed
set such that A = A4, for all Ae[1,, a/b]. Now choose a fringed set A, A, N A,,
and shrink A, if necessary to ensure that every point (9, ¢)e A, has d <r,. This
set A, has the desired properties: If a/b<4,, then the first argument applies
while if a/b> A, then the second argument applies.

We now repeat the method of Sect. 6.7: For each 6>0 choose a number
M ,(6)>0 so that the rectangular box of base d/2 and height M ,(J) is contained
in A5, i.e, so that

B,(8)={(u, V)eR?|5/2<u<dand |v| <M, (5)} = 45.
Define
As={(6,e)eR* x R* |§<r, and e< M,(J)}.
Fix (6, e)e A2. If ze Z satisfies (6.10.1) to (6.10.4) then
(r(z), f(2)e B, (0) = A}
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and

(rn(z), fr(2))e By(3)= A}
which implies that df(z), dfn(z), and adp(z)+bdrn(z) are linearly indepen-
dent. [

6.11. Lemma. There exists a fringed set Ag=IR* xR™ with the following
property: Fix (0, §)e A¢. Suppose a point ze Z satisfies z¢ X, n(z) % p, and

6.11.1. p(2)=9

6.11.2. rr(z)=96

6.11.3. | f(2)| <e

6.114. | fr(z)|<e.

Then the covectors
dp(z), drm(z), df(z), dfn(2)

are linearly independent when restricted to T,Y, where Y is the stratum of Z
which contains the point z.

Proof. We claim that A¢=A4,n A, has the required properties (where A,
and A, are the fringed sets defined in Sects. 6.2 and 6.5). Fix (J, ¢)e A¢ and
suppose ze Z satisfies 6.11.1 through 6.11.4. Then

(p(2), f(2)—fr(2)e A}
so Corollary 6.5 implies that d p(z), df (z), and dn(z) are independent. Similarly
(rn(z), fn(z)e A

so Corollary 6.3 implies that drn(z) and dfn(z) are independent. Together, these
imply that d p(z), df (z), drn(z) and dfn(z) are independent. []



Chapter 7. Local, Normal, and Tangential Morse Data
are Well Defined

This chapter contains the proofs of Theorems 3.5.3, 3.6.2, 3.9.2, 3.9.3, 3.10, and
3.11.

7.1. Definitions

Throughout this chapter we will assume that Z is a Whitney stratified subset
of some smooth manifold M, that f: M —IR is a smooth function which has
a nondepraved (or nondegenerate) critical point pe Z, which lies in some stratum
X of Z. For simplicity we shall assume the critical value f(p)=0. As in Chapter
6, we will assume a tubular neighborhood Ty of X in M has been chosen,
with tubular projection n: Ty — X, and normal distance function p: Ty > R. We
also assume a Riemannian metric has been chosen on the ambient manifold
M, and we denote the square of the distance from the critical point p by r.
As in Sect. 6.1, for any set AcR* xR™* of type 0<v<u, we denote by AP
the closure of the set obtained by adding to A its reflection about the u axis.

7.2. Regular Values

This section contains the proof of Proposition 3.2: if [a, b] contains no critical
values of f: Z — R then there is an S~decomposition preserving homeomorphism
between Z_, and Z .

Proof. We wish to pass from the set (— o0, a] to (— oo, b] by moving the
wall. Let Y denote the following subset of R?:

Y={(t )eRxR|f<a+(b—a)t}.

This is stratified as a manifold with boundary, and satisfies the hypotheses
in Sect. 4.3 (moving the wall). Thus, we obtain a stratum preserving homeo-
morphism between ZNnYy=Z_,and ZnY,=Z_,. [

Remark. This proposition can also be proven using controlled vectorfields
instead of the moving wall. A sketch of such a proof follows: Choose £¢>0
so that the interval [a—2¢, b+2¢] contains no critical values of f. Choose
a smooth vectorfield V on [a—2¢, b+ 2¢] whose time 1 flow maps the interval
[a—¢, b] homeomorphically onto [a—e¢, a] and which vanishes on [a—2¢, a—¢].
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Thom’s first isotopy lemma (Sect. 1.5) provides a lift of this vectorfield to a
controlled vectorfield V' on Z,_, ., such that f, V'=V. Thus, the time 1 flow
of V' restricts to the desired homeomorphism on Z,_, ,, (and is the identity
on Z£a~e)'

7.3. Local Morse Data, Tangential Morse Data, and Fringed Sets

Let AcR* xR* denote the fringed set from Proposition 6.2 of type 0<v<u
such that the projection (r, f): Z—R? contains no characteristic covectors in
the region AP. Fix (8, ¢)e A and let

Box (6, &) ={(x, y)eR?|x<J and |y|<e}.
This subset is stratified by its interior, the interiors of its three sides,
Top (4, &)={(x, &) | x <}
Bottom (4, &)= {(x, —&)|x<J}
RS (6, )={(, y)Iyl<e}
and its two corners (4, ¢) and (6, —¢). Define F: Z—-R2 by F(2)=(r(z), f(2)).
Observe that the local Morse data (Sect. 3.5) is the pair
(F~'(Box (4, €), F ~ ! (Bottom (4, £)))
and the tangential Morse data is the pﬁir
(X F~1(Box (4, ¢)), X n F~ ' (Bottom (4, ¢))).

Claim. For any (6, g)€ A, the map F: Z —-R? is transverse to (each stratum
of ) Box (9, ¢) in R?, ie., no stratum of Box (4, ¢) is tangent to the kernel of
any characteristic covector of the map F.

Diagram of Box (9, ¢€) and fringed set

Proof of Claim. Any map is transverse to the interior of Box (d, &). The
map F is transverse to Top (9, ¢), Bottom (8, ¢) and RS (4, ¢), because by Proposi-
tion 5.2 the kernels of the characteristic covectors have positive slope above
the ¢ axis and negative slope below the 6 axis. The map is transverse to the
corners (6, ) and (8, —¢) because these are points in the set A which contains
no characteristic covectors of the map F.
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Corollary. Local Morse data (resp. tangential Morse data) is Whitney strati-
fied with strata of the form AnF~Y(B) (resp. X nF ~'(B)), where A is a stratum
of Z and B is a stratum of Box (0, ¢).

7.4. Local and Tangential Morse Data are Independent of Choices

Suppose as above that Z is a Whitney stratified subset of a Riemannian manifold
M (with Riemannian metric g,), that peZ is a nondepraved critical point of
a function f;,, and that values of ¢, and J, have been chosen in accordance
with the rules of Sect. 3.5. This gives rise to a particular construction of the
local and tangential Morse data. Now suppose f;: M - R is another function
which also has a nondepraved critical point at p. Choose another Riemannian
metric g; on M, and values of ¢, and 4, in accordance with the procedure
in Sect. 3.5. This gives rise to another construction of local and tangential Morse
data.

7.4.1. Theorem. Suppose that the functions f, and f; are connected by a smooth
one-parameter family of functions - M x R - R with a uniformly isolated nonde-
praved critical point p (i.e., there is a neighborhood U of p, such that for each
teR the function f,=f(x,t) has no critical points in U except for the single
critical point p, and this critical point is nondepraved). Then the local (resp.
tangential) Morse data for f, at p (as constructed with respect to the first Rie-
mannian metric and allowable choices of &, and d,) is homeomorphic (by an
SF-decomposition preserving and stratum preserving homeomorphism of pairs) to
the local (resp. tangential) Morse data for f, at p (as constructed with respect
to the new Riemannian metric and parameter values ¢, and 0, ).

Proof. We want to pass from Box (d,, ¢) to Box (d,, &;) by moving the wall.

The local Riemannian metrics g, and g, are connected by a smooth one-
parameter family of metrics, g,=tg; + (1 —t) g,. These give rise to distance func-
tions r,(z) =distance (p, z) (as measured by the metric g,). We claim that there
is a uniform chice of fringed set AcR* xR™* so that for each te€[0, 1] the
map

(re, f): Z—>R?

has no characteristic covectors in the region A4°. This is easily verified using
the same argument as in Sect. 6.2, plus the fact that p is a uniformly isolated
critical point. Thus, it is possible to find a one parameter family of fringed
sets A,cR* xR™ such that

(@) (00, €0)€A,

(b) (01, &)€A4,

(c) the map

(r, f): Z—>R?

has no characteristic covectors in A4
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(d) the total space of the family
U {t} x4,c[0,1]xR* xR*

te[0, 1]
forms an open subset of R* xR *.

By Proposition 5.4 there is a smooth one-parameter family of points
(0, &)€ A, which connect (54, &¢) to (64, &;). Define F: Zx[0, 1]-R2x [0, 1]

by
F(z, )=(r,(2), £i(2)).
Let
Y,=Box (d,, &) x {t} =R* x [0, 1]
W,=Bottom (J,, &) x {t} =IR* x [0, 1].
Then

Y,w= U (¥, W)

te[0, 1]

forms a stratified fibre bundle over [0, 1] and each F;: Z—IR? is transverse
to (Y;, W). Thus, Lemma 4.4 (Moving the wall, Version 2) applies, giving us
an “-decomposition preserving homeomorphism between F; '(Y,, W,) and
F1(Y;, W;) (which also takes strata to strata and is smooth on each stra-
tum). [

7.5. Normal Morse Data and Halflinks are Independent of Choices

Suppose as above that Z is a Whitney stratified subset of a Riemannian manifold
M, that peZ is a nondepraved critical point of a function f, and Nj is a submani-
fold of M which meets the stratum X transversally at the point p. Assume
that values of ¢, and J, have been chosen in accordance with the rules of
Sect. 3.5. This gives rise to a particular construction of the normal Morse data,
and the upper and lower halflinks. Now suppose f;: M — R is another function
which also has a nondepraved critical point at p. Choose another Riemannian
metric on M, another transversal N; through p, and values of ¢; and ¢, in
accordance with the procedure in Sect. 3.5. This gives rise to another construc-
tion of normal Morse data, and the upper and lower halflinks.

7.5.1. Theorem. Suppose the covectors dfy(p) and df,(p) lie in the same con-
nected component of the set of nondegenerate covectors (Sect. 1.8). Then the
normal Morse data (resp. upper and lower halflinks) for f, at p (constructed
with respect to the first Riemannian metric, normal slice N,, and given choices
of &y and o) is homeomorphic (by a homeomorphism H of pairs which preserves
the S-decompositions and preserves the stratifications) to the normal Morse data
(resp. upper and lower halflinks) for f, at p (constructed with respect to the
second Riemannian metric, normal slice Ny, and choices of parameter values, &,
and 6,). Furthermore, if dfy(p)=df;(p) then there is a canonical choice up to
isotopy for the homeomorphism H (cf. [Bru]).

Proof. The proof is essentially identical to the proof of Theorem 7.4. It
is possible to find a smooth one-parameter family N'< M x [0, 1] of transversals
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N/ connecting Ny and Nj, a smooth one-parameter family of Riemannian metrics
connecting the two given metrics, and a smooth one-partameter family of func-
tions f, such that each df,(p) is a nondegenerate covector (we do not assume
that each f, has a nondepraved critical point at p). In the proof of Theorem
7.4, it 1s necessary to replace the function F(z, t)=(r,(z), f,(z)) with the function
F:(Zx[0,1])n N'—R? which is given by

F(z, )=(r.(2), f.(2)— f:(p)).

Lemma 6.5 guarantees the existence of a fringed set 4, and points (3,, &)€ A4,
such that F;: N nZ —-R? has no characteristic covectors in the region AP, and
so that the normal Morse data is given by

(F~"(Box(4,, &), F,” ' (Bottom (4, &,)).

Since each df,(p) is nondegenerate, the singular point p is uniformly isolated
in the normal slice. Thus, there is a uniform choice of fringed set A, such
that A, <A, for all t. Thus, we can assume the points (,, &) form a smooth
curve in R? connecting (54, &;) and (84, ¢,). Defining (¥, W) as in the proof
of Theorem 7.4.1, Lemma 4.4 (Moving the wall, Version 2) gives an &-decompo-
sition preserving homeomorphism between F '(Y,, W,) and F, ' (Y;, W,).

Proof of the “furthermore”’ part. Suppose we have two different one-parame-
ter families of normal slices connecting N} and N;, two different one-parameter
families of Riemannian metrics connecting r, and r,, and two different one-
parameter families of ¢ and § connecting (§,, &,) and (,, ¢;). This gives rise
to two different homeomorphisms G and H between the normal Morse data
(resp. upper and lower halflinks). It is easy to find a two-parameter family of
normal slices N ,, and distance functions r, ,, which connect these two one-
parameter families. Proposition 5.5 then provides the appropriate two-parameter
family of choices (O, 1, &, ») (5O that, for each value of s and ¢ the corresponding
map

(r(s, 1) ﬁs, t)): ]V(Sv n— IRZ

has no characteristic covectors in the region

{(U, U) | u= 5(5‘, 1) |U| S 8(s, t)})'

This gives rise (by moving the wall as above) to a one-parameter family of
homeomorphisms between G and H, i.e.,, G and H are isotopic. []

7.5.2. Corollary. There is an S-decomposition preserving and stratum preserv-
ing homeomorphism of pairs between the upper (resp. lower) halflink at p for
the function f, with Riemannian metric g, and choice of parameters N, 8,4, &,
and the upper (resp. lower) halflink for the function f| constructed with respect
to the Riemannian metric g, and parameters Ny, 0,, and &, .

Proof. The upper halflink is a union of stratain ™ 1(Y). [
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7.5.3. Corollary. If Z is a Whitney stratified subanalytic set, then there are
finitely many possibilities (up to stratum preserving homeomorphism) for the nor-
mal Morse data of a function at the point p, and also for the upper and lower
halflinks at p.

Proof. By Proposition 1.8 the set of nondegenerate covectors has finitely
many connected components. []

7.5.4. Corollary. If Z is a complex analytically Whitney stratified complex
analytic variety, then the normal Morse data at a point p is independent of the
Morse function f. Furthermore, there is a stratum preserving homeomorphism be-
tween the upper and lower halflinks, and these spaces are independent of the
function f.

Proof. The set of nondegenerate covectors for Z at p is connected (see Sect.
1.8) since it is the complement of a subset of complex codimension one in
the set of all characteristic covectors. []

7.5.5. Remarks. In Corollary 7.5.3 we are implicitly assuming that p is a
nonexceptional point (see Sect. 1.8) by supposing that there exists a Morse
function at the point p. See Sect. 13.2 for an example where the halflink is
not well-defined in a family which passes through an exceptional point.

7.6. Local Morse Data is Morse Data

In this section we prove Proposition 3.5.4. We consider the situation outlined
in Sect. 3.5, with a nondepraved critical point p of a function f: Z - IR, with
critical value f(p)=0, and a choice of parameter values § and &. Let 4°cIR?
denote the fringed set of noncharacteristic points of the map F(z)=(r(z), f(z))
(as in Sect. 7.4) and choose (9, ¢)€ A. Define the manifold with corners

Step (9, &)= {(u, v)eR? |v< —¢} U {(u, v)eR?*|u<d and v<e}.

By moving the wall, we will find an %decomposition préserving homeomor-
phism between Z ., and

F~'(Step(6,e))=Z._,upP
where
(P, Q)=F '(Box (d, &), Bottom (9, ¢))

is the local Morse data. Note that the ¥~decomposition of Z_ _,u, P defined
as an attaching space (Sect. 1.1) coincides with the decomposition of
F~1(Step (6, €)) which is given by its intersection with the strata of X.

Choose a one-parameter family Y,=IR? of manifolds with corners such that
Y, =Step (4, ¢) and Y, ={(u, v)|v<e} and so that for each t, the corners of Y,
are contained in the set 4" and so that for large values of r the boundary
of Y, is horizontal. For example.



96 Part I. Morse Theory of Whitney Stratified Spaces

‘4‘ i}
_,-’- ii [}
= T T

Moving the wall to show that local Morse data is Morse data

It follows that the tangent spaces to the boundary of Y, are never contained
in any characteristic covector of the map F, so moving the wall, version 1
gives an S-decomposition preserving and stratum preserving homeomorphism
between

F '(Y)=Z._,u,P and F Y(Y)=Z_,.

7.7. The Link and the Halflink

In this section we give the proof of Theorem 3.10. We shall consider the situation
outlined in Sect. 3.9, with choices of a nondepraved critical point p, a normal
slice N through the stratum X at the point p, a choice of Riemannian metric
on M. We consider the map F: Zn N —R? which is given by F(z)=(r(2), f(2)
—f(p)) and let A4 denote the set of type 0 <v <u so that F| N has no characteristic
covectors in the region AP. Choose a point (J, e)e A and note that the upper
and lower halflinks are given by

(F~'(Top(3,¢), F~1 (0, &) =(¢*,0¢7)
(F~!(Bottom (8, &), F~ (5, —e))=(£", 0¢").
Since F is a fibration over each point in the region AP we see immediately
that any curve (6,, &)= A° determines (via the first isotopy lemma) a stratified
homeomorphism F~1(5,, eo)=F (8, ¢;). In particular, it gives a homeo-
morphism between 0/ and 0¢ . In fact if we take the curve

RS={(u, v)eR?|u=4 and |v|<e}
then we obtain a homeomorphism
F Y (RS)=0¢* x[—e, +¢]
which commutes with the projection to [ —e, +¢].
We now find a homeomorphism between 7% U,,¢~ and the link of the stra-

tum X. First embed the space /* u,,/~ into ZAN, by identifying it with
F~1(Y,), where Y, is the boundary of the triangle in the following diagram:
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Upper and lower halflink joined along their boundary

Since f({zeZ|r(z)<1}) is compact, we may assume it is contained in some
interval (v—a, v+a). Now consider the one-parameter family Y, of stratified
spaces

Moving the wall to show that the link is the union of the two halflinks

which interpolate between Y, and Y, ={(u, v)eR?|u=4}. By Lemma 6.5 the
slope of the kernels of the characteristic covectors of F have the same sign
as f, so no stratum of Y, is tangent to the kernel of any characteristic covector.
Thus, the map F: Zn N —»IR? is transverse to each Y,. We obtain (by Moving
the wall, Version 1) an #-decomposition preserving homeomorphism between
F~Y(Yy)=¢"us,£~ and F~'(Y;) which is the link of the stratum X, at the
point p. [

Remark. This homeomorphism identifies #* U,, ¢~ in a stratum preserving
way with a refinement of the usual stratification of the link L of the point
p: “fake” strata of the form F~ (6, 0) n L have been added.

7.8. Normal Morse Data is Homeomorphic to the Normal Slice

In this section we prove Proposition 3.8. Using the notation of the preceding
section, the total space of the normal Morse data is given by F~!(Box (4, ¢)),
while the normal slice (Sect. 14) N=N'NnZnBsp) is given by
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F~1(Halfspace (), where
Halfspace (8) = {(u, v)e R?*|u<4}.

We stratify Halfspace(d) with its interior, Halfspace®(d), and the interiors of
its three segments,

RS (6, &) = {(, v)eR>|u=4, |v|<é&)
RS* (5, &)={(u, v)eR?*|u=4, v>¢}
RS~ (8)={(u, v)eR?*|u=4,v< —¢}

and the two corners (d, ¢) and (3, —¢).

Theorem. There is an S-decomposition preserving and stratum preserving
homeomorphism between the normal Morse data, F~1(Box (5, €)) and the normal
slice, F~ 1 (Halfspace (), which takes the interior

F~1(Box°) to the interior F~*(Halfspace®), and takes

F~Y(Top (3, €)) to F"'(RS* (4, &)

F~1(Bottom (4, &) to F~ (RS~ (4, &)

F~Y(RS(J, &) to F~ (RS (4, ¢))
and is the identity on the corners F~1(5, +¢)).

Proof. Move the wall as follows:

Moving the wall to show that Morse data is the normal slice

7.9. Normal Morse Data and the Halflink
In this section we prove Proposition 3.11: there is a homeomorphism of pairs
between the normal Morse data and (cone(/ " u,,Z7), £ 7).

Proof. The argument of Sect. 7.8 gives a homeomorphism between the normal
Morse data and the pair
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F~'(Box (4, ¢), Bottom (4, ¢))
~(F~'(Halfspace(5)), F~*(RS™ (4, ¢))
=~(cone(F"'(RS* URSURS™)), F"}(RS7))
=(cone(F~!(TopuRS U Bottom)), F~ ! (Bottom))
=(cone(Z U@ x[0,1])us ™), £7)
=(cone(ft u,,f7),¢7). O
Remark. The projection of a cone line under the map F will not necessarily
be a straight line in R?. In other words, there is no particular relationship

between this homeomorphism, the obvious conical structure of Box (9, ¢), and
the axial lines in cone (/™" U,, ¢ 7).



Chapter 8. Proof of the Main Theorem

In this chapter we prove Theorem 3.7: the local Morse data is the Cartesian
product of the tangential Morse data with the normal Morse data.

8.1. Definitions

Throughout this chapter, Z will denote a Whitney stratified subset of a smooth
manifold M, and f: Z — R will denote a function with an isolated nondepraved
critical point peZ. We will use the symbol & to denote a partially ordered
set which indexes the strata of Z. The stratum containing the point p will be
denoted X, and n: Ty - X will denote the projection to X of a tubular neighbor-
hood of X in M. We assume that Ty is sufficiently small that the restriction
7| Y to each stratum Y >X is a submersion. As in Sect. 6.1 we choose a local
Riemannian metric on M, with

r()=rn(z)+p(2)

where r(z) is the square of the distance between p and z, and p(z) is the square
of the distance between z and n(z). We shall consider a certain neighborhood
Bs;={zeZ|r(z)< 4} of p, where 9 is chosen as follows:

(a) o is so small that f | X has no critical points in B,; or in n(B,;), other
than p.

(b) For all zeB,;, df (2)(T,Y)=+0, where Y is the stratum of Z which con-
“tains z.

(c) 26<r; (of Sect. 6.4), and 26 <r, (of Lemma 6.5).

(d) The point (26, 0) is an element of the set A; of Lemma 6.2, the set
A, of Lemma 6.5, the set A; of Lemma 6.6, the set 4, of Lemma 6.7, the
set A5 of Lemma 6.10, and the set A, of Lemma 6.11.

8.2. Embedding the Morse Data

In this section we show how to embed the product of pairs (normal Morse
data) x (tangential Morse data) into the neighborhood B; defined above.

Choose £¢<6 so that the point (6, &) is an element of the set 42 of Lemma
6.11. Define
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Vi={zeZ|1f (&)~ fn(2)| <e/d, rn(z) <6, and p(z)< 6}
V,={zeZ| f(z2)—frn(z)= —¢/4, rn(z)<J, and p(z) <}
W, ={zeZ || fn(z)|<3¢/4 and rn(z) <4}
W,={zeZ| fn(z)= —3¢/4 and rn(z)<J}.
These spaces are S-decomposed by their intersection with the strata of Z.

Propesition. The pair of spaces (V;, V,) and (W, W,) intersect transversally.
Their intersection

Vi, )Wy, Wo)=(Vin W, VianW,uV,n W)

is homeomorphic (by a S-decomposition preserving homeomorphism of pairs) to
the pair
(normal Morse data at p) X (tangential Morse data at p).

Proof. Let D={xeX |r(x)<d} denote the disk of radius ¢ in the stratum
X. We will show that the pair (V;, V,) fibres over D and is homeomorphic
to D x (Normal Morse data), and that the pair (W;, W,) fibres over the tangential
Morse data (which is a subset of D) and is homeomorphic to the product (Tan-
gential Morse data) x (normal slice).

Consider the open subset Z, of Z which is given by

Z,=Tyn{zeZ|rn(z)<d).

By Proposition 6.5, the map F: Z, -»IR? which is given by F(z)=(p(z), f(2)
—fr(z)) is transverse to each stratum of Box(d, ¢/4) (see Sect. 7.3). The pair
(V,, V,) is the preimage under F of the pair (Box(J, ¢/4), Bottom (9, ¢/4)). By
Lemma 6.5, for each xeD, the restriction F|n~!(x): =~ '(x) »R? is transverse
to the strata of Box (9, &/4), which means that for each stratum S of Box(J, ¢/4)
we have a transversal intersection F~!(S)An~'(x). Thus, | F~(S) has surjec-
tive differential. By Thom’s first isotopy lemma (Sect. 1.5) this implies that the

projection
n| F~1(Box (4, ¢/4)): F~'(Box(d, ¢/4) - X

is a stratified fibre bundle over the (contractible) region D < X. Furthermore,
the fibre over the critical point p is

7~ (p) N (F~ ' (Box (4, £/4)), F~ ! (Bottom (3, &/4)))

which is precisely the normal Morse data as defined in Sects. 3.6 and 7.5.
Now consider the function G: X - R? given by G(x)=(r(x), f(x)). Note that
0 and ¢ have been chosen so that the pair

(G™1(Box (4, 3¢/4)), G~ (Bottom (3, 3¢/4))) = X

is the tangential Morse data for f, and that .this set is contained in the region
D over which n|(V;, V,) is a (trivial) stratified fibre bundle. Consequently the
pair

(W,, Wy)=n""1 G~ '(Box(d, 3¢/4), Bottom (3, 3¢/4))
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is transverse to the pair (Vy, V,). Therefore, the intersection (Vy, V)N (W,, W,)
is homeomorphic ‘hy a stratum preserving homeomorphism) to

[~ ()N (Vy, Vo)l x (W, Wa)

which is precisely the product (normal Morse data)x (tangential Morse
data). [

8.3. Diagrams

From the five functions f, fomn,r, p, rom, which are defined on Z, we obtain
ten maps to IR? by projecting to any of the coordinate planes. A subset of
Z can be designated by specifying a region in one of these coordinate planes.

Definition. A picture P is a Whitney stratified region in R? together with
a choice of two of the above functions (say, g and h). The picture is allowable
if the map (g, h): M > R? takes each stratum of Z transversally (within IR?)
to each stratum of P. A diagram is a pair (B, B) of pictures (together with
their two sets of functions, g,, h,, g,, h,). For any diagram D we define the
realization Z (D) to be the set

Z(D)=Z (g1, h)”(R)N (g2, b)) ' (B)

which consists of all points ze Z such that (g;(z), h;(z))e P, (for i=1, 2). The dia-
gram is allowable if each of the pictures is allowable and if the map

(82, h2) (g1, hy)"'(B): (g1, hy) " (B)— B

is transverse to each stratum of B, (in IR?). This definition is symmetric and
is equivalent to saying that in the above formula for Z(D), all the intersections
of strata are transverse.

Remark. In Sect. 8.2 we found a homeomorphism between the product (nor-
mal Morse data) x (tangential Morse data) and the realization of the following
diagram:

Diagram D,,: Normal Morse data x tangential Morse data
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8.4. Outline of Proof

In this section we give a succession of diagrams which interpolate between
the box diagram (Sect. 7.3) which defines local Morse data, and the above
diagram D, ,, which defines (normal Morse data) x (tangential Morse data). Each
diagram will represent a pair of spaces, and the subspace will be explained
in a caption below the diagram. Each diagram is obtained from the preceding
by “moving the wall”. The actual description of the motion of the wall, and
the proof that there are no characteristic covectors to impede this motion will
be given in Sect. 8.5.
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8.5. Verifications

In this section we show how to move the wall and obtain homeomorphisms
(of pairs) between the realizations of the preceding list of diagrams. The reader
may check that in each case, the subspace is a union of strata of the realization,
and that the subspace is taken to the subspace.

8.5.0. The realizations Z(D,) and Z(D,) are equal.
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8.5.1. Since the map (r, f): Z —»IR? is a submersion over the region A% of
Sect. 6.2, the corner in the second picture of diagram D, can be rounded by
moving the wall. Although this argument is straightforward, we will give it
here in full because the remainder of this chapter consists of arguments along
similar lines.

Consider the following motion of the wall: a one-parameter family of pictures
B,(¢) which interpolate between the second picture of diagram D, and the refine-
ment which is obtained from the second picture of diagram D, by adding a
fake zero-dimensional stratum to the rounded corner:

Rounding the corner

This one-parameter family B,(t) of pictures gives rise to a stratified space Y M

x IR as follows:
Y={(z, )eM xR |(r, f)(2)e B(?)}.

The allowability of the picture PB,(f) implies that (each stratum of) each slice
Y, is transverse to (each stratum of) Z. Furthermore, (fr, f)"*(B)=f"'[—¢, o)
is transverse to each stratum in the intersection Y,nZ (where P, is the first
picture in the diagram D,). Thus, Lemma 4.3 (Moving the wall) gives a stratum
preserving homeomorphism between the set

ZD)=Zn(fn, )" EB)(r, /)71 (B0)
and
ZD)=Zn(fm )" B, )" (BQ).
8.5.2. The wall motion from D, and D; and from D; and D, involve the
most delicate arguments in this paper. We must first find all the characteristic
covectors

A=(u, v, adu+bdv)e T*R?

of the projection
(fm, f): V-R?

where V=(r, f)"1(R) and where the set P, is stratified with two strata which
we will denote by P? (for the interior) and @P (for the boundary).

Proposition. Suppose the point zeV gives: rise to the characteristic covector
A=(u, v, adu+bdv). Then one of the following possibilities holds:

(a) z=p (sou=v=0)
(b) z£p, but ze X (so u=v and a=D>b)
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(c) z¢X but n(z)=p (so u=0 and b=0)
(d) z¢X but (r, f)(z)edP.

Proof. We will find the characteristic covectors arising from each of the
strata of V. The strata of V are of 4 types:

1) (n N PN X

2 N P)NY

3) (n " OP)NX

@ (N~ '@eP)nY
where X is the stratum of Z which contains the critical point p, and Y is any
other stratum of Z (with Y > X).

Type 1 and Type 3 strata. The image of the stratum X under (f, fn) is precisely
the diagonal f=fn. The Type 1 and Type 3 strata therefore give rise to charac-
teristic covectors of type (a) and (b).

Type 2 strata. By Corollary 6.4 the differentials df (z) and d(f=)(z) are linearly
independent unless 7(z)=p, in which case d(fn)(z)=0 and fn(z)=0. These are
characteristic covectors of type (c).

Type 4 strata. These give rise to characteristic covectors of type (d). [

We now analyze the covectors of type (d). Choose local coordinates about
the point z in the stratum Y as follows: let x,, x,, ..., x, denote local coordinates
in the stratum X, such that the critical point p corresponds to the origin. Extend
these to coordinates on all of Ty (the tubular neighborhood of X in M) so
that x;=x;om, for each i. By the implicit function theorem, the functions
Xy, X4, ..., Xs and f may be completed to a local coordinate system on Y about
the point z by adding some functions y,, y,, ..., y,—s_ (Where r=dim(Y)). Let
F denote the restriction of the function f to the stratum X. Thus,

n(xlaxzs "':xssf;yls YVas --'syrfs—l):(xlsXZa ...,Xs)
f(xlaxzs LR ] xs,ﬂh, Va2 ---syr—s—l):f
fn(xlsxzs LR xssfsyls Va2 ---syr—s—l):F(xlsts ---axs)
and we may choose the Riemannian metrics so that
r(@)=ra(z)+(f(2)—fr(2)* +g )

ie.,
r(xlsxz-,v --'axssf;yln Va2, ey .))r—s—l):Zx12+(f—F(x))2+g(y)

where g is some function which depends only on yy, ya, ..., Yy—s—1-
At each point (u, v)edP there are nonnegative numbers o(u, v) and B(u, v)
such that adf+ fdr=0.

Claim. There are no characteristic covectors of type (d) in the region |u|<e,
|v|<e. If A is a characteristic covector of type (d), arising from a point
ze(r, f) 1 (OP) N Y, then the slope of ker () is:

—a_ f(O)—fr0)-M
()~ fn()

o

p
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1 1\/0F(x)
M—<xi)< 0x; )

Proof of claim. By Lemma 6.7, 6.8, and the assumption 8.1(d) (that (26, g)e A8,
the covectors df (z), dfn(z), and dr(z) are linearly independent provided | f(z)| <&
and | fn(z)| <e. Thus there are no characteristic covectors in the shaded square.
By Sect. 1.10, 1 is a characteristic covector of the projection of a type (4) stratum
if adf (z)+ fdr(z) is a multiple (which we may take to be 1) of adfr(z)+bdf(z).
Thus,

where for some i,

adf+ B0, x;dx;+(f—frn)df —dfn)+dg]l=adfn+bdf

where dfn=>

JF .
dx;. Equating coefficients of df, and coefficients of dx; we
obtain: Xi

0
dg=0
a+p(f(2)—fr(z)=b 1)

OF OF
Bxi—B(/—fm) 5 —=a 5

(®2).
Dividing equations (22) by (?1) gives the desired formula. []

The following diagram illustrates the possible values for the slope of ker (4),
where 4 is a characteristic covector of the map (f=, f): V—R? which arises
from strata of V other than the stratum X which contains the critical point
(i.c., covectors of types (c) and (d)). There are no characteristic covectors in
the shaded regions and allowable slopes are designated by line segments in
the circles.

The rounding
takes place here.

®p 9

Kernels of characteristic covectors
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Moving the wall. The homeomorphism between Z(D,) and Z (D) is obtained
by moving the wall in the first picture B,. Let B,(t) denote the following set:

B(t)={(u,v)eR?*|v>—¢ and (v+e&)=(u+3e)t/(1—1)}.

\ i
,
,
N | )
,
,
,

.
.

Moving the wall from diagram D, to diagram D,

As t varies from 0 to 1 we obtain a one-parameter family of stratified spaces
which interpolate between P,(0) and P,(1). We must check that the corresponding
diagrams are allowable, i.e., that at no time ¢ is any stratum of B,(t) contained
in the kernel of any characteristic covector of the projection

(f, fo)|V: V>R2
The proposition and claim above guarantee that this wall motion is allowable
because (a) the point (—3¢/4, —e) is not a characteristic point, and (b) in the
region of the moving wall, the nondepravity condition guarantees (Sect. 2.5.3)
that M <0, so the slope of ker (1) is positive, for any characteristic covector A.

8.5.3. We want to get from Z(D3) to Z(D,) by moving the wall. Let E(¢)
denote the following one parameter family of pictures which interpolate between
the first picture P,(0) in diagram D, and the first picture B,(1) in diagram Ds:

P(t)={(u, v)eR?*|u> —3¢/4, and v>1t(u+3¢/4)—e}.

