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Preface to the first edition

These notes are based on a course for graduate students entitled ‘A beginner’s
guide to intersection homology theory’ given in Oxford in 1987. The course
was intended to be accessible to first year graduate students and to mathe-
maticians from different areas of mathematics. The aim was to give some of
the idea of the power, usefulness and beauty of intersection homology theory
while only assuming fairly basic mathematical knowledge. To succeed at all in
this it was necessary to give at most briefly sketched proofs of the important
theorems and to concentrate on cxplaining the main ideas and definitions.
The result is that these notes do not constitute in any sense an introductory
textbook on intersection homology. Rather they are intended to be a piece
of propaganda on its behalf. The hope is that mathematicians of very varied
backgrounds with interests in singular spaces should find the notes readable
and should be stimulated to learn in greater depth about intersection homol-
ogy and use it in their work.

Over the last century ordinary homology theory for manifolds has been
applied with enormous success to all sorts of different parts of mathematics.
Often however ordinary homology is not as successful in dealing with prob-
lems involving singular spaces as with problems involving manifolds. In such
situations it is possible that intersection homology (which coincides with or-
dinary homology for manifolds) may be more successful. Many examples of
this phenomenon have been found since intersection homology was introduced
a decade ago. It was because exactly this phenomenon has occurred in my
own work in the last few years that I became an enthusiast for intersection
homology, and, although by no means an expert on the subject, decided to
give this course.

The goal I had in mind was to c¢xplain enough of the theory of intersection
homology to be able to give a sketch (following Bernstein [15]) of the proof
of Kazhdan-Lusztig conjecture (Kazhdan-Lusztig [104, 105]). This relates
the representation theory of complex Lie algebras to the theory of Hecke
algebras via D-modules and intersection homology, and was in fact important
motivation in the development of intersection homology theory (cf. Brylinski
[36]). It seemed a suitable target at which to aim, though much of the material
covered on the way is just as interesting (or more so, depending on one’s point
of view) in its own right.



This goal influenced the structure of the second half of the course and
thus the lecture notes. This first half consists of an elementary introduction
to intersection homology theory. The introductory chapter, which is intended
as motivation for the reader, describes three situations in which intersection
homology is more successful than ordinary homology in dealing with singular
spaces. The second chapter describes briefly some standard homology theory
and sheaf theory; it would be helpful but not essential for the reader to be
already familiar with this material. There are several different ways of defining
intersection homology which vary in difficulty and elegance: Chapter 4 gives
the most elementary of these and describes some of its basic properties.

The singular spaces given most attention throughout the notes are com-
plex varieties, but intersection homology is defined for more general spaces as
well (the most general being topological pseudomanifolds). The fourth chap-
ter discusses the relationship between the intersection homology of singular
complex projective varieties and an analytically defined cohomology theory,
L?-cohomology, which is a generalisation of de Rham cohomology for compact
manifolds. Chapter 7 describes the important sheaf-theoretic construction and
characterisations of intersection homology, due to Deligne and developed in
Goresky and MacPherson [70], which imply that intersection homology is a
topological invariant.

The final three chapters lead towards the proof of the Kazhdan-Lusztig
conjecture which is described in Chapter 12. The tenth chapter discusses the
relationship of the intersection homology with the Weil conjectures and the
arithmetic of algebraic varieties defined over finite fields, while Chapter 11
describes briefly the theory of D-modules and the Riemann-Hilbert corre-
spondence relating D-modules to intersection homology.

Nothing in these lecture notes is original work. The papers I have used
most heavily are those listed in the references by Goresky and MacPherson,
Borel, Bernstein, and Beilinson, Bernstein and Deligne. I would like to thank
Joseph Bernstein for first suggesting several years ago that I should look at
intersection homology, and all those who attended the ‘beginner’s guide’ last
year for pointing out many slips and errors. I am also grateful to Valerie
Siviter for typing the original manuscript and to Terri Moss for typing the
final version.

Frances Kirwan
Balliol College, Oxford
April 1988



Preface to the second
edition

As a beginning graduate student trying to learn about intersection homology,
I found the first edition of this book invaluable, giving, as it did, an accessible
treatment with clear and simple sketches of the main ideas. Having digested
it T had the confidence to go on to grapple with more specialist, technical
texts and a basic framework within which to place them. Since I found it so
useful, I am very pleased to be given the opportunity to co-author a second,
updated edition.

This edition differs from the first in two respects. Firstly, a number of
new topics have been included; some, such as Witt spaces and their bordism
groups, signatures for singular spaces, perverse sheaves, and Zucker’s conjec-
ture, represent strands of thought which were omitted from the first edition,
and others, such as the combinatorial construction of intersection cohomol-
ogy for fans, represent subsequent developments. Secondly, some of the basic
material has been revised and supplemented. The treatment of sheaf coho-
mology has been expanded, and given its own chapter, and more emphasis
has been placed on intersection homology as a topological theory and on the
réle of generalised Poincaré duality. These changes reflect the structure and
approach of a graduate course, rather unimaginatively entitled Intersection
Cohomology, which I gave in Cambridge in Spring 2004.

Let me list the major revisions and supplements in more detail. The first
four chapters constitute the elementary material. The introduction motivates
the subject by giving examples of the utility of intersection homology. The
old second chapter has been split into two, the first part reviewing simplicial
and singular homology, and the second reviewing sheaf cohomology from both
the Cech and derived functor viewpoints. The latter contains new material
on derived categories of sheaves, which are a fundamental technical tool. The
treatment of intersection homology in the fourth chapter has been revised and
expanded to apply to pseudomanifolds rather than just to complex projective
varieties. The latter now appear as a nice class of examples with especially
good properties.

Rational intersection homology satisfies generalised Poincaré duality for a



clags of singular spaces called Witt spaces. These include all pseudomanifolds
with only even dimensional strata, such as complex projective varieties, and
also those pseudomanifolds satisfying a certain condition on the links of any
odd codimensional strata. It is possible to define a bordism invariant signature
for a Witt space. Chapter 5 discusses this material (which was not in the first
edition). It culminates in a sketch of Siegel’s beautiful computation [162]
equating the bordism groups of 4n-dimensional Witt spaces with the Witt
group of symmetric rational bilinear forms. ’

Chapter 6 explains the relation of intersection cohomology to the analyt-
ically defined L2-cohomology. It now contains a (very) brief introduction to
the Hodge theory of L2-cohomology and a new section, based on Zucker [184],
on locally symmetric varieties and Zucker’s conjecture.

Chapter 7 explains how the intersection homology groups can be obtained
as the (hyper)cohomology of an intersection sheaf complex. This complex
can be axiomatically characterised independently of the stratification, leading
to a proof of intersection homology’s topological invariance. It also has a
new section on constructible sheaves and Verdier duality. This duality, a
contravariant equivalence on the constructible derived category of sheaves,
plays a fundamental réle in intersection homology theory.

There is a beautiful Abelian subcategory, the perverse sheaves, which is
preserved by Verdier duality and whose simple objects are intersection sheaf
complexes, possibly with twisted coefficients, supported on the strata. Chap-
ter 8 gives a simple introduction to this deep theory. The nearby and vanishing
cycles of a fibre of a complex analytic map are introduced as important exam-
ples of perverse sheaves. An amplified section on Beilinson, Bernstein, Deligne
and Gabber’s decomposition theorem completes the chapter.

The new Chapter 9 provides an elementary treaifient of the combinato-
rial intersection cohomology of a fan. When the fan is rational there is a
corresponding toric variety whose intersection cohomology agrecs with this
combinatorial invariant of the fan. In this situation, deep results, such as
the decomposition theorem, have relatively simple combinatorial proofs. The
chapter ends with a discussion of Stanley’s conjectures on the generalised
h-vector of a fan.

The discussion of the Weil conjectures, D-modules, the Riemann-Hilbert
correspondence and the Kazhdan-Lusztig conjecture in Chapters 9, 10 and
11 is virtually unchanged, apart from some corrections, in particular to the
definition of étale cohomology.

I have tried to write in the spirit of the first edition, maintaining the book
as an introductory guide, or even a piece of propaganda on behalf of the sub-
ject, rather than a textbook. This means that many results are quoted, or
presented with only a sketch proof. In order that the interested reader can
delve further I have attempted to provide a comprehensive bibliography. Each
chapter concludes with a brief section suggesting further reading. Neverthe-
less, intersection homology is a large and growing subject, touching on many
aspects of topology, geometry and algebra and with a correspondingly large



research literature, I will undoubtedly have made omissions and oversights,
for which I can only apologise. One topic which is prominent by its absence is
Saito’s theory of mixed Hodge modules and the existence of a Hodge structure
on the intersection cohomology of a complex projective varicty.

None of the results in this book are original, and I owe many debts to the
clear expositions in the references, whilst accepting full responsibility for any
erTors,

Most of this second edition was written during my time at Christ’s Col-
lege, Cambridge and I am very grateful for their financial, social and culinary
support. I would like to thank the students who sat through my course and
remained cheerful until the end. I am also very grateful to Aaron Lauda for
I¥TEX-ing the original manuscript of the first edition and to Ivan Smith for his
indefatigable proof-reading and numerous helpful comments and suggestions
(though again, the remaining errors are mine).

Special thanks go to Soumhya for her patience and encouragement, par-
ticularly during my more irascible moments. Finally, I wish to thank Frances
Kirwan for her invaluable help during the writing of this second edition and
for introducing me to intersection homology and infecting me with her enthu-
siasm for the subject.

Jonathan Woolf
University of Liverpool
October 2005
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Chapter 1

Introduction

Homology theory was introduced by Poincaré just over a century ago in order
to study the topology of manifolds. As he foresaw, it has been of immense
importance in many areas of mathematics including algebraic and differential
geometry, differential equations and group theory.

One of Poincaré’s principal motivations was to study the intersection the-
ory of submanifolds. The key result in this respect is Poincaré duality: this
is the existence of a non-degenerate pairing between the rational homology in
dimensions ¢ and j of a closed oriented manifold M, where i + j = dim M.
In terms of intersection theory, a closed oriented i-dimensional submanifold
generates an i-dimensional homology class and for submanifolds A and B
with dim A + dim B = dim M, and which are in ‘general position’, the pairing
of the corresponding classes is given by counting the points of AN B (with
appropriate signs).

The close relationship between the homology of a manifold and the in-
tersection theory of its submanifolds is very important. However, it is not
the only reason why homology and its dual theory cohomology are powerful
invariants for manifolds. Much of their importance comes from the fact that
they can be interpreted in new ways, and often imbued with extra structure,
when the underlying manifold itself has extra structure. Important examples
of this are

(a) the homology of a smooth manifold can be interpreted in terms of the
critical points of a generic smooth function via Morse theory;

(b) the real cohomology of a smooth manifold can be interpreted in terms
of differential forms via the de Rham isomorphism;

(c) the Hodge theorem tells us that the real cohomology of a compact Rie-
mannian manifold, i.e. a smooth manifold with a metric, is isomorphic
to the space of harmonic forms. Put another way, each de Rham coho-
mology class has a unique ‘minimal energy’ representative;

1



Introduction

(d) the complex cohomology of a compact Kéhler manifold, i.e. a compact
Riemannian manifold with a compatible complex structure, has a Hodge
decomposition reflecting the classification of harmonic forms by the de-
gree of their holomorphic and anti-holomorphic components;

(e) the geometry of intersections with a generic hyperplane section provides
information about the homology of a non-singular complex projective
variety. This is encoded in the Lefschetz hyperplane and hard Lefschetz
theorems.

Unfortunately, for non-manifolds the close relationship between homology
and intersection theory breaks down and, in particular, Poincaré duality fails.
Furthermore, we do not have analogues of the rich set of interpretations and
extra structure (a)-(e) above, not even for the (co)homology of a singular
complex projective variety.