Moving the wall from diagram D; to diagram D,
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We now verify that this motion of the wall is allowable, i.e., that no stratum
in P(t) is contained in the kernel of any characteristic covector of the map
(fn, f): V—>IR? (where V=(r, /)" *(B)). By lemma Sect. 6.8 (and assumption
8.1(d)) there are no characteristic covectors in the region | f|<e and |fzn|<e.
In the region of the moving wall, the claim and proposition of 8.5.2 above
imply that the slope of the kernel of any characteristic covector 1 is not in
the interval (0, 1] (since >0, >0, f— fr <0, fr>0 and, by 2.5.3, M>0). []

8.5.4. Unrounding the corner. This is the same argument as 8.5.1.

8.5.5. The sets Z(Ds) and Z(Dg) are identical.

8.5.6. The homeomorphism between Z(D,) and Z(D-) is obtained by moving
the wall through a one-parameter family of replacements P,(¢) for the first picture
as follows:

fr

Moving the wall from diagram D to diagram D,
These diagrams are allowable because (by Lemma 6.7 and 6.8) there are no

characteristic covectors of the map (f=, f): V—IR? in the region | f | <e, | fr| <e,
where V=(r, )" ' (B)={zeZ|r(z) <26}

8.5.7. Move the wall in the first picture P, as follows:

_ 2,0 26 & e _w=g=1 &
H,(t)—{(u,v)elR |u> 34,u gSvsutgus . +34 .

.
p
.
.
.
p
.
. f
.
.
’ V
.

Moving the wall from diagram D, to diagram Dy
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By Corollary 6.4, the covectors df(z) and dfn(z) are linearly independent for
all ze Z(D,) (assuming n(z) % p). If r(z) =24, then (by Lemma 6.7 and Assumption
8.1(d)) the covectors dr(z), df(z) and df=n(z) are linearly independent. Thus,
each diagram in this one-parameter family is allowable, and Lemma 4.3 (moving
the wall) gives the desired homeomorphism between Z(D,) and Z(Dy).

8.5.8. The sets Z(Dg) and Z(D,) are identical since r=p+rm.

8.5.9. A homeomorphism between Z(Dy) and Z(D,,) is given as follows:
first refine the stratification of Z(D,) by adding a “fake” stratum of the form

Yn{zeZ|p(z)=9, rn(z)=0}

whenever Y is a stratum of Z, ie., by adding a zero-dimensional stratum
(8, 9)eR? to the second picture B, in diagram D,. The resulting diagram Dj
is allowable, because by Lemma 6.11 (and Assumption 8.1(d)) for any ze Z(D,),
if 7 (z) = p, then the covector df (z), df n(z), d p(z) and dr=n(z) are linearly indepen-
dent when restricted to T,Y (where Y is the stratum of Z which contains the
point z). Now move the wall as follows: consider the one-parameter family
of diagrams

B()={(u, v)eR?|v<25—u and v<(t—1)(u—9)+d}.

p

Vi1 /777

rm

Moving the wall from diagram Dy to diagram D,

By Lemma 6.9 (and Assumption 8.1(d)), if <p(z)<20 and d <r(z)<29, then
adp(z)+bdrn(z), df (2), and dfn(z) are linearly independent provided a0 and
7(z)# p. Thus, the diagrams Dg(t)=(F,, B,(t)) are allowable and Lemma 4.3 (Mov-
ing the wall) applies, giving the desired homeomorphism.

8.5.10. The final wall motion is given by the one-parameter family of pictures
B(t)={(u, v)eR?*|v<5/2 and u<(t—1)(v—05/2)+5/2}

p

rm

LIARAYRARRY

Moving the wall from diagram D,, to diagram D,
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which interpolate between D,, and D;,. According to Lemma 6.10 (and
Assumption 8.1(d)), if 6<rm(z)<26 and if <r(z)<26 and | f(z)| <¢, | fr(z)| <e,
then the covectors adp(z)+bdr(z), df (z) and df=(z) are linearly independent
(provided a>0 and b>0). Thus, the diagrams D, (t)=(E, B(t)) are allowable
so we can move the wall as illustrated.



Chapter 9. Relative Morse Theory

9.0. Introduction

The reader who is interested only in Morse theory for singular spaces or for
nonproper Morse function may skip this chapter. We will consider the Morse
theory of a composition

n f
X—Z—R

which will eventually be used (in Part II, Sects. 5.1 and 5.1*%, with Z=CP")
to prove a conjecture of Deligne [D1] concerning Lefschetz hyperplane theorems
for a variety X and an algebraic map n: X — CIP". We will approximate the
function f by a Morse function, although the composition fr: X - R is not
Morse (or even Morse-Bott) in any reasonable sense. All attempts to prove
Deligne’s conjecture by approximating fn by a Morse function seem to end
in failure because one loses curvature estimates on the Morse index of fz.
Instead, we are forced to “relativize” the Morse theory of f. Our main resuit
is stated in Sect. 9.8.

9.1. Definitions

Suppose X =M’ and Z<= M are Whitney stratified (closed) subsets of smooth
manifolds M’ and M. Let n: X — Z be a proper surjective stratified map (Sect.
1.6), i.e., m is the restriction of a smooth map #: M'—> M and = takes each
stratum of X submersively to a stratum of Z. We will assume that the strata
of X are indexed by a partially ordered set & Let f: Z — IR be a Morse function
(Sect. 2.1) with a nondegenerate critical point (or a smooth function with a
nondepraved critical point) peZ. The preimage =~ !(p) is called a critical fibre
and v=/f(p) is called its critical value. As in Sect. 3.1 we consider the following
spaces:

X.,={xeX|fn(x)<a)
X ,={xeX|fr(x)<a}
X p={xeX|a<fr(x)<b}.

These spaces are S-decomposed by their intersection with the strata of X. If
a and b are regular values, then the above spaces are canonically Whitney
stratified so that the a- and b-level sets of f= are unions of strata.
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9.2. Regular Values

x ! . . .
Suppose X — Z—— 1R is a relative Morse function on X. Let [a, b]cR
be a closed interval which contains no critical values of fm. Then, there is
an S-decomposition preserving (in fact, a stratum preserving) homeomorphism

h X, =X,

Proof. The same proof as Sects. 3.2 and 7.2 works in the relative case because
if f is a submersion over the interval [a, b] then so is fr. [

9.3. Relative Morse Data

For a relative Morse function X —— Z —~f—> IR we define the relative local Morse
data (A", B) over a critical point peZ to be the preimage (under =) of the
local Morse data (A4, B) of Sect. 3.3. Similarly we define the relative normal
Morse data, relative link IF, relative (upper and lower) halflinks (#**, /"7) at
p to be the preimage (under n) of the normal Morse data, the link of p in
Z, and the (upper and lower) halflinks of p in Z. Each of these spaces is %~
decomposed by its intersection with the strata of X. They are also canonically
Whitney stratified by a stratification which refines the &-decomposition.

Remark. In each case these definitions involve a choice of Riemannian metric
on M (the ambient analytic manifold which contains Z), a choice of an £¢>0
and a 6>0 and a choice of a normal slice N=M through the stratum of Z
which contains the critical point p. However, these choices do not involve data
or geometry on X — they only involve geometry on Z.

9.4. Local Relative Morse Data is Morse Data

The local relative Morse data for fn at p is independent of the choice of ¢
or d, or the Riemannian metric. Furthermore, local relative Morse data is Morse
data for the map =, i.e., there is a (¥-decomposition preserving) homeomorphism

XStH-ag(Xsu—s)UB"(An)'

Proof. The proof is the same as the proofs of Proposition 3.5.3. In Sect.
7.4 a map F: Z—R? is constructed, together with a stratified pair (Y, W)cR?
such that F~1(Y, W) is local Morse data for Z, and such that any two choices
F~1(Y,, Wy) and F~!(Y,, W)) for local Morse data are connected by a one-
parameter family F~'(Y;, W) of local Morse data. For each te[0, 1] the map
F is transverse to each stratum of Y, and W,. Thus, the map (Fon): X —»IR?
is also transverse to each stratum of Y, and W,. Thus, Lemma 4.3 (Moving
the wall) applies to this map as well, giving an Fdecomposition preserving
homeomorphism between the local relative Morse data,

(Fem)™! (Yo, Wo) and (Fom)™'(Y;, W)).
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Similarly, the proof (Sect. 7.6) that local Morse data is Morse data works also
in the relative case: we only observe that the map F:Z —IR? is transverse
to each stratum of a certain one-parameter family of Whitney stratified sets
Y,, and so the map (Fom): X -»IR? is also transverse to each stratum of Y.
Thus, Lemma 4.3 applies to the composition Forx, giving a homeomorphism
between

(Fom) ™' (Yo)=(X <p-o) Up<(4") and (Fom) "(Y)=Xcps,. O

9.5. The Main Theorem in the Relative Case

If f: Z >R is a Morse function, or a function with a nondepraved critical point
peZ, and if n: X — Z is a surjective stratified map, then the local relative Morse
data for the composition (f7): X - R is homeomorphic (by an S#-decomposition
preserving homeomorphism of pairs) to the product

(tangential Morse data of f) x (relative normal Morse data for fn)

where the first factor is trivially decomposed as a single piece and the second
factor is #-decomposed by its intersection with the strata of X.

Proof. The proof is a relative version of Sect. 8. The characteristic covectors
of a map F: Z—R? are the same as the characteristic covectors of the map
(Fom): X - R?, so each of the moving wall arguments in Sect. 8 may be applied
directly to X. [

9.6. Halflinks

Relative normal Morse data and relative upper and lower halflinks are well-
defined (i.e., are independent of the choice of Riemannian metric on M, normal
slice through the critical point peZ, and of the choice of ¢ and §), and depend
only on the differential df(p) of the Morse function f. The same holds when
p is a nondepraved critical point of f.

Theorem. The boundaries of the relative halflinks, 6¢™* are homeomorphic
by some stratum preserving homeomorphism. The union

(™) Uppn (™)
is homeomorphic (by an ¥-decomposition preserving homeomorphism ) to the rela-
tive link I*=n"1(L) of the stratum containing the point p.

Proofs. The proofs of these theorems are simply relative versions of the
proofs found in Sect. 7. As in the preceding sections, we need only observe
that if F: Z - R? is transverse to some Whitney stratified subset Y= IR?, then
sois the map (Fom): X »R2. [J
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9.7. Normal Morse Data and the Halflink

Define the special fibre p*=n"'(p). Let N™ denote the (relative) normal slice
at p. Choose ¢>0 and 6 >0 so that the point (9, ¢) is an element of the fringed
set A, which was defined in Sect. 6.5. For notational simplicity we suppose
v=f(p)=0. Let
U=n"Y(NnBs(p)nZ) 0oU=n"'(NnoBs(p)n2Z).
By [G2] there is a (weak) deformation retraction ¢: U — p”™. Construct the rela-
tive halflink with respect to this choice of ¢ and 4, i.e.,
("t =n"YZnBs(p)nf (£e)

Definition. The specialization map ¢: £** — p™ is the restriction of ¢ to the

halflink.

Proposition. The relative normal Morse data for frn has the homotopy type

of the pair ~ B
(cyl(Z™™ - p"), £77)

where cyl denotes the mapping cylinder of the specialization map ¢.

Proof. 1t is easy to see that U—p” is homeomorphic to dU x (0, 1]. The
map ¢ |0U: 0U — p™ is homotopic to the inclusion U — U. Therefore, the fol-
lowing triples are homotopy equivalent:

(cyl(@U »p"), 0U, 0Unn™ ! f 71 (—~ 0, —¢))
and (%)
(U,0U,0Unn™ ' f "1 (—o0, —e)).
Now use the same moving wall argument (and notation) as in Sects. 7.8 and
7.9 to find homeomorphisms as follows:
Normal Morse data=n"! F~!(Box (J, €), Bottom(J, ¢))
~n~! F~1(Halfspace(5), RS~ (3, &)
(U, 0Unn 1 f (=00, —¢)
~(eyl(@U - p™), 0Unz ™! f 71 (— o0, —¢))
=(cyl(n ' F ' (RS* URSURS )= p™), n ' F"1(RS"))
=(cyl(r~! F~!(TopuRS U Bottom) — p®), z~ 1 F~ ! (Bottom))
=eyl(m™ (¢ Vot ) m ) T H(ET)) (x+)
However, the same homotopy argument as in Corollary 3.11 shows that this
pair has the same homotopy type as the pair

eyl (¢ ) > ), n"(¢7). O

Remark. It can be shown that the homotopy equivalence (*) is a homeo-
morphism; however, it does not preserve the ¥~decomposition of the spaces
involved unless the map = is finite (i.e., the fibres of n consist of finitely many
points).



118 Part I. Morse Theory of Whitney Stratified Spaces
9.8. Summary of Homotopy Consequences

Suppose Z is a Whitney stratified space, n: X — Z is a proper surjective stratified
map, f: Z—>R is a proper Morse function, and [a, b]=R is an interval which
contains no critical values except for a single isolated critical value ve(a, b)
which corresponds to a critical point p which lies in some stratum S of Z.
Let 2 be the Morse index of f | S at the point p.

Theorem. The space X _,, has the homotopy type of a space which is obtained
from X _, by attaching the pair

(D, 0DM) x (eyl (™™ —m~ ' (p)), £™7).

Proof. By Sect. 9.4, the local Morse data is Morse data. By Sect. 9.5, this
is a product of normal and tangential Morse data. By remark 3.5.4, the tangential
Morse data has the homotopy type of the pair (D*, D*). By Sect. 9.7, the normal
Morse data has the homotopy type of the pair (cyl(#"~ —» =~ Y(p)), £*”).



Chapter 10. Nonproper Morse Functions

It is often necessary to consider a “Morse function” f: X - R which is not
proper, but which can be extended to a proper function f: Z—R where Z
contains X as a dense open subset. For example, Z may be a compactification
of some noncompact algebraic variety X < CIP", and f may be a smooth function
defined on the ambient CIP". We shall assume that it is possible to find a stratifi-
cation of Z so that X < Z is a union of strata. Thus, X is obtained from Z
by removing certain strata. The main theorems (Sects. 3.7, 3.10, 3.11) continue
to apply to X, because we simply remove the same strata from both sides
of the homeomorphisms. Since these homeomorphisms were originally proven
to be decomposition preserving, it is a triviality that they induce homeomor-
phisms on unions of pieces in the decomposition. However, Proposition 3.2
is no longer strictly true in this context unless we also consider the effect on
X ., of critical values v which correspond to critical points pe Z which do not
lie in X. Our main theorems also apply to these “critical points at infinity”.
For all the applications which we consider, X will be an open dense subset
of Z. However, the results of this chapter apply to any union of strata X cZ,
and so we will not even assume that X is locally closed in Z.

10.1. Definitions

Throughout this chapter, Z will denote a Whitney stratified (closed) subset of
some smooth manifold M. The strata of Z will be indexed by a partially ordered
set & We will be interested in applying Morse theory to a subset X = Z which
is a union of strata corresponding to a partially ordered subset 7 — ¥, i.e.,

X=Zn|T|= S
ied
where {S;} are the strata of Z (i.e, the pieces of the S~decomposition: see Sect.
1.1).

For each stratum S of Z we define the link of S in X to be the intersection
of X with the link of S in Z. This is well-defined whether or not S is a stratum
of X.

We fix a smooth function f: M - R whose restriction to Z is proper and
has a nondepraved critical point pe Z with critical value f(p)=0. Such a critical
point peZ may be one of two types: an “ordinary” critical point (peX) or
a “critical point at infinity” (peZ — X).
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As in Sect. 3, we use the symbol X _, to denote the space X nf~*(— o0, a],
together with its decomposition into strata, indexed by 7.

10.2. Regular Values

Suppose [a, b] =R contains no critical values of f: Z - R.
Theorem. There is a T-decomposition preserving homeomorphism

X ,=2X .

Proof. By Proposition 3.2 there is an #-decomposition preserving homeo-
morphism Z _,~Z _,. This restricts to a homeomorphism

X =T\ NZ =T |NnZpy=X_y. [

10.3. Morse Data in the Nonproper Case

Let S denote the stratum of Z which contains the critical point p. Let (J;, K})
denote the local Morse data (resp. normal Morse data, resp. normal slice, resp.
upper or lower halflink) for f: Z—IR at the point p. (This involves a choice
of a distance function r, an ¢>0, a 6>0 and a normal slice N. See Sects. 3.4,
3.5, 3.6, 3.9, 7.3, 7.4) Define the local Morse data (resp. normal Morse data,
resp. normal slice, resp. upper or lower halflink) for f|X: X ->IR to be the
intersection
(Ux, Kx)=Uz, KN |T |=(XnJz, X " Kp).

Since (J;, K;) is an F~decomposed space, the pair (Jx, Kx) is canonically -
decomposed.
We define the tangential Morse data (A4, B) for f: X - R to be the tangential

Morse data
(4, B=SnB;(p)n(f "' [v—&,v+el, f 1 (v—¢))

for the function f: Z—IR (where ¢>0 and >0 are chosen as in Sects. 3.3
or 7.3). Tangential Morse data is a subset of a single stratum S, so it has
a trivial decomposition.

10.4. Local Morse Data is Morse Data

Let (Jy, Kx) denote the local Morse data for X at the critical point p.

Theorem. For ¢>0 sufficiently small, there is a F-decomposition preserving
homeomorphism
X =X Uk, Jx
Proof. By Sect. 7.6 there is an #-decomposition preserving homeomorphism

Zo =7, Uk, Jyz
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and this restricts to the desired homeomorphism on those pieces of the decompo-
sition which are indexed by the subset . [

10.5. The Main Theorem in the Nonproper Case

Let (Jx, Kx) denote the local Morse data for the map f: X - R at the critical
point p. Let (4, B) denote the tangential Morse data at p, and let (P, Q) denote
the normal Morse data for X at p. Then there is a J-decomposition preserving

homeomorphism
(JX9 KX);(A9 B) X (I:;(’ QX)

Proof. By Sects. 3.7 and 8 there is an $-decomposition preserving homeo-
morphism
(Jz, K2)=(4, B)x(E;, Q)

where (J;, K;) (resp. (P, Q) denotes the local (resp. normal) Morse data for
f:Z—-R at the point p. This homeomorphism restricts to a homeomorphism
of those pieces of the decomposition which are indexed by 7. [

10.6. Halflinks

Let 4%, /x, 0/x denote the upper halflink, lower halflink, and boundary of
the halflink in X of the point p and let Ly denote the link of the stratum
S in X at the point p (these are the intersections with X of the upper halflink,
lower halflink, boundary of the halflink, and link of S in Z).

Theorem. There is a J-decomposition preserving homeomorphism
Ly 24y Ugp lx -

Proof. By Sect. 7.7 there is an S-decomposition preserving homeomorphism
L=t Ooply

which therefore restricts to the desired homeomorphism on Ly. []

10.7. Normal Morse Data and the Halflink

Throughout this section N will denote a normal slice through the critical point
p, and 6>0 will be fixed so that Bs;(p)n N is compact and 0B;(p) is transverse
to each stratum of N. Let 4 =¢;* n X denote the halflink for X at the point p.

Proposition 1. If peX, then the normal Morse data has the homotopy of
the pair (cone (), £x ).

Proof. This follows from Sects. 3.11.2 and 3:11.3. The deformation retraction
in Sect. 3.11.3 is Y-decomposition preserving, so it restricts to a deformation
retraction on those pieces of the #~decomposition which are indexed by elements
of 7<% O
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Now suppose that peZ— X is a critical point at infinity. Since the homeo-
morphism in Sect. 3.11 preserves the %-decomposition, we see by removing
the cone point that the normal Morse data for f|X at p is homeomorphic
to the pair

(X Vo fx > £ ) x (0, 1].

It follows from the excision property for Morse data (Sect. 3.3) that the pair
(4, 04%) is homotopy Morse data (see Sect. 3.3) for the normal slice N N B,(p),
even though it is not homotopy equivalent to the normal Morse data. Neverthe-
less, for the purpose of understanding homotopy type the normal Morse data
can be replaced by the pair (/¢ , /¢ ), and this pair is more convenient to
use. We make this explicit in the following definition: Any pair (P, Q) which
is homotopy equivalent to the pair (¢4, 84 ) will be called homotopy normal
Morse data.

Proposition 2. If peZ— X and if (P, Q) is homotopy normal Morse data and
(A4, B) is tangential Morse data for f at p, then the pair

(4, B)x (P, Q)
is homotopy Morse data for f | X at p.

Proof. By Sects. 3.11 and 10.5, the local Morse data for f| X at p is homeo-
morphic to the pair
(4, Byx (¢x Wory x, £x ) % (0, 1].

Thus, (by the excision property for Morse data and the fact that 0y is collared
in /) the pair
(4, Byx(¢x, 044 ) (0, 1]

is Morse data for f at p. Thus, (4, B)x (¢, 0¢¢) is homotopy Morse data
for f| X at p.

10.8. Summary of Homotopy Consequences

Suppose Z is Whitney stratified space, and X <Z is a union of strata of Z.
Suppose f: Z—IR is a proper Morse function, and [aq, b]=R is an interval
which contains no critical values except for a single isolated critical value ve(a, b)
which corresponds to a critical point p which lies in some stratum S of Z.
Let A be the Morse index of | S at the point p.

Theorem. If peX, then the space X ., has the homotopy type of a space
which is obtained from X _, by attaching the pair

(D* 0D* x (cone(¢y ), £x ).

If p¢ X then the space X _, has the homotopy type of a space obtained from
X _, by attaching the pair

(D%, DY) x (¢x, 04%).
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Proof. If pe X then, by Sect. 10.4, the local Morse data is Morse data. By
Sect. 10.5, this is a product of normal and tangential Morse data. By Remark
3.5.4, the tangential Morse data has the homotopy type of the pair (D? dD%.
By Sect. 10.7, the normal Morse data has the homotopy type of (cone(£7), £ ™).
Thus, the pair (D%, 6D,) x (cone (£ ~), /) is homotopy Morse data.

If p¢ X, then by Sect. 10.7, the pair (D*, 0D*) x (¢, 8¢ *) is homotopy Morse
data.

Thus, the space X _, has the homotopy type of the adjunction space
X ., u(homotopy Morse data) (for some choice of attaching map). []



Chapter 11. Relative Morse Theory
of Nonproper Functions

This section is the common generalization of Chapters 9 and 10.

11.1. Definitions

We shall assume Z is a closed Whitney stratified subset of some smooth manifold
M, and that f: M >R is a smooth function such that f|Z is proper and has
a nondepraved critical point peZ with isolated critical value f(p)=0. Let S
denote the stratum of Z which contains the point p.

Let X be a Whitney stratified set and let 7#: X — Z be a stratified surjective
proper map (see Sect. 1.6), ie., @ takes each stratum of X submersively to a
stratum of Z. Let us suppose that the strata in X are indexed by some partially
ordered set & and that X=X is a union of strata of X, corresponding to
a partially ordered subset J <& We wish to consider the Morse theory of
the composition (fon): X » R (where n= 7| X).

XcX

11.2. Regular Values

Suppose the closed interval [a, b] contains no critical values of the map f: Z - R.
Theorem. There is a J-decomposition preserving homeomorphism X ., =X _,.

Proof. By Sect. 9.2, the homeomorphism X _,~ X _, preserves the #-decom-
position. []

11.3. Morse Data in the Relative Nonproper Case

Let (J;, K;) denote the local Morse data for the map f: Z—>IR at the point
p. Let (B;, Q) denote the normal Morse data, (4, B) denote the tangential Morse
data, and £ denote the halflink for Z at the point p. By Sect. 9.3 each of
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the preimages
ﬁ_l(‘]la KZ): ﬁ_l(PZa QZ): ﬁ_l(/Z+s a/Z_'—) ﬁvl(/Z_a a/ZA)

are canonically ¥~decomposed, and the homeomorphisms (Sects 9.4, 9.5, 9.6)
are S-decomposition preserving.

Definition. The relative local Morse data (J§, K%) (resp. the relative normal
Morse data (BF, Q%), resp. the relative upper halflink (£3*, 0£%")) is defined by:

U5, KR ="' (o), 1™ H (K =(X N7~ (Jp), X nt” ' (Kp)
(B, Q0 ="' (B) n (@) =(X N7~ '(B), X "7t~ 1(Qy)
(X", 0 )=~ (&), n @ N =X na™ ' (4), X 07 1 (047)).

11.4. Local Morse Data is Morse Data

Let (J§, K%) denote the local Morse data for X at the critical point p.

Theorem. For ¢>0 sufficiently small, there is a J-decomposition preserving
homeomorphism
<s—(X< e)UK’)‘((JX)

Proof. This follows immediately from Sect. 9.4 and the fact the homeomor-
phism preserves the #~decomposition. []

11.5. The Main Theorem in the Relative Nonproper Case

Let (JE, K%) denote the local Morse data for the map f=: X - IR at the critical
point p. Let (4, B) denote the tangential Morse data at p, and let (Pf, Q%)
denote the normal Morse data for X at p. Then there is a J-decomposition
preserving homeomorphism

(x, KX =(4, B) x (P, Q%)

Proof. This follows immediately from Sect. 9.5 and the fact the homeomor-
phism preserves the S~decomposition. []

11.6. Halflinks

Let 3%, /2, 0/F denote the upper halflink, lower halflink, and boundary of
the halﬂlnk in X of the point p and let L% denote the link of the stratum
S in X at the point p (these are the intersections with X of the relative upper
halflink, relative lower halflink, boundary of the relative halflink, and relative
link of S in X).

Theorem. There is a T -decomposition preserving homeomorphism

Ly =(57) Vorg (6X7):
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Proof. This follows immediately from Sect. 9.6 and the fact that the homeo-
morphism preserves the S-decomposition. []

11.7. Normal Morse Data and the Halflink

The statements in Sect. 9.7 do not immediately generalize to the case of a
nonproper Morse function because the homotopy equivalence in Sect. 9.7(x)
does not preserve strata near 7~ ! (p). However, if the fibre 7~ !(p) is contained
in either X or X — X, then we obtain results analogous to those of Sect. 10.7.

Theorem 1. If X is locally closed in X and if the whole fibre @~ !(p) is con-
tained in X, then the normal relative Morse data at p has the homotopy type

of the pair (come (£3*), £5%).
Proof. The projection n: X — Z is proper near the fibre 7~ !(p), so the results
of Sect. 9.7 apply. [

If T '(p)c X —X (ie, if p is a critical point at infinity), then the normal
Morse data can be replaced by the pair (", /7). We make this explicit in
the following definition and proposition: Any pair (P, Q) which is homotopy
equivalent to the pair (/g", 8/%) will be called homotopy relative normal Morse
data.

Theorem 2. Suppose 7~ !(p)< X — X, that (P, Q) is homotopy relative normal
Morse data at p and (A, B) is tangential Morse data for f at p. Then the pair
(4, B) x (P, Q) is homotopy Morse data for f at p.

Proof. If we remove the fibre over p in the argument of Sect. 9.7, we obtain
a stratum preserving homeomorphism between the normal Morse data for
for: X >R, and the pair
(™t Upn ™, ™) x (0, 1]

which therefore restricts to a homeomorphism between the normal Morse data
for fomr| X: X >R at the point p, and the pair

F" Vorg 63, 457 ) % (0, 11.
Thus (by the excision property for Morse data, Sect. 3.3), the pair

(4, Byx (£g*, 0¢5)x (0, 1]
is Morse data for fowr| X: X - R at p, so the pair

(4, Byx (457, 047)

is homotopy Morse data at p. [

11.8. Summary of Homotopy Consequences

Suppose Z is a Whitney stratified space, and 7: X - Z is a proper surjective
stratified map. Let X =X be an open dense subset which is a union of strata
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of X. Suppose f: Z— R is a proper Morse function, and {a, b] =R is an interval
which contains no critical values except for a single isolated critical value ve(a, b)
which corresponds to a critical point p which lies in some stratum S of Z.
Let A be the Morse index of f | S at the point p.

Theorem. If @~ '(p)= X then the space X _, has the homotopy type of a space
which is obtained from X _, by attaching the pair

(D?, 0D x (cyl(¢™~ >~ (p)), £™7).

If 77 (p)= X — X, then the space X _, has the homotopy type of a space obtained
from X _, by attaching the pair

(D%, ODY) x (&3 F, 043 7).

Proof. By Sect. 11.4, the local Morse data is Morse data. By Sect. 11.5,
this is a product of normal and tangential Morse data. By Remark 3.5.4, the
tangential Morse data has the homotopy type of the pair (D* 6D%). By Sect.
11.7, the normal Morse data has the homotopy type of either (cyl(£™~
-7 Yp),£*") or (¢FF,0¢F%), depending on whether 7 !(p)cX or
i lpcX—-X. O



Chapter 12. Normal Morse Data of Two Morse Functions

In this chapter we analyze the normal Morse data at a critical point peZ
of a function f;: Z —» R under the assumption that there exists a second function
f2: Z >R such that the map (f;, f,): Z —R? has a nondegenerate critical point
at p (see below).

Our main application of this section is to the situation where Z is a complex
analytic variety and f; is the real part of a complex analytic function f=f;
+ify: Z— C. However, the same situation occurs when Z is a real analytic
variety such that the set of degenerate characteristic covectors at the point
p has codimension >1 in the space of characteristic covectors (see Sect. 1.8).
We find that in this case the halflink ¢ is a product,

¢=¢'x[0,1]

that there is a “monodromy” homeomorphism u: ¢’ — ¢, and that the link L
of p and the normal Morse data can be completely described in terms of this
auxiliary space /', using a stratified generalization of the Milnor fibration theo-
rem [Mi2]. If f; is the real part of a complex analytic function f, then the
space ¢’ is called the complex link, and will be the main object of study in
Part II.

12.1. Definitions

Throughout this chapter we will fix a smooth manifold M, a closed Whitney
stratified subset Z<= M, a point peZ which lies in some stratum S of Z, a
normal slice N=N'nZ (where N’ is a smooth submanifold of M which meets
the stratum S transversally in a single point {p}). We suppose the strata of
Z are indexed by some partially ordered set . We also fix smooth functions
f1 and f, which are defined on M, and whose restriction to Z is proper. We
shall use the notation f=(f}, f,): Z —IR2 We suppose that p is a critical point
of f, ie., df (p)(T,S)=0, and that this critical point is nondegenerate in the
following sense: for every generalized tangent space Q at the point p, we have

@fi(p), d12(p)(Q)=R?

except for the single case Q=T,S. We fix a Riemannian metric on M, and
let r(z) denote the square of the distance between the points p and z.
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The following two sections (12.2 and 12.3) contain technical lemmas on
choices of ¢ and J, which will be used in the definition of the complex link.
The main definitions and results continue in Sects. 12.4 and 12.5.

12.2. Characteristic Covectors of the Normal Slice for a Pair of Functions

Throughout this section, N=N'n Z will denote a normal slice through p.

Definition. If AcR* xIR* is a fringed set of type O0<v<u<1, we shall
use the symbol 4* to denote the subset of R* xR x R which is given by

A* ={(u, v, v,)eR* xR?|(u, |/ (v] +v3)e 4}.

Lemma. (1) There exists a fringed set AcR* xIR* such that the map
(r, f1, f2): N>R xIR? has no characteristic covectors in the region A¥.

(2) There exists ro>0 such that if A=(u,v,,v,, adu+bdv,+cdv,) is a
nonzero characteristic covector of the map (r, f1, )| N, and if O<u<r, then
— o0 <a/(bv, +cv,)<0.

Remark. Property (2) says that if a plane P is the kernel of the characteristic
covector 4, then P intersects the r axis at some point (w, 0, 0) such that w<u.

Proof of 1. The proof is similar to that in Sect.’6.2. Since the set of characteris-
tic covectors is closed in T*IR3, the existence of a set A¥ with no characteristic
covectors is equivalent to the statement that there are no characteristic covectors
over any point (4, 0)eR xIR? for u sufficiently small. Suppose this were false,
ie., that there is a sequence of points p,e N~ f ~!(0) which converge to p, such
that dr(p;), df;(p;), and df,(p;) are linearly dependent when restricted to the
stratum Y of N which contains the point p;. This means that df; (p;) and df,(p;)
are linearly dependent when restricted to T, Ynkerdr(p,). By restricting to a
subsequence if necessary, we may suppose that the points p; are all contained
in the same stratum Y of N, that the tangent planes at p; converge to some
limiting plane 7, and that the secant lines #;=pp; converge to some limiting
line 7. ,

We may assume that Y >S. By Whitney’s condition B,

t=1lim [(,® T,, Y nker dr(p;)]

i— oo

and this limit is a perpendicular direct sum. It follows that the rank of (df; (p),
df,(p))| 7 is less than or equal to one, because

(@) df,(p)()=df2(p)(¢)=0since f(p)=f(p) and

(b) dfi(p) and df,(p) are linearly dependent when restricted to
lim (T,, Y nker dr(p;)).

This contradicts the assumption that (df; (p), df,(p)) is nondegenerate.

Proof of 2. (This proof follows the method of Step 3 in Sect. 6.2.) Assume
that the second part of the proposition is false, ie., that there is a sequence
of points p,eN converging to-p and a sequence of numbers a;, b;, ¢;eR such
that the covector
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a;dr(p)+b;df,(p)+c;df>(p)

vanish on the tangent spaces T, Y;, (where Y is the stratum of N with contains

the point p;) such that
a;/(b; f1(p)+c; f>(p)) =0.

Replace the sequence {p;} by a subsequence so that all the points p; are contained
in the same stratum Y of N, so that the secant lines pp; converge to a limiting
line Z, so that the tangent planes T, Y converge to a limiting plane 7, and
so that the angle 6,=arctan (b;/c;) converges to some limiting angle 6. Multiply-
ing the numbers (a;, b;, ¢;) by a factor, we may also assume that ;>0 for all
i. Let v;=(p;—p)/|p;—p|. These converge to a limiting unit vector vet. Consider
the equation

a;dr(p)(vy) +b;df, (p)(v)+c;df2(p) (v) =0.
The first term is clearly positive (since p; = p), so
(sin 8)) df; (p))(v;)) + (cos 8) d f,(p)(v) <O.
Taking the limit,
(sin 8) df, (p)(v) + (cos 8) df,(p) (v) <O0.

Since (f;, f,) is nondegenerate, this quantity does not vanish, i.e.,
0> (sin 0) df; (p)(v) +(cos 0) d f; (p) (v) = lim (b; f, (p) +c; f>(p))/D

where
D=|p,—p| |/ (b} +c}).

Thus, for sufficiently large i, we have b, f;(p;)+¢; f>(p;) <0, which contradicts
the assumption. []

12.3. Characteristic Covectors of a Level

We would like to have an understanding (similar to that in Sect. 12.2) of the
characteristic covectors of the map

(r )INafi m): Nofi (i) >R

Unfortunately, estimates as in Sect. 12.2 do not hold for such a map unless
we choose || to be extremely small, and unless we also exclude a neighborhood
of the origin in IR,

Lemma. Fix (0, e)€ A such that 6 <r, (where A and ry were found in Lemma
12.2). There exists n>0 with the following property: If A=(u,v,,v,, adu
+bdv,+cdv,)e T*R? is a characteristic covector of the map (r, f1, f,): N> R3
and if 0<|u| <6, |vy| <n, and vi+v3 =& then a/cv, <O.

Proof. Step 1. We consider the special case v, =0. If 1 is a characteristic
covector, then there is a point ge N such that adr(q) +bdf;(q)+ cdf,(q) vanishes
on T, Y. By Sect. 12.2 this implies (since u = 0)
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a/(bf;(q)+cf2(q) <O.
But f;(q)=0, so a/cf,(q) <0, as desired.

Step 2. Sublemma. Let g: R®* >R denote the projection g(u, v,, v,)=v,. Let
n: T*R3—IR3 be the projection. Suppose K is a compact subset of R3, V
is a closed conical subset of unit vectors in T*IR?3, and that for any

A=W, 0,v,,adu+bdv,+cdvy)en (g () nK)nV

we have
ajcv, <0.

Then there exists 7, >0 so that for any ne[ —#,, 110] and for any
A=(u,n, vy, adu+bdv, +cdvy)en (g 1 nK)nV
we have a/cv, <O0.

Proof of sublemma. The sublemma is easily proven by contradicton, using
the fact that K is compact and V is closed.

Step 3. Let V denote the closed subset of T*R? consisting of all unit charac-
teristic covectors of the map

(raflafl)lN: N_>IR3
Let K'< N denote the compact set
K'={zeN|r(z)<d and f,(2)* + f,(2)* =&}

Let K denote the compact subset of R3, K =(r, f, f>)(K'). Note: p¢ K.
In step 1 we verified the hypotheses of the sublemma, so we conclude that
there is an n, >0 so that for any ye[ —#,, 1,1, every characteristic covector

A=(u, n,v,, adu+bdv, +cdv,)

of the map (r, f1, f>): N - R? satisfies a/cv, <0, provided that (u, 5, v,)e K. Thus,
the number 5, satisfies the requirements of the lemma. []

12.4. The Quarterlink and Related Spaces

Suppose as above that peZ is a nondepraved critical point of a pair of functions
(fi, f-): Z—>R2 By Sect. 12.2, Lemma 1 there is a fringed set AcR* xR*
of type 0 <& <d <1 such that the map (r, f;, f>)| N: N - IR? has no characteristic
covectors in the region A*. Now fix (3, &) A.

Definition. 0. The disk and ball,
D.={(eR?||{|<e} D, ={(eR?||{|=¢}
N;=N 0 B;(p) 0Ns=N N 0B;(p)
D°=D,— oD, NP =N,—0N;.
1. The quarterlink and its boundary:
'=f"Ye,0)nN; 0 =f"'(e, 0)nON;.
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2. The cylindrical neighborhood of p, its interior and boundary (called the
“particular neighborhood” in [GM3]):
C=f"'D)nN;, CO=f"1D)NN;
L=0C=C—-C°=L,UL, (see below).
3. The horizontal and vertical parts of the link
Ly=f"'(D)n0N;  Ly=f"'(D7)n0N;
L,=f"'(@D)nN;  Ly=f"'(0D)n Ny
0L,=0dL,=f"'(dD,)nON;.
Each of these spaces is S-decomposed by its intersection with the strata of
N (with are also the strata of Z) and are canonically Whitney stratified since
each is a transversal intersection of Whitney stratified spaces. The following

schematic diagram illustrates the cylindrical neighborhood for the pair of func-
tions f: IR® - IR? which is given by linear projection:

L =L

h
The cylindrical neighborhood C

The ball Bs(p) in the normal slice

The vertical part L, of the link The horizontal part L, of the link

Theorem. The homeomorphism type of each of the above spaces is independent
of the choices of the normal slice N, the metric r, or the choice of ¢ and 6.
The homeomorphisms may be taken to preserve the S-decompositions and the
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Whitney stratifications. Furthermore, there is a natural choice for such a homeo-
morphism, which is well defined up to isotopy.

Proof. The proof is similar to that in I Sects. 7.4 and 7.5, so we will only
sketch it here. First we show that between any two allowable choices for N,
r, ¢ and 9, there is a smooth one-parameter family of such choices. Let
Ny=NynZ and N, =N, nZ be two normal slices at p, where N, and N, are
smooth submanifolds of M which meet S transversally at the point p. Then,
there is a smooth one-parameter family of submanifolds N, which connects
them (i.e., there is a smooth submanifold N'c M xR whose projection to R
has no critical points, such that Nyj=N'n M x {0} and N{=N'nM x {1}).

If ro and r; are two distance functions corresponding to two choices of
Riemannian metrics g, and g,, then g,=tg, +(1—1t) g is a one-parameter family
of metrics connecting them, which gives rise to a one-parameter family of dis-
tance functions from p, r,.

We now have a one-parameter family of spaces N, and maps (r,, f): N,—»R3
to a wall space. Consider the set A<[0, 1]xR* xR* consisting of all points
(t, 0, €) such that the map

(rt3f1:f2)|Nt: M__)]RS

has no characteristic covectors at point in the set

{(u, vy, v)eRY xR?*|u=4, |/(v] +v3)<e}.

It is easy to see that this set A is open in [0, 1] x R* xIR* (since (df, (p), df,(p))
is nondegenerate). Thus, 4 contains a one-parameter family of fringed sets,
A,cR”* xIR*, whose union is also an open subset of [0,1]xR* xIR*, such
that 4 contains no characteristic covectors of the map (r,, f}). By I Sect. 5.4,
there is a smooth one-parameter family of choices (J,, ¢)€ A, connecting the
two original choices of ¢ and 6.

Each of the spaces ¢, 07, L, C, L,, L,, etc., can be written as the preimage
under (r, ) of some stratified subset T of the wall space IR3. Between any two
choices of the data (N, r, ¢, 6) there is a one-parameter family of the correspond-
ing subsets of R*. The lemma on moving the wall then gives a (stratum preserv-
ing) homeomorphism between the corresponding preimages. For example,
' =(r, f)"1(T), where

T={(u, & 0)eR3|u<d}.

Given a one-parameter family as constructed above, let
T,={(u, &, 0)eR*|u<4,}.
Then moving the wall defines a homeomorphism between
0=(ro, fo) '(To) and £{=(ry, f))” (T}

Proof of “furthermore”. Suppose we have two different one-parameter fami-
lies of normal slices connecting N) and N, and two different one-parameter
families of distance functions connecting ro and r,, and two different one-parame-
ter families of choices for (8, ¢). These give rise to two different homeomorphisms
G and H. It is easy to find a two-parameter family of normal slices N ,, and
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distance functions r, , which connect these one-parameter families. Proposi-
tion I Sect. 5.5 now provides the appropriate two-parameter family of choices
(051> €. ny)> SO that for each value of s and t the corresponding map

(r(s,t)afla fz) | Ms,t): Ms, t)_'IR3

has no characteristic covectors at points in the set

{(ua vl ’ UZ) | u= 6(5, 1) I/ (U% + U%) S s(s, t)}'

This gives rise (by moving the wall as above) to a one-parameter family of
homeomorphisms between G and H. [

12.5. Local Structure of the Normal Slice: The Milnor Fibration

The following statements (a), (b), (c), and (d) are the key technical lemmas which
allow us to analyze the normal Morse data for complex analytic varieties. We
use the notation established above, i.e., f: Z —IR? has a nondegenerate critical
point at p, and N is a normal slice through p. Choose numbers 0 <y <e<d
so that (4, &) lies in the fringed set A, and # satisfies the conclusion of Lemma
12.3.

We show in the proposition below that the vertical part of the link is a
fibre bundle over the circle, with fibre homeomorphic to the quarterlink (see
[Mi2] or [L&3]). In Part (¢) we show that the horizontal part of the link is
a product of a two-disk with the boundary of the quarterlink. The intersection
of these two pieces of the link is collared in both pieces and the collared neighbor-
hood is a trivial bundle over the circle. This collaring restricts in each fibre
to a collaring of 07 in /. We also show (in parts (b) and (c)) that although
the cylindrical neighborhood C is a different shape from the usual “conical
neighborhood™ N;, it is also conical and, when cut off by the values f;”'(+#)
it gives the normal Morse data for the function f;. However, it may be necessary
to choose this # very much smaller than ¢ and §. Finally in part (d) we show
that the halflink is topologically a product of the quarterlink with an interval,
and that this homeomorphism preserves boundaries.

Proposition. (a) Milnor fibration. The restriction f | L,: L, — dD, is a topologi-

cal fibre bundle with fibre ¢’ In fact, the restriction f:(C—f~'(0))— D,— {0}
is a fibre bundle with fibre /.

(b) The cylindrical neighborhood is conical. For any n>0 sufficiently small,
there are homeomorphisms ‘

(C, L)—— (N, dN;) ——> (cone (ONy), ON;)

with the following properties:

(i) G preserves the following levels: f; = —#, fi=0, fi=#. In other words,
fi(2)eK<f; G(z)eK, where K is any of the following sets:

(—OO, _’7)’ {_’1}9 (_”a O), {0}9 (0, '1)9 {’1}5 (’1: OO)
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(i) F preserves the level f; =0. In other words, F takes the sets

N;n fi71(—00,0) homeomorphically to cone(dN;n f;”!(— co, 0))—cone-

point

N; n fi 1 (0) homeomorphically to cone (ON; ~ f; 1(0))

N;~ fi~ (0, c0) homeomorphically to cone (ON; f;” (0, o0)) —conepoint.

(c) The cylindrical neighborhood gives normal Morse data. The pair
(Cnfi'[—n,n], Cofi'(—p)) is normal Morse data, i.e., is homeomorphic

to the pair B _
(Nsofi ' [—& €], 5o fi ' (—e)).
(d) The halflink is the quarterlink times an interval. There are homeomor-

phisms of pairs,
(¢*, 00 =", 0" x (1, dI)

(¢7,0¢07)=(¢", 0"y x, d1)
where /¥ (resp. /7) denotes the upper (resp. lower) halflink, I denotes the unit
interval [0, 1], and 0I={0, 1}.

(e) Collarings of the boundary of the quarterlink. There is a number w>0
and a neighborhood U of L, in C and a homeomorphism

H:0('x[0—w, 6] xD,»U
which commutes with the projection (r, f): U >R xIR?, ie.,
r(H(z,u,v))=u ‘and f(H(z,u,v))=v
and which restricts to homeomorphisms,
(i) H,: /' x D, — L, which commutes with f: L, —> D,.
(i) H,:0¢'xdD, - 0L,=0L, which commutes with f: 6L, — dD,.
(i) H3: 0¢' x [0 —w, 0] x 0D, — U n L, which commutes with
(r, ):UnL,»[0—w, 5] x0D,.

Each of the spaces in the preceding proof has a canonical #-decomposition,
and the homeomorphisms may be chosen so as to preserve these #-decomposi-
tions.

Corollary. The normal Morse data for the covector df,(p) has the homotopy
type of the pair
ype of (cone(£"), ).

Proof. By Corollary Sect. 3.11, the normal Morse data is homotopy equiva-
lent to

(cone(£7), 7).

Furthermore (by part (d) above), £/~ ¢’ x [0, 1], so this pair is homotopy equiva-
lent to the pair (cone (), £'). [

12.6. Proof of Proposition 12.5

Proof of (a). By Sect. 12.2 (Lemma 1), the map f: C — D, has no characteristic
covectors except at the origin. By Thom’s isotopy lemma (Sect. 1.5) it is a
locally trivial fibre bundle.
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Remark. This generalization of [Mi2] appears in [Lé3] and [Du], for exam-
ple. More generallv, if M, and M, are smooth manifolds containing Whitney
stratified subsets v., =M, and W,cM,, and if f: M, > M, is a smooth map
such that f(W,)=W,, f| W, is proper, and such that f is stratified by the given
stratifications of W, and W,, and if pe W, and if g=f(p)e W,, then one may
ask whether (for ¢ <0 sufficiently small), the map

Wi Bs(p)nf ' (9B,(q) > W, " OB,(q)

is a fibre bundle over each stratum S, N0B,(q) of W,ndB,(q). In [Lé4], it is
shown that in order to obtain such a generalized Milnor fibration theorem,
it is sufficient to assume that the map f is a Thom mapping, i.c., that it satisfies
condition A, of [T5]. Our assumption that the function f has a “nondegenerate”
critical point at p implies Thom’s condition 4.

Proof of (b). The pair (C, L) is the preimage of the box
{0, |f)eR?|r<d and | f| <&}
in IR2, modulo the right hand side and top.

The pair (C, L) in the wall space

The pair (N;, dN;) is the preimage of the halfspace
{(r,|fDeR?|r<4}

modulo the boundary line r=4.

The pair (N, ON;) in the wall space
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The idea for constructing G is to move the wall in (r, | f|) space, just as in
I Sect. 7.8 (where | f|=(f2+f#)"?). However, we want to guarantee that the
levels f; = —n, fi =0, and f, =# are preserved by the resulting homeomorphism,
so we add new strata to N which correspond to these levels. Since the homeo-
morphism which results from moving the wall preserves strata, these levels of
f1 will be preserved assuming we have not introduced any bad characteristic
covectors in (, | f|)-space by adding these new strata. Here are the details:

Step 1. Divide each stratum R of N into the following seven pieces:
Ri=Rnfi (=, =n), Ry=Rnfi (=1, R3=Rnf'(=n,0),
R,=Rnfi"1(0), Rs=Rnfi '(0,n), Rg=Rnfi '),
R;=Rnf ! (n, ).

Except in the single case R={p}, each of these pieces is nonempty. It is

easy to see that this refinement is a Whitney stratification of N. We shall denote

this space with its new stratification by N. Let AcR* xIR* denote the fringed
set of Sect. 12.2. Consider the map

r |1 f): N>R xR.
Claim. This map has no characteristic points in the region
AP={(u,v)eR* xR | (4, |v|)e 4}.

Furthermore, if Ae T*IR? is a nontrivial characteristic covector of this map,
then the slope of ker (1) is positive.

Proof of claim. The map (r, f): N - R xR? has no characteristic covectors
in the region A ¥ (by Sect. 12.2). Thus, the map (r, | f|): N =R x R has no charac-
teristic covectors in the region A®, and the slope of the kernel of any characteristic
covector (which lies outside AP) is positive. However, we must consider separately
the new strata in N which are of the form R f;"(t) where t=—#, 0, or #.
Suppose A=(u, v, adu+bdv)e T*R? is a characteristic covector of the map
(r, | )| N, corresponding to a point ge N. Let us assume ¢ lies in some stratum
S=Snf,'(t). Then adr(q)+bd|f|(q) vanishes on T,S= T, S ~ker df; (q). Thus,

b b
adr(q)+|f| dfl(q)+|f| df>(q)=0.
However, Lemma 12.3 applies (since | f;(q)| <#) and gives a/b| f(q)| <O0. There-
fore, a/b <0, as desired.

Step 2. Define
Box (6, &)= {(u, V)eR?*|0<u<d and 0<v<¢}
HS (6)={(u, v)eR? |u<d}.

We want to find a homeomorphism G between

(C, D=0, |f)" ' (Box(3,8) "N
and o _
(N, aN)=(r, | f/)""(HS (@) "N
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which can be achieved by moving the wall as follows:

1f1

Diagram

The preceding claim guarantees that there are no characteristic covectors to
prevent this motion of the wall, so we obtain a stratum preserving homeomor-
phism between (C, L) and (N,, dN,) which therefore preserves the levels f;= —n,

f1=0,and f; =n.

The second homeomorphism F is obtained in a similar manner: refine the
stratification of the pair (N,, 0N,) by adding strata from f;"*(0). The conical
structure of N, (which is obtained by integrating a controlled lift of the vectorfield
d/dr, i.e., by moving the wall in r-space, from r=4 to r=0) will respect this
stratification and will therefore preserve the sign of f.

Proof of (c). part (b) of the lemma gives us a homeomorphism of pairs
Cnfi ' L=mnd, Cafi (=m =N fi [, 1), N5 fi” (=)
However, the second pair is homeomorphic to the pair
(Némfl_l [_Sa 8]5 Némfl_ 1(—8))

by moving the wall as follows:

fi
& .
" 5
= T r
—n -
—& I’

Diagram

Proof of (d). The homeomorphism of part (b) restricts to a homeomorphism

(¢, 00)=(Ns fy (), ONs 0 fy ()
=(Cnfitm), Lofi ()
=(Cnfi ) fi (O (Ly U Ly))
=(f7', 0N CO)x[~w, ], f (1, — )



Chapter 12. Normal Morse Data of Two Morse Functions 139

uf " Hm @)u(f T, 00NN, x [— o, w])
={"x[-w, o], (' xi[-o, 0])u (0 x[—o, »])
where w=]/(¢>—#?) and where we have used part (a) of the proposition to
realize C and L, as fibre bundles over the punctured disk. []

Proof of (e). (This is the only part of the argument which uses the fact
that there are no characteristic covectors on the r axis, f=0.) Choose w so
that the rectangle [6 — w, 6] x (0, ¢] is contained in the fringed set A4.

Thus, [6 —w, 6] x D, is contained in the region A ¥, where there are no (nontriv-
ial) characteristic covectors of the map (r, f): N - R xIR2. It follows from the
first isotopy lemma that

U=(r,f) " ([0—w,8]xD,)
is a fibre bundle over [ —w, 6] x D,, with fibre
o' =(r, f)~1(9, ¢, 0).

This fibre bundle is trivial since [0 —w, ] x D, is contractible, and the isotopy
lemma can be used to find a global trivialization

H:0(' x[0—n,0]xD,—»U

which preserves strata. Thus, H restricts to a homeomorphism on any closed
union of strata of U, for example in the following three cases:

() (r, /)" (6 x D)=L,
(i) (r, f)"'(6 x 0D,)=0L,=0L,
(iii) (r, )" ([0 —w, 6] xdD,)=UAL,. [

12.7. Monodromy

In this section we define a stratum preserving homeomorphism u: ¢’ — £’ which
fixes a neighborhood of 0/’ such that the space
¢’ x [0, 11/(z, 0)~ (u(2), 1))

is homeomorphic (by a stratum preserving homeomorphism) to L,.
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Since the map f: L,— dD, is a stratified fibre bundle, it is possible to choose
control data ([Mal], [Ma2]) on L, which is compatible with f. Choose an
orientation of the circle dD, and let d/dt denote a unit vectorfield on 0D,.
By Thom’s first isotopy lemma, it has a controlled lift to a vectorfield F; on
L,, whose time 27 flow defines a homeomorphism ¢’ — ¢’. This homeomorphism
must be modified so as to restrict to the identity on 07"

By Sect. 12.5(eiii) there is a neighborhood W=UnL, of 0L, in L, and
a stratum preserving homeomorphism

H;:0¢' x[6—n,0]}x0D,» W

which commutes with the projection to 0D,. Let V,=(H;),(0x0xd/dz). This
is a controlled lift of d/dt to this neighborhood, and its time 27 flow is the
identity on 0/’ x [6—n, 6]. Now patch the controlled vectorfields V; and V,
together, using a partition of unity. The result is a controlled vectorfield whose
time 27 flow gives a homeomorphism ¢’ — ¢, and which restricts to the identity
in a neighborhood of 47"

12.8. Monodromy is Independent of Choices

The isotopy class of the monodromy u: 7’ — ¢  is independent of the choice
of control data, the normal slice N, the metric r, and the allowable choices
of ¢ and ¢ in the following sense:

Proposition. Suppose we are given two choices N, and N, of normal slice
through the point p, two allowable choices (6, €,) and (04, €,) of the parameters
0 and ¢, choices ry and r, of distance functions from the point p (which are
associated to two choices of Riemannian metrics on the ambient manifold M ),
and two choices fo: Ny —R2 and f,: N; - R? of functions whose differentials are
nondegenerate at p (as in Sect. 12.1), which are connected by a smooth one-
parameter family of functions f,: N,—IR2, whose differentials are nondegenerate
at p. From this data we construct two representatives £} and /| of the quarterlink.
Suppose we make choices of control data on the associated fibre bundles (L),
and (L,), and construct the corresponding monodromy homeomorphisms py: o — 44
and p,: ¢4 — ¢, (with respect to the same orientation of the circle 0D,). Then
there is a homeomorphism f: {5 — £| such that the composition fou,of ! is isotopic
to Uy, and the isotopy may be chosen to be the identity in a neighborhood of
04y and to preserve the ¥-decomposition of 4.

Sketch of Proof. Using the techniques of Sect. 12.4, it is possible to find
a one-parameter family of data (N,, 6,, &, f;, (L,),, /) connecting these choices.
The one-parameter family f, maps the union of the (L,), to a cylinder, and
this map is a stratified fibre bundle. It is now possible using standard controlled
vectorfield techniques to construct the homeomorphism f and the isotopy. [

12.9. Relative Normal Morse Data for Two Nonproper Functions

This section is a common generalization of Sects. 11 and 12.4-12.6. Suppose
(asin Sect. 12.1) that Z is a closed Whitney stratified subset of a smooth manifold,
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peZ, N is a normal slice at p to the stratum of Z which contains the point
p, and that f; and f, are smooth functions defined on M whose restriction
to Z is proper and which satisfy the nondegeneracy condition of Sect. 12.1,
1e.,

(@f1(p), df2(p)(Q)=R?

for every generalized tangent space Q at the point p, except for the single case
0 equals the tangent space to the stratum which contains p.

Suppose also (as in Sect. 11.1) that 7: X — Z is a Whitney stratified surjective
proper map, that the strata of X are indexed by some partially ordered set
& and that X =X is a dense open subset which is a union of strata of X
corresponding to a partially ordered subset J % We wish to consider the
normal Morse data of the composition (f;-7)| X: X = R.

Let N denote a normal slice (in Z) through the point p, and let A denote
the fringed set of Sect. 12.2. A choice of (0, )e A determines a quarterlink and
its boundary (', d¢’) (for Z), a cylindrical neighborhood C and its boundary
L, the horizontal and vertical parts of the link L, and L,, and their common
boundary 0L,=0L,.

Definition. The relative quarterlink (resp. relative normal slice, resp. relative
cylindrical neighborhood, resp. relative horizontal and vertical parts of the link)
is the intersection with X of the preimage under 7 of the quarterlink (resp.
normal slice, resp. cylindrical neighborhood, resp. horizontal and vertical parts
of the link)

&5 oty =1 (¢, 0¢)n X.

Proposition. The results of Proposition 12.5 remain true when the spaces
¢, 0t L, C, 0C, L,, L,, N5, dN; are replaced with the corresponding relative
spaces, except for the existence of the homeomorphism F in Proposition 12.5(b).

Proof (see Sect. 11.5). Except for the statements concerning the homeomor-
phism F in (Sect. 12.5(b)), each of the results is obtained by moving the wall
with respect to some map H: N —IR¥ (for some k) and checking that this map
has no characteristic covectors e T* R* such that ker (/) contains the tangent
space to a stratum of the wall in IR*. However the composition How: 7~ *(N)
—R* has precisely the same characteristic covectors as the map H, so the same
arguments can be applied to 7~ !(N). Furthermore, the resulting homeomor-
phisms preserve the $decomposition of the spaces (which are induced by their
intersection with the strata of N). Therefore they restrict to homeomorphisms
on any union of pieces of the decomposition. []

Corollary 1. If @~ *(p)< X, ie., if © is proper near the fibre over p, then
the relative normal Morse data for f, at the point p has the homotopy type
of the pair

(eyl(¢" > ' (p), £'™)

where cyl denotes the mapping cylinder of the specialization map (1 Sect. 9.7 ),
() —>n (p).
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Proof. By Part I, Sect. 9.7, the relative normal Morse data has the homotopy
type of the pair
eyl >~ (p), £77).

However, by Proposition 12.9 we have a homeomorphism
{7 =" x [0, 1].

Corollary 2. Suppose X equals Z and © equals the identity. If the critical
point p is a “critical point at infinity”’, pe Z — X, then the following pair is homo-
topy normal Morse data (see Sect. 10):

('nX,00'nX)yx(U, ol

where I denotes the unit interval [0, 1]. More generally, the same result holds
for arbitrary n provided =~ '(p) = X — X, and provided we replace (¢', 3¢") by
()%, (00)%).

Proof. By Sect. 10.6.2, homotopy normal Morse data is the pair (/*, 0/*).
The relative version of Sect. 12.5(d) gives a homeomorphism between (£*, 6£7)
and (7, /) x (I, 31). [

12.10. Normal Morse Data for Many Morse Functions

The preceding results readily generalize to the case of many normal Morse
functions.

In this section we assume f=(fi, f2, ..., fx+1): Z > IR¥" ! is a collection of
smooth functions and that p is a critical point of f, ie., df (p)(T,S)=0, where
S is the stratum of Z which contains the point p. We also assume this critical
point is nondegenerate, i.e., for every generalized tangent space Q at the point
p, we have df (p)(Q)=R**!, except for the single case Q=T,S. Fix a normal
slice N=N’'nZ through the point p, where N’ is a smooth submanifold which
is transverse to S and N'nS={p}.

Proposition. There exists a fringed set AcR* xIR* such that the map
(r, f)IN: N>R xR**!
has no characteristic covectors in the region
A** ={(u, vy, 0,5, ..., Uy DERY X R¥* 1 | (u, [v)e 4}

where |v|=‘/vf+v§+ R
Proof. The proof is identical to that in Sect. 12.2.
Definition. Fix (4, ¢)e A. The disk and ball:
D= {(eR*||f]<e) DA ={CeR**! ||| =s)
N;=N'nZ n Bs(p) " ON;=N'nZndB,(p)
(1) The littlelink and its boundary:
(P=f"10,...,00nN; 0/P=f"10,...,00nON;.
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(2) The cylindrical neighborhood of p, and its boundary:
CO=f"1D* YN, I[P=0CP=[PuILP,
(3) The horizontal and vertical parts of the link:
LP=f~ D YnaN,  IW=f"1(@DF ) AN,
OLP=0ILP=f"13D*" )" ON;.
Each of these spaces is #-decomposed by its intersection with the strata of

N (which are also the strata of Z) and are canonically Whitney stratified, since
each is a transversal intersection of Whitney stratified spaces.

Theorem. The homeomorphism type of each of the above spaces is independent
of the choices of the normal slice N', the metric r, or the choice of & and 9.
The homeomorphisms may be taken to preserve the -decompositions and the
Whitney stratifications.

Proof. The proof is the same as Sect. 12.4. []

Proposition.
" (@) The restriction [ |L¥: ¥ —»o0D** ! is a topological fibre bundle with fibre
(b) There are homeomorphisms of pairs,
(=D, 04m D)y (£™, 9¢™) x (I, 0I)
where I denotes the unit interval [0, 1]. Therefore
(¢F, 00 =W, 0Py x (I, oI
(¢=,0¢7)=(¢®, 0®)x (I, OI)-.

Each of the spaces has a canonical S-decomposition, and the homeomorphisms
may be chosen so as to preserve these S-decompositions.

Proof. The proof is identical to Sect. 12.6. [

Corollary. The normal Morse data, halflink and quarterlink for the function
f1 are homeomorphic to the normal Morse data, halflink, and quarterlink for
the function f; (1<j<k). If k>2, then the monodromy (defined on the quarterlink
of f1) is isotopic to the identity. The normal Morse data for f, has the homotopy
type of the pair

(cone (£®), £®),

Analogous results hold in the relative and noncompact case.



Part II. Morse Theory of Complex Analytic
Varieties



Chapter 0. Introduction

The main technical results of complex Morse theory are the following: Let
W be a closed subvariety of a Whitney stratified complex analytic variety Z,
and suppose that W is a union of strata in Z. Let f: Z - R be a proper Morse
function, which has a nondegenerate critical point pe Z which lies in some stra-
tum S of complex codimension ¢ in Z. Let . denote the Morse index of f|S
at the point p, and let v=f(p) be the associated critical value. We will consider
the Morse theory of f | X, where X =Z — W. Suppose the interval [a, b] contains
no critical values of f | Z other than v, and that ve(a, b).

(1) If peX, then (Sect. 3.3) the space X _, has the homotopy type of a space
obtained from X _, by attaching the pair of spaces

(D%, 0D%* x (cone (&), £)

where ¥ =%,=%y is the complex link of the stratum S, and D* is a cell
of dimension A.

(2) If p¢ X, then (Sect. 3.3) the space X _, has the homotopy type of a space
obtained from X _, by attaching the pair

(D**1,0D* )y x (ZLx, 0.L)

where ¥y =X n %, is the complex link for X (see Sect. 2.6).

(3) If peX, or if W=¢, then (Sect. 4.5.2*) ¥y has the homotopy type of
a CW complex of dimension <c—1. Therefore, H{(X _,, X .,; Z)=0 for all
i>A+c,and H,, (X oy, X _4; Z) is torsion free.

(4) If X is a local complete intersection, then (Sect. 4.6.2) the pair (Fx, 0.%%)
is ¢—2 connected. It follows from this and Sects. 4.6.1, 4.6.2, that ;(X _,, X <,)
=0foralli<A+cand Hi(X .y, X .3 Z)=0foralli<i+c.

(5) If peX, then (Sect. 6.4) IH,(X ., X .,;Z)=0 unless i=A+c, and
IH,; (X .y, X <4; Z) is the image of the variation map,

(I—Wy:1H,_(£,0Z; L)~ 1H, (£ Z)

and is torsion free ; where I H denotes the “middle intersection homology” groups
[GM3] (with compact supports) and u denotes the monodromy homomorphism.

(6) If p¢ X, then (Sect. 6.4)
IH(X ¢y, X co; Z)=1H;_; (¥, 0%x;Z)

and this vanishes for all i>A1+c+1.
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Various extensions of these results also appear in Sects. 4 and 6.4.

These technical results are applied (in Chapter 5) to very general Lefschetz
theorems and to theorems on the homotopy dimension of certain varieties.
However, the method which we use is very simple and tends to be obscured
by technical details having to do with the generality of the situations. For this
reason we will give an outline of the proof of a special case of Theorem 1.1%*:
an affine n-dimensional complex analytic variety Z has the homotopy type of
a CW complex of dimension n. (This is due to [Kr2] in the complex algebraic
case, and [H3], corrected in [H4], in the case of a Stein space.)

We consider the function f: Z —-IR which is the distance from a generic
point p¢Z. By I Sect. 2.2, a point p can be found so that f is a Morse function.
By calculating the Levi form (Sect. 4.A.5) of f we see that the Morse index
A (at any critical point) of the restriction f | S to any stratum S of Z is bounded
as follows: A <dimg(S). If Z is nonsingular, we conclude that at each critical
value v, the set Z _, ., has the homotopy type of a space obtained from Z_,,_,
by attaching a cell of dimension <n, as in [AF]. However, if Z is singular
we can only conclude (I Sect. 3.7) that the space Z _,,, has the homotopy type
of a space obtained from Z_,_, by attaching the product (tangential Morse
data) x (normal Morse data).

Let us say peS is the critical point and the stratum containing the critical
point. Then the tangential Morse data has the homotopy type of the pair
(D*, 9D*) where D* denotes the k-dimensional disk, and k <dimg(S). The normal
Morse data (Sects. 3.2, 4.5) has the homotopy type of the pair (c(%), £) where
& denotes the “complex link” of the stratum S at the point p. This is an
n—dim (S)— 1 dimensional complex analytic space with boundary. The function
g: ¥—R, which is given by the distance from a generic point near p, is a
Morse function (I Sect. 2.2), and the Morse index of any critical point of g
on any stratum S’ of % is bounded by the same estimate: 4 <dimg(S’). Since
& is a Stein space, we conclude by induction that the space .£ has the homotopy
type of a CW complex of dimension <dimg(¥)=n—k—1. It follows that the
normal Morse data at p has the homotopy type of a CW complex of dimension
<n—k. Thus, Z_,,, is obtained from the space Z_,_, (up to homotopy) by
attaching a CW complex of dimension <n. Passing each critical value in this
manner, we conclude that Z has the homotopy type of a CW complex of dimen-
sion n.

This argument generalizes in several directions:

(1) We can remove a subvariety W from Z (see Sect. 1.2*). In this case,
two kinds of critical points must be considered: those in W and those in Z— W.
The normal Morse data is analyzed in Sects. 4.6* and 5.2*. The “homotopy
dimension” of Z may rise, depending on how many equations were used in
defining W.

(2) We can replace Z with a “relative space” n: Y »Z < C" with some esti-
mate on the dimension of the fibres of 7 (see Sect. 1.1*). In this case the study
of the normal Morse data is carried out in I Sect. 12 and II Sect. 3.4. The
“homotopy dimension” of Z may rise, depending on the dimension of the fibres
of m.
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(3) We can put Z in CIP" and study the distance from a hyperplane, or
from a codimension ¢ linear subspace. This gives lower bounds on the Morse
index A (instead of upper bounds) so we obtain Lefschetz type theorems instead
of “homotopy dimension” theorems (see Sects. 1.1 and 1.2).

(4) We can replace the pair (CIP", H) by an arbitrary “g-defective” pair (Y, 4)
on which there exists a Morse function which takes a minimum on A and
has a Levi form with certain positivity properties (Sect. 7). This gives Lefschetz
theorems for subvarieties of (Griffiths-)“positive” vectorbundles. Sommese
[Sm4] shows how such pairs arise as subvarieties of homogeneous spaces.