In the 1970s a new sort of homology, called intersection homology, was
introduced by Goresky and MacPherson. Many others have helped to develop
its theory since then. Intersection homology coincides with ordinary homology
for manifolds but often has ‘better’ properties than homology for singular
spaces. In particular, and this was Goresky and MacPherson’s motivation,
intersection homology satisfies an analogue of Poincaré duality for a wide
class of singular spaces. It is a minor mathematical miracle that intersection
homology also has (at least in part) analogues of (a)-(e) above. The remainder
of this introductory chapter is given over to a slightly more detailed discussion
of this phenomenon with the aim of whetting the reader’s appetite before the
definition of intersection homology is given.

To avoid long-winded definitions of the classes of singular spaces involved
we will restrict our attention to complex projective varieties (in any case these
form the most interesting class of examples). A complex projective variety
X is a subset of a complex projective space

CP™ = %0—} = {complex lines in C™*'},
and is defined by the vanishing of homogeneous polynomials. Let us write
(To:z1i... i Tm) (1.1)
for the complex line in C™*! spanned by a non-zero vector (o, ...,Zm) in

C™+1l, Then X is of the form
X={(:vo:...:a:m)€C]P"" | fi(Zo,...xm) =0, lstM} (1.2)

where f1,..., far are homogeneous polynomials in m + 1 variables. The ho-
mogeneity of f; implies that the condition

fj(w(),-..,.’L'm)=0



1.1 Poincaré duality 3

is independent of the choice of vector (o, ..., Zm) € C™*1 — {0} representing
the point (zp: 1 : - : Zm) of CP™,
Complex projective space CP™ is a complex manifold with local coordi-

nates
Lo Tj—1 Tj+1 Tm
(o:ev.12m) — (—_,...,——. =
Zj T I Zj

identifying the open subsets
{(zoz...:zm)ECPm|zj9é0}, 0<j<m

of CP™ with C™. Wc say that X is non-singular if, locally, we can choose
Fiseres far in (L.2) so that the Jacobian matrix (gzL) has rank M. In this
case X becomes a complex submanifold of CP™.
We denote the homology and cohomology (with coefficients in C) of a
space X by
H,(X) and H*(X)

respectively (see Chapter 2 for the definitions). They are graded complex
vector spaces; the cohomology is simply the vector space dual of the homology.
Both homology and cohomology are topological invariants.

1.1 Poincaré duality

Suppose X is a compact oriented manifold. Poincaré duality states that there
are non-degenerate bilinear pairings

H{(X)® Hp_i(X) > C (1.3)
for each 0 < i < n where n = dimg X. In particular
dime H;(X) = dim¢ Hp—;(X).

As mentioned above these pairings have a geometric interpretation in terms
of intersections of submanifolds.

Poincaré duality does not hold for the cohomology of a singular projective
variety X. Here is a simple example. First recall that the complex projec-
tive line CP' can be identified with the extended complex plane C U {oc}.
Topologically it is a 2-dimensional sphere. Thus

C i=0,2

. 1 —
Hi(CP )= { 0 otherwise

(Spanier, [163, Ch. 4, §6, Thm. 6], or Example 2.1.5 below). Now let X be
the complex projective variety

{(z:y:2) e CP? | yz =0}. (1.4)
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Figure 1.1: Topological picture of the projective curve yz = 0 in CP?.

Then X is the union of the two subsets
{x:y:2)eCP? |y=0} and {(z:y:2) €CP?|z=0}
of CP2. These subsets are each homeomorphic to CP! and meet in the single

point (1:0: 0), see Figure 1.1. It can easily be shown, for example by using
the Mayer—Vietoris sequence (Spanier [163, Ch. 4, §6]), that

C i=0
Hy(X) = 0 i=1
CoC i=2

Hence Poincaré duality cannot hold in this case. One way to remedy this is
by introducing the intersection homology groups IH,(X) of X. These
are complex vector spaces which are topological invariants of X. They have
the property that for any complex projective variety of complex dimension n,
whether singular or not, there are non-degenerate pairings

IH(X)® IHy, (X)) - C
for 0 < i < 2n. For non-singular X there is a natural isomorphism
IH,(X) = H(X)

and this pairing is identified with that in (1.3). The existence of the pairings
for intersection homology is a topological fact; it does not rely on the complex
geometry of X.

1.2 Morse theory for singular spaces

Suppose X is a compact smooth manifold. A smooth function f: X — R is
called a Morse function (Milnor [135]) if at each point z of the set

C(f) = {z € X | df(z) = 0}



1.2 Morse theory for singular spaces ]

of critical points of f the Hessian H,(f) is non-degenerate (in which case the
critical points are isolated and hence finite in number). Here Hy(f) is the
bilinear form on T, X given in local coordinates x, ..., Z,, by the matrix

&f
Bziazj
of the second partial derivatives of f at z. We shall also require for simplicity
of notation that if z and y are distinct critical points then f(z) # f(y).

The set of Morse functions is open and dense in the set of all smooth
functions on X.

Proposition 1.2.1. If f: X — R is a Morse function then for each y € R
either

(i) y # f(z) for all critical points x € C(f), in which case if € > 0 is small
enough the map
Hip(Xy—e) = Hi(Xy+e)

induced by the inclusion of open sets
— Xy ={z€ X|f(z) <y—e} = Xye = {z€ X|f(z) <y +e}
is an isomorphism for all k; or

(ii) y = f(z) for some (unique) critical point x € C(f), in which case there
is an integer I(f;x) such that if € > 0 is small enough the map

Hk(Xy—E) - Hk(Xy+5)

induced by the inclusion is an isomorphism except when k is I{f; x) or
I(f; z) — 1, and for these values of k it fits into an exact sequence

0 — Hy(f10)(Xy—e) = Hi(f,0)(Xy+e) = C
= Hi(5:2)-1(Xy—e) = Hi(si2)-1{Xy+e) = 0.

Another way to express this is to say that the relative homology is given

by
_[ 0 i k#I(fa)
HiXyve: Xy—e) = { C if k=I(f;2).
The integer I{f;z) is called the Morse index of the critical point z for the
function f. It is the number of negative eigenvalues of the Hessian H,(f).
As a consequence of Proposition 1.2.1 we obtain the famous Morse in-
equalities, which are most easily written in the following form

Z H(f52) _ Zti dimg Hi(X) =(1+ t)R(t) (1-5)
zeC(f) 20
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where R(t) is a polynomial in ¢ with non-negative integer coefficients. In
particular this implies that the dimension of H;(X) is at most the number
of z € C(f) with I(f;z) = 4, but the Morse inequalities contain stronger
information than this. For example if I(f;z) is even for all z € C(f) the
Morse inequalities can only work if R(t) = 0, i.e. if the dimension of H;(X)
is equal to the number of z € C(f) with I(f;z) = i for all 4.

Morse theory can be generalised to the case when X is a singular projec-
tive variety provided that intersection homology is used instead of ordinary
homology.

Proposition 1.2.2. Suppose that X is a complex projective variety. The set
of all functions f: X — R which extend to smooth functions on projective
space contains a dense open subset such that for any f: X — R in this subset
there exists a finite set C(f) C X with the following properties.

(i) Ify e R— {f(z) | = € C(f)} then there is an isomorphism
IHk(Xy—e) = IHk(Xy+e)

for all sufficiently small € > 0. The isomorphism is induced by the
inclusion.

(ii) If y = f(x) for some x € C(f) then this x is unique, and there exists
an integer I(f;x) > 0, called the Morse index of = for f and a complex
vector space A, such that if € > 0 is small enough then

THp(Xy-c) = THp(Xy4e)
unless k s I(f;z) or I(f;z) — 1, and there is an ezact sequence

0 — IHj(s,)(Xy—e) = THp(f:2)(Xyre) — 4z
— ITHy(p:2)-1(Xy—e) = THp(f,0)-1(Xyre) — 0.

Here A, depends on z and X but not on the function f. In fact A, is
determined by the singularity of X at xz. If z is a non-singular point of X
then A; = C. (See Goresky and MacPherson [74, 71] for more details.)

Warning 1. Morse theory in the sense of Proposition 1.2.1 applies to a Morse
function on a compact smooth manifold. However, the above generalisation
to singular spaces, in particular the existence of a Morse index for intersection
howology, relies in an essential way on the complex geometry of X as well as
on the properties of intersection homology.

From Proposition 1.2.2 one gets generalised Morse inequalities

3" U dime Ay - Y #dime IHi(X) = (1+0)Q()  (1.6)
2€C(f) i20

where Q(#) is a polynomial in ¢ with non-negative integer coefficients.
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Remark 1.2.3. If X is a singular projective variety there does not in general
exist a Morse index for ordinary homology. As y moves through a critical
value the homology may change in a whole range of dimensions (Goresky and
MacPherson [71]).

1.3 de Rham cohomology and L2-cohomology

When X is a manifold the cohomology H*(X) can be identified with the de
Rham cohomology Hj}jg(X) which is defined as follows (sec Bott and Tu [26]
for more details).

Let TX be the tangent bundle to X and let 7" X be the cotangent bundle.
A differential r-form w on X is a C* section of the r-fold exterior product
A™T*X of the cotangent bundle. In (real) local coordinates yi,...,ym we
have

wy) = Y. Gipi @)dy, A Adys,
21 <... <My

where each a;, .., is a smooth real-valued function of y = (y1,...,Ym)-
Let A"(X;R) be the space of all differential r-forms and let

AT(X)=A"(X;R)®r C
be the space of all complex valued differential r-forms. There is a map
d: A™(X) = A™Y(X)
defined in local coordinates by
Oa;, . i,
dw = Z Z By d:l,lj/\dyi1 Ao Ady;,
i1<on<in 3 Ys

when w is as above.

Then d? = 0 (by the symmetry of the second partial derivative of a C°°
function). The rth de Rham complex cohomology group of X is by definition
the quotient group

kerd: A™(X) — ATT(X)

fm d: A 1(X) = A7 (X) (L.7)

Hip(X) =

Theorem 1.3.1. (de Rham theorem, see e.g. Griffiths and Harris [77, p43]).
H7p(X) is canonically isomorphic to H™(X).

Together with the famous Hodge theorem (Griffiths and Harris (77, Ch. 0,
§6]) this can be used to give H"(X) extra structure when X is a Kéhler man-
ifold, that is when X has a complex structure and a compatible metric. The
Hodge theorem implies that every de Rham cohomology class in Hjp (X) con-
tains a unique harmonic differential r-form w which can be written uniquely
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as a sum of harmonic (p, g)-forms where p+¢ = r. A (p, ¢)-form is one which
can be written locally with respect to complezr local coordinates 2, ..., 2, as
a sum of terms of the form

adz, A...Ndz, NdZ; A ... Ndz;,
where i; < ... <14y and 1 <... < jq and a is a smooth function.

Theorem 1.3.2 (Hodge decomposition). Suppose X is a Kdhler manifold.
We can write
HY(X)= P H"* (1.8)

pHg=i

where HP9 is the space of harmonic (p, @)-forms. It is a complex subspace of
HY(X) and
H?Y — Hap,

Note that for complex conjugation to make sense we need a real structure
on H{(X), i.e. areal subspace V of H*(X) such that

Hi(X) =VerC.

We take V to be the ith cohomology group H(X;R), with real coefficients,
of X.
The Hodge decomposition implies that if 7 is odd then

dime H'(X) =2 ) dimc HP
p<g.pteg=i

is even.

A non-singular complex projective variety is a Kéhler manifold with the
Kéhler metric given by the restriction of the Fubini-Study metric on complex
projective space (Griffiths and Harris [77, p31]). Thus the cohomology of a
non-singular projective variety has a Hodge decomposition. This is very useful
for studying non-singular projective varieties. If one allows X to vary in a
holomorphic way depending on some continuous parameters then H' i(X ) is
essentially independent of X but the Hodge filtration

H{(X)=F'2F'>...2 F

of H(X) defined by
FP = @ Hid~d
jzp
varies holomorphically with X in an interesting way. This leads to Griffiths’

theory of the variation of Hodge structure which gives information about
moduli spaces (Griffiths [76]).
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Figure 1.2: Topological picture of the projective curve z3 + 3 = zyz in CP?.