(5) We can replace “homotopy” by “homology” or by “intersection homolo-
gy” (Sects. 6.8, 6.9, 6.10, 6.11).

(6) We also consider (in Sects. 1.3 and 1.3*) “local” versions of each of
these theorems, replacing the variety Z by the link of a stratum in Z.

Extensions. There are by now a number of “tricks” which can be used to
deduce surprising new results from Lefschetz theorems. For example, in [FL1]
it is shown how Barth theorems can be derived from Lefschetz theorems by
reembeding the given variety Z into a larger projective space so that the subspace
Yc Z becomes a hyperplane section. See [FL1] Sect. 9, for a catalog of such
tricks and applications. It would be interesting to find similar applications along
the lines of [FH], [FL2], [Fa], or [Go].
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The proofs of the results stated here will appear in Sect. 5. The four main
theorems (Sects. 1.1, 1.1*, 1.2, 1.2*) are followed by four analogous “local”
theorems (1.3.1, 1.3.2, 1.3*.1, 1.3*.2) which may be considered as generalizations
of the global theorems. These results are further generalized in Sects. 7.2 and
7.3.

1.0. Notational Remarks and Basepoints

If B< A are topological spaces, then we shall write ny(B, A)=0 or ny(B) = my A
to indicate that the set of connected components of B surjects to the set of
connected components of A.

If k is a nonnegative integer and if, for any beB, the relative homotopy
group

n;(A, B,b)=0 for all i<k

then we shall say that the pair (4, B) is k-connected. This is equivalent to the
following statement: for any be B, the homomorphism

(B, b) — m;(4, b)

is an isomorphism for all i<k and is a surjection for i=k. In this case we
will ignore the basepoints and write either

n;(A, B)=0 for i<k

or 7;(B) — m;(A) is an isomorphism for i < k and is a surjection for i=k.

1.1. Relative Lefschetz Theorem with Large Fibres

The following Lefschetz theorem was conjectured by P. Deligne [D1]. An outline
of the proof described here was published in [GM1].

Theorem. Let X be a purely n-dimensional nonsingular connected algebraic
variety. Let w: X — CIP" be an algebraic map and let H = CPPY be a linear subspace
of codimension c. Let H; be the d-neighborhood of H with respect to some (real
analytic ) Riemannian metric. Define ¢ (k) to be the dimension of the set of points
zeCIPN — H such that the fibre n~'(z) has dimension k. (If this set is empty,
we set ¢p(k)=—o0.) If 0 is sufficiently small, then the homomorphism induced
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by inclusion, m,(n~ ' (H)) » 7;(X) is an isomorphism for all i <# and is a surjection
for i=A, where
A=n—sup(2k—(n— (k) +inf(¢p(k), c—1))—1.
k

Furthermore: (1) In this theorem, n is not necessarily proper, and =~ '(H,)
may be replaced by =~ (H) if H is generic or if = is proper.

(2) The assumption that X is algebraic may be replaced by the assumption
that X is the complement of a closed subvariety of a complex analytic variety
X and that = extends to a proper analytic map 7: X — CIP".

Proof. The proof will appear in Sect. 5.1.

Remark. The fibre dimension estimates in the above formula are sharp:
see Sect. 8.1 for counterexamples.

Special cases. (1) This implies Bertini’s theorem [Ber], [D1]. Let Y be an
irreducible algebraic variety and m: Y >CIP¥ be an algebraic morphism. Fix
c<dim n(Y). Let H=CIP" be a generic linear subspace of codimension c¢. Then
n~1(H) is irreducible. If Y is locally irreducible as a complex analytic space,
then 7, (n~ ' (H)) — =, (Y) is a surjection.

To see this, apply the theorem to X =Y— Y’ where Y’ is a subvariety of
Y which contains the singularities of Y and also contains the set

{yeY |dimz~ ! z(y)>dim(Y)—dim (z(Y))}.

Thus, X and X nn~'(H) are nonsingular (since H may be chosen trans-
verse to X), and the map X — n(X) has equidimensional fibres of dimension
a=dim(Y)—dim(n(Y)). Thus, #A>1, so #(Xnrn '(H)=nr.(X) and
7, (X nn~ ' (H))— n,(X) is a surjection. The first implies that X nz~ ! (H) is con-
nected (i.e., ©~ 1 (H) is irreducible) while the second implies that the composition

751(Xm7r~1(H))_’7T1(X)_'751(Y)

is a surjection, if Y is locally irreducible. However, this homomorphism factors
through =, (z~'(H)), which proves that n,(z~ !(H))—>=,(Y) is surjective if Y
is locally irreducible. []

(2) Recall that if X is nonsingular, a proper surjective algebraicmapn: X » Y
is small if
cod{yeY |dim f "' (y)=>r}>2r

and is semismall if
cod{yeY |dim f~(y)=r} >2r.

The Etale cohomology version of Theorem 1.1 was proved by Artin [Art] in
the case that = is proper and semismall. The same method of proof works
for singular cohomology. By carefully analyzing Artin’s method, Deligne (unpub-
lished) arrived at the singular cohomology version of Theorem 1.1 and conjec-
tured the homotopy version. (See also Sect. 1.2 for the case that = is finite.)

(3) We remark that Theorem 1.1 remains valid if we replace the projective
space CIPY by affine space CV, provided H is generic, ie., we get a (relative)
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Lefschetz theorem for (maps to) an affine algebraic variety because: If n': X — CV
is an algebraic map and if i: C¥ - CIPY denotes the inclusion, then Theorem
1.1 may be applied to the composition t=ion': X — CIP".

Remarks. (1) It is not possible to prove this result by induction on ¢, the
codimension of H.

(2) If c=1, then it is possible to replace the linear space H with an arbitrary
hypersurface W of (codimension one), because for any such W there exists an
embedding g: CPPY - CPY such that W=g~'(L), where L is a linear subspace
of codimension 1.

1.1*. Homotopy Dimension with Large Fibres

Theorem. Let X be an n-dimensional (possibly singular) complex analytic
variety. Let n: X — CIPY — H be a proper analytic map, where H is a linear sub-
space of codimension c. Let ¢ (k) denote the dimension of the set of points yen(X)
such that the fibre n~'(y) has dimension k. (If this set is empty, we set ¢ (k)=
—0.) Then X has the homotopy type of a CW complex of (real) dimension
less than or equal to

A*=n+sup 2k—(n— ¢ (k))+inf (¢ (k), c—1)).

Proof. The proof will appear in Sect. 5.1*

Remark. The estimates on the fibre dimension are sharp: see Sect. 8.1%* for
counterexamples.

Special cases. An affine variety X (or a Stein space X) of complex dimension
n has the homotopy type of a CW complex of dimension n. This was conjectured
by Kato [Kt1], [Kt2], was proved by Karchyauskas [Kr2], [Kr3] (in the com-
plex algebraic case) and by H. Hamm (in the case of a Stein space) [H3], cor-
rected in [HS], and follows from Theorem 1.1¥ by setting ¢(k)=0 and c=1.
L. Kaup [Kul] and Narasimhan [N] had previously shown that the homology
groups of X vanished in dimensions greater than n and that H,(X;Z) was
torsion free. (We show in Sect. 6.9 that the same result holds for the intersection
homology, i.e., IH;(X ; Z)=0 for i<n and IH ,(X); Z) is torsion free.) The homol-
ogy of a nonsingular affine variety X was done by Andreotti and Frankel [AF1],
following Thom’s suggestion that Morse theory could be used. (See also Milnor
[Mi].) There are various refinements of this result which would have implications
for intersection homology. For example, we have the following:

Conjecture. A Whitney stratified complex n-dimensional affine variety X
deformation retracts (by a stratum preserving retraction) to a (real) n-dimension-
al Whitney stratified subset of X which intersects each stratum S of X in a
subset of dimension s=dim¢(S). Considerable progress on this conjecture has
been made by [L&2].
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1.2. Lefschetz Theorem with Singularities

An outline of proof for the following theorem was published in [GM1]. See
also [H3] or [HL2] for a similar result, but where the assumptions on the
number of equations has been replaced with assumptions on the rectified homo-
topical depth (see [Gro] exp. XIII).

Theorem. Let X be an algebraic subvariety of some algebraic manifold M.
Let n: X - CIPY be a (not necessarily proper) algebraic map with finite fibres.
Let H be a linear subspace of codimension c in CPPY, and let H ; be a 5-neighborhood
of H (with respect to some real analytic Riemannian metric, as in Theorem 1.1).
Let ¢(k) denote the dimension of the set of points pe X —n~'(H) such that a
neighborhood (in X) of p can be defined (in M) by k equations and no fewer.
(If this set is empty, we set ¢(k)=—oc0.) If 6>0 is sufficiently small, then the
homomorphism

m(n” ' (H,)) = m;(X)

is an isomorphism for all i <# and is a surjection for i="H, where

A =inf (dime (M) — k —inf (¢ (k), c— 1)) — 1.
k

Furthermore: (1) It is possible to replace n~ ! (H,) by n~ 1(H) if H is generic
or if 7 is proper.

(2) The assumption that X is algebraic may be replaced by the assumption
that X is the complement of a closed subvariety of an analytic variety X and
that 7 is an analytic map which extends to a proper finite analytic map 7: X
- CPY.

(3) If X is purely n-dimensional (and has arbitrary singularities) and H is
generic, then the homeomorphism

IH,(n""(H); Z)~> IH\(X;; Z)

is an isomorphism for all i<n—c and is a surjection for i=n—c. (Here, IH,
denotes the middle intersection homology with compact supports [GM3],
[GM4])

Proof. The proof will appear in Sect. 5.2, and the intersection homology
part will appear in Sect. 6.10.

Remarks. The numerical estimates above are sharp: see Sect. 8.2 for counter-
examples. The Lefschetz theorem is false for constructible sets: see Sect. 8.3.
It is not possible to find a simple common generization of Theorems 1.1 and
1.2 by adding fibre and singularity defects: see Sect. 8.4.

Special cases. The following special case of Theorem 1.2 appears in Hamm
[H4]: Let X be an n-dimensional projective algebraic variety and suppose that
Z <X is a subvariety and H is a linear hyperplane in the ambient projective
space. If X —(Z U H) is a local complete intersection, then the homomorphism

(X—Z)nH)-> (X —-2)
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is an isomorphism for all i<n—1 and is a surjection for i =n— 1. This generalizes
the papers of Kaup [Ku3], [KW], [GK], who proved analogous results with
Z=¢ and for homology instead of homotopy. The case of nonsingular X was
proven by Hamm and L& [HL1], following Zariski’s theorem [Z] for surfaces.
See also Oka [Ok] and Kato [Kt1], [Kt2]. Similar results appear in Ogus
[Og] for varieties defined over fields of positive characteristic. The case Z=¢
and X nonsingular is the “classical” Lefschetz theorem, the nicest proof of
which is due to Thom (see Andreotti and Frankel [AF1] and Milnor [Mi]).

We remark that Theorem 1.2 remains valid if we replace the projective space
CP" by affine space, C¥, provided H is generic. (However, H must be generic,
or at least transversal to the strata at infinity of the closure X; see Sect. 8.2
for counterexamples.) Thus, we obtain Lefschetz theorems for the homotopy
groups, homology, and intersection homology groups of affine algebraic varieties
(see [H4]). If n’': X - €V is an algebraic map and i: CV¥ — CIP" is the inclusion,
then Theorem 1.2 may be applied to the composition r=ion’": X — CP¥).

1.2*. Homotopy Dimension of Nonproper Varieties

Theorem. Let X be a complex n-dimensional analytic variety and let n: X
- CIPY—H be a proper finite analytic map, where H is a linear subspace of
codimension c. Let W be an analytic subvariety of X. We consider the extent
to which the inclusion Wc X fails to be a local complete intersection morphism
by defining for each k the number ¢ (k) to be the dimension of the set of all
points pe W such that a neighborhood of p (in W) can be defined (as a subset
of X) by n—dim,(W)+k equations, and no fewer. (If this set is empty, we
set ¢(k)= — 00.) Then the space X —W has the homotopy type of a CW complex
of dimension <Ah*, where

A*=sup (n+k—1+inf(¢(k), c—1)).

k>1

Proof. The proof will appear in Sect. 5.2*.
Remark. These estimates are sharp: see Sect. 8.2*.

Examples. If X is an affine n-dimensional variety and W< X is a local com-
plete intersection morphism of codimension k, then the complement X — W has
the homotopy type of a CW complex of dimension n+ k— 1. (If W is a hypersur-
face, then this is obvious since in this case, X —W is also an affine algebraic
variety.)

1.3. Local Lefschetz Theorems

The Lefschetz theorems of Sects. 1.1 and 1.2 are special cases of a more general
result: the local Lefschetz theorems (see [Gro] or [HL3]). In its simplest form
this theorem applies to an isolated singularity p of an n-dimensional complex
algebraic subvariety X of some algebraic manifold P. If L= X n dB,(p) denotes
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the link (in X) of the point p and if H denotes a hyperplane section of X
(with respect to some local coordinate system on P) which contains the singular
point p, and is generic among all hyperplane sections which contain the point
p, then the homomorphism

(LN H)- m;(L)

is an isomorphism for all i<n—2 and is a surjection for i=n—2. This result
is local near the point p, and there are no projectivity assumptions on X. (Thus,
the manifold P may be replaced with an open subset of €V, with no loss in
generality.) However, the usual Lefschetz theorem on hyperplane sections follows
from this local result: suppose Y is a nonsingular projective algebraic variety
and H is a generic hyperplane in projective space. Let X denote the (complex)
cone on Y, with conepoint p, and let H denote the cone on H. 1t follows that
p is an isolated singular point of X, and that the link L of p in X is a circle
bundle over Y. Similarly H N L is a circle bundle over H. Consider the following
diagram of exact sequences in homotopy for these fibre bundles:

— (LN H)— ”i+1(YﬁH)—* ni(Sl)‘—’”i(LﬁH)"’ﬂi(YlﬁH)h* Tli(f
(S

— m (L) —  m (V) — (S — (L) — m((Y) —m

Applying the five lemma together with the local Lefschetz theorem for the homo-
morphism 7;(L~ H) — 7;(L) gives the (usual) Lefschetz theorem, i.e., the homo-
morphism 7;(Yn H) — n;(Y) is an isomorphism for all i<dim(Y)—1 and is a
surjection for i=dim(Y)—1.

In this section X will denote a complex algebraic subvariety of some non-
singular variety M, and n: X - P will be a complex algebraic map, where P
is a nonsingular algebraic variety. Fix pen(X) and let d B;(p) denote the bound-
ary of a ball of radius § about the point p (with respect to some Riemannian
metric on P). Let H be an affine linear subspace of codimension ¢ in P (with
respect to some local coordinate system about p) which passes through the
point p, and let H, denote an e-neighborhood of H, with respect to some real
analytic Riemannian metric on P.

Theorem 1. Suppose X is nonsingular, connected, and purely n-dimensional.
Let ¢ (k) denote the dimension of the set of points ze P—H such that the fibre
7~ 1(z) has dimension k. (If this set is empty, we set ¢(k)= — c0.) If § is sufficiently
small, then for any &> 0 sufficiently small, the homomorphism induced by inclusion,

(X N~ (0B;(p) N H,) = mi(X ™ (OB5(p))
is an isomorphism for all i <# and is a surjection for i="1, where

A=n—sup (2k—(n—¢ (k) +inf(¢p(k), c—1))—2.

Furthermore: (1) If H is a generic affine subspace or if = is proper, then the
neighborhood H, may be replaced by H in the above formula.
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(2) The assumption that X is algebraic may be replaced by the assumption
that P is a nonsingular analytic variety, X is the complement of a closed subvari-
ety of a complex analytic variety X, and that n extends to a proper analytic
map 7: X > P.

Proof. The proof will appear in Sect. 5.3.

Remark. The subspace H may be replaced by an arbitrary complete intersec-
tion of codimension ¢, because such a complete intersection may be locally
realized as a linear subspace H' by composing with an embedding g: P— P’
In this case, if 7 is proper or if H is generic (with respect to the local general
linear group action at the point p, in some local coordinate system), then the
neighborhood H, may be replaced by H. Otherwise, the neighborhood H, must
be taken to be a neighborhood of the form g~ *'(H’), where H. is an e-neighbor-
hood of the linear subspace H' < P'.

Theorem 2. Suppose n is finite (but not necessarily proper ). Let ¢ (k) denote
the dimension of the set of points xe X —n~'(H) such that a neighborhood of
x (in X ) can be defined by k equations, and no fewer. (If this set is empty,
we set ¢ (k)= —o0.) If 0 is sufficiently small, then for all ¢>0 sufficiently small,
the homomorphism induced by inclusion

(X "~ (0Bs(p) H,) = (X n” ' (0Bs(p))
is an isomorphism for all i<# and isa surjection for i=h, where

fi=inf(dime (M) — k—inf (¢ (K), c— 1)) —2.
k

Furthermore: (1) If H is a generic subspace or if n is proper, then the neighbor-
hood H, may be replaced by H in the above formula.

(2) The assumption that X is algebraic may be replaced by the assumption
that P is an analytic variety, X is the complement of a closed subvariety of
a complex analytic variety X, and that 7 extends to a proper analytic map
7i: X - P. ’

(3) If X is purely n-dimensional (with arbitrary singularities) and H is generic,
then the homomorphism

IH(X nn™ ' (0B;(p) " H); Z) — IH,(X n ™ ' (0B,(p)); Z)

is an isomorphism for all i<n—c—1 and is a surjection for i=n—c—1. (Here,
IH, denotes the middle intersection homology with compact supports.)

Proof. The proof will appear in Sect. 5.3, and the intersection homology
part of the proof will appear in Sect. 6.

Special cases. An outline of a proof for the following special case of Theorem
2 appears in Hamm [H4]: Suppose that X is an n-dimensional local complete
intersection properly embedded in € or CP". Let H be a linear hyperplane,
peXnH, and let L,(X)=XnJB;(p) denote the intersection of X with the
boundary of a ball By(p) of sufficiently small radius § which is centered at
p. Then the homomorphism
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’EI(LP(X)(\H) - nt(Lp(X))

is an isomorphism for all i<n—2 and is a surjection for i=n—2.

Similar results for homology (in place of homotopy) are proven in Kaup
[Ku3]. See also Lé [Lé1]. An important related result is the theorem of Hamm
[H1], [H2] (see Sects. 4.6 and 4.6%) on the local connectivity of local complete
intersections.

Remark. The subspace H may be replaced by an arbitrary complete intersec-
tion of codimension ¢, because such a complete intersection may be locally
realized as a linear subspace H' by composing with an embedding g: P — P'.
In this case, if = is proper or if H is generic (with respect to the local general
linear group action at the point p, in some local coordinate system), then the
neighborhood H, may be replaced by H. Otherwise, the neighborhood H, must
be taken to be a neighborhood of the form g~ ! (H)), where H., is an ¢-neighbor-
hood of the subspace H' < P'.

1.3*. Local Homotopy Dimension

In this section we suppose that X is an n-dimensional connected analytic subvari-
ety of some nonsingular analytic variety M, and that n: X —» P is an analytic
map to some nonsingular variety P. Fix peZ==n(X) and let dB; denote the
boundary of a ball of radius § about the point p (with respect to some Riemann-
ian metric on P). Let H be an affine linear subspace of codimension ¢ in P
(with respect to some local coordinate system about p) which passes through
the point p.

Theorem 1. Suppose m is proper. Let ¢ (k) denote the dimension of the set
of all points zeZ such that the fibre mw~'(z) has dimension k. (If this set is
empty, we set ¢ (k)= — 00.) If 6 is chosen sufficiently small, then the space

n~Y(Zn0Bs(p)—H) »
has the homotopy type of a CW complex of dimension less than or equal to
fi=n+sup (2k—(n—¢(k))+inf(¢p(k), c—1)).
k

Proof. The proof will appear in Sect. 5.3*.

Theorem 2. Suppose that X is an n-dimensional complex analytic subvariety
of some complex analytic manifold M. Fix a subvariety W< X which is locally
determined in X by k equations. Fix a point pe W and let dBs(p) denote the
boundary of a small of radius o which is centered at the point p. Define

L(X)=0B,(p)nX  L,(W)=0B;(p) "\ W.

If 6 is sufficiently small, then the space L,,(X)—L,,(W) has the homotopy type
of a CW complex of dimension <n+k—1.

Proof. The proof will appear in Sect. 4.6*.
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Special cases. Related results appear in Hamm [H1], [H2] and Hamm [H4].
A slightly more refined version of Theorem 2 may be true, which would have
consequences for intersection homology:

Conjecture. The space L,(X)— L,(W) deformation retracts (by a stratum pre-
serving deformation) to a Whitney stratified subset of L,(X) which intersects

each stratum S of X in a subset of dimension <s+k-—1, where s=dimg(S).
See also [Lé2].



Chapter 2. Normal Morse Data
for Complex Analytic Varieties

2.0. Introduction

In this chapter we describe the local topological structure of a complex analytic
variety and a generic complex analytic function on that variety. Most of the
material described in this section is fairly well known, see for example [Mi2],
[Du], [H1], [H2], [HL3], [LK], [Kp4], [Leé3], [Lé4], [LT1]. However the
proofs we give here are rigorous and are easy, given the technique of “moving
the wall” which was developed in Part I.

The main application of this section is to the analysis of normal Morse
data of a real valued function defined on a complex analytic variety. We will
show that the homeomorphism type of the link of a singular point and of
the normal Morse data at that point are determined by the complex link &
and the monodromy homeomorphism u: ¥ — #. In PartI it was shown that
the normal Morse data of a nondepraved critical point depends only on the
differential of the Morse function, so throughout this chapter we will fix a partic-
ular nondegenerate covector w and study the normal Morse data associated
to it. The key trick (Sect. 2.1.4) in complex Morse theory is to realize that
this covector w is also the differential of the real part of a complex analytic
function. This allows us to replace any smooth Morse function (locally) with
a complex analytic function when analyzing the normal Morse data.

This local analysis is made in terms of the complex link £ of an i-dimensional
stratum of a Whitney stratified complex analytic subset of n-space. This is (rough-
ly) the intersection of a small tubular neighborhood of that stratum with a
nearby generic plane of dimension n—i— 1.

The complex link of a stratum S of a singular variety X is obtained from
a generic projection f: X — @ in the same way that the Milnor fibre [Mi2]
of a hypersurface Y=g !(0) is obtained from a singular projection g: X' —C
of a nonsingular variety X'. In particular, there is a related Milnor fibration
and monodromy homeomorphism u: £ — %. The complex link together with
this monodromy homeomorphism determine the link of the stratum S (Sect.
2.4; the technicalities in the proof are actually carried out in Part I, Chap. 12)),
but the complex link has the added interesting property that it is a complex
analytic space, which admits a canonical Morse function, so it can be studied
using complex Morse theory. Such a study is carried out in Chap. 4. We believe
that the complex link, together with its complex structure and monodromy
homeomorphism constitute the local “complex” nature of the singularities of X.
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2.1. Nondegenerate Covectors

In this chapter we will study a complex analytic subvariety Z of some complex
analytic manifold M. We fix a (complex analytic) Whitney stratification of Z,
whose strata are indexed by some partially ordered set & We fix a stratum
S of Z and let n: T¥M — S denote the conormal bundle of S in M whose
fibre ™' (p)=T5*, M consists of all covectors weT;* M such that w(T,S)=0.
(Recall from Part I, Sect. 1.8 that

T M=Homg (T, M, R)=Homg (T, M, C)
and in particular that &M — S is a complex vectorbundle.)

2.1.1. Definition. The set of nondegenerate conormal vectors, 1s the set
Cs={weT#M | w(Q)=+0 for any generalized tangent space Q=+ T, S}

where a generalized tangent space is any limit of tangent planes from any stratum
R>Sin Z (see Part I, Sect. 1.8).

2.1.2. Remark. By Part I, Proposition 1.8, the set Cg is the complement of
the complex codimension one subvariety V< Tg* M of degenerate covectors. The
zero section is contained in V. By [Tel], or [HM] and [NT], for any point
peS, the intersection Vn Tg¥ , M of V with the conormal space of S at p consists
of a subvariety of the conormal space, which has codimension >1, i.e., there
are no “exceptional points” (see Part I, Sect. 1.8).

Fix a nondegenerate covector @ at a point p=n(w).

2.1.3. Definition. A quintuple (N’ f, r, d, ¢) is normal projection data for w
at p if:

(a) N’ is a complex analytic submanifold of M which meets the stratum
S transversally at a single point, p. We define the normal slice N=N'nZ and
we canonically identify the spaces Ty ,M - T* N'.

(b) f: N> D°<C is a proper complex analytic map to the unit disk such
that f(p)=0 and d(Re(f))(p)=w under the above canonical identification.

(c) ris a Riemannian metric on M. By abuse of notation we will also denote
by r(z) the square of the distance (p, z) in this metric.

(d) 6>0is so small that:

(i) N n B,(p) is compact, where

B;(p)={qeM | r(q) <5}

(ii) 0B;s(p)={qeM |r(g)=4} is transverse to each stratum of N.

(iii) The same holds for every ¢’ <4, i.e., for each stratum A of Z, the restric-
tion r| (A n N') has no critical values in the interval (0, &].

(e) &£>0is so small that

(i) For every stratum A of Z, the restriction f | A~ N’ has no critical values

in the disk D, = €, except for the isolated critical value 0.

(i) Forevery stratum A of Z and for any point ze AN N'n 0B,(p), if | f(z)| <e
then the complex linear map
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dr(2),df @) | T.(ANN): T(AnN) - C?

has rank 2.
(iii) For any 6’'<¢ there exists ¢ <¢ such that for any stratum A of Z and
for any point ze ANN' 3B, (p)n f~(D,), the map

(dr(2), df (2))| .(ANN'): T,(AnN')-»C?
has rank 2.

2.1.4. Lemma. Normal projection data exists for any weCs.

Proof. By choosing local coordinates on N’ in some neighborhood of the
point p, we may replace the manifold N’ by Euclidean space €™. The covector
o gives rise to a complex analytic function f by

f@)=0(@)—in(iz)

such that d(Re(f))(p)=w. Choices for ¢ and ¢ exist by Part I, Sect. 12.2 provided
£<0. In fact, given N’, f, and r as above, there is a fringed set AcR* xR"*
of type 0 <d <e<1 so that the map

" NHIEZAN)ZAN->RxC
has no characteristic covectors in the region

A¥* ={u, v)eR* xC|(u, |v|)e4}.

2.2. The Complex Link and Related Spaces

The complex link is the central object of study in complex Morse theory. It
is a well-known object which is analogous to the “Milnor fibre”, and was studied
in depth in [LK]. See also [LT1], [H4], [Dbl]. The complex link is closely
related to the polar varieties of [LT1]. See [LT2] for formulas relating the
Euler characteristic of the complex links to the multiplicities of the polar vari-
eties. The Euler characteristic of the complex link is also related to the local
Euler obstruction of [MP1] (see [LT2], or [Db1], [Db2]).

Choose a nondegenerate covector weCy at in Sect. 2.1, and choose a set
{N’, f,r, 9, ¢} of normal projection data. Define N=N'nZ and let {=¢+0ieC.

Definition. The complex link % and its boundary 0.% are the spaces
L=f""ONNNBs(p) 0L =f"1YNNNIBs(p).

We also define the following related spaces:

(0) The disk and normal ball:
D,={teC||t|<e}  D,={{eC]|l|=¢}
N;=B;(p)n N ON;=0Bs(p)n N
D;):Ds—@De ]\760=N5_8N5.
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(1) The cylindrical neighborhood of p, its interior, and boundary:
C=f"1DJnN;  CO=f"'(D)NN;
L=0C=C-C"

(2) The horizontal and vertical parts of the link:
Ly=f"'(D)ndN;  Li=f"1(D?)NON;
L,=f"'@D)nN;  Ly=f"'(0D)n Ny

OL,=0L,=f"'(0D)NJN;.

(3) The cut off spaces:

Ceo=f""{{IRe(Q)<O0}nC  C%=C<on B (p)
L_,=C_onL.
Each of these spaces is Y~decomposed by its intersection with the strata of

N (which are also the strata of Z) and is canonically Whitney stratified since
each is a transversal intersection of Whitney stratified spaces.

The normal ball B;(p) The cylindrical neighborhood C
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2.3. The Complex Link is Independent of Choices

Suppose w, and w; are nondegenerate covectors in T¢F M and suppose that
po=mn{we) and p, =n(w,) lie in the same connected component of the stratum
S. (By abuse of notation we now denote this connected component by S.) Let
(Ns> fo» 7o, 09> &) be normal projection data for w, and let (N;, fi, ri, J;,
¢;) be normal projection data for w,. Let T, denote any one of the twenty
spaces defined in Sect. 2.2, as constructed with respect to the choices (w,, N,
Jos To, 00, &) and let T; denote the corresponding space as defined with respect
to the choices (w,, Ny, fi, 71, 01, &1).

Theorem. There exists a (nonnatural) %decomposition preserving homeo-
morphism H: Ty — T;. If py=p, and if wo=w,, then this homeomorphism H
has a natural choice up to isotopy.

This theorem follows immediately from three lemmas which we now state:

2.3.1. Lemma. The space Cg=TF M of nondegenerate conormal vectors is
smoothly path connected.

2.3.2. Lemma. It is possible to associate to each weCg a set of normal projec-
tion data {N,,, fo,, T 00 €o} by an association which is “smooth”’ in the following
sense: Let T,cZ denote the space corresponding to T which is determined by
the choices {N},, fu, T'sy> 00> €0} Let

T={(q. ®)eM x Cs|qeT,}

be the family of these T,. Then the projection to the second factor, T— Cg is
a (locally trivial ) stratified submersion.

2.3.3. Lemma. Fix weCs and p=n(w). If (N}, fo, Fo, 00> &) and (N{, f1,
ri, 01, €1) are two choices of normal projection data for w, then the corresponding
spaces Ty and T, are homeomorphic by a homeomorphism H which has a canonical
choice up to isotopy.

Proof of Lemma 2.3.1. This is just proposition Part I, Sect. 1.8 and the fact
that S is connected. [

Proof of Lemma 2.3.3. This is just Part I, Sect. 12.4 with the slight difference
that here we are allowing the function to vary, but we are fixing its differential
at p, whereas in Part I, Sect. 12.4 the function was fixed once and for all. But,
the required modification is trivial. []

Proof of Lemma 2.3.2. First we recall the complex analytic tubular neighbor-
hood theorem: there is a neighborhood U of the zero section of the normal
bundle 8: TM/TS — S and a smooth embedding ¢: U > M so that ¢ |S=ide-
ntity, and so that for each peS the fibre 6~ !(p)n U is embedded by ¢ as a
complex analytic submanifold of M which is transverse to S at the point p.
This allows us to define the normal slices N, and the local normal functions

[, as follows:
Ny=¢(0"'(0(w)

Jo=wo(@™ 1 N).
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Take the Riemannian metric r,, to be any fixed metric (independent of w). It
remains to find choices for §, and ¢,,.
Consider the set

BcCgxR™* xR*

consisting of triples (w, J, ¢) such that the quintuple (N,, f,,, r,, 0, ) is normal
projection data for w. (This is a condition on ¢ and ¢: see Sect. 2.1 (d) and
(e).) It is easy to see that B is an open set (since Sect. 2.1 (d) and (e) are open
conditions and  is nondegenerate). Thus, B is a fringed set parameterized
by the (noncompact) manifold Cs. By Part I, Proposition Sect. 5.5 there is a
section s: Cg — B of the projection 7,: B— Cg, i.c., a way of associating to each
weCg a pair (6, ¢,)eR* xIR* with the required properties.

The local triviality of the map T— Cg now follows from Thom’s isotopy
lemma (Part I, Sect. 1.5). In fact, it is a (fibrewise) transversal intersection of
Z with various smooth manifolds and manifolds with boundaries. []

Remark. The space Cg is very much noncompact. As one approaches a
point we Cy near the “edge” of Cg, the values of §,, and ¢, may shrink rapidly.

2.4. Local Structure of Analytic Varieties

The following statements, (a), (b), (c), and (d), were announced without proof
in [GM3]. They are the key technical lemmas which allow us to analyze the
normal Morse data for complex analytic varieties. Similar results have appeared
in the literature in varying degrees of generality and detail, beginning with Mil-
nor [Mi2] (in the case of isolated singularities), and followed by [L&3] (for
general singularities). See also [Du], [H1], [H4], [Lé1], [Lé4], [LT2]. We refer
the reader to Sect. 8.5 for Hironaka’s counterexamples to similar sounding state-
ments.

For the purpose of applications to Lefschetz theorems and estimates on
homotopy dimension (Sects. 5.1 and 5.2), we will need only part (d) of the
following proposition, and its Corollaries 1 and 1* (in the relative case, Sect.
2.6). The local Lefschetz theorems and connectivity theorems (Sect. 5.3) will
also use part (a) and part (c). The rest of the proposition is needed for the
Lefschetz theorems in intersection homology (Sect. 6) [GM3]. Parts (a), (b),
(c), and (d) of this proposition have analogous statements for an arbitrary proper
complex analytic map to €. This is discussed in the appendix, Sect. 2.A.

We use the notation established above, ie., S is a stratum of Z, weTFM
is a nondegenerate covector, p=r(w) is a point in S, N’ is a transverse submani-
fold through S at the point p and N=N'nZ is a “normal slice”, f: N> D°<=C
has d(Re(f)(p)=w, and >0 and 6 >0 are chosen so that (g, 0) satisfy the condi-
tions Sect. 2.1(d) and (e). Set f=f, +if5.

We show in part (a) that the vertical part of the link is a fibre bundle
over the circle, with fibre homeomorphic to the complex link. In part (¢) we
show that the horizontal part of the link is a product of a two-disk with the
boundary of the complex link. The intersection of these two pieces of the link
is collared in both pieces and the collared neighborhood is a trivial bundle
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over the circle. This collaring restricts in each fibre to a collaring of 0.% in
. We also show (in parts (b) and (c¢)) that although the cylindrical neighborhood
C is a different shape from the usual “conical neighborhood” N;j, it is also
conical, and, when cut off by the values f,"!(4#) it gives the normal Morse
data for the function f;. However, it may be necessary to choose this n very
much smaller than ¢ and d. Finally, in part (d) we show that the halflink is
topologically a product of the complex link with an interval, and this homeo-
morphism preserves boundaries.

Proposition. (a) Milnor fibration ([Mi2], [Lé3], [LT2]). The restriction
fI|L,: L,— 0D, is a topological fibre bundle with fibre Z. In fact, the restriction
f:(C—f~10))> D,— {0} is a fibre bundle with fibre Z.

(b) The cylindrical neighborhood is conical. For any n>0 sufficiently small,
there are (¥~decomposition preserving) homeomorphisms

(C, L)—> (N, 8N;) ——> (cone (ON;), ONy)

with the following properties:

(i) G preserves the levels fi=-—#, f1=0, fi=#. In other words,
fi(z)eK<=f, G(z)e K, where K is any of the following sets:

(=0, =), {—n}, (=n,0), {0}, (O,n), {n}, (n, ).
(ii) F preserves the level f; =0. In other words, F takes the sets
N;nfy Y (— o0, 0) homeomorphically to cone (6 N;n f;”* (— oo, 0)) — conepoint
N; nf;71(0) homeomorphically to cone (6 N; n f,” 1 (0))
N;nfi (0, co) homeomorphically to cone (6 N; f;~ * (0, o0))— conepoint.
(c) The cylindrical neighborhood gives Morse data. For any 5> 0 sufficiently

small, the pair (Cnf, *[—n,1], Cnfi '(—n)) is normal Morse data, ie., is
homeomorphic (by an F-decomposition preserving homeomorphism) to the pair

(]V&mfl_l[_sa 8]5 ]Vzinfl—l(_g))'
(d) The halflink is the complex link times an interval. There are (¥-decomposi-
tion preserving) homeomorphisms of pairs,
(¢, 0= (&, 0L)x (U, 0])
(¢, 007 )=(ZL,0L)x U, 0]
where ¢ (resp. /7) denotes the upper (resp. lower) halflink, I denotes the unit
interval [0, 1], and 1=/{0, 1}.
(e) Collarings of 0%. There is a number >0 and a neighborhood U of
L, in C and a homeomorphism

H: 0¥ x[0—w,0]xD,—»U
which commutes with the projection (r, f): U >R x €2, i.e.,
r(H(z,u,v))=u and f(H(z,u,v))=v

and which restricts to homeomorphisms
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(i) H,: 0% x D, — L, which commutes with f: L, — D,
(i) H,: 0% x "D, — 0L,=0L, which commutes with f: dL,— dD,
(iii) Hy: 0% xv—w, 6] x 0D, — U N L, which commutes with
r,f:UnL,—»[6—w,§]x0D,.

Each of the spaces in the preceding proof has a canonical &#decomposition,
and the homeomorphisms may be chosen so as to preserve these S-decomposi-
tions.

Proof. See Part I, Sect. 12.5. [

Corollary 1. If g: Z >R is any Morse function with a nondegenerate critical
point at p, then the normal Morse data of g has the homotopy type of the pair

(cone (&), &).

Proof. By Theorem 2.3, the normal Morse data is independent of the function,
so we may take (for example) g to be any Morse function so that dg(p)=w.
The result now follows from Part I, Sect. 12.5. [

The following diagram illustrates the fibres of the projection of the cylindrical
neighborhood, f: C — € for the case of an isolated quadratic surface singularity.

Fibres of the projection of the cylindrical neighborhood

If £€0D,, then Cnf~'(&) is the complex link .#. These form the fibres of
a locally trivial bundle over D,—{0}, which does not extend in a locally trivial
way over the origin because the central fibre f ' (0) is singular. However, the
horizontal part L, of the link is a trival bundle over D, whose fibre 0. consists
of two circles.

2.5. Monodromy, the Structure of the Link, and the Normal Morse Data

In Sect. 2.4, Corollary 1, we saw that the homotopy normal Morse data could
be described completely in terms of the complex link .#. In this section we
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show that the homeomorphism type of the normal Morse data and the homeo-
morphism type of the link can be described in terms of the complex link and
the monodromy homeomorphism y: & — .

By Sect. 2.4(a), the projection L,— 0D, is a fibre bundle with fibre %, and
is therefore classified by an orientation of the circle 0D, and an isotopy class
of homeomorphism u: ¥ — ¥ (which is called the monodromy). In fact (by
Part I, Sect. 12.7), the monodromy homeomorphism may be chosen to preserve
strata of ¥ and to be the identity in a neighborhood of 0.#. By Sect. 2.4(b),
the link 0Nj is homeomorphic to the boundary L=0C of the cylindrical neigh-
borhood. Since L has been decomposed into two pieces,

L=L,u, L,

and by Sect. 2.4(e), L, is homeomorphic to 0.% x D? and dL,= 0L, is homeo-
morphic to 0. x S, we have the following:

Corollary 2. The link ON; is homeomorphic to the space
(& x [0, 2]/, 0)~(u(£), 2M)] Vg 51 [0L x D?]

which is obtained from the complex link by the following procedure:

(a) form the product of & with the interval [0, 2] and attach the ends together
using the monodromy p,

(b) attach to this the product 0% x D* of the boundary of the complex link
with the two-disk, along the subspace 0.% x S*. [

The following three diagrams illustrate the reconstruction of the link L= dN;
from the complex link &.

I N
Sl

0 27

Glue by monodromy & x [0, 2] This gives the vertical Attach 0. x D?
part L, of the link

If we combine this description of the link together with the description Sect.
2.4(c) of the normal Morse data and use the collarings of Sect. 2.4(d), then
it is easy to show (see, e.g. [GM3]) that

Corollary 3. The normal Morse data is homeomorphic to the pair (J, K) where
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J=cone ([(ZL x [0, 27])/(¢, 0) ~ (t(¢), 2] Vap x 51 [0.L x D*])
K=% %[0, ]
and where K = J is embedded in the base of the cone. In other words,
(J, K)=(cone(L), L)
where L, =L,nf~*(— o0, 0].

For completeness, we also recall (from Part I, Sects. 12.7 and 12.8) the follow-
ing facts about the monodromy homeomorphism:

Theorem. The monodromy is the identity on some neighborhood of 0. The
isotopy class (modulo some neighborhood of the boundary) of the monodromy
is independent of all choices (i.e., the control data, normal slice, Riemannian metric,
allowable choices of ¢ and d, and the function f ).

Proof. This is proven in Part I, Sects. 12.7 and 12.8, except for the indepen-
dence under a change of the function f, which follows (in this complex analytic
context) from Proposition 2.1. []

2.6. Relative Normal Morse Data for Nonproper Functions

This section is a complex analytic version of Part I, Sects. 9, 10, and 11. We
assume as above that Z is a complex analytic Whitney stratified subset of some
complex analytic manifold M. As in Part I, Sect. 11 we also fix a Whitney
stratified subset X of some smooth manifold M’, and a proper surjective map
7i: X - Z, which is the restriction of a smooth map from M’ to M. We suppose
that 7 is stratified (Part I, Sect. 1.6) by the given stratifications of X and Z,
i.e., the restriction of  to each stratum of X is a smooth proper submersion
(and hence is a fibre bundle) over a stratum of Z. We fix an open subset X = X
which is a union of strata, and define Z=n(X)cZ.

TCT
ZcZ—R
f

We also fix a stratum S of Z, a point peS, and a nondegenerate conormal
vector we Tg¥ , M. We make a choice (N’ f, r, J, &) of normal projection data
(Sect. 2.1) corresponding to w at the point p, and we identify T;f N' with Tg* , M.
These choices determine a complex link . of Z at the point p.

Definition. The relative complex link #% of f at p (resp. the relative normal
slice N7, ball (N;)%, cylindrical neighborhood (C%, %), horizontal and vertical
parts of the link (L)%, (L,)%) is defined by

Li=X i (L)
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ie., it is the intersection with X of the preimage of the complex link (resp.
the normal slice, ball, cylindrical neighborhood, horizontal and vertical parts
of the link).

Proposition. The results of Proposition 2.4 remain valid when each of the above
spaces is replaced by the corresponding relative space, with the single exception
of the existence of the homeomorphism F in part (b).

Proof. See Part I, Sect. 12.9. [

Remark. It is not necessary to assume that X is a complex analytic variety
or that T is a complex analytic map. However, this will usually be the case
because stratified maps occur most naturally as a result of the following fact:
If $: A— B is a proper complex analytic map between complex analytic spaces,
then there are complex analytic Whitney stratifications of 4 and B such that
¢ becomes a stratified map (see Sect. 2.7).

Corollary 1. If g: Z— R is any Morse function with a nondegenerate critical
point at p, and if peZ—2Z, ie., if i~ Y (p)cX—X (ie, pis a “critical point
at infinity "), then the following pair is homotopy normal Morse data for gon:

(2%, 0.7 x (1, 1.

Proof. By Theorem 2.3, the normal Morse data is independent of the function,
so we may take g to be (for example) any Morse function such that dg(p)=w.
The result now follows from Part I, Sect. 12.9. [

Corollary 1*. If g: Z >R is any Morse function with a nondegenerate critical
point at p and if =~ '(p)=X (i.e., m is locally proper near the fibre over p),
then the relative normal Morse data for gom at p has the homotopy type of

the pair .
Ccyl(&L">n" " (p), £7)

where cyl denotes the mapping cylinder of the specialization map (Part I, Sect.
9.7), ¢: L™—n"(p).

Proof. By Theorem 2.3, the normal Morse data is independent of the function,
so we may take g to be (for example) any Morse function such that dg(p)=w.
The result now follows from Part I, Sect. 12.9. [

2.7. Normal Morse Data for Two Complex Morse Functions

In this section we prove a result of K. Vilonen [MV]. Suppose S is a stratum
of Z, peS, N’ is a submanifold of M which meets S transversally at the point
p, and suppose there are two conormal vectors,

o, neT¢F , M=T* N’
which are jointly nondegenerate at p, i.e.,
(w, ) (Q/T, S)=C*
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for every generalized tangent space Q at the point p (except for the single case
Q=T,5). A choice of normal projection data is (N, f, r, 4, ¢), which is consistent
with w and N’ determines a complex link .#.

Theorem. (a) The monodromy u: ¥ — & is isotopic to the identity.
(b) There is a homeomorphism

L~ x (D2, dD?)
where D? denotes the two-disk and
L' =Nynf Y e)ng™ 1(0).

Here 0 and ¢ must be chosen in accordance with Part I, Sect. 12.10 so as to
satisfy 0 <e< 0.

Remark. A similar result holds in the relative and nonproper case.

Proof. See Part I, Sect. 12.10. [J

2.A. Appendix: Local Structure of Complex Valued Functions

This section is parallel to Sects. 2.2-2.4 but differs from these sections in two
ways:

(a) We consider an arbitrary proper complex analytic map f: Z — D°, rather
than a nondegenerate map defined on the normal slice.

(b) We choose a stratification of f so that Z,=f"1(0) is a union of strata.
In particular, it is possible for Z, to contain a whole component of Z.

We then show that parts (a), (b), (c), and (d) of Proposition 2.4 continue
to hold in this context. These often quoted results ([Du], [H1], [H4], [HL1],
[KT2]) are not central to our development (which is concerned with nondegener-
ate functions f which arise by complexifying a Morse function), but are included
here because the proof is virtually the same as that in Sect. 2.4 and we will
use the results in Sect. 4.6*.

These results are surprisingly delicate and rely on the paper [Hi2] which
uses the generic wing lemma, the curve selection lemma, etc. We refer the reader
to Sect. 8 for Hironaka’s counterexamples to similar sounding statements.

2.A.1. The setup. In this section we suppose that Z is a complex analytic
subvariety of some complex analytic manifold M; that f: Z — D° = is a proper
complex analytic map to the open unit disk, which can be Whitney stratified
so that 0eD? is the only stratum of dimension zero. It follows ([Hi2] Corollary 1
to Theorem 2, p. 248) that the central fibre Z,=f"1(0) can be refined so that
S satisfies Thom’s condition A4, ie.,

If A is a stratum of Z, and if B is a stratum of Z—Z,, and if b;eB is
a sequence of points converging to some point a€A, and if the planes T; B
converge to some plane t and if the kernels ker (df (b;)| T;, B) converge to some
limiting plane K, then

Koker(df(a)|7).
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We shall use the notation f; and f, to denote the real and complex parts
of f, ie, f=f,+if,. We also fix a point peZ, and a Riemannian metric on
M, and we define the function r(x) to be the square of the distance between

p and x.

2.A.2. Lemma. There exists a fringed set DcR* xIR™ of type 0<e<d, so
that th
at themap (r. f): Z—>R* xC

has no characteristic covectors in the set
D* ={(u, v)eR"* x C|(u, |v))eD}
except over points along the r axis (i.e., f=0).
Proof. Take r so small that the boundary of the ball
0B;s(p)={zeM|r(z)=0}

is transverse to each stratum of Z (by Whitney’s condition B). Now suppose
there is a sequence of points z;€Z ndBs(p) such that f(z)+0, f(z)—0, and
such that dr(z,), df,(z;), and df,(z;) are linearly dependent when restricted to
the stratum B;, which contains the point z;. By choosing a subsequence if neces-
sary, we may suppose the z; all lie in the same stratum B of Z, that they
converge to some point z, in a stratum A4 of Z,, and that the subspaces

Ki=ker (df (z)|T.(B) and 7,=T,(B)

converge to some limiting spaces K and t respectively. It follows that dr(z,)
vanishes on K. But,
Kokerdf(zo)|12 T, A

by condition A, and by Whitney’s condition A for the pair 4 <B. Thus, 0B;(p)
is not transverse to A at the point z,. This is a contradiction. []

Now fix a point (¢, d)e D, let {=¢+0i, and consider the analogous sets to
those of Sect. 2.3, i.e.,

Definition.

D,={leC||¢|<¢} 0D, ={¢eC||¢|=¢}
B;={zeZ|r(z)<é} 0Bs(e)={zeZ|r(z)=6}

Z=f""OnB, 0Z=f""()noB,
C=f"YD,) nB;

L,=f"'(D,)n0B, oL,=f"'(0D,)n 0B,

L,=f (6D, B; oL,=0L,
L=L,uL,=0C

7" =f"(e)n B, 07" =f "(e)n 0B,

7~ =f7'(—¢)n By 0f - =077,

Proposition. The topological type of the above spaces is independent of the
choice of ¢, 8, and the Riemannian metric. (However the spaces 2, L, and L,
may depend on the function f.)
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Proof. The proof is identical to that in Part I, Sect. 12.4. []
2.A.3. Proposition. (a) The restriction
fIL,:L,— oD,

is a topological fibre bundle with fibre . The restriction f|C—f~'(0) is a
fibre bundle over D,— {0}, with fibre 2.

(b) There are stratum preserving homeomorphisms

(€, E) —(Bs, 0B;s) = (cone (0 B;), 0Bs).

If n>0 is sufficiently small, then these homeomorphisms may be chosen so as

to preserve the levels Re(f)=0 and Re(f)= +n.

(¢) For any n>0 sufficiently small, the pair (CnRe(f) '[—n, 7],
CnRe(f) ' (—n)) is homeomorphic (by an F-decomposition preserving homeo-
morphism) to the pair

(NsnRe(f)"'[—e €], N\nRe(f) ' (=)
(d) There are homeomorphisms of pairs
(Z*,00)=(Z, 02)x 1, oI)
(7,00 =(Z, 0Z)x(, ol).
Remark. Part (¢) of Proposition 2.4 is no longér true in this context, i.e.,

L, is not necessarily homeomorphic to the product d.Z x D,, although it is

easy to see that N . -
Li—(f1 0Ly

is homeomorphic to 4L, x (0, 1]. We refer to Sect. 8.5 for counterexamples to
other similar sounding statements.

Proof. The proof is exactly the same as in Part I, Sect. 12.5 — just observe
that only the existence of the fringed set A with no characteristic covectors
was used (and that the nonexistence of characteristic covectors along the r axis
{f=0} was used only in the proof of part (¢)). [
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3.0. Introduction

We are now in a position to identify the homotopy Morse data (Part I, Sect.
3.3) for Morse functions on complex analytic varieties. Recall that homotopy
Morse data is a pair (A4, B) which is homotopy equivalent to some choice of
Morse data. The importance of homotopy Morse data is the following: Suppose
the pair (4, B) is homotopy Morse data for the Morse function f: X - R at
the critical point p, with critical value v=f(p). Suppose ve(a, b), and that the
closed interval [qa, b] contains no other critical values of f. Then there exists
a continuous map h: B— X _, such that X _, is homotopy equivalent to the
adjunction space X _, g4 (see Part I, Sect. 3.3). The identification of homotopy
Morse data uses the deepest results of Part I and of Part II, Sect. 2: Theorem
3.5.4 of Part 1 says that local Morse data is Morse data and Theorem 3.7 of
Part I says that local Morse data is the product of tangential Morse data with
normal Morse data. So, homotopy Morse data is the product of the homotopy
type of the tangential Morse data with the homotopy type of the normal Morse
data. The homotopy type of tangential Morse data was identified classically
by Morse, Thom, and Bott. It is the pair (D*, 6D?), where A denotes the Morse
index of the restriction of f to the stratum which contains the critical point
p. So, the problem of identifying the homotopy Morse data is reduced to the
problem of identifying the homotopy type of the normal Morse data. This was
carried out in Sect. 2. In this short chapter we summarize those results.

3.1. Definitions

Throughout this chapter we suppose Z is a Whitney stratified complex analytic
subvariety of some complex manifold M, that f: Z—>IR is a proper smooth
function with a critical point peZ, and that S denotes the stratum of Z which
contains the critical point p. Fix a, beR and assume that the critical value
by v=f(p)e(a, b). We further assume that p is the only critical point of f with
this critical value, and that the closed interval [a, b] contains no other critical
values of f. Suppose f is a Morse function, i.¢., that p is a nondegenerate critical
point of | S, and that df (p)(Q)+0 for every generalized tangent space Q, except
for the single case Q=T,S. We denote the Morse index of f|S at p by A
Let .# denote the complex link of the stratum S at the point p.
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If 4, B, and X are topological spaces with B A4 and if h: B— X is a continu-
ous map (which we call the attaching map), then we denote the adjunction
space X U, A by X u (4, B).

3.2. Proper Morse Functions: The Main Technical Result

Theorem. The pair (D* 0D* x (cone(%), &£) is homotopy Morse data for f at
p. So (for some attaching map), the space Z _, has the homotopy type of the

space
Z ., u(D* dD¥ x (cone(Z), Z).

Proof. By Part I, Sect. 3.2, the pair (Z_,, Z.,) is homeomorphic to the
pair (Z_,, Z . _,) for >0 arbitrarily small. By Part I, Sect. 3.5.4, Z _, is homeo-
morphic to the space Z_ _,u(J, K) where (J, K) denotes the local Morse data
for f at p. By Part I, Sect. 3.7, we have a homeomorphism

(J, K)~(D*~*x D* D*~* x 6D*) x (normal Morse data)

where s=dimg (S). We now describe the normal Morse data. By Part I, Sect.
7.5.1, the normal Morse data depends only on the differential df (p) (in fact,
by Theorem 2.3 the normal Morse data (at the point p) of any two functions
defined on a complex analytic variety is noncanonically homeomorphic). By
Part II, Corollary 2.4 the normal Morse data has the homotopy type of the
pair (cone (%), £). (The attaching map h is implicitly constructed in the proofs,
and it turns out to be an embedding.) [

3.3. Nonproper Morse Functions

Suppose X < Z is an open subset which is a union of strata of Z. Let Xy =¥ X
denote the complex link in X of the critical point p (see Sect. 2.6).

Corollary 1. If pe Z— X, then the pair [(D***, 6D** 1) x (Lx, 0.L%)] is homo-
topy Morse data for f at p. Therefore, the space X _, has the homotopy type

of the space
X ,u(D**1, 0D** 1) x(Zx, 0Ly)].

Corollary 1*. If pe X, then the pair
[(D*, 8D%) x (cone (L), Zx)]

is homotopy Morse data for f at p. Therefore, the space X _, has the homotopy
type of the space

X _,U[(D* D% x (cone(Ly), Ly)].

Proof. The proof is parallel to that in Sect. 3.2, but uses Part I, Sect. 10.2
instead of Part I, Sect. 3.2, Part I, Sect. 10.4 instead of Part I, Sect. 3.5.4, Part I,
Sect. 10.5 instead of Part I, Sect. 3.7, and Part II, Sect. 2.6, Corollaries 1 and
1* instead of Part II, Corollary 2.4. []
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3.4. Relative and Nonproper Morse Functions

Suppose (as in Sect. 2.5) that #: X - Z is a proper surjective stratified map,
that X =X is an open subset which is a union of strata, and that peZ is a
nondegenerate critical point of a proper Morse function f: Z - R. Let Z=n(X)
and let

Li=Xni Y P)

denote the relative complex link.
Corollary 1. If peZ—2Z, i.e., if 7~ 1(p)<= X — X, then the pair
[(D**1, 0D** ) x (£, 0.45)]
is homotopy (relative) normal Morse data for f at p, so the space X _, has
the homotopy type of the space
X _,U(D**, 0D** Yx (Z%, 0.29)].
Corollary 1*. If @~ Y(p)< X, then m is proper over some neighborhood of p,

so the pair
[(D*, 0D*) x (cyl(Z5 — ™ ' (p)), 3]

is homotopy (relative) normal Morse data for f at p. Therefore, the space X .,
has the homotopy type of the space

X <, V(D% 0DY) x (cyl(LF > n™ 1 (p), Z3)]

where cyl denotes the mapping cylinder of the specialization map ¢: Lz —n~ (p)
as in Part I, Sect. 9.7 and Part 11, Sect. 2.6.

Proof. The proof is parallel to that in Sect. 3.2 but uses Part I, Sect. 11.2
instead of Part I, Sect. 3.2, uses Part I, Sect. 11.4 instead of Part I, Sect. 3.5.4,
uses Part I, Sect. 11.5 instead of Part I, Sect. 3.7, and uses Part II, Sect. 2.6,
Corollaries 1 and 1* instead of Part II, Corollary 2.4. []
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4.0. Introduction

This chapter contains the estimates on the connectivity of the Morse data which
are necessary for the proofs of the main applications. Since the Morse data
is the product of the tangential Morse data with the normal Morse data, this
requires estimates on both. The estimates on tangential Morse data are made
in terms of the remarkable properties of the Levi form of the Morse function
(see the appendix, Sect. 4.A). The normal Morse data is analyzed (inductively)
by applying the entire apparatus of Morse theory to the complex link, which
is a complex analytic space of smaller dimension.

Since all the arguments in this section are developed in maximal generality,
the reader should first follow the special case (of the homotopy dimension of
a Stein space) which appears in the introduction, and where the essential lines
of the argument are clearly presented.

Philosophy of defects. The Lefschetz theorem (Sects. 1.1, 1.2) says that if
n: X > CP" is an algebraic map, and if H, is an appropriate neighborhood
of a linear subspace H = CIP" of codimension ¢, and if K is the first nonvanishing
homotopy group of the pair (X, z~ ' (H,)), then K > #, where # is a certain integer.
This theorem is proven by constructing a Morse function on X such that X _,
=X nH,, with the property that the Morse data for each critical point is A-
connected. In good cases, 7 is expected to equal n=dim(X). This holds, for
example, if 7 has finite fibres, X is a local complete intersection, and the linear
subspace H is a codimension one hyperplane. In these cases, the fact that the
local Morse data is n-connected follows from estimates which show that the
tangential Morse data is i-connected and the normal Morse data is n—i con-
nected, where i is the complex dimension of the stratum which contains the
associated critical point. In the general case, K may be less than n, because
one or both of these estimates fail. We call the degree of failure of these estimates
the defect of the function f at the critical point p. The tangential defect is the
amount by which the degree of the first nonvanishing homotopy group of the
tangential Morse data falls short of i, and the normal defect is the amount
by which the degree of the first nonvanishing homotopy group of the normal
Morse data falls short of n—i. Clearly, a bound on these defects gives a bound
onn—K,

n— K <sup (tangential defect+normal defect)

where the sup is taken over all critical points of the Morse function.
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Positive normal defect may be caused by singularities which are worse than
local complete intersection singularities, or by large fibres of the map n. These
contributions are called (respectively) the singularity defect (Sect. 4.6) and the
fibre defect (Sect. 4.5) (compare [Gro] rectified homotopical depth, or [Og]
de Rham depth). Positive tangential defect may be caused by higher codimension
of the linear subspace H. This contribution is called the convexity defect (Sect.
4.4).

In the dual context, an affine n-dimensional algebraic variety X has the
homotopy type of a CW complex of dimension no more than n. This is proven
by constructing a Morse function on X with the property that, for each critical
point, the tangential Morse data has the homotopy type of a CW complex
of dimension <i, and the normal Morse data has the homotopy type of a
CW complex of dimension <n—i, where i is the complex dimension of the
stratum which contains the critical point. More generally, we will consider the
homotopy dimension of an algebraic variety X which admits an algebraic map
n: X > CPY—H to the complement of some linear subspace H<= CPY. In this
case, the tangential Morse data will have the homotopy type of a CW complex
of dimension <i+I'*, where I'* is the dual tangential defect; and the normal
Morse data will have the homotopy type of a CW complex of dimension
<(n—i)+ 4*, where A* is the dual normal defect (Sect. 4.2). Positive dual normal
defect may be caused by large fibres (and is bounded by the fibre defect, Sect.
4.5*%) or by failure of 7 to be proper (Sect. 4.6%). Positive dual tangential defect
may be caused by higher codimension of the linear space H, and is bounded
by the dual convexity defect (Sect. 4.4).

4.1. The Setup

In this chapter we will consider the most general setup (see Part I, Sect. 11
and Part II, Sect. 2.6): Z is a Whitney stratified complex analytic subvariety
of some analytic manifold M, f: Z—IR is a proper Morse function (Sect. 3.1)
with a nondegenerate critical point peZ which lies in some stratum S of Z.
We assume that 7: X — Z is a proper stratified map and that X = X is an open
subset which is a union of strata. Let #=7|X denote the restriction to X,
and let Z=mn(X) denote the image of X under x.

XcX

ZcZ—R.
f

Let N denote a normal slice (in Z) through the stratum S at the point p. We
define the following integers:

d(S)=the complex dimension of the stratum S

A=the Morse index of f | S at the critical point p

n=the complex dimension of X

¢(S)=n—d(S)=the complex dimension of 7~ }(N).
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4.2. Normal and Tangential Defects

In this section we assess blame for the failure of the Lefschetz hyperplane formu-
la, by assigning defects to the normal and tangential Morse data for the Morse
function f.

Definition. The convexity defect I'(p) of the function f at the point p is

the number
I'(p)=TI;(p)=d(S)— 4

The dual convexity defect I'*(p) of f at p is the number
I'*(p)=I7*(p)=A—d(S).
The normal defect A(p) of fon| X at p is the number
A(p)=c(S)—h

where h is the degree of the first nonvanishing homotopy group of the relative
normal Morse data for fon| X at p,ie., n,(J, K)=0for allm<h and =, (J, K) =0,
where (J, K) denotes the relative normal Morse data (see Part I, Sect. 11). (If
7m(J, K)=0 for all m, then we define the normal defect to be —00.)

The normal dual defect A*(p) of f at p is the number
A*(p)=h*—c(S)

where h* is the smallest number m such that J/K has the homoptopy type
of a CW complex of dimension m, where (J, K) denotes the relative normal
Morse data for X at the point p.

4.3. Homotopy Consequences

The definitions of the normal and tangential defects are justified by the two
propositions in this section. First, we recall the homotopy excision theorem
of Blakers and Massey ((BM], [Sw]):

Homotopy Excision Theorem. Suppose W= A U B are spaces with the homo-
topy type of CW complexes, and suppose that A N B is a neighborhood deformation
retract in A (or else suppose that the interiors of A and B cover W ). If (A, An B)
is n-connected and (B, A~ B) is m-connected, then the map

n,(B, An B) > n (W, A)
is an isomorphism for all q<n+m—1 and is a surjection for g=n+m.

4.3. Proposition. Suppose that the closed interval [a, b] contains no critical
values of f except for the isolated critical value f (p)e(a, b). Then, (X .4, X c;)=0

for all i<n, where
A=n—(4(p)+T'(p)~—1.

Proof. By Sect. 3.4 the pair (X ,, X .,) has the homotopy type of the pair
(X <,u(D*, 0D* x (Normal Morse data), X _,).
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We apply the homotopy excision theorem with W=X_,, A=X_,, and B
=(D*, 0D* x (Normal Morse data). Note that B is h+ A=c— 4+ A-connected
by assumption. Thus, (X _,, X .,)isc—A+A=n—A4—T connected. []

4.3*. Proposition. If the interval [a, b] contains no critical values of [ except
for the isolated critical value f(p)e(a, b), then the space X _, has the homotopy
type of a space obtained from X _, by attaching cells of dimension less than

or equal to i*, where
A*=n+(4*(p)+ I'*(p))-

Proof. By Sect. 3.4, the space X _, is obtained from X _, by attaching the
pair
(D* 0D* x (Normal Morse data)

along the subspace. This has the homotopy type of a CW complex of dimension
A+h*=A4+A¥+n—d=n+A4*+T*. []

4.4. Estimates on Tangential Defects

In this paragraph we estimate the tangential defect of the distance function
(in the Fubini Study metric) on projective space. Let H<=CIPM be a linear sub-
space of codimension e and let HcC**! be the corresponding linear subspace
of codimension e. Let G=CPM be a linear subspace which is complementary
to H,'i.e., GNn H=¢ and dim (G)=e— 1. Choosing a linear isomorphism

AeG=cMH?
gives rise to a homogeneous coordinate system {[zq:z;:...:z)]} on CIP such
that
H={[zo:z1: i 2p] | Zp-e+1=2p—c42=-.. =2y =0}
G={[zo:z1:...:2y] | zo=2,=...=2zp_,=0}.

Let f: CPP¥ - R be the distance from H (with respect to G), i.e,
M
Z Z;Z;
T(zo:2y:...izp ) =ML

M

z z; 2

i=0
Clearly f "'(0)=H and f~!(1)=G.

Proposition. Let A= CIPM be a complex analytic submanifold of dimension
d(A). Let f: CIP¥ >R be a smooth function and suppose that pe A—(G U H) is
a nondegenerate critical point of the restriction f | A. If f is sufficiently C* close
(for any k=2) to the distance function f, then the Morse index A of f|A at
p satisfies the inequalities

d(A)—(e—1)<A<d(A)+M—e.
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Proof. The proof of this well known result appears.in the appendix to this
chapter, Sect. 4.A.4. See also [Bol], [AF], [Grl1],[Sm1]. [

Corollary. The convexity defect and dual convexity defect of f at the point
p satisfy the a priori inequalities

I'(p)<min (d(A), e—1)
I'*(p)<min (d(A), M —e).

Proof. From the proposition we have I'(p)=d(A)—i<e—1. However, we
also have I'(p) <d(A) since 1>0. Thus, I'(p) <min(d(A), e—1).

Similarly, I'*(p)=1—d(A)<M —e. But, A<2d(A), so I'*(p)<d(A4). Thus,
I'*(p)<min(d(4), M —e). O

Remark. The same results hold for any nondegenerate critical point of a
composition
fon:A->R

when n: A - CIPM is a (not necessarily proper) finite complex algebraic map.

4.5. Estimates on the Normal Defect for Nonsingular X

In this section we show that the normal defect is bounded in terms of the
dimension of the fibres of the projection 7. Our method for estimating this
defect is the following: we observe that if X is nonsingular, then we can remove
the fibre 7~ !(p) from the normal Morse data without affecting its homotopy
groups in low dimensions. By the homotopy excision theorem, this “punctured”
normal Morse data has connectivity which is one greater than the connectivity
of the relative complex link mod its boundary (Z5, 0.%) (see Sect. 3.4, Corol-
lary 1). The distance from the critical point p is now a Morse function on the
relative complex link, so we use induction and Morse theory to estimate its
connectivity.

Definition. For each stratum A = Z define the fibre defect
dp(A)=max (0, 2dime T~ (p) — (n—d(A))
where pe A, and d(A4) denote the complex dimension of A.

4.5.1,,. Proposition. Suppose dimg(Z)=m, X is nonsingular, and peZ is a
critical point of f. Then, the normal defect of for| X at the point p satisfies

A(p) < sup or(4)

where the sup is taken over all strata A<Z such that pe A. In particular, if
X is nonsingular and w is finite or is semismall (see Sect. 1.1), then the normal
defect of every critical point p is zero.

4.5.2,.. Proposition. Suppose dimg(Z)=m and X is nonsingular. Then, for
every stratum A < Z we have

(L5 (A), 0L3(4)=0
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whenever
i<c(A)—1—sup ox(B).
B> A

Here £%(A) denotes the relative complex link of the stratum A, and c(4)=n
—dimg(A4), and the sup is taken over all strata B+A such that B=Z and
AcB.

Note. In both cases the sup is taken over strata in Z, rather than strata
in Z.

Proof that 4.5.2,, implies 4.5.1,,. We must estimate the degree of the first
nonvanishing homotopy group of the normal Morse data at the point p,

(L,K)=Xna '(f"'[~eel ST (=e)nBs(p)n N’
where N’ is an analytic manifold which is transverse to the stratum S which
contains the critical point p. We will consider two cases: (1) peZ and (2) pe Z—Z.

We will reduce case (1) to case (2) by removing the critical fibre =~ (p) from
the normal Morse data.

Case 1. Suppose peZ, ie., @~ '(p)n X % ¢. We need the following lemma:

Lemma. The homotopy groups of the normal Morse data n;(J, K) coincide
with the homotopy groups of the “‘punctured’”’ normal Morse data

n(J—n"'(p), K)
for all i<2n—2d(S)—2dim (2~ (p)).