The cohomology of a singular complex projective variety need not have a
Hodge decomposition in the above sense. Here is a simple example. Let X be
the complex projective variety

{(z:y:2) € CP? | 2%+ ¢ = zy2}. (1.9)

U

Then it is not hard to check that topologically X is a 2-dimensional sphere
with two points identified, see Figure 1.2. Thus

C i=0
H(X)={ C i=1
C i=2

In particular dimc H'(X) is odd so there cannot be a Hodge decomposition
of the cohomology of X.

One would like to have some sort of analytically defined cohomology when
X is singular (at least when X is a singular complex projective variety, perhaps
in more general cases too) analogous to de Rham cohomology and canonically
isomorphic to intersection cohomology. With luck this could then be used
to give analytical proofs that intersection cohomology has a Hodge decom-
position and satisfies Poincaré duality and the hard Lefschetz theorem (sce
Theorem 1.4.2). It should have all sorts of other spin-offs as well, just as the
de Rham theorem does.

It is conjectured (and proven in some cases) that there is such a cohomol-
ogy theory defined analytically (see Cheeger, Goresky and MacPherson [48]).
It is called L2-cohomology and is defined as follows.

Let X C CP™ be a projective variety of complex dimension n. Let X be
the set of singular points of X. The restriction of the Fubini-Study metric
on CP™ to X — X gives us a Riemannian metric on the manifold X — I, i.e.
an inner product g, on each tangent space T(X — ¥) = T, X which varies
smoothly with z € X — X. This inner product g, induces inner products on
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the cotangent space T(X — X) and its exterior powers AT} (X ~ L) for all
i>0andze X — .

Given a smooth i-form w on X — ¥ we have a smooth function |jw||? on
X — Y. defined by z — |lw(z)||2 where | || is the norm on AT*(X — £) induced
by the inner product. The i-form is called square integrable if this function
lw}|? is integrable over X — ¥ with respect to the volume form induced by the
metric and the natural orientation on X —X. (For more details on differential
geometry see e.g. Spivak [164], Sternberg [170], Warner [175].)

Let Li{(X — ) C A¥(X — ) be the space of square-integrable differential
i-forms on X — ¥. The L2-cohomology of X — X is defined to be

{w € L{X ~ )|dw = 0}

meliX-%) [ Xel-(X-5%), d=n} (1.10)

Note that d may not map L*~}(X — £) into L{(X — Z).
Of course if X is non-singular then X — ¥ = X is compact so L{(X — X)
is A(X) for all § and
Hy(X — X) = Hgg(X).

Conjecture 1.3.3. (See Cheeger, Goresky and MacPherson [48]). If X is a
singular projective variety then Hfy (X — ) is isomorphic to TH*(X).

It is not even known that H{, (X —X) is finite-dimensional in general, but
the conjecture is known to be true when X has isolated conical singularities
or is a locally symmetric variety (see Chapter 6).

The theory of L? harmonic forms on X — ¥ is difficult and not well under-
stood. In particular, it is not known if an analogue of the Hodge decomposition
holds for L?-cohomology. However the intersection cohomology of a complex
projective variety can be given a Hodge decomposition {without the interpre-
tation of HP? as the space of harmonic (p, g)-forms) using other techniques.
Sadly, these are beyond the scope of this book --- see Saito [150] for more
information.

1.4 The cohomology of projective varieties

Suppose X is a non-singular complex projective variety of complex dimen-
sion n in CP™. A hyperplane H ¢ CP™ is a linear subspace of complex
codimension one or, equivalently, a complex projective variety defined by the
vanishing of a single linear polynomial. By considering how a generic hyper-
plane intersects X we can obtain information about the cohomology of X.
(“Generic” means that the property we are interested in will not necessarily
hold for every hyperplane but it will hold for most ~ more precisely for those
in a dense open subset of the space of all possible linear equations.)
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Theorem 1.4.1 (Lefschetz hyperplane theorem). Let H C CP™ be a generic
hyperplane. Then the restriction map

HY(X)— H{(XNH)
i8 an isomorphism for i < n — 1 and is an injection for i =n ~ 1.

There is a hyperplanc class [H] € H?(X) which is independent of choice of
hyperplane. (It is the ‘Poincaré dual’ of the intersection X N H.) Cohomology
has a product structure and multiplication by the hyperplane class defines a
map

L: HY(X) — H™*(X).

Theorem 1.4.2 (Hard Lefschetz theorem). Multiplication by powers of the
hyperplane class defines isomorphisms

L HY(X) —» H"M(X).
In particular the map
L: H*(X) —» H*?(X)

is injective if k < n, so that dimc H*(X) < dim¢c H*2(X), and surjective if
k+2 > n, so that dimg H*(X) > dimc HF2(X).

The hard Lefschetz theorem enables us to refine the Hodge decomposition
in the following way. If p+g=n—1¢ where 0 <i < n let

HPY — {é' c gr4 I Li+1(€) - 0} .

prim

Here “prim” stands for primitive cohomology. Then if p + ¢ < n we have

= H5S o L (Hoy' ™) o L? (HE2 ) @
This refinement is compatible with Poincaré duality in the following sense.

Theorem 1.4.3 (Hodge signature theorem). Let p and q be integers between
0 and n, and suppose that § € HY (X)) is non-zero. Then under the Poincaré
duality pairing

HPY(X)® H*» P 9X) - C

the pairing of € € HP9(X) with the element
(v-1) P8 (L) n—pma—1)/2 pn—p-q(£) ¢ H2PP9(X)
18 a strictly positive real number.

Proofs of the Lefschetz hyperplane, hard Lefschetz and Hodge signature
theorems can be found in Griffiths and Harris {77, Ch. 0. §7 and Ch. 1 §2].
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These three theorems do not apply to the cohomology of singular complex
projective varieties. To see that the Lefschetz hyperplane theorem can fail we
consider the variety X in CP* defined by the four equations

z;z; =0  forie {0,1} and j € {3,4}.

It is the union of the two copies {zp = z; = 0} and {z3 = x4 = 0} of CP?
which meet in the single point (0:0:1:0:0). We can compute

C i=0
0 i=1

Hi(X)={ CoC i=2
0 =3

CoC i=4

For a generic hyperplane H ¢ CP* the intersection X N H is the disjoint union
of two copies of CP! so that

CoC i=0
HY(XNH) = 0 i=1
CoC i=2

In particular dimg H®(X N H) # dimg H°(X) and the Lefschetz hyper-
plane theorem does not hold. The hard Lefschetz theorem also fails because
dim¢ H°(X) # dime H*(X). Finally, since we do not necessarily have either
Poincaré duality or a Hodge decomposition for the cohomology of a singular
variety, we cannot even make sense of the statement of the Hodge signature
theorem.

Once more, intersection cohomology remedies the situation. Appropriate
analogues of the Lefschetz hyperplane, hard Lefschetz and Hodge signature
theorems all hold for the intersection cohomology of a singular projective
variety.

Often Poincaré duality, the Hodge decomposition, Lefschetz hyperplane,
hard Lefschetz and Hodge decomposition theorems for the cohomology of a
non-singular complex projective variety are known collectively as the ‘Kéhler
package’. Together they give us a powerful set of tools for studying non-
singular varieties. It is amazing, and rather wonderful, that a similar package
exists for the intersection cohomology of singular varieties. Sadly, apart from
Poincaré duality, we will not prove the Kéhler package for intersection co-
homology in this book as the proofs are quite demanding. However, we will
indicate the sort of methods required in §4.10.

This ends the introduction. Its aim was to make the reader sufficiently in-
terested in intersection homology to want to find out how it is actually defined.
It order to do this we first need to review some ordinary (co)homology theory
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and sheaf theory. Before we gallop off on this task we pause to note that this
book, with its emphasis on introducing the reader to the various interesting
aspects of intersection homology theory, is rather ahistorical. Readers are
therefore strongly encouraged to read Kleiman’s beautiful history [113] of the
subject as a corrective.



Chapter 2

Review of homology and
cohomology

AN

If X is a compact manifold there are several ways of defining the homology
and cohomology groups H,(X) and H*(X) of X which all lead to cssentially
the same thing in the end: simplicial homology and cohomology; singular
homology and cohomology; Cech cohomology of sheaves; sheaf cohomology
via derived functors and de Rham cohomology. We shall review the first two
of these in this chapter and the second two in the next; for the definition of
de Rham cohomology see Section 1.3.
We fix a field F (which the reader is welcome to assume is @, R or C).

2.1 Simplicial homology

Simplicial homology is the most prosaic and least elegant definiton. It is useful
for working out examples.

Definition 2.1.1. An n-simplex o in R¥ is the convex hull of a set of points
Vg, ..., Up such that vy — vg,v2 — vo,...,Un — v are n linearly independent
vectors in RY. Then wvy,..., v, are the vertices of o and n is the dimension
of o. The faces of o are the (n — 1)-simplices whose vertices are also vertices
of o, for example the convex hull of vy, vo, vs, ..., Un.

An orientation of an n-simplex ¢ is an ordering of its vertices determined
up to even permutation.

Definition 2.1.2. A simplicial complex in R” is a set N of simplices such
that

(i) if o € N then every face of ¢ is in N;

(ii) if 0,7 € N and o N7 # 0 then o N 7 is a simplex whose vertices are also
vertices of both ¢ and T7;

15



review of homology and cohomology

(i) if # € 0 € N then there is a neighbourhood U of z in R¥ such that
UN T # P for only finitely many simplices 7 € N.

Definition 2.1.3. The support

M=o

oceN

of a simplicial complex N in R¥ is the union of the simplices which belong to
it. A triangulation of a topological space X is a homeomorphism T: |N| —
X where N is a simplicial complex.

We shall assume henceforth that X is triangulable, i.e. that X has a
triangulation T': |N| — X. Note that N is finite if and only if X is compact.
For each o € N choose an orientation of o. Let

N® = {o € N|o is an i-simplex} .
An i-chain of N with coefficients in a field F is a formal linear combination
£= Z &0
oEN(®)

where the coefficients £, are elements of F and only finitely many of them
are non-zero. The space C;(N) of i-chains in N is a vector space over F with
basis N, The boundary map

8: Ci(N) — Ci—1(N)
is the unique linear map such that if o € N® then
do = Z +7
T faceof o

where the sign =+ is 1 if the chosen orientation on T is obtained from the chosen
orientation, vg,...,v; say, on o by omitting some v, where j is even, and is
—1 otherwise. Then

8%: Ci(N) — Ci—2(N)

is 0, i.e.
im (6 Ci(N) — Ci—-l(N)) g ker (6 C,:.](N) — Ci_z(N)) .
Definition 2.,1.4, The ith homology group of N with coefficients in F is

ker 3: Ci(N) hand Ci_l(N)

Mm=m&@mmeam)




2.1 Simpliclal homology 17

IfT: IN I — X is a triangulation of X then we define the ith homology
group of X with respect to T as

HF(X) = H(N).

We also write CT (X) for Ci(N).

In fact HI(X) does not depend on the triangulation T chosen (see The-
orem 2.2.1 below). It is a definition of homology which is usually easy to
calculate in examples.

Example 2.1.5. Let X be the 2-dimensional sphere S? and let T: [N | - X
be the triangulation indicated by the diagram.

Then im 8: C1(N) — Co(N) is spanned by {v; — v;|0 < i < j < 3} s0
HY(X)=C. Also

kerd: C1(N) = Co(N) = im 8: C3(N) — Cy(N)
so H{ (X) = 0. Finally ker 8: Co(N) — C1(N) is spanned by
(vov1v2) — (vov1v3) + (vovavs) — (v1v2v3)
so H (X) =F.

Definition 2.1.6. A triangulation T: IN I — X is a refinement of a trian-
gulation T: ]N ] — X if for each o € N there exists some & € N such that
T(c) € T(5).

If T is a refinement of T then there is a natural map
cT(x) - CF(x)
compatible with the boundary maps such that if 5 € N® then
& — > to
N T(a)CT(5)

where the sign depends on whether the orientations of o and & are compatible.



10 Review of homology and cohomology

Definition 2.1.7. The space C,(X) of all piecewise linear i~-chains is the
colimit of the spaces C¥(X) under refinement. That is, a piecewise linear
i-chain on X is represented by an element of CI(X) for some triangulation
T of X, and two such elements

ce CT(X) and ée CT(X)

represent the same piecewise linear 4-chain if and only if there exists a common
refinement T of T and T such that the images of ¢ and ¢ in CJ (X)) coincide.

The boundary maps 8: C¥ (X) — CE;(X) induce boundary maps
0: C,(X) — Ci._l(X)
such that 6% = 0.

Definition 2.1.8. The simplicial homology of a triangulable space X is
defined by

ker 3: C,(X) — i—l(X)

im 8: Cip1(X) — C(X)'

H™P(X) =

This definition is independent of the choice of triangulation but a priori
impossible to compute.

2.2 Singular homology

Singular homology is the most common first definition of homology. A sin-
gular i-simplex in a topological space X is a continuous map

EZA,;—>X

where A; is the standard i-simplex in R?; that is, A; is the convex hull of the
set of points

{(0,...,0),(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)}

in Rt The space S;(X) of singular i-chains in X is the vector space over F
with the set of singular i-simplices in X as basis. A singular (i — 1)-simplex
is a face of a singular i-simplex ¥ if it is the composition of ¥ with one of the
4+ 1 maps

i Ai1 — Ay, 0<j <y,

which identify A; ; with faces of A;. We define

T =Y 4T
T face of X
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where the sign depends on orientations (cf. Section 2.1). If the sign is chosen
correctly we get 82 = 0 and we define the 7th singular homology group of
X with coefficients in F to be the quotient

ker 8: S;(X) — S;—1(X)
im 8: Si+1(X) - S,,(X) '

H"S(X) = (2.1)

If f: X — Y is a continuous map between topological spaces then f
induces linear maps

far Si(X) = Si(Y):00 foo

for any singular i-simplex ¥ in X. The maps f, arc compatible with the
boundary maps, and hence induce

fo: HIP¥(X) — HIP¥(Y). (2.2)

It is not quite so obvious that if X and Y are triangulable then a continuous
map f: X — Y induces in a natural way a linear map f,: HE™P(X) —
HS™P(Y) on simplicial homology. This follows however from the following
important fact.

Theorem 2.2.1. IfT: |N| — X is any triangulation of a topological space
X then there are natural 1somorphisms

Heng(X) & geimp( Xy = HT(X).

The proof is based on the simplicial approximation theorem {Spanier [163,
Ch. 3 §4, Ch. 4 §6 Thm. 8]), which tells us that any singular p-simplex

A, X

can be ‘approximated’ by 3 Ap — X where £ is piecewise-linear with re-
spect to the given triangulation T on X and a refinement of the obvious
triangulation on A,. The approximation is such that

T=5408% —
for some (p + 1)-chain & in S,11(X). Since 6 = 0 we get
9% = o%.
It follows that the natural map
HY(X) — H"(X)
is an isomorphism. Taking colimits, since H¢(X) is independent of T we

find that ) )
HP™P(X) = HI#(X).



To define cohomology groups instead of homology groups we can use the
dual 8V of the boundary operator. Thus the ith singular cohomology group
of X is
ker 8V: Ciy(X)V — Ci1(X)V
im 8v: Cj_1(X)Y — Ci(X)V
and the ith simplicial cohomology group HZ,,,(Y) is defined similarly.

Because we are working with coefficients in a field F, not an arbitrary ring,
we have natural isomorphisms

H:ing(X) =

Hing(X) 2 (HP™8(X))Y

and . )
Heiop (X)) = (H™P(X))Y

between the cohomology groups and the duals of the corresponding homology
groups.

2.3 Homology with closed support

We have defined the simplicial and singular homology groups of a triangula-
ble space X using chains which are finite linear combinations of simplices. It
is also possible to work with chains which are (formal) infinite linear combi-
nations of simplices (Borel and Moore [22]). We get new homology groups
(sometimes called Borel-Moore homology groups although we will use the
term homology groups with closed support). When X is compact the two
sorts of homology are canonically isomorphic.
Let T': IN I — X be a triangulation of X. The space

Cr((X))

of locally finite i-chains of X with respect to T is the vector space consisting
of all formal linear combinations

§= Z &0

oeN(®)

where the coefficients £, are in the field F. We do not impose the condition
that only finitely many of the £, are non-zero. C7(X) is the subspace of
CF((X)) spanned by N and we can identify CT ((X)) with the dual of
CT(X) using the basis N®.

We define the space C;((X)) of locally finite piecewise linear i-chains on
X as the colimit of the spaces CT ((X)) under refinement.

The support
= U T
§o#0



of a locally finite i-chain
£= 3 &oeCl((X)

oceN®

is always a closed subset of X (since any simplicial complex N is locally finite).
It is easy to see that the support |¢| is compact if and only if £ € CT(X).
Thus i-chains £ € C;(X) are sometimes called i-chains with compact sup-
port (and the groups H{™P(X) are called homology with compact support)
whereas chains ¢ € CT ((X)) are called i-chains with closed support.

The boundary map 8: C¥(X) — CL ,(X) extends in the obvious way to
a boundary map

8: CT((X)) —» CEL (X))
such that 8% = 0. There is an induced boundary map
o: C«,((X)) hand Ci—l ((X))

Definition 2.3.1. The homology groups with closed support (or Borel-
Moore homology groups) Hf'(X) of X are defined to be the quotients

ker 0: C«,((X)) - Ci—l ((X))

H{H(X) =

Of course when X is compact then if T: |[N| — X is a triangulation the
simplicial complex N is finite, so

CT((X)) = CT(X).
Thus
H (X) = H™P(X) (2.3)

when X is compact.
We can also define singular homology groups with closed support by con-
sidering locally finite singular chains: a formal linear combination

£=) &o

of singular i-simplices in X is a locally finite singular i-chain in S; ((X)) if
for each £ € X there is an open neighbourhood U, of z in X such that the
set

{é.olé.o # 0, U_I(Uz) # 0}

is finite.
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2.4 Conclusion

We have two different definitions of the cohomology of a (triangulable) topo-
logical space X

H s*imp X) simplicial cohomology
Hgpe (X) singular cohomology

and these are canonically isomorphic. We shall denote them both simply by
H*(X). If X is a smooth manifold and we take F = C then H*(X) is also
canonically isomorphic to the de Rham cohomology Hjp(X) of X defined in
the previous chapter.

To complete this chapter it is necessary to mention a few important prop-
erties of the cohomology H*(X) of X. First of all H*(X) has a natural ring
structure defined by the cup product

HY(X) ® HI(X) - H™(X). (2.4)

The cup product is easiest to describe when X is non-singular and we take
F = C so that H*(X) is identified with the de Rham cohomology H}g(X).
Then an element of H¥(X) is represented by a closed i-form a on X (i.e. an
i-form o satisfying do. = 0). Similarly an element of H?(X) is represented by
a closed j-form B on X. The cup product of these elecments of H:(X) and
HI(X) is the element of H'*J(X) represented by the (i + j)-form a A §. It is
easy to check that this is well-defined by using the formula

dlaAB)=da B+ (—1)aAds.

Alternatively we can define the cup product using singular cohomology (see
e.g. Spanier (163, Ch. 5 §6]). This definition makes the singular cohomology
of any topological space into a ring.

The existence of a natural ring structure is one of the properties of ordinary
cohomology which does not carry over to intersection cohomology. Another
such property is the homotopy invariance of ordinary cohomology: if f: X —
Y is a homotopy equivalence between topological spaces then the induced map

[ Hgng(Y) — Hipg(X) (2.5)

is an isomorphism (see e.g. Spanier [163, Thm. 4.4.9]). We shall see that
this is not true in general for intersection cohomology, but that intersection
cohomology is homeomorphism invariant (i.e. if f is a homeomorphism then
it induces an isomorphism f* on intersection cohomology).

A property of cohomology which carries over (though only in special cir-
cumstances) to intersection cohomology is the existence of relative cohomol-
ogy. Again this can be defined in different ways corresponding to the different
definitions of cohomology: let us take singular cohomology. Suppose X is a
topological space and Y is a subset of X. Then the space S;(Y) of singular
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i-chaing in Y is a subspace of the space S;(X) of all singular i-chains in X,
so we can define
Si(X)

Si(Y)’
Then the boundary map 8: S;(X) — S;—1(X) induces a boundary map

Si(X’ Y) =

6: Si(X, Y) g Si_l(X, Y)

We define the ith relative (singular) homology group of the pair
(X,Y) to be

ker O: S,;(X, Y) — Si_l(X, Y)
im 9: Si+1(X, Y) — Si(X, Y)

Hismg(X’ Y) =

This group fits into a long exact sequence of Abelian groups
co o HY"8(Y) - Hi"¥(X) - H"$(X,Y) » Hf(Y) — -+ (2.6)

(Spanier [163, Ch. 4 §5]). Similarly we can define the ith relative (singular)
cohomology groups H;,.(X,Y) and these fit into a long exact sequence

Bl Hi'—l(y) - Hsiing(X’ Y) - sing(X) - H:ing(y) e (2'7)

sing

2.5 Further reading

The material in this chapter is standard and there are many excellent accounts.
For more details see e.g. Dold [57], Davis and Kirk [51], Greenberg [75],
Hatcher [80] and Spanier [163]. The relation between singular and de Rham
cohomology is nicely explained in Bott and Tu [26].



Chapter 3

Review of sheaf
cohomology and derived
categories

3.1 Sheaves

We have now considered simplicial and singular homology and cohomology
and also de Rham cohomology for compact manifolds. In order to define two
more important forms of cohomology we need to review some sheaf theory.
The reader who wants to get a quick feel for intersection homology can skip
this chapter and go straight on to the next, as sheaf theory is only used for
the more advanced material in Chapters 7, 8 and later.

For algebraic simplicity we work with sheaves of vector spaces over a fixed
field F. However much of the material in this chapter is valid mutatis mutandis
for sheaves of modules over a commutative ring, in particular for Z-modules,
i.e. Abelian groups.

Definition 3.1.1. A presheaf F of vector spaces over F on a topological
space X is given by the following data:

(a) for every open subset U of X a vector space F(U),
(b) for every inclusion U C V of open subsets of X a homomorphism
pvu: F(V) — F(U)
called the restriction homomorphism, satisfying
(1) 7(0) =0
(ii) pvv: F({U) — F(U) is the identity;
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(iii) ifUCV QW then pwy = pvu o pwv.

If U C V are open subsets of X and s € F(V) then we write s|y for

pvu(s) c F(U)

A presheaf F on X is a sheaf if in addition it has the following property:

(iv) Let {V,Iz € I} be a collection of open subsets of X. Suppose that we

are given elements s; € F(V;) for all i € I satisfying

8i vinvy, = 8; vinv;

for all 4,5 € I. Then there exists a unique s € F(|J;c; Vi) such that
SIW = 8§

forall i € 1.

Examples 3.1,2. 1. A sheaf on the one point space is simply a vector

space over F.

2. Let L be any vector space over F. The constant sheaf Lx on X

determined by L is defined by
Lx(®) ={0}, Lx(U)={continuousmaps f: U - V}ifU # 0

with the obvious restriction homomorphisms. Here L is supposed to
have the discrete topology. (Even if L has a natural topology such as
when L = C, we take the discrete topology when defining Lx.) Thus
if U is non-empty and connected every continuous map f: U — V is
constant so Lx (U) = L.

. Let w: Y — X be continuous and define F by

FU) = {continuouso:U — Y|mwoo(z) =z,Vz € U}
= {sections of & over U}

with the obvious restriction maps. JF is called the sheaf of sections of
7:Y — X. In general this will define a sheaf of sets but if, for example,
Y is a vector bundle over X then it will be a sheaf of vector spaces.

Definition 3.1.3. Let F be a presheaf over X. Thestalk F,of Fatz € X
is the colimit of vector spaces

Fe =colim {F({U)|z € U, Uopenin X}.
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Thus an element of ¥, is represented by a pair (U, ) where U is an open
subset of X such that z € U and s € F(U). Two pairs (U, s) and (V,¢)
represent the same element of F, if there exists an open neighbourhood W of
z in X such that W C UNV and s|w = t|lw. We write s, for the element of
F represented by (U, s).

Elements of F(U) are called sections of F over U. Elements of the stalk
F. are called germs of sections of F at z.