Proof of lemma. Since X is nonsingular and +¢ is not a critical value of
f 1(Z N Bs(p) " N'), it follows that the pair (J, K) is a smooth (noncompact) mani-
fold with collared boundary. Any representative of the relative homotopy group
can be approximated by a smooth function

g: (D}, 6D - (J, K)

in the same homotopy class. By transversality, there is a slight perturbation
of the function g to a function g’ which is transverse to each stratum of =~ !(p).
This means that g'(D’) completely misses the fibre =~ !(p) provided that i
+dimg 7”1 (p) <dimg (J). [

Proof of Case 1. Following the same method as in Sect. 3.4, we see that
the punctured normal Morse data has the same connectivity as the pair

(Zx, 0Z5) <, oI)

which is homotopy normal Morse data for the pair (J—=n~'(p), K). (The argu-
ment proceeds as follows: by Part I, Sect. 11, the punctured normal Morse
data is homotopy equivalent to the pair (/57" U,,£%, ££~) where £F* denotes
the relative halflink. Using either the excision property of Morse data (Part I,
Sect. 3.2) or the homotopy excision theorem.of Blakers and Massey, this pair
has the same connectivity as the pair (/f*, d/¢*) which (by Sect. 2.6, part
(d)) is homeomorphic to the product

(L%, 0L3) x (I, oI).
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By Proposition 4.5.2,,, the first nonvanishing homotopy group of the pair
(L%, 0.£5) occurs in dimension >#, where

fi=dimg (£%) —sup 65(B)
B>S

(the sup being taken over all strata B=+S such that B=Z and S B). Thus,
the first nonvanishing homotopy group of the normal data occurs in degree
h, where
h>min(#+1, 2n—2d(S)—2dimen~ ! (p)
=min(c—supdp(B), 2n—2d(S)—2dimg 1 (p))
B

$O
A=c—h<max(sup §(B), —c+2dim n~1(p))
B

=max (sup 65(B), 6(S))=sup (67(B))
B B

where the sup is taken over all strata B> S such that BcZ. [

Proof of Case 2. Suppose peZ—Z, i.e., that @~ }(p)n X = ¢. Then it is not
necessary to “puncture” the normal Morse data: by Sect. 3.4, Corollary 1, the
pair

(Z%., 0L5)x (U, 0I)
is already homotopy normal Morse data. Thus, the same calculation as above
gives

A=c—h<sup dp(B)

B>S

where the sup is taken over all strata B< Z such that B+S and B> S.
In summary, 4=sup(é,(B)), where the sup is taken over all strata BcZ
B

such that pe B, as claimed. []

Proof that 4.5.1,,_, implies 4.5.2,,. Consider the following setup:
Xna ' P(A)=LES)=i ' L(A)

\ J f
Z(A)——R
where #(A4) denotes the complex link in Z of the stratum A. Let f'(z) denote
the function d—r(z), where r(z) denotes the square of the distance between
the points p and z. Let f be a C* close approximation to f* (for some k>2)

such that f is Morse function (see Part I, Sect. 2.2 or [P1]). By Corollary 4.4,
for every critical point ge.# (A4), the tangential defect is 0, i.e.,

I;(q)=1%7(q)=0.

Now consider the effect on 7, (L5) <., 0-L%) of a single critical point ge % (4)
of f. Suppose the interval [a, b] contains no critical values except for the single
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critical value f(q). By Proposition 4.3 we have

ni((g;)sb’(g;)sa)zo fOI' all l<ﬂ
where
f=dime (£ —4(q)

since I'(q)=0. By Proposition 4.5.1,,_, we have
A(g)<sup 0r(B)

where the sup is taken over all strata B< Z such that ge B.
Applying this argument to each of the critical points of f on £ (A4) we
obtain
(L5, 0¥¢5)=0 forall i<A
where
A=dimg(ZL3)—sup 6(B)=c(A)— 1 —sup é.(B)
B> A

B> A

where the sup is taken over all strata B4 A4 such that BcZ and AcB. [J

4.5*, Estimates on the Dual Normal Defect for Proper n

In this section we show that the dual normal defect is bounded in terms of
the same fibre defect 65(S), provided the map = is proper. We will assume
X=X, that Z=Z, and that n =7 throughout this section.

Definition. For each stratum A < Z define the dual fibre defect
0F(A)=2dim¢(n "' (p)) —(n—d(4))
where pe A and d(A) denotes the complex dimension of A. This is the same
as the fibre defect o5 (A4) of Sect. 4.5.

Proposition 4.5.1%. Suppose dime(Z)=m, and n: X - Z is proper. Let peZ
be a critical point of the Morse function f. Then the dual normal defect of f
at the point p satisfies
A*(p) <sup 5} (A)
A

where the sup is taken over all strata A such that peA. In particular, if n is
proper and finite, then the normal defect of each critical point is 0.

Proposition 4.5.2,F . Suppose dimg(Z)=m and = is proper. Then for every stra-
tum A, the space ¥"(A) has the homotopy type of a CW complex of dimension
less than or equal to #*, where

A* =dimg (L™ (A))+ sup 6} (B)
B>A

where the sup is taken over all strata B+ A such that A<B. In particular, if
7 is finite then £"(A) has the homotopy of a CW complex whose dimension
is less than or equal to the complex dimension of L™ (A).



184 Part I1. Morse Theory of Complex Analytic Varieties

Proof that 4.5.2} implies 4.5.17%. We must estimate the “homotopy dimension”
of the normal Morse data (J, K) at the point p. Let S denote the stratum of
Z which contains the critical point p, and let (£7%, 0.¢") denote the relative
complex link of the stratum S. By Sect. 3.4, Corollary 1*, the normal Morse
data has the homotopy type of the pair

eyl(Z" > (p), £7).

But, 4.5.2¥% implies that the mapping cylinder can be obtained from ¥" by
attaching cells of dimension less than or equal to h* where
h* =max (2dimg(n 1 (p)), dimg (L") +sup 6F(B) + 1).
B>S
Thus, .
A*(p)=h*—c(S)<max (2dim¢ n ™! (p) —c(S), sup & (B)))
B>S

=sup 6¥(B). O

B>S
Proof that 4.5.1% _ | implies 4.5.2%. Consider the setup
L7(4)

n

PA)— R

Let f” denote the function r(z) and let f be a close approximation to f” such
that f is Morse function (see Part I, Sect. 2.2 or [P1]). By Corollary 4.4, for
every critical point ge. % (A), the dual convexity defect is 0, i.e.,

I*(q)=0.
If the interval [a, b] contains no critical values other than the single critical

value f(q), then by Proposition 4.3*% the space #"(A4)., is obtained from
L7 (A) ., by attaching cells of dimension <#A*, where

n* =dimg L™ (A)+ 4*(g).
Using Proposition 4.5.1% _; we have

A*(q) <sup 6%(B)
B

where the sup is taken over all strata B which contain the point p in their
closures. Applying this argument to each of the critical points of f on #*(A),
we conclude that .#”*(A4) has the homotopy type of a CW complex of dimension
<A*, where

A* =dimg £"(A)+sup 6§ (B). O

B> A

Remark. Strictly speaking, the set 0.#"(A) is a degenerate critical set of
the function f. However, this boundary is collared in #(A) and (see Sect. 1)
the Morse function f (which is called r in Sect. 1) has no critical points in
this collar. Therefore, the homotopy type of #(4) is not affected by attaching
its boundary.
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Remark. The same method can be used to show the following: if X is an
n-dimensional complex analytic subvariety of some complex analytic manifold
M, if pe M, and if B;(p) denotes a closed ball of radius é centered at p (contained
in some coordinate chart of M), then the intersection X n B,(p) has the homotopy
type of a CW complex of dimension <n. (Use a Morse function which is a
slight perturbation of the distance from the point p.)

4.6. Estimates on the Normal Defect if 7 is Finite

In this section we will show that the normal defect is bounded in terms of
the number of equations which define X as a subvariety of some smooth variety
M’, when the map 7 is finite. We consider the setup of Sect. 4.1, ie., Z is
a complex analytic subvariety of M, 7: X — Z is a Whitney stratified finite proper
map, X = X is an open union of strata, t=7| X, and Z=n(X). For any stratum
A of Z, let ¢(A)=n— dimg(A4) be the complex dimension of the normal slice,

(N(A), 0N (A)=N'Z(B;s(p), 0B;(p))

as in Sect. 4.5. Let (Z(A4), 0.#(A4)) denote the complex link in Z of the stratum
A. If 7 is finite, then the relative normal slice in X is a disjoint union

(NF(A4), ONF(A) =X na~ ' (N(A), ON(A)=]](N,, oN,)

of the normal slices in X, where the union is taken over all points xe@ ' (p).
Similarly, the relative complex link is a disjoint union

(ZL5(A), 0L5(A))=X N Y(ZL(A), 0L (A)=]](Zs, 0.Z,)
of the complex links in X at each point xe@ ™ *(p).

Definition. The singularity defect 55(A) at the stratum 4 = Z is the number
ds(A)=sup (c(4)—h(x)

where h(x) is the degree of the first nonvanishing homotopy group of the pair
(N,, 0N,), c(A) is the (local) codimension of the stratum A4 in Z, pe A4, and the
sup is taken over all points xe X N7~ !(p) (which actually lie in the subspace
X).

Remark. This means that the link N, is ¢(4)—d5(4)—2 connected. (Com-
pare [Gro] Exp. 13, Sect. 6 or [HL2], Sect. 2.1.5. The number sup (n—dg5A)
is the rectified homotopical depth.)

We recall the following theorem of Hamm [H1], a homology version of
which will be provided in the remark in Sect. 4.6*.

Theorem. Suppose X is a complex analytic subvariety of some complex m-
dimensional analytic manifold M'. Let E denote the minimum number of equations
needed to define a neighborhood of a point xeX, and let L(x)=X n0Bs(p) be
the intersection of X with the boundary of a sufficiently small ball about the
point p. Then L(x) is m— E —2 connected.
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Applying this theorem to a normal slice N through the stratum S of an
analytic Whitney stratification of X, we find

h(x)<D+C—E

where C is the (complex) codimension of the stratum S in X and D is the
(local) codimension of X in M’ (near the point p=N nS). In particular, if for
each xen™'(p) a neighborhood of x is defined by <E equations and codimen-
i >

sion,(X)> D, then we have 5o(A)<E—D.

Proposition 4.6.1,,. Suppose dim(Z)=m, and 7: X - Z is finite and peZ is
a critical point of f. Then, the normal defect (Sect. 4.2) of f at the point p

satisfies
4(p)< sup d5(p)

where the sup is taken over all strata AcZ such that pe A. In particular, if
X is a local complete intersection, then the normal defect of every critical point
is 0.
Proposition 4.6.2,,. Suppose dim(Z)=m, and 7: X - Z is finite. Then, for

every stratum A< Z we have

m(£x(A), 0L%(A))=0
whenever

i<c(A4)—1—sup d5(B)

B>A4

where the sup is taken over all strata B< Z such that B> A.

Proof that 4.6.2,, implies 4.6.1,,. We must estimate the degree of the first
nonvanishing homotopy group of the normal Morse data at the point peZ,

LK) =Xna '(fT'[—eel f (=) nBs(p) " N’

where N’ is an analytic manifold which is transverse to the stratum S which
contains the critical point p. We distinguish between two cases, (1) peZ and
) peZ—-Z.

Case 1. Suppose peZ,ic., n~ '(p)n X & ¢. We need the following lemma:

Lemma. The homotopy groups of the Morse data n;(J, K) for fon: X >R
coincide with the homotopy groups of the “‘punctured’’ normal Morse data

for all i< c(A)—5(A). n(J =~ (p), K)

Proof of lemma. Since 7 is finite, the pair (J, K) breaks into a disjoint union
of pieces,

, K)=11 (s, K.)

of the normal Morse data for the map foxn at the points xe@ ™ '(p). For each
such x which lies in X, we must compare the homotopy groups

7ri(Jx_xa Kx) - 7ri(Jxa Kx)
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But this map is surjective if the third term in the exact sequence vanishes,

ie., if
m(Jo, J,—x)=0.

By Sect. 2.4, the pair (J,, J,— x) is homeomorphic to the pair (N,, N, — x) which
is homotopy equivalent to the pair (N,, 0N,). The homotopy groups of this
pair vanish in all degrees i <c(4)—d5(4). O

We now proceed as in the proof that 4.5.2 implies 4.5.1. By Sect. 3.4, Corollary
1, the punctured normal Morse data has the same connectivity as the pair
(Z%, 0Zx)x (I, 1)
But, Proposition 4.6.2,, implies that the first nonvanishing homotopy group
of the pair (%5, 0.#%) occurs in dimension >#, where
A=dimg(ZL5) —sup 65(B).
B>S

Thus, the first nonvanishing homotopy group of the normal Morse data occurs
in degree h, where
h>min A+ 1, 5¢4(S)).
Thus,
A=c—h<max (sup (ds(B), d5(S))
B

which completes the proof of Case 1.

Case 2. Suppose peZ—Z. By Sect. 3.4, Corollary 1, the pair
(Zx, 0L%) <, o1)
is already homotopy normal Morse data. Applying 4.5.2,, as above, we have

A<sup (35(B))

where the sup is taken over all strata B< Z such that BoS, and B=+S.
In summary we have
A <sup (95(B))
B

where the sup is taken over all strata B< Z such that pe B. [

Proof that 4.6.1,,_, implies 4.6.2,,. The proof is exactly the same as the
proof that 4.5.1,,_, implies 4.5.2,,, except the fibre defect 6, must be replaced
by the singularity defect 6. [

Remark. If xe X n7~!(p), then 7, (%,)=0 for all k where
k<c(4)—2—supdg(B).

B>A

Thus, if X is a local complete intersection then £, has the homotopy type
of a wedge of spheres of dimension ¢(A4)—1 (see [L&1]).
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Proof of remark. (We again make use of the trick of removing the critical
point x and observing that the connectivity of the normal Morse data is unaf-
fected by this operation.) If

k<c(A)—2—sup d5(B)

B=>A
then 7, (0N,) =0, which gives rise to the surjection in the following sequence:
0=mn(%,, 0L)=m (&L, 0L) %, 0I)
=T+ 1(Jx—X, Ky) > ey 1 (s, Ky
=1, 4 (cone(¥,), £,) by Sect. 24
=m(Z). O

4.6*. Local Geometry of the Complement of a Subvariety

In this section we will suppose that X is an n-dimensional complex subvariety
of some complex analytic manifold M. We fix a subvariety W< X which is
locally determined in X by k equations. Fix a point pe W and let 0B;(p) denote
the boundary of a small ball of radius é which is centered at the point p.
Define

Ly(X)=0B;(p)nX  L,(W)=0B;(p)nW.

Proposition. If ¢ is sufficiently small, then the space L,(X)—L,(W) has the
homotopy type of a CW complex of dimension <n+k—1.

Remarks. This proposition can be obtained from [H5], since L,(X)—L,(W)
has the same homotopy type as B;(p) n(X — W), which, by [SoV], Sect. 2.6
is (k— 1)-complete.

This proposition implies the homology version (see [Kp3]) of Hamm’s theo-
rem [H1] on the connectivity of the link of a local complete intersection as
follows: if X is nonsingular, then L,(X)=S2""" is a sphere. Since H;(L,(X)
—L,(W))=0 for all i>n+k—1, we have (by Alexander duality) H;(L, W)=0
for all i<n—k—2. Hamm’s theorem can also be proven by Morse theory using
the same method as in the following proof, but this is very close to his original
proof. A slightly more refined version of Proposition 4.6¥ may be true, which
would imply Hamm’s theorem in homotopy as well as similar results in intersec-
tion homology:

Conjecture. The space L,(X)—L,(W) deformation retracts (in a stratum pre-
serving way) to a Whitney stratified subset of L,(X) which has (real) dimension
<n+k—1, and which intersects each stratum of X in a subset S of dimension
<s+k—1, where s=dimg(S). (See also [Lé2].)

Proof of proposition. First we consider the case k=1, i.e., W is defined as
the zeroes of a single equation f: X — @C. We can assume that f(p)=0. We
will make use of the results in the appendix Sect. 2.A, which are parallel to
those of Proposition 2.4 even though the function f is not generic. Choose
0<e<d<1 as in Sect. 2.A.2, and consider the cylindrical neighborhood of p
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and its boundary,
C=Xnf""(D,)nBs(p)
dC=X[(f~"(@D) N B;s(p) u(f ' (D) " OB (p))]

where D, @ denotes the closed disk of radius e. The boundary 6C of the
cylindrical neighborhood is divided into horizontal L, and vertical L, parts,

L=Xnf"'(D)ndBs(p)  L,=Xnf""(@D,)n B p).

By Proposition 2.A.3(b), the pair (C, dC) is homeomorphic (by a stratum preserv-
ing homeomorphism) to the pair

(X 0 B;(p), X " 0B;(p)).

By Proposition 2.A.3(a), the space C—f ~'(0) is a topological fibre bundle over
D,—{0}, with fibre N
P =f""e+0i)n X N By(p).

Thus, 0C — f ~1(0) (which deformation retracts to L,) is a topological fibre bundle
over 0D,=S', with fibre Z. But £ has the homotopy type of a CW complex
of dimension <n—1 (by Proposition 4.5.2*% which applies to Z as well as
to £, or by the remark following the proof of Proposition 4.5.1%). Thus, 6C
—f71(0) has the homotopy type of a CW complex of dimension <n, which
completes the proof of the case k=1.

Now suppose k> 1. There is (locally near p) an analytic map F: X - C*
such that F(p)=0 and W= F ~(0). Stratify this map, i.e., choose Whitney stratifi-
cations of X and of Z=F(X) so that the restriction of F to each stratum is
a submersion and so that W is a union of strata. It is possible to find a k—1
dimensional subspace (through the origin) H<=C* such that H is transverse
to every stratum of Z=F(X) except for the stratum {0}. (This follows from
Part I, Sect. 1.8 because we can take H to be the kernel of any nondegenerate
characteristic covector Ae T* C*.) Let V=F ~'(H) and consider the triple

L,(W)eL,(V)< L,(X).

The transversality condition on H guarantees that the inclusion L (V)<= L,(X)
is a normally nonsingular inclusion (see Part I, Sect. 1.11) of (real) codimension
two. Thus, there is a tubular neighborhood N(L,(V)) of L,(V) in L,(X) and
a (topologically) locally trivial projection : N(L,(V))— L,(X) whose fibres are
two-disks D2. Thus,
Ly(X)~ Ly (W) =(Ly(X) ~ L,(V) U (N (L,(V) ~ L,(W))
=(Lp(X)=Ly(V) U(N(L,(V)—n" ' (L,(W))
= (Ly(X)~ Ly(V)) U N(L,(V) ~ L, (W)
where N(L,(V)—L,(W))=n""(L,(V)—L,(W)) is a two-dimensional disk bundle
over L,(V)— L,(W). The intersection of these two spaces,
(Lp(X)—L,(V)) A N(L(V)—L,(W))
is homotopy equivalent to the bounding circle bundle,

ON(L,(V)—=L,(W)) > (L,(V)—L,(W)).
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Therefore, L,(X)— L,(W) has the homotopy type of a CW complex of dimension
<#*, where
A* =sup (dim (L, (X)—L,(V)), dim(L,(V)—L,(W))+1+1)
=sup(m+1—1,(n—1)+k—1—1+2) by induction and the case k=1
=sup(n,n+k—1)=n+k—1. [

4.A. Appendix. The Levi Form and the Morse Index

One of the miracles which occurs in complex Morse theory is the following:
for a given complex manifold 4 and smooth function f: 4 — R it is often possible
to estimate the Morse index of any critical point of f | B, for any complex sub-
manifold Bc A (see 4.A.4). This can be done whenever we have estimates on
the signature of the Levi form of f, and such estimates can be found when
fis the Euclidean (or Fubini-Study) distance from a linear subspace of Euclidean
(or complex projective) space (4.A.5, 4.A.6). This miracle occurs because the
Levi form for f|B at a point peB is the restriction to T, B of the Levi form
for f at p. The analogous statement for the Hessian is false. In this section
we review these basic and well-known facts about the Levi form.

4.A.1. Suppose A is a complex analytic manifold and f: 4 >R is a smooth
function. We shall use the notation df(p) to denote the complex linear map
T, A — € which is given in local coordinates by

Since f is real valued, the complex conjugate of df(p) is the antilinear map
df(p): T, A— C, which is given in local coordinates by

~ 0 0 0
I AL

The (real) differential df'(p): T, A— R is the (real) linear map

df (p)=%(9f (p)+0f (p))-
Definition. The E.E. Levi form of f at a point pe A4 is the (Hermitian) form,

L=00f(p): T,AxT,A->C

which, in local coordinates about p, is given by the matrix of partial derivatives,

o f

VT 92,0z,

It is easy to see that if B A4 is a complex- analytic submanifold which contains
the point p, then the Levi form of f | B: B— IR at p coincides with the restriction
of L to T, B x T, B. (This is a remarkable fact, because the same statement does
not hold for the Hessian H of f, unless p was a critical point of f.)
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We associate with L the (real valued) quadratic form
L©)=LE 9

and define the signature (L) to be the (complex) dimension of the largest sub-
space of T,A4 on which L is negative definite. We also define the nuility v(L)
to be the complex dimension of the largest subspace on which L vanishes.
Similarly, we associate to the Hessian H of f the quadratic form

HE=H( 9

and define the signature o(H) to be the (real) dimension of the largest subspace
of T, A on which H is negative definite.

4.A.2. Lemma. Suppose the Hessian H is nondegenerate. Then
o(H)=za(L)+v(L)=n—o(—L)
o(—H)zo(—L)+v(L)=n—a(L)
where n denotes the complex dimension of the vectorspace T, A.

Proof. First we verify the proposition in the case A=C. We may write
z=x+iy and find that
0* o*f  0?
=87§E=a—xj;+a—yj;=trace(H).
Thus, L is the sum of the eigenvalues of H. If ¢(L)+v(L)=1, i, if L is negative
semidefinite, then H cannot be positive definite. Thus, signature (H) > 1. Similarly
if o(—L)+v(—L)=1, then L is positive semidefinite so H cannot be negative
definite, so o(— H) > 1.

We now consider the general case. Let L, be a complex a(L)+ v(L)-dimen-
sional subspace of T,4 on which L is negative semidefinite, and let H, be
a maximal real subspace of T,4 on which H is positive definite. Consider the
subspace V=H,nL, of L,. This subspace V contains no complex line (for on
such a complex line, H, would be positive definite and L, would be negative
semidefinite). It follows that dimg (V) <dimg(L,) (otherwise VN iV is a nontrivial
complex subspace of V). Thus,

dimg(L,)>dim (V)>dim (H,)+ 2dim¢(L,)—2n
SO
o(H)=2n—dim H,>dim¢(L,)=0(L)+v(L)
as desired. [

Remark. If we drop the assumption that H is nondegenerate, then the above
argument gives:
cH)+vH)=0(L)+v(L)y=n—o(—L)
o(—H)+v(—H)=zo(—L)+v(—L)=n—o(L).

4.A.3. Levi Form of a Composition. The signature of the Levi form of f
can change by one if we compose f with a strictly increasing function g: R - R.
In this section we define the restricted signature of the Levi form, which does
not change under such a composition. It is the restricted signature of the Levi
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form of f: A - R which determines the Morse index of any nondegenerate criti-
cal point of f | B (where B is a complex analytic submanifold of 4). This number
was considered by [Fr1] and later by [Sm1], in the context of Morse theory.

Let A be a complex analytic n-dimensional manifold and let f/: 4 IR be
a smooth function. Let E=ker (0f (p))=ker (0f (p)). If df (p)%0, then E is the
unique complex n—1 dimensional vector subspace of ker (df(p)) (and this is
the only case of nontrivial content).

Definition. The restricted Levi form L(f) is the restriction of the Levi form
of f to the subspace E =ker (0 (p)).

Definition. The restricted signature o' (f) (resp. restricted nullity v'(f)) at the
point p is the signature (resp. nullity) of the restricted Levi form of f; i.e.,

o' (f)=a(L(f)|E)
V(f)=v(L(f)|E).
Now suppose that g: R -» R is a smooth strictly increasing function, and h: 4

— A is an invertible analytic isomorphism.

Proposition. The restricted signature (and nullity ) satisfy the following rela-
tions:

o' (f)p)=0'(gofoh)(h™" (p)
V()p)=V'(gofoh)(h™ " (p))
o' (Np)<e(L(NP) = (/) +1

It follows that o (L(f)(p)) and a(L(g-f)(p)) can differ at most by one.
Proof. A simple computation shows

L(gof)(p)=00(g° =g (f (p)) 90f (P)+&"(f (P) 0/ (P)R I 1 (p).

Thus, the restriction to E of the Levi form of gof is a positive multiple of
the restriction to E of the Levi form of f. Therefore, their signatures are the
same. A similar calculation shows that

L(foh)(q)=L(f)(H(q)(0h(q)®h(q))

so it has the same signature, restricted signature, nullity, and restricted nullity
as L(f)(h(g)). This proves the first two equations. The last part is obvious,
since either E is a complex codimension one subspace of 7,4 or else E
=T,A. O

Remark. This difference of one is a source of some confusion in Morse
theory, because if f has a critical point p of index A on some submanifold
Bc A, then gof also has a critical point of index 1 on B. In order to use
Proposition 4.A.2 to estimate the value of A, most authors replace the function
f by some composition gof. A better technique is to estimate directly the re-
stricted signature o’ (f).

4.A.4. Theorem. Suppose A" is a complex manifold, f: A>R is a smooth
function, B* < A" is a complex submanifold, and the restriction f | B has a nondegen-
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erate critical point peB. Then the Morse index A for f|B at p is bounded as

Sfollows:
k+o'(L)>A>k—0(—L,)

where o'(L,) denotes the restricted signature of the Levi form of f: A— R at
the point p.

Remarks. (1) This means (in the language of Sect. 4.2) that the convexity
defect I' of f | Bis <o’ (— L) and the dual convexity defect I'* of f | Bis <a’'(L,).

(2) It follows from 4.A.3 that the same result holds if we replace the restricted
signature ¢’ by the signature o in the above equation.

(3) If f|B has a degenerate critical point peB, then there is function f
which is arbitrarily close to f (in the Whitney C® topology) with nondegenerate
critical points q,, ¢,, ..., g, near p. However, the restricted signature of the
Levi form of f' at g; may differ (by as much as v'(L)) from ¢'(L(f)), because
the eigenvalues of L(f) which are zero may become nonzero. This gives the
following corollary:

Corollary. Suppose A is a complex manifold, f: A—>R is a smooth function
and suppose there are numbers ¢*, 6~, and v so that for each point pe A we

h
e F(Lp)<o*, o (—L,p)<o", V(L,p)<v.

Let Bc A be any k-dimensional complex submanifold. Then there is a function
f': A—> R which is arbitrarily close to f (in the Whitney C®-topology ), so that
f'|B is a Morse function and the Morse index A of any critical point of f'|B

is bounded as follows:
k+ot+v=iz=k—0c —v.

4.4.4. Proof of theorem. Let o(Lg) denote the signature of the Levi form
of the restriction f'|B: B—IR at the point p. Since p is a critical point, T,B
is a subspace of ker(df(p)). Since the Hessian Hy of f|B is nondegenerate,
we have (by Lemma 4.A.3)
k+o' (Ly)=k+0o(Lg)
=2k—(k—a(Lp))
>2k—o(—Hp)=A=0a(Hp)
>k—o(—Lp)
>k—0o'(—L,). [
Example. If /: €C" >R is a (real) linear function, or is the real part of a
complex analytic function then its Levi form is zero. If B is a complex k-dimen-

sional submanifold of " then the Morse index of any nondegenerate critical
point of f'| B is exactly k.

4.A.5. Levi Form of the Distance Function on Affine Space. The (distance)?
from a codimension r linear subspace in C" is given in local coordinates by

f@)= i Z; Z;
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so its Levi form L has a(L)=0, o(—L)=r, v(L)=n—r. Theorem 4.A.4 now
states: If B is a k-dimensional complex analytic submanifold of €”, the index
A of any nondegenerate critical point of f | B is bounded as follows:

k>A>k—r.

4.A.6. Levi Form of the Distance Function in Projective Space. The (distance)?
from a codimension r linear subspace H,; of CIP" (with complementary r—1
dimensional linear subspace H,) is given in homogeneous coordinates by (see
Sect. 4.4) "

Z Z;Z;
i=n—r+1
fzo:zytiz,))=—"——
szi
i=0

Proposition. If p¢H, UH,, then o (f)(p)=n—r, vV'(f)(p)=0 and o' (—f)=
r—1. If peH,, then o' (f)(p)=n—r, vV(f)(p)=r—1 and o'(—f)(p)=0. If peH,,
then ' (f)(p)=0, v'(f)(p)=n—r and ¢'(— f)(p)=r—1.

Proof. Let p=[cq:¢;:¢;: ... : c,]€CIP". Consider the r-dimensional submani-
fold K = K (p) which contains the point p and is given by the equations

Zo=Co Z1=Cq -+ Zn_p=Cn_,
and consider the submanifold K* which is given by the equations

Zn—r+1=Cn—r+1 Zn—r+2=Cn—p42 -+ Zp=0Cy.

Since 0f(p) does not vanish on T,K or on T,K*, it suffices to show that
L(f)(») (T, K nker df(p)) is positive definite and L(f)(p)|(T, K* nker df (p)) is
negative definite. These statements are verified using the following trick: since
the function x/(1 —x) is monotonically increasing on [0, 1) we can (by 4.A.3)
replace the function f with the function g=f/(1—f) when computing the Levi
form. But, the restriction of g to the submanifold K is given by:

g|lK,= Y zZjconst.
i=n—r+1
Thus, L(g|K)(p) is positive definite, so L(g)|(T, K nker dg(p)) is also positive
definite. But, this form is a positive multiple of L(f)(p)|(T, K nker df(p)). The
other verifications are similar. []

Corollary. Suppose BcClPP"—(H, U H,) is a k-dimensional submanifold. Let
7: CIP" > R be a function whose restriction to B has only nondegenerate critical
points. If T is sufficiently close (in the C® topology) to f, then the index A of
each critical point of f | B is bounded as followed :

k+n—r>A>k—r+1.
Proof. Apply Corollary 4.A.3. []
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5.1. Proof of Theorem 1.1: Relative Lefschetz Theorem with Large Fibres

Theorem. Let X be a purely n-dimensional nonsingular connected algebraic variety.
Let n: X - TP be an algebraic map and let H<=CIP" be a linear subspace of
codimension c. Let Hs be the J-neighborhood of H with respect to some real
analytic Riemannian metric. Define ¢ (k) to be the dimension of the set of points
zeCPPY — H such that the fibre n~'(z) has dimension k. (If this set is empty
define ¢(k)= —00.) If 6 is sufficiently small, then then the homomorphism induced
by inclusion, n,(n ™' (H;)) — n;(X) is an isomorphism for all i <# and is a surjection
for i=H, where

A=n—sup 2k—(n— (k) +inf (¢ (k), c— 1)) — 1.

Furthermore: In this theorem, n is not necessarily poper, and n~*(H;) may
be replaced by n~1(H) if H is generic or if m is proper. The assumption that
X is algebraic may be replaced by the assumption that X is the complement

of a closed subvariety of a complex analytic variety X and the m extends to
a proper analytic map ©: X — CIPY.

Preliminaries to the proof. Since 7 is algebraic, it extends to a proper algebraic
map
7: X - CPY
on some algebraic variety X which contains X as an open subset. It is possible
(Part I, Sect. 1.7) to stratify X and

Z=7(X)=CP"

so that @ is a stratified map, so that X is a union of strata of X, and so
that Z=n(X)is a union of strata in Z. (It follows that the function z—dim 7~ !(z)
is constant on each stratum of Z.) Let G CIPY be a linear subspace which
is complementary to H (i.e., HNnG=¢ and dim(G)=c—1) and which is trans-
verse to each stratum of Z.

By Sect. 4.4, the distance f: CIP¥ - C from H (with respect to G) is a real
analytic function which satisfies: 0< f(x)<1, f~1(0)=H, and f~!(1)=G. Since
foi: X >R has finitely many critical values; there is a number ¢>0 so that
the interval (0, ¢] contains no critical values of fo7. Choose 6>0 so that
F(H,) <0, £]. It follows (see Proposition 5.A.2) that the inclusion n~1(H;) n X
-7~ (f 1[0, e]) » X induces isomorphisms on homotopy groups of all dimen-
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sions. Thus, we can replace the neighborhood H; by the set H,=f [0, ¢].
Now approximate f by a (sufficiently C* close) function f which coincides
with f in the region f ![0, £]. Thus,

(@) 0<f(x)<1, f Y (0)=H,and f " 1(1)=G.

(b) £7'[0, &)=H,.

(c) fis a Morse function for the above stratification of Znf ~1(¢/2, 1) with
distinct critical values (Part I, Sect. 2.2.1).

(d) For every critical point peZ of f we have I'(p)<min (d(S), c— 1) where
d(S) is the dimension of the stratum which contains the critical point p (4.A.4
and 4.A.6).

Such an approximation exists by [P1]. (In fact, (Part I, Sect. 2.2) by choosing
the complementary subspace G generically, we can even guarantee that the
original function f restricts to a Morse function on Z.)

Consider the following setup:

L

We will apply Morse theory to this function, building X from =~ !(H,) by cross-
ing critical values of f which correspond to critical points pe Z — H,.

C

N>

c ———)IR.

Proof of theorem. First we rewrite the formula for # as Ai=inf (n(A4)), where
A

n(4)=n—(2 dimg ™! (a)— (n— dimg (4)) + min (dimg (4), c— 1)) —1

where the inf is taken over all strata A<= Z, and where ac A. We estimate the
connectivity of the pair (X o,_o, X "7~ '(H,)) (for sufficiently small 6) using
the relative Morse theory of the function f. If the interval [q, b] contains a
single critical value of f corresponding to a critical point pe Z, and if f (p)e(a, b),
then by Proposition 4.3 we have =;(X _,, X .,)=0 for all i<, where

m=n—(4(p)+ I'(p)—1.
However Sect. 4.4, Corollary 1 gives
I'(p)<min (d(S), c—1)

where d(S) is the dimension of the stratum containing p. Furthermore, 4.5.1
ives
: A(p)<sup (0, 2dime 7" (p) — (1 —d(4))

4>S
Where the sup is taken over all strata 4 = Z such that 4> S. Thus,
m>n—(sup(2dim 7~ ' (p) —(n—d(A))) + min (d(S), c— 1)) — 1.

A>S
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But, 7 is just the infemum of this expression when S is allowed to vary over
all the strata in Z. Thus, m>A. We conclude that 7,(X ., 4, X "7~ '(H,)=0
for all i<A.

There are two ways to handle the addition of the degenerate maximum
nf):

Method 1. Find a perturbation (near f (1)) of the function f, so that [ |Z
is a Morse function with nondegenerate critical points (see Part I, Sect. 2.2,
or [P1]). Estimate the Morse index of each such critical point using Corollary
4.A .4, noting that the Levi form of f at any point pef~ (1) has dimg(G)=c—1
eigenvalues which are zero, and all the rest are negative. Now proceed as above,
showing that each of these new critical points does not affect the relative homo-
topy groups m;(X ., —,, X N H,) in the range of dimensions i <A.

Method 2. Show directly that the addition of the degenerate maximum
7”1 f~1(1) does not affect the connectivity of (X ., _4, X "~ !(H,)) in the range
of dimensions which we are considering. Here are the details:

Since f~!(1) is transverse to all the strata of Z, the inclusion Zn f " '(1)cZ
is normally nonsingular (Part I, Sect. 1.11). Thus, the neighborhood and its
boundary

Zn(fT'-0,11, f~1(1-0)

is homeomorphic (by a stratum preserving homeomorphism) to the disk bundle
and boundary sphere bundle of a vectorbundle over Zn f ~!(1), whose fibre
is CV7¢*1! (provided 8 is chosen sufficiently small). Since this homeomorphism
preserves strata, the same is true for the pair

(X7 U [1-0,11, X a7~ L f 11 —6)).

The long exact sequence in homotopy for this pair coincides with the long
exact sequence for the fibration of the boundary sphere bundle,

Xna Yf {1—-0-f"11)
so we obtain
T(X A7 T 1=60,1], Xna T A=) (SN

which vanishes for all i<2N —2c+ 1. So, it suffices to show that A<2N —2c¢+ 1.

Since X is n-dimensional, there is a stratum A4 in Z such that
dim (77 (4)n X)=n. If p,=dim (4) and k,=dim (=~ ' (a) n X) for any a€ A4, then
n=¢q+ky. The formula for 7 is an infemum over all strata in Z, so

A<n—(2ko—(n—¢o)+inf(¢o, c—1))—1=sup (—1, ¢o—0).
Clearly, ¢o<N and c<N, so
¢po—Cc<N—c<2N—-2¢<2N—-2c+1

as desired.

Proof of furthermore. The furthermore is a direct consequence of Proposition

5.A.1 or 5.A.3: under either hypothesis, the inclusion
Xna Y H)y»Xna Y(H) > Xnn '(H,)
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induces isomorphisms on homotopy groups of all dimension. (In fact, a combina-
tion of these two arguments can be used to show that H; may be replaced
by H provided H is transverse to the strata of Z over which = is not proper.) [

5.1*. Proof of Theorem 1.1*: Homotopy Dimension with Large Fibres

Theorem. Let X be an n-dimensional (possibly singular) complex analytic variety.
Let n: X > CIPY—H be a proper analytic map, where H is a linear subspace
of codimension c. Let ¢(k) denote the dimension of the set of points yen(X)
such that the fibre 1~ 1(y) has dimension k. (If this set is empty define ¢ (k)= — c0.)
Then, X has the homotopy type of a CW complex of (real) dimension less than
or equal to
A*=n+sup 2k —(n— ¢ (k)) +inf (¢ (k), c —1)).
k

Proof. Let Z=Z =n(X)c CPP"— H. Stratify the map n: X - Z. Let G CP"
be a linear subspace of dimension ¢—1 which is complementary to H (ie.,
G N H=¢) and which is transverse to all the strata of Z. Let (1—f): CP" >R
denote the Morse function which is created in Sect. 5.1, i.e, f ~*(0)=G, f (1)
=H and f has finitely many nondegenerate critical points on Z with distinct
critical values.

As in Sect. 5.1 we rewrite the expression for A* as follows: A* =sup (n*(A4)),

A

where
n*(4)=n+(2dimg n~ *(a)— (n —dim (A4)) +inf (dim (4), c — 1))

where the sup is taken over all strata A = Z, and where a€ A.

We wish to build X from =~ (G Z) by attaching CW complexes of dimen-
sion <#A* at each critical point of f. By Proposition 5.A.3, the inclusion
1 Y (GnZ)-»n"(G,nZ) is a homotopy equivalence for sufficiently small &,
where G,=f"'[0, ¢]. Furthermore, we note that dimg(n~ (G n Z))<#A*. This
is because for any stratum A< Z, if ¢,=dime(A) and if k,=dimg(n~*(a)) for
any a€ A, then by transversality,

dimg (n "GN A)<2po+2ky+2(c—1)—2N.
But ¢o<N and c—1<N, so
dimg (1~ (G A))<inf(2 Py +2kg, Po+2ke+c—1).
However,
A*>n+(2ky—(n—do)+inf(¢g, c— 1)) =inf Rk +2 g, 2k + o +c—1)

which establishes the claim.

Now consider the effect of passing an isolated critical value velR of f, which
corresponds to a nondegenerate critical point pe Z. If the interval [a, b] contains
no critical value other than v, then by Proposition 4.3* the space X _, is obtained
from the space X _, by attaching cells of dimension less than or equal to

m* =n+ A*(p)+ I'*(p).
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By Proposition 4.4, we have
I'*(p)<min(d(S),c—1)

where § is the stratum of Z which contains the point p (since codimension(G)
=N —c+1). By Proposition 4.5.1* we have

4*(p)< sup (2dimgn ™" (q)—(n—d(A)))

where ge A and the sup is taken over all strata 4 such that pe 4. Thus,
m* <n+sup (2dime(n ™1 (q)) — (n—d(A)) +inf (d(S), c—1))
A

where the sup is taken over all strata A of Z such that Sc A. Taking the
sup of this expression over all strata in Z we conclude that m* <A*. [

5.2. Proof of Theorem 1.2: Lefschetz Theorem with Singularities

Theorem. Let X be an algebraic subvariety of some algebraic manifold M. Let
n: X - CIPY be a (not necessarily proper) algebraic map withy finite fibres. Let
H be a linear subspace of codimension c in CIP, and let H; be a 6-neighborhood
of H (with respect to some real analytic Riemannian metric, as in Theorem 5.1).
Let ¢(k) denote the dimension of the set of points peX —n~ '(H) such that a
neighborhood of p (in X ) can be defined (in M) by k equations, and no fewer.
(If this set is empty define ¢p(k)= —o00.) If 6>0 is sufficiently small, then the
homomorphism
m(n ™ (H,) = m(X)

is an isomorphism for all i <# and is a surjection for i=Ah, where

A =inf (dimg (M) — k —inf (¢ (k), c— 1)) — 1.

Furthermore: It is possible to replace n~1(H;) by n~'(H) if H is generic
or if m is proper.

Preliminaries to the proof. Since m is algebraic and finite, it extends to a
proper finite algebraic map 7: X —» CIPPY on some algebraic variety X which
contains X as an open dense subvariety. Choose Whitney stratifications of X
and of Z=w(X) so that 7 is a stratified map and so that X is a union of
strata.

Proof. The proof (in the case that X is purely n-dimensional) is exactly
the same as that in Sect. 5.1, however, we first rewrite the formula for 7 as
follows: 7i=inf (fi(A4)) where the inf is taken over all strata A< Z, and

A

A(4)=n—(E(4)— D +inf (d(A4), c—1))—1

where E(A) denotes the (minimum) number of equations needed to define a

neighborhood of any point xe X N7~ !(A), d(A) is the complex dimension of
the stratum A, and D is the codimension of X in M. Now follow the proof
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in Sect. 5.1, but instead of 4.5.1 (which applies only to nonsingular X) we use
the following estimate which applies to finite n:

4(p)< sup (E(4)—D)

from 4.6.1 and Hamm’s theorem (Sect. 4.6). Here, the sup is taken over all
strata A<=Z which contain the point p in their closures. (If X is not purely
n-dimensional, then these estimates must be applied separately to each of the
points xen ™! (p) whenever p is a critical point of the Morse function.) []

Proof of furthermore. This is the same as the proof of the furthermore in
Sect. 5.1.

5.2*, Proof of Theorem 1.2*: Homotopy Dimension of Nonproper Varieties

In this section we fix an n-dimensional complex analytic variety X and let
n: X - CPPY— H be a proper finite analytic map, where H is a linear subspace
of codimension c. Let W be a subvariety of X. Choose a Whitney stratification
of the map 7, and for each stratum A of X define d(4)=dimg(A4). Let k(A)
be the number of equations needed to define Wn T'(A4), where T'(A) is a neighbor-
hood of the stratum A4, and set k(4)=0if Wn A=¢.

Theorem. The space X — W has the homotopy type of a CW complex of dimen-
sion <A*, where

A* = sup (n+sup (0, k(4)— 1)+ inf (d(4), c— 1))

where the sup is taken over all strata A< X.

Proof. Let Z=n(X)=CIP¥—H. Stratify X, Z, and W so that W is a union
of strata in X and so that the map n: X — Z is a stratified map. Let G = CP¥
be a linear subspace of dimension ¢—1, which is complementary to H and
is transverse to all the strata of Z. Choose a Morse function f: CPPY — R which
is an approximation to the distance function from G, so that f has nondegenerate
critical points on Z and so that f~!'(0)=G and f~!(1)=H. (See Proposition
Sect. 4.4. In fact, (Part I, Sect. 2.2) by choosing the complementary subspace
G generically, we can guarantee that the distance function from G restricts to
a Morse function on Z.) Consider the following setup:

X—WcX

f
Z—1R.
We wish to build X — W from n~ (G n Z)n (X — W) by attaching CW complexes
of dimension <#A* at each critical point of f.
It is a triviality that dimg (™ '(G N Z) (X — W))<#*: Since = is finite and
G is transverse to each stratum of Z we have
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dim(z Y (GNnZ)n (X — W))SSljp dim (G N A)
< sgp 2(dimg A—(N—c+1))
<sup (dime (X)+ dime (4)—2(N —c -+ 1)
< sup (dime (X) -+ inf (dime (4). ¢ — 1)

<A*.

Furthermore, (by 5.A.3) for sufficiently small £>0, the set (X —W)n
(mof)" 1[0, £] is homotopy equivalent to the set (X —W)n(nof)~1(0)=(X — W)
Nnn~ Y (GnZ). Now consider the effect of passing a critical value veR of f,
which corresponds to a nondegenerate critical point pe Z. As in 4.6.2, the relative
normal Morse data (J, K) for f at the point p breaks into a disjoint union

of pieces,
(U, K)=110s, KJ)

of the normal Morse data for the map fon at the points xen~!(p). Similarly
the relative complex link .#~ for f at p breaks into a disjoint union of pieces

7 =1] 2.

of the complex links at each point xen ™ !(p). We consider each of these pieces
separately.

If xen 1(p) is an element of X — W, then (by Sects. 2.4 and 3.3) the normal
Morse data (J,, K,) is homotopy equivalent to the pair (cone(%,), &#,) which
(by 4.5.2*%) has the homotopy type of a CW complex of dimension <dimg ¥ + 1.
If A denotes the stratum which contains the critical point p, then by Sect.
4.4, the Morse index of f | 4 at p satisfies

A<inf(2dimg(A4), dimg(4)+c—1).

Thus, the Morse data (which is the normal Morse data x the tangential Morse
data) at p has the homotopy type of a CW complex of dimension no more

than
n—dimg(4)—1+1+inf(2dim (A4), dim(4)+c—1)

which is less than or equal to A*.

The problem arises when we pass a critical value which corresponds to
a critical point xe W, In this case, it suffices to show that the quotient J,/K,
has the homotopy type of a CW complex of dimension<n—dimg(A4)+k—1,
where A is the stratum which contains the critical point, and where k is (locally)
the number of equations needed to define W as a subset of X (near the point x).

In the dual case (Sect. 4.6) we used Hamm’s theorem to show that it was
possible to remove the critical fibre 7~ !(p) ‘without affecting the connectivity
of the normal Morse data. This time we will insert the critical fibre and check
that the homotopy dimension is unaffected by this procedure, using our general-
ization (Sect. 4.6*) of Hamm’s theorem.
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Lemma. Suppose the quotient (J,u {x}/K,) has the homotopy type of a CW
complex of dimension<m,, and suppose that the link in X — W of the stratum A,

L (X —W)=N nB;(x)(X —W)

has the homotopy type of a CW complex of dimension<m,. Then, the quotient
J/K . has the homotopy type of a CW complex of dimension <sup (m,, m,).

Proof. A neighborhood of {x} in J, is homeomorphic to the cone over L,.
Puncturing this neighborhood by removing the point x can increase the homo-
topy dimension to (at most) m,.

We now estimate the above numbers m,; and m,. By Proposition 4.6* the
number m, =“homotopy dimension” of L (X — W)=L,(X)— L.(W) is less than
or equal to n—dimg(4)+k—1. By Proposition 3.2 the pair (J,u {x}, K,) is
homotopy equivalent to the pair (cone (%,), .&,), where #Z, denotes the complex
link in X — W of the stratum A. We use induction (and Morse theory on %)
to conclude that %, has the homotopy type of a CW complex of dimension
<n—dimg(A4)— 1 + k— 1. Therefore, the quotient (J, U {x}/K) has the homotopy
type of a CW complex of dimension <n—dimg(4)+k—1.

In summary, the normal Morse data J,/K, has the homotopy type of a
CW complex of dimension <n—dimg(A4)+k— 1. As above, we note that at each
critical point, the tangential Morse data has the homotopy type of a pair
(D* 0D%), where the number 1 is the Morse index of f'| 4 and is bounded above
by inf (2dimg (A4), dimg(A4)+c—1) (see Sect. 4.4). Therefore, at each critical point
a space with the homotopy type of a CW complex of dimension <A* has been
added. O

5.3. Proof of Theorem 1.3: Local Lefschetz Theorems

5.3.1. Statement of theorem. In this section, X will denote a complex algebraic
subvariety of some nonsingular variety M, and n: X - P will be a complex
algebraic map, where P is a nonsingular algebraic variety. Fix pen(X) and
let dB;(p) denote the boundary of a ball of radius 6 about the point p (with
respect to some Riemannian metric on P). Let H be an affine linear subspace
of codimension ¢ in P (with respect to some local coordinate system about
p) which passes through the point p, and let H, denote an e-neighborhood
of H (with respect to some real analytic Riemannian metric on P).

Theorem 1. Suppose X is nonsingular, connected, and purely n-dimensional.
Let ¢ (k) denote the dimension of the set of points ze P—H such that the fibre
1~ 1(2) has dimension k. (If this set is empty define ¢ (k)= —00.) If § is sufficiently
small, then for any ¢ >0 sufficiently small, the homomorphism induced by inclusion,

m(X nn” 1 (0B;(p) N H,) > (X nn” (0B, (p))

is an isomorphism for all i <# and is a surjection for i=HA, where

A=n—sup (2k—(n— ¢ (k) +inf (¢ (k), c— 1)) —2.
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Furthermore: If H is a generic affine subspace or if w is proper, then the
neighborhood H, may be replaced by H in the above formula. The assumption
that X is algebraic may be replaced by the assumption that P is a nonsingular
complex analytic variety and X is the complement of a closed subvariety of a
complex analytic variety X and that n extends to a proper analytic map ©: X — P.

Theorem 2. Suppose w has finite fibres (but is not necessarily proper). Let
¢ (k) denote the dimension of the set of points xe X —n~1(H) such that a neighbor-
hood of x (in X) can be defined by k equations, and no fewer. (If this set
is empty define ¢(k)y= — 00.) If § is sufficiently small, then for all >0 sufficiently
small, the homomorphism induced by inclusion

(X nn” 1 (0B;(p)n H) - m(X nm ™ (0B5(p))
is an isomorphism for all i <#h and is a surjection for i=A, where

A=inf (dimg(M)— k —inf (¢ (k), c—1))—2.

Furthermore: If H is a generic affine subspace or if m is proper, then the
neighborhood H, may be replaced by H in the above formula. The assumption
that X is algebraic may be replaced by the assumption that P is a complex analytic
variety, and X is the complement of a closed subvariety of a complex analytic
variety X, and that n extends to a proper analytic map 7: X — P.

5.3.2. Lemma. The pair (¥%, 0.£%) is i connected <> the pair (Ly, £L3) is
i+1 connected.

Proof. Suppose the pair (£%, 0.#%) is i connected. Then, for any j<i we
have
0=mn;(L%, 0L%)
=7+, ((5", 0¢F) by part (d) of Proposition 2.6
(see also Proposition 2.4)
=741 ((8" arn {% ) by excision
=m;,1(L,£x") by Part ], Sect. 3.11
=m;41(L, £5) by part (d) of Proposition 2.6
(see also Proposition 2.4).
The reverse implication is similar. []

5.3.3. Proof of Theorem 1. We shall prove this result for generic H and
then at the end (5.3.5) indicate how to modify the proof for arbitrary H. Since
the problem is local, we may replace the algebraic manifold P by affine space
c”.

As in Sect. 5.1, since the map = is algebraic, it extends to a proper algebraic
map _ :
T X->CY
on some algebraic variety X which contains X as an open subset. Let
Z=7(X)cC" and let Z=n(X). It is possible (Part I, Sect. 1.7) to stratify X
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and Z so that 7 is a stratified map, X is an open union of strata in X, Z

is a union of strata in Z, and so that the point {p} is a separate stratum of

Z. As in Sect. 5.1, we rewrite the expression for 7 as follows: A=inf (n(A4)) where
A

n(A)=n—(2dim n~!(a)—(n —dim (4)) + inf(dim (A4), c— 1))— 2

where the inf is taken over all strata A of Z, and where ac A.

We will prove Theorem 1 by induction on ¢, the codimension of H. First
we consider the case ¢=1. For almost every linear projection f: C¥— C the
point peZ is a nondegenerate critical point of f (in the sense of Sect. 2.1).
Choose such a projection f so that f(p)=0, and let H=f~'(0). Since the point
{p} is a single stratum, the variety Z is also a normal slice through p. By
Sect. 2.4(e), the stratified set ZnH ndB;(p) is homeomorphic (by a stratum

preserving homeomorphism) to the boundary of the complex link (in Z) at
the point p, 0L =7 nf~(e+0i)n3B;(p)
provided &> 0 is sufficiently small. Since 7 is a stratified map and X is a union
of strata, we have a homeomorphism
Xna Y (HMOBs(p)=0Li=X 7 '(f 1(e+0i)n dB;s(p)).
It therefore suffices to show that
(L, 0%¢%)=0 forall i<h

where I, =X N7~ 1(Zn0B;(p)) is the relative link for X at the point p. To
complete the proof of the case c=1, we verify that =;(L%, 0.#£5)=0 in two steps:

(@) m; (L%, L5 =0 for all i<A.

(b) n,(¥%, 0L =0forall i<nh.
By Lemma 5.3.2, we have part (b) implies part (a). However, part (b) is simply
a restatement of Proposition 4.5.2, where the stratum A consists of the single
point {p} and c(4)=n.

Inductive step. We now consider the case ¢>1, i.e.,, we suppose that H is
a codimension c¢ affine subspace of €V which passes through the point p and
which is transverse to all the strata of Z except for the stratum {p}. It follows
that there is a codimension ¢—1 affine subspace J =C" which contains H and
is also transverse to all the strata of Z. Applying the inductive hypothesis to
the affine subspace J, we find that

(X N H(0B,(p) N J) > m(X nm” 1 (0B,(p))
is an isormorphism for all i <# and is a surjection for i =, where

=n—sup (2dim n~ *(a)— (n— dim (A4)) +inf (dim (4), c —2)) —2

where the sup is taken over all strata AcZ. Let X'=Xnn"!(J)and P'=PnJ.
Consider the local Lefschetz theorem for the problem =: X' — P. We obtain
a homomorphism

(X 0~ (0Bs(p) N H)) > my(X ™' (0B5(p))

which is an isomorphism for all i <7 and is a surjection for i =/, where

?=n—(c—1)—sup(2dim 7~ (@) — (n—c+ 1 —dim (A4)))—2
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where the sup is taken over all strata A’ Z nJ. Since J is transverse to Z,
this means that such strata 4’ are in one to one correspondence with strata
A of Z such that dim (4)>c—1, i.e.,

7 =n—sup 2dim 7~ ' (a)— (n—dim(A)) +c—1)—2
A
where the sup is taken over all strata A< Z such that dim(4)>c—1. It is easy

to see that A=min (%, /) by considering the strata one at a time: For each
stratum A< Z, let

m(A)=n—(2dim n~!(a)— (n—dim (4)) + inf (dim (4), c — 2))—2
{(A)=n—2dimn~ (@) —(n—dim(4)+c—1)—2.
m= inf (m(4)) and 7= inf (£(A)).

AcZ d(d)>c—1

Thus,

There are two cases to consider: if dim(4)<c¢—1, then A does not occur
in the formula for 7, but it does occur in the formula for i, and inf(dim (A),
c—1)=dim(A). Thus, n(A)=m(A). The second case is if 4 is a stratum of Z
and dim(4)>c— 1. Then, 4 occurs in both the formulas for # and #. However,
£(A)<m(A), and inf(dim(A4), c—1)=c—1. Thus, n(4)=¢(A). In summary we

have, A=inf (n(A)=inf (7, ). (1
A

5.3.4. Proof of Theorem 2. The pfoof is exactly the same as the proof of
Theorem 1 except that the extension 7 must be chosen so as to be a finite
map and Proposition 4.6.2 must be used instead of Proposition 4.5.2. [

5.3.5. For nongeneric subspaces H (or for a local complete intersection H),
it is necessary to modify the preceding proof as follows:

Case c=1: Realize H=f"'(0) for a specific complex analytic function
f: C¥ > C. Then, (as in 2.A.2) replace the spaces .£% and 0.£% with the spaces

(Z2,02)=Xni" Y2, 0P)
where
(Z,02)=Zf""(e+0i) "\ (B,(p), IB,(p)).

By 2.A.3, Lemma 5.3.2 continues to hold when we replace each ¥3 and 0.4%
with Z¢ and 0.2%. 7

We are thus reduced to 5.3.3 statements (a) and (b), with (b)=>(a). However,
statement (a) may be proven the same way that Proposition 4.5.2 was proven:
by applying Morse theory to a Morse perturbation of the distance from the
critical point {p}. '

Inductive step. Even if H is not transverse to the strata of Z, it is possible
to choose the subspace J to be transverse to the strata of Z (by Part I, Sect.
1.3). Therefore, no changes are necessary in the inductive step.

5.3*. Proof of Theorem 1.3*: Local Homotopy Dimension

5.3.1*. Statement of theorem. In this section we suppose that X is an n-dimension-
al connected analytic variety and that n: X > P<C" is an analytic map to
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some open subset P of C". Fix peZ=mn(X) and let 0B; denote the boundary
of a ball of radius ¢ about the point p. Let H be an affine linear subspace
of codimension ¢ in €Y which passes through the point p.

Theorem. Suppose = is proper. Let ¢ (k) denote the dimension of the set of
all points zeZ such that the fibre n~*(z) has dimension k. (If this set is empty,
define ¢(ky=—00.) If 6 is chosen sufficiently small, then the space
=Y (Z " 0B;s(p)— H) has the homotopy type of a CW complex of dimension less
than or equal to

A=n+sup 2k—(n— p(k))+inf (¢ (k), c— 1)).
k

5.3.2*%. Lemma. The space ¥} has the homotopy type of a CW complex of
dimension i <> the space I'y— %% has the homotopy type of a CW complex of
dimension i+ 1.

Proof of lemma*. By Proposition 2.6 parts (a) and (e)i, the difference L'y — %%
is homotopy equivalent to L, (the vertical part of the link), which is a fibre
bundle over the circle, with fibre 5. [

5.3.3*. Proof of Theorem 5.3*. We prove this result for generic H of codimen-
sion one, leaving the general case as an exercise. As in Sect. 5.3, the set
"' (ZAnHn0B;s(p)) can be identified with the relative complex link £% for
X at the point p, and the set n~(Z N 8B;(p)) can be identified with the relative
link L% for X at the point p. We have already computed the homotopy dimension
of the relative complex link to be less than or equal to

dimg Z% + sup (2dimg(n~ }(q)) — (n—d(B)))

B> A
(see Proposition 4.5.2*%), where A is the stratum which contains the point p
and where the sup is taken over all strata B which contain A in their closures
(and geB). By Lemma 5.3.2*, we must add 1 to this number in order to obtain
the homotopy dimension of L,. The result is A*. [

5.A. Appendix: Analytic Neighborhoods of an Analytic Set

The point of this section is to show that under certain conditions, any sufficiently
small 6-neighborhood H of a hyperplane section H of a complex analytic variety
X is independent of ¢ and of the Riemannian metric which was used in defining
HJ .

5.A.1. Suppose X is a Whitney stratified real analytic subset of some real
analytic manifold M. Let f: M >R be a proper real analytic function. Since
the interval [ —1, 1] contains finitely many critical values of the restriction
f|1X: X >R, there is a number 5(f)>0 so that the interval [—6(f), 6(f)]
contains no critical values of f | X other than (possibly) 0.

Proposition. If 6 <J(f), then the inclusion
Xnf {0 >Xnf"1[-6,6]

induces an isomorphism on homotopy groups w; for all degrees i.
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Proof. (This proof follows the method of [Sm4].) It follows from Thom’s
first isotopy lemma (Part I, Sect. 1.5) that for any ¢’ <4, the inclusion

it XAf1[=8,8]->Xnf1[-3,5]

is homotopic (by a stratum preserving homotopy) to a homeomorphism (which
also preserves strata). Furthermore, X nf ~1(0) has a neighborhood basis of
“good” open sets U = X which are homotopy equivalent to X nf ~1(0). Choose
such a good neighborhood UcXnf '[—6,56]. Choose & <d so that
Xnf~!'[-&,8]<cU. Consider the three inclusion

Xnf 0= Xnf [=8, 8] —— U—ms Xnf 1[5, 5],

Since foa induces isomorphisms on homotopy groups of all dimensions and
since i=7v¢f is a homotopy equivalence, it follows that § induces isomorphisms
on homotopy groups in all dimensions, and so the same is true for o and y.

5.A.2. Now let X=X be a union of strata, where X<M and f: M >R
are defined as above, and suppose that g: M — IR is another proper real analytic
function such that g~*(0)=/"1(0). Let 6(g) be so small that [ —d(g), 6(g)] con-
tains no critical values of g| X except (possibly) 0.

Proposition. If 0<a<5(f) and if 0<b <3(g) are chosen so that f ~*[—a, a]
<g ' [—b, b], then the inclusion

Xﬁf_l[_aa a] —*Xﬁg_l[—b, b]
induces isomorphisms on homotopy groups in all dimensions.

Proof. The proof is essentially the same as above: choose b'<b so that
g '[-b,b]cf '[—a, a]. Choose a'<a so that f '[—a,a]cg '[-D,]].
Consider the three inclusions,

Xnf '[—d,a]——Xng  [—b,b]—— X f "' [—a,a]
L Xng '[—bb].

The composition foa is a homotopy equivalence and the composition yof is
a homotopy equivalence. Thus, each of the maps «, f, and y must induce
isomorphisms on homotopy groups in all dimension. []

5.A.3. Suppose X is a Whitney stratified subset of a smooth manifold M
and suppose X < X is a union of strata of X. Let f: M — R be a smooth function
so that f ~!(0)=N is a submanifold which is transverse to each stratum of X.

Proposition. Suppose that f is given by the distance from N, with respect
to some Riemannian metric on the fibres of the normal bundle TM/TN. Then
(for any sufficiently small 6 >0), the inclusion

Xnf ' 0)->Xnf[-9,4]
is a homotopy equivalence.

Proof. This is precisely Part I, Sect. 1.11. ]



Chapter 6. Morse Theory and Intersection Homology

Many of the results in this chapter appeared first in [GM3].

6.0. Introduction

The (“middle”) intersection homology of a singular complex algebraic variety
exhibits many of the same properties as the ordinary homology of a nonsingular
variety. For example, it satisfies Poincaré duality, the hard Lefschetz formula,
and probably has a pure Hodge decomposition. In this chapter we add a further
property to the list: a critical point of a Morse function has a Morse index
for intersection homology. This means that if X is a Whitney stratified complex
analytic variety and if f: X >R is a proper Morse function with a critical point
peX and critical value v=f(p), then there is a single integer i such that, for
sufficiently small £>0,

0 for k=i
IHk(X51;+£7XSU‘£):{A for k=i.

p

Furthermore, the group A4, is torsion-free and depends only on the connected
component of the stratum S containing p, but does not depend on the function
f. (However, the index i depends on the function f, and in fact i=A+c, where
¢ is the complex codimension of the stratum S and A is the Morse index at
p of the restriction f|S.) The existence of a Morse index is false for ordinary
homology in the singular case: the group H, (X _,.,, X,-,) may be nonzero
for several different values of k.
We use this basic fact to obtain four results:

(a) The Lefschetz theorem and local Lefschetz theorems hold for the intersec-
tion homology of an arbitrary quasi-projective algebraic variety.

(b) The intersection homology of a complex n-dimensional Stein space van-
ishes in dimensions greater than n (and is torsion-free in dimension n). (This
result does not follow from the homotopy statement in Sect. 1.1* because inter-
section homology is not a homotopy invariant.)

(c) Intersection homology satisfies the Morse inequalities.

(d) The sheaf of intersection chains on a general fibre specializes (over a
curve) to a perverse object ((BBD]) on the special fibre.

Many of the results in this chapter can be applied to arbitrary complexes
of sheaves, or to perverse sheaves, as will be remarked in the appendix.
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6.1. Intersection Homology

In this section we will denote by Y a (not necessarily compact) purely n-dimen-
sional subanalytic stratified pseudomanifold with even codimension strata and
collared boundary dY ([GM3], [GM4], [GMS5]). We fix a point ge Y in some
stratum S of (real) codimension 2¢. We will use the symbol IH,(Y) to denote
the intersection homology group (with compact support, as in [GM4]) of “mid-
dle perversity” and integer coefficients, which is based on the chain complex
IC,(Y) of (m, k)-allowable chains. We shall use the following facts about intersec-
tion homology:

Intersection homology of a pair. The group IH,(Y, 0Y) may be unambiguously
defined as the homology of the chain complex IC,(Y)/IC,(0Y). The usual long
exact sequence on homology results. Relative intersection homology can also
be defined for the pair (Y, U) where U is any open subset of Y, and in this
case the following excision formula holds: if V is closed in U then the inclusion
(Y=Y, U—-V)—(Y, U) induces an isomorphism on intersection homology. We
also have the usual long exact sequence for a triple (Y, U;, U,) provided U,
is open in U; and U, is open in Y.

Kunneth formula. Let (D% 0D%) denote the closed a-dimensional disk and
its boundary sphere. Then,

IH,(Y, 0Y)=IH,(Y x D°, 8 Y x D%
IH,(Y, 0Y)=IH,_,(Y x D% Y x D*U Y x D"

Local calculation. Any point g€ Y has a fundamental system of neighborhoods
homeomorphic to U = D#x cone (L)

where a=n—2c is the dimension of the stratum S which contains the point
g and L is the link of the stratum S (see Part I, Sect. 1.4). Then,

TH (U= 0 if i>c
(U= IH,(L) ifi<c

IH,_, s, (L) ifizn—c+1

IH(U, 0U)=1IH,(U, U—CI)={0 if i<n—c+1

where IH denotes reduced homology.

Twisted coefficients. If X denotes the singular set of Y, and T is a local
coefficient system on Y—2X (in the sense of Steenrod [St]), then IH,(Y; T) may
be defined as the homology group of the complex of (m, k)-allowable chains
with coefficients in T. These groups exhibit the formal properties listed above:
long exact sequence for a pair and a triple, excision formula, Kunneth formula
and local calculation.

6.2. The Set-up and the Bundle of Complex Links

For the remainder of this chapter we will assume that Z is a Whitney stratified
complex analytic variety of pure dimension, which is embedded as a subvariety
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of some smooth complex analytic manifold M. We will study the Morse theory
of a subvariety X which is an open dense union of strata of Z, ie, X=Z-Y,
where Y is a closed subvariety which is a union of strata. Fix a connected
components S of some stratum of Z. For any nondegenerate conormal vector
weTgF M there is associated (in a canonical way, up to isotopy) a (transverse)
cylindrical neighborhood, cut off neighborhood, and complex link with bound-
ary:
(C,C<c)=XNaBs(p)n(f 7' (D), f "1 (D<o))
(Zx, 0L =X 0N O(By(p), 0B, () NS~ (6+0-1)

where N is a complex submanifold which is transverse to S and intersects S
in the singlg point {p}; f: M- C is a locally defined analytic function such
that df (p)| N = w, and where D = C is the disk of radius £>0, with

D.o={leD|Re()>0}

and where ¢<d (see Sects. 2.2, 2.3, and 2.6). Choices of the complex link Zy
(resp. the cylindrical neighborhood C, resp. the cut off neighborhood C ;) may
be made so that the collection of all complex links (resp. cylindrical neighbor-
hoods, resp. cut off neighborhoods) form a fibre bundle over the connected
space Cg of nondegenerate conormal vectors to S. This is proven in Sect. 2.3.2.
(Thus, #4 is independent of w up to noncanonical homeomorphism.)

6.3. The Variation

Suppose the stratum S is contained in X, and is a singular stratum of X. Fix
a nondegenerate conormal vector we Tg¥ M.

Definition. The variation map is the boundary homomorphism
[
Var,: IH,(C—{p}, C<o) — IH,_,(Cy).

Interpretation. Let ¥ = ¥%y= ¥, denote the corresponding complex link. By
Sect. 2.6, a choice of square root of —1 determines a monodromy homeomor-
phism

wEt->L
which is well defined up to isotopy (modulo some neighborhood of the boundary)
and may be chosen so as to be the identity on some neighborhood of 0.%.
It follows that for any £€IC, (%, 0.%) the chain & — u(¢) is an element of IC, (&).
In other words, I — u induces a homomorphism

(I—w,: IH(¥,0%L;Z)— IH(Z; Z).