Definition 3.1.4. Suppose F and G are (pre)sheaves over X. A map of
(pre)sheaves ¢: F — G is given by homomorphisms

oU): FU) — G(U)

for all open subsets U C X such that if V C U then the diagram

7o) —2Y g
restrictionl l restriction
FV) ——57—=9(V)

commutes. There is then an induced homomorphism ¢,: F, — G, for all
ze X,

An important principle is that sheaves, as opposed to presheaves, are de-
termined by their stalks. A more precise formulation is

Theorem 3.1.5. A map ¢: F — G of presheaves is called an isomorphism if
HU): F(U) — G(U) is an isomorphism for all open subsets U of X. If F and
G are sheaves this is the case if and only if ¢, : Fr — G, is an isomorphism
forallz € X.

Every sheaf is obviously a presheaf, but not c&ersely. However, there is
a sheaf naturally associated to any presheaf.

Definition 3.1.6. Let F be a presheaf over X. The sheaf F* associated
to F is defined as follows. If U is an open subset of X then F+(U) is the set
of functions f: U — [, x F satisfying

(i) f(x)e Fyforallz € U and

(ii) if z € U then there is an open neighbourhood W of z in U and there is
some s € F(W) such that f(y) =s, forally e W.

F+(U) becomes a vector space under pointwise addition and scalar multipli-
cation. The obvious restriction homomorphisms make F+ into a sheaf.
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Alternatively if we put an appropriate topology on the disjoint union of

stalks
vy=[[%

reX

then we can define F* as the sheaf of sections of 7: Y — X, where n(s;) =z
if s, € F;.

Example 3.1.7. The constant sheaf Vx introduced in Example 3.1.2 is the
sheaf associated to the constant presheaf whose sections over every open U
are the vector space V, and all of whose restriction maps are the identity.

There is a natural map of presheaves ¢: F — F7 such that if U is open
in X and s € F(U) then

oU). U — H.Fz

zelU

sends £ € U to s, € F;. This map ¢ induces isomorphisms on stalks for all
z € X and is hence an isomorphism if and only if F is a sheaf. It has the
universal property that any map of presheaves ¥: F — G from F to a sheaf
G over X factors uniquely as the composition of ¢: F — F* and a map of
sheaves 6: F+ — G.

Whenever ¢: F — G is a map of sheaves over X we can define a kernel,
an image and a cokernel sheaf. The definitions are as follows. The kernel
ker ¢ is the sheaf defined by

ker p(U) = ker{e(U): F(U) — G(U)}

with the restriction maps induced by those of F. However the presheaf whose
space of sections over U is

im {¢(U): F(U) — G(U)}

is not necessarily a sheaf. Since we are interested in sheaves rather than
presheaves, we define the image im ¢ of ¢ to be the sheaf associated to this
presheaf.

A subsheaf F of G is a sheaf over X such that F(U) is a subgroup of
G(U) for all open subsets U of X and the restriction maps of F are induced
by those of G. If F is a subsheaf of G then the presheaf

)

U_>.7-'(U)

is not necessarily a sheaf. We define the quotient sheaf G/F to be the sheaf
associated to this presheaf.

The kernel of ¢ is clearly a subsheaf of F. The quotient sheaf is (isomorphic
to) the image of ¢. The universal property of a sheaf associated to a presheaf
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ensures that the image im ¢ is a subsheaf of G. The cokernel coker¢ is
defined to be the quotient G/im ¢.

If this seems confusing at first then the situation on stalks is much simpler.
There are natural isomorphisms

(ker @), X ker ¢z, (im ), = im ¢, and (coker ¢), = coker ¢, = G /im ¢..

Definition 3.1.8. A map ¢: F — G of sheaves is injective if ker¢ = 0,
equivalently if ¢, injective for all z € X, and surjective if coker¢ = 0,
equivalently if ¢, surjective for all z € X. A diagram

£t rtg
of maps of sheaves is exact at F if im ¢ = ker ¢, equivalently if im ¢, = ker ¢,
for all z € X. A short exact sequence is a sequence
0—-& 2, F i-» G—0,

which is exact at each non-zero term, in other words we have ker¢ = 0,
im¢ =kery and im¢p = G.

Example 3.1.9. Let X =[0,1] and A = [}, 2]. Put U = X —A. Let F =Fx
be the constant sheaf and G be the sheaf on X with sections G(V) = F(UNV).

Restriction gives a map of sheaves ¢ : F — G. If V is a connected open interval
then

(ker p)(V) = {s € F(V) | 8|Unv=0}g{ Ig Zgg:g

Note that ¢(X) is not surjective since F(X) = F but G(X) = F2. However,
¢ induces surjections on stalks and so im ¢ = G. It follows that the presheaf
V +— im(¢(V)) is not a sheaf. Exercise: check explicitly that the sheaf
property 3.1.1 (iv) is not satisfied.

/

3.2 Cech cohomology of sheaves

Suppose we have an injection F — G of sheaves on a topological space X.
Then we have a short exact sequence

0—-F—-G—-G/F—>0
of sheaves. It follows that we have an exact sequence
0 — F(X) — G(X) — (6/F)(X)

of global sections, but the last map need not be surjective e.g. Example 3.1.9.
When is a section s € (G/F)(X) in the image of G(X)? The following exercise
is instructive.
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Exercise 3.2.1. Suppose X is compact and F and G are as above. Let
8 € (G/F)(X). Show that we can find a finite cover {U;} of X and t; € G(U;)
such that

G(U;) — (G/F)UL) : ti — slu,.

Show that there is a unique r;; € F(Us;) with r,; — t; —t; € G(U;;) and that
5 + ik + Thi = 0 € F(Uiji) (3.1)

where, for simplicity, we write U;; for U; N U; and ¢; for t;|y,; etc. Finally,
show that if there exist r; € F(U;) with

Ty =T;— 7T € .F(U.ij) (32)
then there exists a lift ¢t € G(X) of s, i.e. t maps to s under G(X) — (G/F)(X).

There is a potential obstruction to lifting a global section of G/F to a
global section of G consisting of collections {r;; € F(U;;)} satisfying (3.1) but
not arising from a collection {r; € F(U;)} as in (3.2). Thus it is reasonable
to expect that we have an exact sequence

0 — F(X) = G(X) = (G/F)X) - H'(X; F)

where H'(X; F) is a ‘space of obstructions’ to lifting global sections of G/F
to global sections of G which depends only on F. Here is the definition.

Let F be a sheaf of vector spaces over F on a topological space X and let
U= {Uili € I} be an open covering of X. For each p > 0 let I(®) be the set
of all subsets of I with precisely p + 1 elements. If

K = {ig,...,ip} € IP
then put Ux = U;, NU;, N...NUp,. Let
ST | )
Kel®

Then C?(U; F) is a vector space over F. An element a € CP(U; F) is deter-
mined by giving elements ax € F(Uk) for each K € I®,

For each K € I(®) choose an orientation of K, i.e. an ordering of the
elements of K up to even permutations. Define a coboundary map

d: CP(U; F) — CPYY(U; F)
as follows. If K = {ig,...,4p+1} € IP+D) set

ptl

(da)K = Z :l:aK_{ij}|UK
j=0



3.2 Cech cohomology of sheaves 81

where the sign + depends on whether or not the orientation chosen for K coin-
cides with the orientation chosen for K — {i;} with 4; placed at the beginning.
It is easy to check that

d?=0

so we can define

kerd: CP(U; F) — CP+*YHU; F)
im d: CP~Y(U; F) — CP(U; F)’

HP(U; F) = (3.3)

An open covering V of X is called a refinement of U if for every V € V
there exists some Uy € U such that V C Uy. Then there is a map

CPU; F) — CP(V; F)

induced by the restriction maps of F which commutes with coboundary maps.
We define
C?(X;F)

to be the colimit of CP(U; F) with respect to refinement. That is, every el-
cment of CP(X;F) is represented by an element of CP(U; F) for some open
covering U, and elements of CP(U; F) and CP(V;F) represent the same el-
ement of CP(X;F) if they map to the same element of C?(W;F) for some
common refinement W of U and V.

The coboundary maps

d: CP(U; F) — CP*(U; F)
induce coboundary maps
mmmﬂaqw&ﬂ
The pth Cech cohomology group of X with coefficients in F is, by definition,
the quotient
ker d: CP(X; F) — CP*Y(X; F)
im d: CP~Y(X; F) - CP(X; F)~

HP(X; F) =

It is a vector space over the field F.

Example 3.2.2. An element o € C®(U; F) = [[;c; F(U;) satisfies da = 0 if
and only if, for each i and j

ailvinu, = ajluinu;,
i.e. if and only if the o; patch together to form a global section. Hence

BY(X; F) = F(X).
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The definition of Cech cohomology is functorial; if we have a map F — G of
sheaves then there are induced maps C?(X; F) — C?(X;G) which commute
with the coboundaries and thence induce maps on Cech cohomology groups.
In particular if

0-F—-G—-G/F—>0

is a short exact sequence of sheaves then we obtain short exact sequences
0— CP(X;F) — CP(X;G) - CP(X;G/F) — 0

of vector spaces for each p > 0. A standard result in homological algebra (see
e.g. Spanier [163, Ch. 4 §5]) then tells us that we obtain an exact sequence of
Cech cohomology groups

0— HO(X;F) — H(X;G) — H(X;6/F) = H' G F) — -

Combined with Example 3.2.2 this yields the promised interpretation of Cech
cohomology groups as spaces of obstructions to lifting sections.
If X is triangulable we can always choose an open cover U so that

HP(U; F) = HP(X; F) .
This follows from the proof of the following proposition.
Proposition 3.2.3. If X is triangulable then Hj  (X;F) = H*(X;Fx)

sim

where B x is the constant sheaf on X determined by the field F.

Sketch proof. Consider a triangulation T': |N | — X of X. Let V be the set
of vertices of N. If ¢ € N let
c°=0-— U T

T<0o

be the interior of o. (Here we write 7 < o to mean 7 is a face of sigma and
T # 0.) For cach v € V define the star of v to be the open set

U= |J T

oc€EN,vEx

Then U = {U,|v € V} is an open covering of X. Furthermore, if K is the set
{vo,...,vp} € V® then

UK=Uvoﬂ...ﬂva

is non-empty and connected if vg, ..., v, are the vertices of a p-simplex in N,
and is empty otherwise. Thus the constant sheaf Fx satisfies

__ | F if K spans a p-simplex in N
Fx(Uk) = { 0 otherwise.
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So, given a Cech cochain a € CP(U; Cx), or equivalently given elements
ag €C X(U K)
for all K € I®), we can define a simplicial cochain

#(a) € (CT(X))"

by putting
Ha) - T =0y, v} € FxUtno,...,}) =F

if 7 is the p-simplex with the vertices v, ..., v,, and extending linearly. The
sign depends on whether the orientation chosen for r is the same as that
chosen for K = {vy,...,v,}. We thus get an isomorphism

¢: CPUsFx) — (G (X))
which respects the coboundary maps and hence induces an isomorphism
B*U;Fx) — HE(X).

Since we can refine T to make U arbitrarily fine we get, in the limit, an
isomorphism 3
H*(X;Fx) & Hiy (X3 ).

3.3 Hypercohomology

Later we will need to associate cohomology grouis&? not.just to a single sheaf
but also to a complex F* of sheaves — that is & sequence

RN - N -2 SO

of sheaves F* indexed by i € Z and sheaf maps F¢ — F*+! (all of which we
denote by d) in which the composite of any two consecutive maps is 0, or,
more succinctly, d2 = 0. In order to distinguish the groups associated to a
complex we will refer to them as hypercohomology groups. They are defined
as follows.

Let F* be a complex of sheaves of vector spaces over F on a topological
space X and let U be an open cover of X. Let

CP(U; FI)

be the space of Cech p-cochains over U with coefficients in F9. We have a
boundary map
b61: CP(U; FT) — CPHY(U; F9)
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and the sheaf complex differential d: F9 — F9t1 induces
821 CP(U, FT) — CP(U, FI+1)

satisfying 62 = 0 = 62 and 6,0, = 826;.

Passing to the colimit with respect to refinement of open covers of X we
obtain a vector space

C?9 = colim CP(U, F7)
with boundary maps 6;: CP? — CP*t19 and &,: CP? — CP9tl, We define
the Cech hypercohomology H*(X;F*) of F* to be the cohomology of the
complex (K*,d) where
k"=  cre
ptg=n

and d = 6; + (—1)?62 on CP. That is

kerd: K™ — K™+1
im d: Kr~! - Kn '’

Example 3.3.1. Any sheaf € can be thought of as a complex

H™(X; F*) = (3.4)

s 002 E—-20—--.

with the sheaf placed in degree zero (and nothing in the other degrees). The
hypercohomology of this complex is simply the cohomology of the sheaf £.

3.4 Functors and exactness

The sheaves on a topological space X are the objects of an Abelian category
Sh(X). This means that

1. The maps Homgy x)(F,G) from F to G form an Abelian group' under
the operation
(6+)(U): FU) — G(U)
s = §U)(s) +p(U)s)
and composition Homgy(x)(€, F) X Homgp x)(F,G) — Homgy(x)(€,G)
is biadditive;
2. There is a zero sheaf 0 (whose sections over each open U are the 0 vector

space);

3. We can form the direct sum F @ G of sheaves by setting (F & G)(U) =
FU)sG(U);

lIndeed, since we work with sheaves of vector spaces, the maps form a vector space.
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4. The kernel and cokernel of a sheaf map ¢ : F — G satisfy the universal
properties represented by the diagrams

A and ]—'———>¢ G —— coker ¢
d b
3t 0 s
< g al \ \Bl 7
# +
ker p —> F T» G B,

i.e. if ¢ o @ = 0 then a factorises uniquely through ker ¢ — F and if
B o ¢ =0 then g factorises uniquely through G — coker ¢;

5. The image of a sheaf map ¢ : F — G fits into short exact sequences
0—ker¢g - F —>im¢p—0 and 0— im¢ — G — cokerp — 0.
So far we have been interested in sheaves on a single space X but now we
consider relationships between sheaves on different spaces.
Definition 3.4.1. A covariant (respectively contravariant) functor
F : Sh(X) — Sh(Y)

from the category of sheaves on X to the category of sheaves on Y is a
rule which assigns to each sheaf 7 on X a sheaf F(F) on Y and to each
map of sheaves ¢: F — G on X a map F(¢): F(F) — F(G) (respectively
F(¢): F(G) — F(F)) of sheaves on Y satisfying

i) F(1F) = 1p(F) where 1x and 1p(x) are the identity maps on F and F(F);
il) F(¢ o) = F(¢) o F(y)) (respectively F(¢p o 1p) = F(y) o F(¢)).
The functor F' is additive if furthermore
iii) when ¢, are both maps of sheaves F — G then
F(¢+1) = F(¢) + F(h)
where the map of sheaves ¢ + 1): F — G is defined by
(2 +)U)(s) = (U)(s) +¥(U)(s)
for all U open in X and s € F(U).
The functor F is exact if in addition

iv) given a short exact sequence 0 — £ R N G — 0 of maps of sheaves
over X the sequence

0— F(E)™® pr) ™ Fg) - 0

(or 0 —» F(G) —» F(F) — F(€) — 0 in the contravariant case) is an
exact sequence of Abelian groups.
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In brief, an exact functor is one which preserves the Abelian category
structure.

An additive functor F is called left (respectively right) exact if the se-
quence of Abelian groups obtained from any short exact sequence of sheaves
via F is left (respectively right) exact: that is, we drop the condition that the
second map should be surjective (respectively that the first map should be
injective).

In the remainder of this section we define some important examples of
functors and discuss their exactness properties.

A continuous map f: X — Y induces (covariant) functors

Sa
Sh(X) === Sh(Y)
f‘

defined as follows. For a sheaf F on X we define the pushforward f.F to
be the sheaf on Y with sections

LFWV)=F(F (V)

for open subsets V of Y. For a sheaf G on Y we define the pullback f*G to
be the sheaf on X associated to the presheaf with sections

U — colim y~¢nG(V)

where V runs over all open subsets of Y containing f(U). If f: X — Y is the
inclusion of a subset X of Y in Y then f*G is called the restriction of G to
X. We leave the reader to define f, and f* on maps of sheaves.

Definition 3.4.2. If s € F(U) is a section of F over U then the support |s|
of s is the closure in U of the subset

{z € Uls; #0}

where s, is the image of s in the stalk F,. If |s| is compact then s is said to
have compact support.

We can also define a pushforward with proper supports functor
Ji : Sh(X) — Sh(Y)

by

[FV)={se F(f~'v) ] f: ]s] — Y is a proper map}
(where a continuous map is proper if and only if the inverse image of every
compact subset is compact).

Examples 3.4.3. 1. Every space has a unique map px : X — pt to the
point. We can identify sheaves on the point with vector spaces over
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F and, under this identification, px,F = F(X) is the space of global
sections and px,F is the space of global sections with compact support.

For a vector space L the pullback p% L = Lx is the constant sheaf with
stalk L.

2. If f: {z} — X is the inclusion of a point and L a vector space then
f«L =2 fiL is a skyscraper sheaf at z (so-called because the stalks are
zero except for the stalk at z).

The pullback f*F of a sheaf F on X is the stalk F, at x.

Exercise 3.4.4. 1. Show that the stalk (f*G)z = Gy(,y and deduce that
f* is an exact functor.

2. Show that f. and fi are left exact (but not exact). [Hint: consider
Example 3.1.9 and take f to be the map to a point.]

The pushforward and pullback of sheaves are closely related.

Proposition 3.4.5 (Iversen [84, Thm. 4.8]). The pushforward f. is right
adjoint to the pullback f*; in other words there is a natural isomorphism

Homgy(xy(f*G, F) = Homgy(vy(G, fuF)
for any sheaf F on X and G on'Y.

Another class of examples arises as follows. Fix a sheaf F on X and
consider the map

Homgp( x)(F, —) : Sh(X) — F-VS : G — Homgp(x)(F,G)

where F-VS§ is the category of vector spaces over I\ This becomes a (covariant)
functor if we define Homgy,(x)(F, ¢) for a map ¢ : G — G’ to be the map of
vector spaces

HomSh(X)(]:a g) — HomSh(X)(]-', gl) Ta—goa

arising from composition.
Similarly we can consider 7 — Homgp(x)(F,G). A sheaf map ¢: F — F
induces a map of vector spaces

Homgy,(xy(F',G) — Homgy(x)(F,G) : @ — a0 ¢
so this is a contravariant functor.
Exercise 3.4.6. Show that Homgy(x)(—, G) is left exact. Show that
Homgyx)(Fx,G) = G(X)

and deduce that Homgp(x)(—,¥) need not be exact. Deduce further that
Homgy,(x)(F,—) is left exact but not necessarily exact.
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Adhering to the spirit of sheaf theory we can consider all open sets at once:
fix F and G and define, for open U C X,

Homgnx)(F,G)(U) = Homgpxy(Flv, Glv)

where Fly is the restriction of F to U, ie. the sheaf with sections V
F(UNV). This defines a sheaf Homgyx)(F,G) on X and so we have (what
turn out to be left exact) functors from Sh(X) to itself

F — Homgn(x)(F,G) and G — Homgyx)(F,G).
In particular note that there is a natural isomorphism

Homgsnxy(Fx,9) = G. (3.5)

3.5 Resolutions of sheaves and of complexes

Suppose F' : Sh(X) — Sh(Y) is a left exact, but not exact, functor. Then
there are short exact sequences of sheaves in Sh(X) whose image in Sh(Y)
under F' are no longer exact. It is natural to ask whether we can identify
‘good’ classes of short exact sequences whose images are exact?

Definition 3.5.1. A sheaf 7 is called injective if the contravariant functor
Homgpx)(—,Z) from Sh(X) to F-VS is exact. This functor is left exact for
any sheaf Z, so 7 is injective if and only if given ¢: F — G with kert = 0,
every sheaf map F — 7T extends (not necessarily uniquely) to a map G — T

such that the diagram
g
V \
F————>T

Example 3.5.2. 1. Any vector space in F-VS, considered as a sheaf on
the point space, is injective.

commutes.

2. If F is any sheaf then the assignment

Us—+]:_‘[.7-'gc

el

defines an injective sheaf I°(F).

Theorem 3.5.3. If € is an injective sheaf on X and

0—e-HrLgoo
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is a short exact sequence then for any left exact functor F : Sh{(X) — Sh(Y)
the image
0= Fe) ™ Frr) ¥ Fg) - 0
1s also short exact.
A proof can be found in Iversen [84, 1.7] or in Hartshorne 79, Ch. I1I, Thm.

1.1A]. The category of sheaves on a topological space ‘has enough injectives’:
more precisely

Proposition 3.5.4 (Hartshorne (79, Ch. IIl, 2.3]). If F is a sheaf on X then
there is an ezact sequence (the Godement resolution)

0—>F—>I0(.7:)—>I1(.7:)—>---

of sheaves in which I7(F) is injective for all j. Furthermore the construction
is functorial, i.e. a sheaf map ¢ : F — G induces maps I’(¢) between the
Godement resolutions so that

0—> F—> I%F) —> I{(F)—>---
lq& ll"(q&) 111(45)
0 g I°(G) 1Y(g)

commutes.

Sketch proof. Define I°(F) as in Example 3.5. It is easy to see that F injects
into I°(F) via

FU) - IMF)U): s> ] sz
=

Now perform the same procedure on the cokernel I°(F)/F of this injection,
ie. put

INF)=I"(F)|F
and continue inductively. O

The Godement resolution is an example of an injective resolution of a sheaf.
However, we will need the more general notion of an injective resolution of
a complex of sheaves and so we postpone the formal definition of injective
resolution in favour of introducing some important terminology.

Definition 3.5.5. A cochain map ¢* : 7* — G* between complexes of
sheaves is a collection ¢¢ : F* — G* of sheaf maps, indexed by i € Z, such
that each square

_Fi——d>]:i+1

¢il l¢i+1

gi ___d_> gi+1
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commutes. A cochain map ¢* : F* — G° is a quasi-isomorphism if it
induces isomorphisms of sheaves
HY(F) - HHG*) Vi
where Nop - Fi s FiHL
i _ker: F' —
H(F) = im : F=1 — Fi
is the i** cohomology sheaf of the complex F*.

Note that the stalk of the cohomology shea.f at £ € X is the cohomol-
ogy of the complex of stalks, i.e. H*(F*), = H*(F3). Hence ¢* is a quasi-
isomorphism if and only if the maps

HY(F3) — HY(G3)
are all isomorphisms.
Definition 3.5.6. An injective resolution of a complex F* of sheaves on

X is a complex Z* of injective sheaves together with a quasi-isomorphism
F =1

Example 3.5.7. The Godement resolution determines a quasi-isomorphism

0——F —0 >0

Lo

0—> I°(F) —> F(F) —> P(F) —> -

and so defines an injective resolution of the sheaf F.

A complex of sheaves F* is bounded if there exists N € N with 77 =0
for |n| > N.

Proposition 3.5.8. Every bounded complex F* of sheaves on X has an in-
jective resolution.

Sketch proof. The Godement resolution provides us with injective resolutions
of each F* which fit into a double complex

0 0
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whose columns are exact sequences. A diagram chase — sometimes called the
Double Complex Theorem see e.g. Bott and Tu [26, P{. of Prop. 8.8] — shows
that the compositions

FP — IO(FP) s @ 19(F79)

q=0

induce a quasi-isomorphism from F* to the total complex @,>ol9(F*~9).
The differential on the total complex is given on each term of the direct sum
(which is finite by the boundedness assumption on F*) by

d® (—1)P+95 : [9(FP~9) — IQ(]?(P+1)‘"<1)®I(Q+1)(}‘P—Q)
— PrEFen.

r>0

Since the direct sum of injective sheaves is injective the total complex is a
complex of injective sheaves. O

Injective resolutions are not unique, but any two injective resolutions of a
complex are homotopy equivalent in the following sense.