By [GM3] Sect. 3.5, Corollary 1, the group IH,(C—{p}, C.,) is canonically
identified with IH,_ (%, 0.%). By Sect. 2(a) or [GM3] Sect. 3.5, Corollary 3,
the group IH,_,(C .,) is canonically identified with IH,_,(¥~, 0.2 ~), where
(£, 0% 7)is the complex link which corresponds canonically to the conormal
vector —m. A choice of path from —e+0ito +&+0iin C— {0} gives a homeo-
morphism
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(L,0%7)> (&L, 02).
With these identifications, we have
Var,: IH,_(¥,0%;Z)—IH,_,(¥; Z).

Fact. For an appropriate choice of square root of minus one, the homo-
morphism Var, coincides with the homomorphism (I — y), .

Definition. The Morse group A, is the image of VAR, where ¢ is the complex
codimension of the stratum S. If w is a conormal vector to the nonsingular
part of X, then we define A4, to be the integers, Z.

Remarks. It follows from Lemma 2.3.2 that the groups A, form a local
system over the space Cg of nondegenerate covectors. Thus, if neCg is another
nondegenerate covector, a choice of path between w and # determines an
isomorphism between A, and A4,. In particular, there are two distinguished
isomorphisms A4, =~ A4 _, whose composition 4,— A_,— A, gives an action of
the monodromy u on A,. Furthermore, the intersection pairing from intersection
homology,

I1H;(Morse data for w) x IH,,_;(Morse data for —w)—>Z

induces a bilinear pairing
Ay, ¥xA_,—~Z

which is nondegenerate over Q.

6.4. Theorem A,. Let X be an open dense union of strata in a complex n-
dimensional Whitney stratified analytic variety Z, and let f: Z—IR be a proper
Morse function with a nondegenerate critical point peZ in some stratum ScZ
of complex codimension c. Let A denote the Morse index of f|S at the point
p and let weTF M denote the conormal vector determined by df (p). Suppose
that the interval [a, b] contains no critical values of f|Z other than v=f(p),
and that ve(a, b). Then,

IH;_;_(%x, 0%x;Z) if p¢gX
IH(X <y, X <03 Z)=4A, if i=A+c and peX
0 if i£A+c¢ and peX

and this identification is canonical. Furthermore, the group A, is torsion-free,
and the group IH,_,_{(¥Lx, 0¥y ; Z) vanishes if i<Ai+c.

Remarks. (1) The same result holds for intersection homology with twisted
coefficients, but it is necessary to define the variation using intersection homology
with twisted coefficients, and the group A, at a nonsingular point must be
replaced by the stalk of the local system at that point.

(2) If we replace intersection homology by ordinary homology, then by Sect.
3.2 we have
H; ;, (%x,0%x;Z) if p¢X

H' X< a)(<ag I .
(X<pr X< {H,-_l_l(g;l) if peX
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(where H denotes reduced homology) and so it is still independent of the Morse
function, although it may be nontrivial for many different values of i.

(3) If X is an algebraic curve with a singular point p, then the Morse group
A, has rank m—b, where m is the multiplicity of X at p and b is the number
of analytic branches of X at p.

(4) The proof which follows in Sect. 6.7 may be used to study the Morse
group for intersection homology with different perversities. If the perversity
lies between the “sub-logarithmic” (p(2k)=k—2) and the “logarithmic”
(p(2k)=k) and if peX, then the corresponding Morse group IHP(X .., X _,)
is nonzero in one degree only (i=c+A), but the value of the group depends
on the perversity. For the logarithmic perversity, if pe X then

IHIZ+C(Xsba XSa; Z):IH?—I(N?’ Z)
and is torsion-free. For the sublogarithmic perversity, if pe X, then
IHY, (X <p, X c)=1H]_ (£, 0% Z).

The detailed calculations for general perversities, together with applications to
Lefschetz theorems and vanishing theorems with general perversities may be
found in the sequence of papers [FK1] to [FK6]. The perversities between
the sublogarithmic and the logarithmic are those for which the intersection
homology is a perverse sheaf [BBD], ie., it is the homology of the solution
complex of a holonomic Z-module with regular singularities. See [KS] for a
2-module proof that the Morse group exists in a single dimension.

6.5. Vanishing of the Morse Group

Recall (Part I, Sect. 1.8) that if Z is a Whitney stratified complex analytic subvari-
ety of a smooth analytic manifold M, then a covector e T} (M) is characteristic
if it annihilates the tangent space T,S to the stratum S of Z which contains
the point p. In this case, 0 is called degenerate if it annihilates some generalized
tangent space at p (i.e., a limit of tangent spaces from some stratum R>S).
The set of degenerate characteristic covectors is a homogeneous cone of complex
codimension > 1 in the space of characteristic covectors.
Let X =Z be an open dense union of strata in Z.

Proposition. Suppose pe X and the set D of degenerate characteristic covectors
has codimension>2 in the space C of characteristic covectors at the point p.
Then for any w¢ D, the Morse group A, is 0.

Proof. It is possible to find two complex analytic functions (f, g): X —» C?
such that the pair (f, g) is nondegenerate, i.c., w =df (p) and

@f (), dg(P)(Q)=C*

for every generalized tangent space Q. (This is because the projectivization IP(D)
of the set of degenerate covectors is a set of complex codimension two in the
projective space IP(C) of all characteristic covectors. Therefore, almost every
linear CIP! = IP(C) misses this set IP(D).)
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By Sect. 2.7, this implies that the monodromy is isotopic to the identity.
Therefore, the variation map is 0. [

Example. This happens for the Schubert variety X =Q[2, 4] of all two-planes
P in €* such that dim(P~C?>1. This variety has a single singular point
p and has a small resolution n: X —» X such that the composition fo7n has no
critical points on f~'(p) ((CGM], [GM4]). It follows that the Morse group
A, is 0. (X consists of all pairs (L, P) such that PeQ[2,4] and L is a line
in PnC?))

6.6. Intuition Behind Theorem A

If p¢ X, then the result is the same as in Sect. 3.3. The interesting case is when
peX. By restricting to a normal slice through p (using Part I, Sect. 3.7), we
can reduce to the case that {p} is a zero-dimensional stratum of X and A=0.
It is possible (locally near p) to construct a controlled vectorfield (Part I, Sect.
1.5) V on X —{p} such that df (x)(V(x))<O0 for all x, i.e., V flows in the direction
of —V f. We shall denote the flow of this vectorfield by ¢, i.e.,

¢:(X—{p})xR—>X—{p}
and we define the stable and unstable sets,

p*={xeX|lim ¢(x, t)=p}

t— o0

p~={xeX| lim ¢(x, t)=p}.

t—> — o0

Conjecture. A vectorfield V exists so that p* and p~ are Whitney stratified
subsets of X, and so that for each stratum B of X we have

dimg (p* N B) <dimg(B).

We have been informed that L& D.T. ([L€2]) has succeeded in finding a vector-
field V of this type such that the sets p* are homeomorphic to simplicial com-
plexes and satisfy the above dimensionality estimates. The idea is to approximate
f (near p) by the real part of a complex analytic function g: X — €, which
is a submersion except at the point pe X. Then, find a controlled lift of the
vectorfield
0 0
W=——+0-—.
0x + Jdy
Now consider a cycle £elCy(X <4, X <,—,) Where i<n. Since & is (m, i)-
allowable ((GM4]), we have

dim(¢é|nB)<n—c—1=dimg(B)—1

for any stratum B of X (and also |¢|n {p}=@). Therefore, by transversality,
¢ is homologous to a cycle & such that |£'|np* =¢. This means that if we
flow & by the vectorfield V it can be pushed into the subspace X _,_, without
ever intersecting the singular point {p}, ie., the “flowout” of this cycle is an
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allowable homology between ¢ and a cycle ¢” in IC;(X .,_,). This is why
IHi(X_<_u+ss X,<_v—e)=0'

Now consider a cycle éelICi(X <+, X <,—) Where i>n. Although it may
happen that |&|n{p}+¢ we can still push ¢ by the vectorfield V into some
subset of p~. But, the set p~ has dimension equal to n, so & is homologous
to 0. It is a pleasant exercise to verify that this homology to O satisfies the
“allowability conditions” for the middle perversity.

6.7. Proof of Theorem A,

If p¢ X, then the result follows from Sect. 3.3. Thus, we may assume that peX
(i.e., that the Morse function f is proper near p). The proof is by induction
on n, the complex dimension of the variety X and proceeds concurrently with
the following:

Proposition B,,. Let Y be a complex analytic Whitney stratified space of any
dimension and let S be a stratum of Y whose complex codimension (in Y) is
c¢=n+1>0. Choose a point y,eS and let & be the complex link of S at the
point yo. Then,

IH,(¥;Z)=0 for all i>n and IH,(¥; Z) is torsion-free

IH,(¥,0%; Z)=0for all i<n.

Proof that A, (for proper Morse functions) implies B,. Consider a Morse
function f: % — R, which is a (C* close) approximation to the function

F(y)=(distance (y, yo))*.

It follows (4.A.4) that for any stratum A4 of %, index (f|A)=dimg(A4) at any
critical point in 4. Applying proposition A4, to this Morse function gives, for
each critical value v,

IH(Z < pier L<p-)=0 for all i>dimg(4)+code(4)=n

where A is the stratum which contains the critical point. (Note that f has a
degenerate maximum on 0.Z, but this is a collared boundary so adding it to
¥ — 0% does not change the intersection homology). Furthermore, if i <n then
TH(L <p1sr L<v—s; Z) is torsion-free, by proposition 4,. Using the long exact
sequence for the pair (Z.,+, F<,-.) and induction, it follows that
IH, (%.,+.; Z) is torsion-free. Since this holds for each critical value v, we have
IH, (% ; Z) is torsion-free.

The second statement may be proven by considering instead the Morse
function d — f, where 6= f(0.%). This has a minimum on 0. and critical points
which, in any stratum A have Morse index >dimg(A). Therefore, by proposition
A

ns

TH(Zcpie» Lev-)=0 forall i<n.
Proof that B, for all k<n implies A, for proper Morse functions. By Part I,
Sect. 3.2 and Part I, Sect. 10.2, we may assume that a=v—¢ and b=v+ & where

¢ is arbitrarily small. If the critical point p lies in the nonsingular part of X,
then the conclusion of A4, is clear since X _, ,, is obtained from X _,_, by attach-
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ing (D, x D"~ *) along (0D* x D"~ %). Thus, we may assume the critical point lies
in a singular stratum S of X. Let ¢ be the complex codimension of S and
let 1 be the Morse index of f|S at p. By Part I, Sect. 3.5.4, the space X _,,,
is homeomorphic to the space X _,_,u(J, K) where the pair (J, K) is the local
Morse data,

(J, K)=(D*"*x D*, D" *x dD*) x (Normal Morse data).

By excision and the Kunneth formula for intersection homology, we have
M,=IH(X _,+,, X.,-,)=1H;_;(Normal Morse data).

We can (locally near p) embed X as an analytic subset of €V and extend the
function f to some smooth function on a neighborhood of X in C". Define
F=F,+iF,: C"¥ - C as follows:

F(@)=df (p)(2)—idf (p)(i2).
Thus, F is a complex analytic map such that Re (dF (p))=df (p). By Part I, Sect.

7.5.1 the normal Morse data for f is homeomorphic to the normal Morse data
for F; =Re(F) which (by Sect. 2.4(c)) is homeomorphic to the pair

(CAF'[=nnl, CnF (=)

(for n sufficiently small) where C is the cylindrical (transverse) neighborhood
(see Sect. 2.4),
C=NnBs(p)n F~1(D,).

In [GM3] Sect. 3.5, Corollary 2, a further deformation and the Kunneth theorem

is used in order to identify the intersection homology of the normal Morse
data as follows:

Mi=IHi—/1(CmF1_1[_’7a nl, CmFl_l(_n));IHi—).(Ca C.o)

where C_,=CnF; !(—o00,0). Therefore, to calculate the Morse group we
should examine the long exact sequence associated to the triple of spaces

C.ocC—{p}cC.

This long exact sequence, together with the exact sequences for the pairs
(C—{p}, C<p), (C, C.y), and (C, C—{p}) fit together in the following “braid
diagram” with exact sinusoidal rows (compare [Cl]):

VAR

IH;—;(C—{p}, C<o) IH. {C <o) 1H;_,(C) IH;_(C,C—p)

\/ NSON SN NS

TH;_;4(L) IH;_ (L) i-i—1(

SN N N SN

IH;_;+1(C) IH; ;4+1(C,C—p) IH;_(C—{p}, C<o) IH;_; 1(C<y)

VAR
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where we have made the following identifications:
IH; ;(C,Cco)=M;=IH;(X c\4s» X <0-0)
as above
IH;_,(C—{p})=IH;_,(L) by Sect.2.4(b).
The proposition now follows from a simple diagram chase together with the
following facts:

IH;_ C— = for i—A<
i-4(C, (=0 fori-is< c} by the local calculation and Sect. 2.4(b)

IH;_;(C) =0 for i—A>c
IHi—A(C_{P}, C.o)=IH;_; (¥, 6,?)}
by Sect. 2(a) or [GM3] Sect. 3.5
IH_(Ce)  =IH_ (&) Y Sect. 22) or [GM3]
IH;_ (%) =0 for i—A>c—1 ..
IH,_(%,09)=0 for i—l<c—1} from Proposition B..

Thus, M;=0 unless i=A+c and M, .= A,=Image(VAR). Since this is a sub-
group of IH,_ (& ; Z), it is torsion-free (by Proposition B,). []

6.8. Intersection Homology of the Link

Suppose X is a Whitney stratified complex analytic variety and pe X is a point
in a stratum S < X of complex codimension ¢>0. Then,

IH(¥,0%) for i>c
IH (L)=1ker (I —p) for i=c
coker(I—u) for i=c—1
IH, (%) for i<c—1
where L is the link of S at p, £ is the complex link of S at p, and
(I—p:1H,_4(Z,0%)—>1H._,(Z)
is the variation.

Proof. The proof is immediate from the braid diagram. []

6.9. Intersection Homology of a Stein Space
Theorem. Let X be an n-dimensional Stein space. Then, IH;(X; Z)=0 for all
i>n, and IH, (X ; Z) is torsion-free. (See also [GM3] and [FK5].)

Proof. Choose a homeomorphism between X and a closed analytic subspace
(which we will also denote by X) of €Y. Choose a generic point geCY and
let - X >R be the Morse function

f(x)=(distance (g, x))>.



Chapter 6. Morse Theory and Intersection Homology 217

For any stratum A of X and for any critical point pe A we have (4.A.4)
index (f |A) at p < dimg(4)

so IH,(X <+, X <y—,)=0 for all i>n, by proposition A4, (where v=f(p)), and
IH;(X .y+s X<,-,) is torsion-free for all i<n. Using induction and the long
exact sequence for the pair (X _.,4,, X <,-,) We conclude that IH,(X;Z)=0
for all i>n, and IH,(X ; Z) is torsion-free. []

6.10. Lefschetz Hyperplane Theorem

The following Lefschetz hyperplane theorem was our original motivation for
developing Morse theory on singular spaces. It was discovered independently
by P. Deligne, who used sheaf theory and the method of Artin [Art] in his
proof (see [GMS5]). Later refinements appear in [FK1] through [FK6].

Let X be a purely n-dimensional algebraic variety and suppose that =:
X > TP is a (not necessarily proper) algebraic map with finite fibres. Let
Hc CIP" be a linear subspace of codimension c. Let H, denote an e-neighbor-
hood of H, with respect to some Riemannian metric on CIPY,

Theorem. If ¢>0 is sufficiently small, then the inclusion n~*(H,)— X induces
an isomorphism IH (n~'(H,); Z)y=~IH/(X;Z) for all i<n—c and a surjection
IH,_(n"'(H); Z)~ IH,-.(X;Z)—0.

Furthermore. If H is generic, then H, may be replaced by H in the above
theorem.

Remarks. If ICy denotes the intersection homology complex of sheaves
({GMS5]) on X, then there is a canonical isomorphism

IH(n™ '(H)=H"'(ICk (X nn™ ' (H)))

i.e., it is the (hyper) cohomology with compact supports of the restriction of
the sheaf ICy to X n =~ ! (H). In this sense, the neighborhood H, may be replaced
with H provided we also replace the intersection homology of H n X with the
cohomology of the restriction of the intersection homology sheaf to HnX.
For generic H, these are the same, i.e., there is a canonical isomorphism between
IH;(n~'(H)) and IH;(z~*(H,)) (see below).

Preliminaries to the proof. The map = extends to a finite and proper algebraic
morphism 7: X — CIPY, where X contains X as a dense open subset. Choose
a Whitney stratification of X and of Z=x(X) so that X is a union of strata
and so that 7 is a stratified map (Part I, Sect. 1.7). Choose H to be transverse
to each of the strata of Z. (This is the genericity assumption on H.) Let f: Z >R
be a Morse perturbation of the square of the distance from H (see Sect. 4.A).

XcX
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Proof of theorem. It suffices to prove the theorem for H a linear hyperplane,
since the higher codimension cases follow from this by induction. By the same
trick as appears in Proposition 5.A.1, we can assume that U=n"1f"1[0, ]
for ¢ >0 sufficiently small. Thus, (by the long exact sequence for the pair (X, U))
it suffices to show that IH/(X, U;Z)=0 for all i<n—1. For any stratum A
of Z and for any critical point pe A we have

index (f | A, p) = dimg(A).

Now consider the relative Morse theory of the function fn: X - IR. For each
critical point peZ we have (as in Sect. 4.6) a decomposition of the relative
normal Morse data for fr at p into a disjoint union
L[ (Jx: Kx)
xen = (p)
where (J,, K,) is the normal Morse data for fz. If [a, b] =R contains no critical
values except v= f(p)€(a, b), then
IHi(Xsba Xﬁa): @ IHi—l(Jxa Kx)‘

zen—1(p)

By Proposition 6.4, whether or not xe X, this group vanishes for all i <cod (A4).
Thus, IH(X o, X .,; Z)=0 for all i<n. Apply this formula to each critical
point in X — U to obtain the result.

Proof of Furthermore. The transversality assumption implies that =~ !(H)
has a vectorbundle neighborhood U in X (Part I, Sect. 1.11). By the Kunneth
formula and Mayer Vietoris we have

IH (n ' (H)~IH,(U)

for all i. By the same trick as appears in 5.A.1, we can replace U by n~!(H,)
or by n7 1 f 1[0, ¢] for £> 0 sufficiently small. []

6.11. Local Lefschetz Theorem for Intersection Homology

Theorem. Suppose X is a purely n-dimensional complex algebraic subvariety of
some nonsingular complex algebraic variety M. Suppose P is a nonsingular complex
algebraic variety, and that n: X — P is a (not necessarily proper ) algebraic mor-
phism with finite fibres. Fix a point pen(X) and let B;(p) denote the boundary
of a ball of radius & about the point p, with respect to some smooth Riemannian
metric on P. Let H be an affine linear subspace of codimension ¢ in P (with
respect to some local coordinate system about p) which passes through the point
p, and is generic among all affine linear subspaces through p. If 6 >0 is sufficiently
small, then the homomorphism

IH(X nn~ ' (0B;(p)nH); Z)~ IH,(X "™ ' (0B;(p); Z)
is an isomorphism for all i<n—c—1 and is a surjection for i=n—c—1.

Proof. The proof is exactly the same as the one in Sect. 5.3, so we will just
sketch it here: we reduce to the case ¢=1 by induction. Since the problem
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is local, we may replace the manifold P by C". Extend © to a proper finite
map 7: X - C" where X contains X as a dense open subset. Choose Whitney
stratifications of X and of Z=r(X) so that the point {p} is a separate stratum
of Z, the map 7 is a stratified map, and so that X is a union of strata (Part I,
Sect. 1.7). Take H to be transverse to the strata of Z —{p}. (This is the genericity
assumption on H.) If f: €Y - C is a linear projection such that H=f"1(0),
then df (p) is nondegenerate (Part I, Sect. 2.1). If

IZ=X i~ Y(Z ndB,(p))
denotes the “relative link” of the point p, then we must show that
IH (L, 045, Z)=0 for i<n—2.

Since the map 7 is finite, this group is a sum of groups IH,(L,, 0.%,; Z) over
points xe@~ !(p). As in 5.3.2, we verify that these groups vanish in two steps:

(a) IH(L,, X)=0foralli<n—1

(b) IH,(%Z,, 0%,)=0foralli<n—2
and apply the long exact sequence for the triple (L,, %,, 0.%,). However, part
(b) implies part (a) by [GM3] Sect. 3.5, Corollary 1, or by the same proof as

appears in 5.3.2 (with =; replaced by IH;). In fact, both groups are calculated
in the braid diagram of Sect. 6.7 and are found to be zero. [

6.12. Morse Inequalities

An argument identical to the standard one (e.g., [Mil]) can be used to derive
Morse inequalities for the intersection homology groups. However, each critical
point must be counted with a multiplicity which is the rank of the Morse group

at that point.
Suppose X is a complex analytic variety with a Whitney stratification. For
each xe X define the rank of the variation at x,

£(x)=rank (4,)

where w is any nondegenerate covector at x. If x is a nonsingular point of
X we set £(x)=1.

Theorem. Suppose X is compact and f: X >R is a Morse function. Define
Ib;=rank (IH (X)) and for each nonnegative integer m define

R, =Y {¢(x)|x is a critical point and codim (S)+index (f |S, x)=m}

(where S is the stratum containing x). Then the following Morse inequalities

hold : Ry>1Ib,
R, —Ry>1b,—1b,
R,—R,+Ry=1b,—1b,+1b, etc.
and

S (~1fRi= Y (~ 1) Ib,

i=0 i=0

where n is the complex dimension of X. [
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6.13. Specialization Over a Curve

This section is largely a summary of [GM3] § 6.

6.13.1. Introduction. If /: X — D is a Whitney stratified proper analytic map
to the open unit disk, with fibre f ~!(t)=X,, then there is a “canonical retrac-
tion” ¥: U —» X, of some neighborhood U of the central fibre to the central
fibre. Restricting {y to a nearby fibre X, defines the specialization map,

Ve X, - X,.

We study the fibres of this map. Each fibre i, ! (x) may be given (in a noncanoni-
cal way) the structure of a Stein space with boundary, whose dimension is
equal to the codimension of the stratum which contains x. (We will show in
6.13.6 using Morse theory that the specialization

Ry, (IC)
of the intersection homology sheaf is a perverse sheaf in the sense of [BBD].)

6.13.2. The setup. We suppose f: X — D° is a proper analytic map of an
irreducible variety X to the open disk in the complex plane. We will assume
that f is the restriction of a smooth proper nonsingular map

7 M- DO
We denote by X, the fibre f ~!(t) over a point teD® and we will suppose that

X and D° have been stratified so that:

(a) The origin 0eD° is the only zero-dimensional stratum in the target

(b) f takes each stratum of X submersively to a stratum of D°

(©) Xo=f"1(0)is a union of strata.
We also choose a system of control data ([Mal], [T5]), {T,, n4, p4} on X,
i.., a tubular neighborhood (in M), n,: T, — A for each stratum A of X, and
a tubular distance function p ,: T, — [0, 2¢) such that whenever B> A is another
stratum we have:

(1) (4, pa)| B: B—> A x(0, 2¢) is a submersion

() nymp=mpm,

() pam=p4-
Consider the following neighborhood of X, consisting of the unions of the
tubular neighborhoods of all the strata in X,:

U(e)= U {,VETA|PA(J’)S£}-

AcXo
There is a continuous “retraction” [G1], [G2]
Y:U(e) > X,

which collapses the fibres of each ©, to points. (y is not actually a retraction
because its restriction to X is not the identity, but is rather homotopic to
the identity.)
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6.13.3. Definition. Let i/,: X, > X, be the restriction of  to the fibre X,,
where ¢ is chosen so small that X,c Uf(g).

It is a fact (that we do not prove or use here) that the topological type
of the map ¥, is independent of the choice of control data, family of lines,
or parameter value ¢.

6.13.4. Structure of the fibres. It is easy to see from the construction of
Y that for any stratum A of X, and for any xe A, there is a unique point

x'€ A such that -1 -
Yo ' ()=ny (X)nU()NX,.
Furthermore if |¢| is sufficiently small, then X, is transvese to the set
nat(xX)pgt(e).

(Note that 7, !(x") is a smooth submanifold of M which meets A transversally
in the single point {x'}.)

6.13.5. Proposition. Suppose xe X, lies in some stratum A whose codimension
in X is c. Then, the fibre over x of the specialization map \,: X,— X, is homeo-
morphic to the closure (in X,) of an affine complex analytic space of dimension
c. (The closure is obtained by adding a collared boundary to this analytic space.)
Fibres over nearby points in the same stratum can be given compatible complex
analytic structures.

Proof. Careful details of this proposition were published in [GM3] Sect. 6.4,
so we give here an outline only. Find x’ as above. The fibre N=n,'(x") of
the tubular neigborhood T, — A4 is a smooth submanifold of M whose dimension
is complementary to that of 4. If N were complex analytic, then the proposition
would follow directly from 6.13.4, because ¥, ! (x) is the transverse intersection
of the sets
N, X,, and B,(x)

where B,(x') denotes a (closed) ball of radius ¢ (with respect to some Riemannian
metric on M) centered at the point x". At least we can say (by transversality)
that , '(x) is a compact Whitney stratified set of (real) dimension 2c¢, with
a collared boundary N n X, n0B;(x").

Although N may not be complex analytic, it suffices to find a complex
analytic manifold N’ with the same dimension as N which is transverse to
the stratum A, such that the spaces

B;(x)nN'nX, and B;(x)nNnX,

are homeomorphic. This homeomorphism is found using Thom’s first isotopy
lemma by embedding the manifolds N and N’ into a one-parameter family
of slices N, transversal to 4 at the point x'. (As the value of 0 varies, it may
be necessary to reduce 4 and |¢| to guarantee that the sets

Ny, Bs(x), and. X,

remain transverse to each other. This kind of argument is much better made
with the language of “fringed sets” and “moving the wall”; we will not repeat
the details here.) [
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6.13.6. Morse theory of the fibre. Since Y=1, !(x) is homeomorphic to some

affine analytic space,
N'nBs(x)n X,

there is a Morse perturbation g of the function
&(y)=(distance (y, x"))*

with the following properties: g has a maximum on
0Y=N'nodB;(x)nX,

and for any stratum SN N’ of X,nN’, and for any critical point geSn N’ of
the function g, we have

index (g|S A N, g) <dimg (S N N) = dimg(S) — dimg(4)

(see 4.A.4). For each critical value velR of the Morse function g: Y—»IR, we
have:

(@) Y.,.,is obtained from Y_,_, by attaching cells of dimension less than
or equal to dimg(Y)=cody(A4) (see Sect. 4.3).

(b) IH{(Y. sy, Yo,—,)=0 for all i>dimg(Y)=cody(4) (see Sect. 6.4).

This proves the following:

Proposition. Let Y=, !(x) be a fibre of the specialization map over a point
Xx which lies in some stratum A< X,. Let ¢ denote the complex codimension of
the stratum A in the set X . Then,

(@) Y has the homotopy type of a CW complex of dimension <c
(b) IH,(Y)=0 foralli>c
(c) IH,(Y,0Y)=0 for alli<c—1.

Corollary. The sheaf Ry, (ICy) is perverse on X .

Proof of corollary. The stalk cohomology at a point xeX, is precisely
IH, (Y *(x)), which satisfies the above vanishing condition. This verifies the
“support condition” of a perverse sheaf. The “cosupport condition” is similarly
a consequence of the vanishing of the relative intersection homology,
IH,(Y,0Y). O

6.A. Appendix: Remarks on Morse Theory, Perverse Sheaves, and &-Modules

The following remarks stated without proof, are included for the convenience
of the reader who is familiar with sheaf theoretic and 2-module theoretic tech-
niques and wishes to know their relation with Morse theory.

6.A.1. Morse theory and sheaf theory. The main results of stratified Morse
theory apply to arbitrary sheaf coefficients without change: suppose X is a
Whitney stratified complex analytic subvariety of some smooth complex analytic
manifold M and that &' is a complex of sheaves (of abelian groups or of
complex vectorspaces) on X which is constructible with respect to the given
stratification [GMS5]. (This means that each cohomology sheaf #*(Z ) is locally
constant on each stratum.) Suppose S is a stratum in X, peS, and {eTg, M
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is a conormal vector to S which is nondegenerate. It is possible to define Morse
groups Ai(Z ) associated to this data,

(F)=HU,K; F")

where the pair (J, K) is normal Morse data corresponding to any smooth func-
tion f: M —» R such that df (p)=¢. In other words, for any choice of complex
analytic submanifold N = M which intersects S transversally in the single point
p, and for any ¢ <0 sufficiently small (and chosen in accordance with Part I,
Sect. 3.6) we have

(J, K)=(X AN By(p)nf ' [v—¢ v+el, XnNABy(p)nSf ' (v—¢)
where v=f (p). The main results of stratified Morse theory now states:

Proposition. The cohomology groups AXF)=H'(J, K; #°) are independent
of the choices of f, N, ¢, 0, or the Riemannian metric involved in the definition
of the ball Bs(p). Furthermore, any path between nondegenerate conormal vectors
¢ and ne Tg* , M determines a canonical isomorphism

(CQEYHEY

and in particular this Morse group for the sheaf ¥ " is independent of the Morse
function. If f M >R is a Morse function such that df (p)=¢ and if the interval
[a, b] contains no critical values other than v=f (p), then there is an isomorphism
which is canonical up to a choice of orientation for the tangential Morse data,

H'(X o, X <3 F)ZATHT)

where A is the Morse index of the restriction f | S at the point p.

This proposition may be proven using the same technique as Sect. 6.7
(Bk:>An)'

6.A.2. Morse theory and vanishing cycles. Suppose & * is a constructible com-
plex of sheaves of complex vectorspaces on the variety X (as in 6.A.1), that
X is Whitney stratified so that the cohomology sheaves of & are locally constant
on the strata, that S is a stratum, peS, and e Tg¥, M is a nondegenerate conor-
mal vector. Let F: X — € be a locally defined complex analytic map such that
F(S)=0 and dF (p)=¢&, where we use the canonical identification

T} M ~Homg(T,M, €)= Homg (T, M, R).

Then, the Morse group A%(# ) is canonically isomorphic to the “R® vanishing
cycles” R'®(F°), of [D3].

6.A.3. Pure sheaves. In [KS], Kashiwara and Schapira define a pure complex
&F* to be a constructible complex of sheaves (of complex vectorspaces) on a
variety X, such that the Morse group Ai(#°) vanishes in all degrees except
(possibly) for one. Thus, our result Sect. 6.4 states that the (middle) intersection
homology complex &% °=1IC"(X) is pure (with shift 0) in the sense of [KS].

6.A.4. Morse theory and holonomic &-modules. Suppose .# is a holonomic
2-module with regular singularities whose singular support is contained in the
analytic subvariety X < M. Then, the sheaf #°=DR(.#) is pure in the sense
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of [KS] (where DR denotes the deRham functor). (This may be proven as
in Sect. 6.7, or using 6.A.5 below together with the main result Sect. 6.4, and
is also shown in [KS] Theorem 9.5.2.) Fix a stratification of X with respect
to which %" is constructible, and suppose that (e T, M is a nondegenerate
covector. Then,

(a) The dimension of the single (possibly) nonzero Morse group A:(F°) is
equal to the multiplicity (at &) of the characteristic variety ch(.#) of the 9-
module .# [Sabl], [Gin].

(b) The Morse group A%(F°) can be identified with the micro-solutions of
the 2-module .#, at the point &.

6.A.5. Holonomic %-modules and perverse sheaves. The (analytically con-
structible) perverse sheaves on X are those complex & of sheaves of complex
vectorspaces for which there exists a complex analytic Whitney stratification
of X with respect to which & is constructible, and such that for each stratum
S of X we have

(a) H*(s* #")=0 for all k> —dim¢(S) and

(b) H*(s'#°)=0 for all k<dim¢(S)
where s: S —» X denotes the inclusion. The (analytically constructible) perverse
sheaves on X form an abelian category whose simple objects are (up to a shift
in degree) the intersection homology complex with irreducible local coefficient
systems on subvarieties of X [BBD]. Thus, every perverse sheaf has a filtration
whose graded pieces are the intersection homology sheaves of subvarieties. In
particular, the three main results in this chapter on intersection homology also
apply to perverse sheaves.

The de Rham functor gives an equivalence of categories between the category
of holonomic Z,-modules with regular singularities whose singular support
is contained in X, and the category of (analytically constructible) perverse
sheaves on X. If we fix a particular complex analytic Whitney stratification
of X, then this functor restricts to an equivalence of categories between the
category of holonomic regular Z-modules whose characteristic variety is con-
tained in the union of the conormal bundles to the strata of X, and the category
of perverse sheaves on X which are constructible with respect to the given
stratification.

6.A.6. Specialization of Z-modules. Our theorem that perverse sheaves spe-
cialize to perverse sheaves is equivalent to the statement that there exists a
specialization functor on the category of 2-modules, which commutes with the
functor DR. This specialization functor was explicitly constructed by Kashiwara
and Malgrange.



Chapter 7. Connectivity Theorems for g-Defective Pairs

7.0. Introduction

The four results in this chapter are generalizations of Theorems 1.1, 1.1%*, 1.2,
and 1.2*. We will replace the pair (CIP¥, L)=(projective space, linear subspace)
by the pair (Y, A)=(complex manifold, compact complex submanifold) in the
statement of these four theorems. We define the notion of a “g-defective pair”,
which implies that the Lefschetz theorem holds for (Y, 4) in a range of dimen-
sions which is smaller (by q) than for the pair (CIPY, CIPY 1),

It was first observed by Bott [Bol] (in the case (Y, 4)=(a positive line bundle,
zero section)) that the usual Morse-theoretic proof of the Lefschetz theorem
also worked in this setting. 