Definition 3.5.9. Cochain maps ¢* and ¥* from F* to G* are homotopic
if there are maps of sheaves ¢ : F* — Gi~1 such that

$—y'=don'+nod.

Two complexes F* and G* are homotopy equivalent if there are maps
¢* : F* — G* and ¥°* : G* — F* such that both ¢* o ¢* and * o ¢* are
homotopic to the identity.

The proof that any two injective resolutions are homotopy equivalent is
an extended exercise in the use of the universal property of injective sheaves.
Note that it easily follows that injective resolutions of quasi-isomorphic com-
plexes are homotopy equivalent.

In a sense which will become clear, we will use an injective resolution as
a surrogate for the original complex. The fact that any two injective reso-
lutions are homotopy equivalent means that, for many purposes, it does not
matter which injective resolution we use. However, for clarity and definite-
ness, henceforth we fix a functorial choice of injective resolution, namely that
arising from the Godement resolution of a sheaf as in the proof of Proposi-
tion 3.5.8. To be explicit, for each complex of sheaves F on X we assign an
injective resolution F* — I*(F) and for each cochain map ¢* : F* — G* we
assign a cochain map I*(¢) : I*(F) — I*(G) in such a way that I*(id) = id
and I*(¢ 0 %) = I(9) o I" ().
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3.6 Cohomology and hypercohomology via
derived functors

We are now rcady to give our second definition of sheaf cohomology. Recall
that we can describe the global sections functor F — F(X) as the pushforward

px. : Sh(X) — F-VS

to a point. This is a left exact functor (sec Excrcise 3.4.4). Since px, is a
functor it takes complexes of sheaves on X to complexes of vector spaces. The
it" cohomology of a sheaf F on X is defined to be

_ ker: px J{F) = px JTTHF)
Tim i px JJUUF) — px JHF)
where F — I*(F) is the Godement resolution. Precisely the same definition

serves for complexes; the i** hypercohomology of a complex F* of sheaves
on X is defined by

IIN(X;F) = H(px, I*(F))

H'(X;F) = H'(px .I*(F))
where F — I*(F) is the chosen injective resolution. The definition of the

cohomology of a sheaf is simply the special case in which the complex is zero
cxcept in one degree.

Remark 3.6.1. If we had chosen a different injective resolution F* — Z° then
7* and I*(F) would be homotopy equivalent complexes of sheaves. It follows
that px ,Z* and px ,I*(F) are homotopy cquivalent complexes of vector spaces
and therefore that they have isomorphic cohomology groups.

Replacing px, with the pushforward with compact supports functor px,
we define the hypercohomology with compact support
H(X,F*) = Hi(va.f'(}-))‘
How does this definition compare to our earlier one of the Cech hypercoho-
mology of a complex of sheaves?

Theorem 3.6.2 (Leray acyclic covering theorem, see e.g. Kashiwara and
Schapira [97, Prop. 2.8.5]). Let F* be a complex of sheaves on a topological
space X. Suppose U is an open cover of X for which

HY(UN...0Up; F*)=0 VY Up,...,U,€U,n>0andi>D0.
Then for each i there is a natural isomorphism
HY(X:F*) = H(X; F*).

Combining this with Proposition 3.2.3 we can show that for the constant
sheaf Fyx on a triangulable space X we have isomorphisms

Hl(XvIFX) = Hi(X;IFX) = Hsiing(X) = Hgimp(X);

for ‘good’ spaces all our definitions of cohomology agree.
Remark 3.6.3. It is easy to check that (X, F) = F(X) = H°(X,F).
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3.7 Derived categories

The derived category of sheaves on a space X is the natural algebraic frame-
work for sheaf cohomology. It will allow us to give a clean formulation of the
topological invariance of intersection cohomology in Chapter 7 and provides
the setting for the discussion of perverse sheaves in Chapter 8. We will assume
(very) basic familiarity with the notions of category theory -— Mac Lane [123]
is a good reference.

The idea of the derived category is to treat complexes of sheaves and their
resolutions on an equal footing, i.e. to treat quasi-isomorphisms as isomor-
phisms.

Definition 3.7.1. The objects of the bounded derived category D*(X) of
sheaves on a topological space X are bounded complexes of sheaves of vector
spaces over F. A map in the derived category from a complex F* to a complex
G* is given by an equivalence class of diagrams

e tg
in which ¢* and 1)* are cochain maps and ¢° is a quasi-isomorphism. Two such

diagrams F* «— £> — G* for i = 1,2 are equivalent if there is a commutative
diagram of cochain maps

&

% T e
F<—— &3 ——}G'
3 ve
#3 l A:
&

in which ¢3 is also a quasi-isomorphism. We write Hom ps(x)(F*,G*) for the
set of maps from F* to G*. It is easily seen to be a vector space over F.

One should think of this definition as analogous to the formation of a field
of fractions of an integral domain by formally inverting elements and imposing
an equivalence relation. In the case of the derived category we are formally
inverting quasi-isomorphisms.

Exercise 3.7.2. Show that if ¢* : 7* — G* is a quasi-isomorphism of bounded
complexes of sheaves then it has an inverse in the bounded derived category
Db(X).

Remark 3.7.3. There is nothing ‘sheaf-y’ about this construction; we could
define the bounded derived category of any Abelian category, e.g. modules
over a ring, in an analogous way.
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The bounded derived category of sheaves on a topological space X satisfies
the first three conditions to be an Abelian category (see page 34) but not the
last two; there is no way to construct a kernel, image or cokernel of a map. In
particular we cannot make sense of the concept of a short exact sequence in
Db(X). There is however a substitute for this concept called a distinguished
triangle which we now explain.

Definition 3.7.4. The shifted complex F*[1] of a complex F* of sheaves
on X is defined by (F[1])* = Fi~! with the differential —d.

Suppose ¢* : F* — G* is a cochain map of complexes of sheaves on X. The
mapping cone Cone*(¢) of ¢* is the complex with Cone’(¢) = Fit! @ G*

and differential
—d 0
¢i+1 d

..__)]:i+1®gi ]:i+2@gi+1__,...

(This is a complex:

-d 0\(—d 0)_ & 0\_/00
¢ d ¢ d ) \do¢t—¢*lod & /] \ 0 O

because ¢* is a cochain map, i.e. commutes with the differentials.)

Definition 3.7.5. A standard triangle is a sequence

= o Y, Coner(6) S0 o]

of bounded complexes and cochain maps. Note that this can be extended to

the left and to the right. A distinguished triangle is a sequence of bounded
complexes and maps in the derived category

gL g X e

which is isomorphic to a standard triangle in the sense that there is a com-
mutative diagram

"I. 11. CI - A'[l]
£ Fo—G £°1]

in the derived category whose vertical maps are isomorphisms and whose top
row is a standard triangle.
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Example 3.7.6. We identify a sheaf on X with the complex of sheaves with
that sheaf in degree zero and 0 in all other degrees. With this identification,
sheaf maps correspond to cochain maps of sheaves in an obvious way.

Ifo— & 2, F2, G — 0 is a short exact sequence of sheaves then
Cone*(¢) is the complex

0—E-2F—0

where F is in degree zero. The cochain map

0—>&—2>F—>0 (3.6)
Ll
0—>0 G—>0

from Cone*(¢) to the complex with G in degree zero (and 0 in all other degrees)
is a quasi-isomorphism and so, we have a distinguished triangle

£ F g X e

where x is the (vertical) composite

1]
Ly

Thus each short exact sequence of sheaves determines a distinguished triangle.

Remark 3.7.7. The derived category together with the collection of distin-
guished triangles forms a triangulated category — see Gelfand and Manin
[63, Ch. 5] for more detail.

The following proposition clarifies the sense in which distinguished trian-
gles are a substitute for short exact sequences.

Proposition 3.7.8 (Gelfand and Manin [63, Ch. 5, §1.6]). If&* 2> 7 *5,

G* X5 £°[1] is a distinguished triangle in D*(X) then there is an induced
eract sequence of cohomology sheaves

= HH(E) = HAF) — HH(G) — HFHH(E) — -
In particular a cochain map ¢* is a quasi-isomorphism if and only if
H*(Cone*(¢)) =0 Vi
or equivalently if and only if Cone®(¢) is an exact complex.
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3.8 Right derived functors

Suppose F' : Sh(X) — Sh(Y) is a left exact functor. We would like to induce
a functor D®(X) — D¥Y), but the simplistic definition ‘apply F term-wise
to complexes and cochain maps’ doesn’t make sense: for a general map

f‘i‘_g'_ﬂ,g'

in D®(X) the diagram

Fr & Fee ™ pge
need not represent a map in D®(Y') because there is no reason for F¢* to be a
quasi-isomorphism. However, if ¢* : I* — J* is a quasi-isomorphism between
complexes of injective sheaves then Cone*(¢) = I*+!1 @ J* is an injective sheaf.

An easy corollary of Theorem 3.5.3 shows that F' takes a bounded below exact
sequence of injective sheaves to an exact sequence. Hence we have

¢* a quasi-isomorphism = Cone*(¢) exact
= F(Cone*(¢)) = Cone®(F(¢)) exact
= F(¢*) a quasi-isomorphism.

Recall that we fixed a functorial choice of injective resolution £* — I*(£)
for cach complex of sheaves on X. Another way of saying this is that we have
chosen a functor

I:DYX) — DYX)
g +— I'(E)
taking each complex to an isomorphic (in the derived category) complex of
injective sheaves.

Definition 3.8.1. The right derived functor
RF : D*(X) — D*(Y)

of a left exact functor F : Sh(X) — Sh(Y) is the composition F o I, i.e.
RF(E*) = F(I*(€)). This is well defined on maps in the derived category
because whenever ¢* is a quasi-isomorphism then, by the above, so is F\(I*(¢)).

Example 3.8.2. The functor assigning the ith hypercohomology group to a
complex £°* can be described as the composite

DP(X) % Db(pt) 5 FVS

of the right derived functor of the pushforward to a point and the ith co-
homology of a complex of vector spaces over F. In particular, note that
qquasi-isomorphic complexes have isomorphic hypercohomology groups.
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After this short introduction it should be apparent that the derived cat-
egory provides a natural framework for discussing sheaf cohomology. In fact
the relationship is even closer than we have revealed. With a little more ho-
mological algebra (see Gelfand and Manin [63, Ch. 4, §3 and Thm. 5.3]) one
can show that there is a natural isomorphism

H'(X;€*) = Homyye(x)(Fx, £°[i])

hetween the ith hypercohomology group of a complex £* and maps in the
derived category from the constant sheaf Fx to the ith shift £°[i] of the
complex  maps in the derived category are cohomology classes (in a suitably
generalised sense). This is a very pleasing description but we should also take
it as a warning that all the subtleties of cohomology classes are inherited
by maps in the derived category. In particular, and in contrast to maps of
sheaves, maps in D®(X) can be ‘non-local’. By this we mean that there can
be non-zero maps in D?(X) whose restriction to all of the sets U; in some
open cover of X are zero as maps in Db(Ui).

3.9 Further reading

There are many treatments of the theory of sheaves and their cohomology.
Godement [65] and Serre [160] are classic accounts. Hartshorne [79] and
Iversen [84] are good references, the first from the viewpoint of algebraic
geometry and the second from that of topology. Kashiwara Schapira [97] is
a comprehensive account of sheaves on manifolds, and contains the defini-
tive treatment of the micro-local geometry of s(ﬁaves — a subject which we
have neglected. Bott and Tu [26] contains a very accessible account of Cech
cohomology explaining how it arises from the Mayer—Vietoris principle.

The two main aspects of derived functor cohomoelogy, homological algebra
and category theory, arose together: Cartan and Eilenberg [41] is a classic by
the pioneers and Hilton and Stammbach [81] is a good standard reference. For
a more modern treatment the reader should look at Weibel [177] or Gelfand
and Manin’s two books [64] and [63]. These include a wealth of applications
in many areas of algebra, geometry and topology.



Chapter 4

The definition of
intersection homology

In this chapter we (finally) come to the definition of intersection homology.

4.1 Stratified spaces and pseudomanifolds

Intersection homology can be defined for a wide class of singular spaces called
topological pseudomanifolds, which we now define.

If L is a compact Hausdorff topological space then the open cone C(L)
on L is the result of identifying the subset L X {O]QL x [0,1) to a single
point (called the vertex of the cone).

Definition 4.1.1. We define a topologically stratified space inductively on
dimension. A 0-dimensional stratified space X is a countable set with the dis-
crete topology. For m > 0 an m-dimensional topologically stratified space
is a para-compact Hausdorff topological space X equipped with a filtration

X:Xm_D_Xm—IQQXI_D_XO

of X by closed subsets X; such that if z € X; — X;_, there exists a neighbour-
hood N, of z in X, a compact (m — j — 1)-dimensional topologically stratified
space L with filtration

L:Lm—j—l_j_"'QLl_D_LO

and a homeomorphism _
¢: N, - R x C(L)

where C(L) is the open cone on L, such that ¢ takes Nz N X1 homeomor-
phically onto ) )
RI x C(L;) CRI x C(L)

49
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form —j—12>1i2>0, and ¢ takes N; N X; homeomorphically onto
RI x {vertex of C(L)}.

In particular this guarantees that the subset X; — X;_, is a topological man-
ifold of dimension j. The strata of X are the connected components of these
manifolds. Up to homeomorphism, the space L only depends on the stratum
in which the point z lies. It is referred to as the link of the stratum.

Definition 4.1.2. A topological pseudomanifold of dimension m is a
para-compact Hausdorff topological space X which possesses a topological
stratification such that

X1 = Xm—2
and X — X,,,_, is dense in X. (Note that the stratification is not part of the
data; topological pseudomanifolds are stratifiable not stratified.)

Examples 4.1.3. 1. Any manifold X is a topological pseudomanifold.

2. The open cone on a manifold of dimension > 1 is always a pseudo-
manifold (but, for example, the open cone on three points is not a
pseudomanifold).

3. Two spheres joined at a point and a pinched torus are pseudomanifolds

but a torus with a spanning disc across the central hole

is not.

4. Later in this chapter we will see that complex quasi-projective varieties
are pseudomanifolds.

We say an m-dimensional pseudomanifold is irreducible if X,,, — X,,_>
is connected, in which case H,,(X;Z) is either Z or 0. If it is Z then we say
X is orientable and a choice of generator for H,,(X;Z) is an orientation.
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4.2 Simplicial intersection homology

For the first definition of intersection homology which we shall give we actually
need X to be more than a topological pseudomanifold with filtration X; as
above. We also require X to have a triangulation which is compatible with the
filtration (i.e. each X; is a union of simplices). X is then a piecewise-linear
pseudomanifold.

Remark 4.2.1. We can characterise piecewise-lincar pseudomanifolds more
simply as follows. The geometric realisation of a simplicial complex K is an
m-dimensional piecewise-linear pseudomanifold if and only if

1. every simplex is a face of an m-simplex;
2. every (m — 1)-simplex is a face of precisely two m-simplices.

Note that not all topological pseudomanifolds are piecewise-linear. Indeed,
there are even examples of topological manifolds which cannot be triangulated,
see Ranicki et al. [145].

As in Chapter 2 we will work with coefficients in a field F.

LetT: |N | — X be a triangulation of X compatible with the stratification.
Recall that CF(X) is the space of all (finite) simplicial i-chains of X with
respect to 7T'.

Definition 4.2.2. The support i{ | of a simplicial i-chain £ = }_ .y €50
is given by
lel= U T
£0#0

We are going to define a subspace ICT (X) of C¥ (X) whose elements will
be those i~chains £ such that the intersection of |§ | and X is ‘not too big’ for
each j. To make ‘not too big’ precise we need the concept of a perversity.

Definition 4.2.3. A perversity is a function p : {2,...,m} — N such that
P(2) =0 and p(i + 1) = p(3) or p(i) + 1.

Examples 4.2.4. 1. The zero perversity is i — 0 for 2 < i < m.
2. The top perversity is t(i) =i — 2.
3. If p is a perversity, the complementary perversity is
i t(i) —p(i) =1 —p(i) — 2.
4. The lower middle perversity is m(7) = [i/2] — 1 and the upper middle
perversity is its complement n(i) = [i/2] — 1.

We fix a perversity p.
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Definition 4.2.5. We say an i-chain £ € CT (X)) is p-allowable if
dimg lfl NXp_kr <i—k +p(k).

Note that by convention the empty set has dimension —oo. Let IPCF(X) be
the subspace of CT(X) consisting of all those é-chains & € C7 (X) such that
£ is a p-allowable i-chain and 9¢ a p-allowable (i — 1)-chain.

Remark 4.2.6. Since the triangulation T' is compatible with the stratification,
the intersection |§ | N X —k is a union of simplices and hence has a well-defined
dimension. We can make an analogous definition for any version of homology
with chains for which this holds, for example for semi-analytic chains (see e.g.
Hardt [78]).

Since X,,_x has codimension k an i-chain is dimensionally transverse to
it if dimg |§ | N Xt < i— k. Thus the value p(k) of the perversity tells us
how far from dimensional tranversality to codimension k strata an i-chain is
allowed to be.

It is easy to check that if 7" is a refinement of the triangulation T then
the induced map

cf(X) - o' (%)
sends a chain £ € CF(X) to a chain with the same support as £. Hence it
restricts to maps
1°cT(X) — PCT (X).
Definition 4.2.7. The space I?C;(X) of piecewise-linear intersection i-

chains is the limit of the IPCJ(X) over all triangulations T of X compatible
with the stratification.

Thus a piecewise-linear intersection i-chain is represented by an element
of I?CT (X)) for some T, and

neI’CT(X) and (e IPCT (X)

represent the same element of IPC;(X) if and only if there is a common
refinement 7" of T and T, compatible with the stratification, such that n
and ¢ induce the same element of

rct ().

Tt is easy to check from the definition, and the fact that 8% = 0, that the
boundary maps 9: C;(X) — Ci;—1(X) induce boundary maps from I*C;(X)
to IPC;_1(X).

Definition 4.2.8. The ith intersection homology group of X with per-
versity p is

ker@: IPCy(X) — IPC;—1(X)

im 8: IC; 1 (X) — IPCi(X)"

The triangulation dependent group IP HT (X)) and the intersection cohomology
groups IPH*(X) and IPH4(X) are defined similarly.

IPHy(X) =
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Remark 4.2.9. If T is any triangulation of a space X then H,(X) & HI (X)
(sce e.g. Hatcher [80, §2.1]). This is not true for intersection homology, even
for triangulations compatible with a given stratification. However, if the tri-
angulation is fiag-like, meaning that for each i the intersection of any simplex
o with the closure Xj is a single face of o, then IPH,(X) % IPHT(X) for any
perversity p (Goresky and MacPherson [73]). Thus intersection homology is
computable from a flag-like triangulation.

Of course a priori IPH;(X) depends on the choice of stratification of X.
We shall see later that in fact it is independent of this choice (Goresky and
MacPherson (70, §4]).

Remark 4.2.10. The attentive reader will have noticed that the definition of
intersection homology depends only on the filtration by closed subsets and
that we have not used the locally cone-like structure of a topological pseudo-
manifold. Thus we can extend the above definitions and assign intersection
homology groups to any filtered space (even if the ‘strata’ are not manifolds).
However, these groups are not in general invariants of the underlying space
but only of the filtration. The extra structure possessed by pseudomanifolds
ensures that the intersection homology groups are topological invariants —
see Chapter 7.

The lower and upper middle perversities will be the most important for us
and we now make an arbitrary choice to favour the lower middle perversity
m and, for simplicity of notation, put

ICHX) = I™Cy(X), THy(X)=I"Hy(X)\_ (4.1)

etc.

Remark 4.2.11. We can also define intersection homology groups with closed
support by using locally finite intersection chains. The definitions are entirely
analogous but with CJ'(X) replaced by CI ((X)) throughout. We denote the
group of locally finite intersection chains by IC; ((X)) and the intersection
homology groups with closed support by THf (X).

The definitions of intersection homology given in the literature are incon-
sistent, and often the groups THS(X) are called the intersection homology
groups of X instead of the groups IH;(X) defined at 4.2.8. This is because
the groups THZ(X) fit better with the sheaf-theoretic approach to intersec-
tion homology (see Chapter 7) although the groups I H;(X) fit better with the
classical homology theory. Of course when X is compact there is a natural
identification

TH;(X) = IH#(X)

80 it does not matter which definition is used.
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4.3 Singular intersection homology

Intersection homology can also be defined from the point of view of singular
homology theory. This approach is due to King [110] and has the advantage
that we do not require a triangulation and so it works for any topological
pseudomanifold.

Suppose X is a topological m-pseudomanifold and that we have chosen a
stratification

X=Xpn2Xn1=Xm22--2X; 2 X
As before we fix a perversity p: {2,...,m} —» N.

Definition 4.3.1. Let A; be the standard i-simplex in R**!. The j-skeleton
of A; is the set of j-subsimplices. We say a singular i-simplex in X, i.e. a
continuous map o : A; — X, is p-allowable if

0 N ( Xm—k — Xm—t—1) C (i — k + p(k)) -skeleton of A;

for k > 2. A singular i-chain is p-allowable if it is a formal linear combination
of p-allowable singular simplices. Note that this definition of allowability is
consistent with our earlier one in the simplicial theory.

The subspace I?S,(X) C S,(X) of the singular i-chains consists of those
p-allowable chains with p-allowable boundary. This clearly forms a subcom-
plex and the perversity p singular intersection homology groups are
the homology groups of this complex. When X is a piecewise-linear pseudo-
manifold these are canonically isomorphic to the previously defined simplicial
intersection homology groups, see King [110], and so we denote them in the
same way by I? H;(X) etc. As before we privilege the lower middle perversity
and simply write I H;(X) for I"™ H;(X).

Remark 4.3.2. We can also define singular intersection homology with closed
supports by considering p-allowable locally finite singular chains cf. §2.3.

4.4 Simple examples of intersection homology

The simplest case is when X is a topological manifold. Then IPH,(X) =
H,(X) for any perversity p. The next simplest case is when X is an irreducible
topological pseudomanifold with one isolated singularity z, so that X — {z}
is a manifold. For simplicity we assume that the dimension of X is even, say
2k (the odd dimensional case is similar). The filtration

X=X 2 Xo3-12---2Xp

with X; = {z} if 0 < j < 2k defines a stratification of X.
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Proposition 4.4.1. The lower middle perversity intersection homology is
gqiven by

Hy(X) i>k
TH(X) = { im (H;(X — {z}) —» Hy(X)) i=k
Hy(X — {z}) i<k.

Proof. For simplicity we assume X is compatibly triangulated. The singular
computation is similar. The group IC;(X) of simplicial intersection i-chains
is given by

{¢eCi(X)|dim|¢|n{z} <i-m—1,dim|0¢| N{z} <i-k—2}. (42)

Hence if ¢ < k then IC;(X) = ICiy(X — {z}) = Ci(X — {z}), whereas if

i > k+2 then IC;(X) = Ci(X). Hence IH{(X) = H(X — {z})if i <k -1
and TH;(X) = Hi(X) if i > k + 2. Moreover

' ker (8: ICks1(X) — ICK(X)) = ker (8: Crs1(X) — Cr(X))
50 THy,1(X) & Hy 1 (X). Finally
8 (ICk+1(X)) = (8Ck+1(X)) N ICk(X)
and ICk(X) = Ca(X — {z}) so THx(X) = im (Hp(X - {z}) — He(X)). O

As specific examples consider X, the union of two spheres at a point:

N

and X, the result of collapsing one of the standard generators of the first
homology of the torus:
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We have
FeoF i=0 F i=0
IH;(X;) = 0 i=1 and TH;(Xp)=<{ 0 i=1 4.3)
FoF =2 F i=2.

Remark 4.4.2. Another way of viewing this result is that a pseudomanifold
with an isolated singularity can be formed by coning off a manifold with
boundary {the boundary is the link of the singular point). Suppose (M, M)
is a 2k-manifold with boundary and let

M = M Ugy C(BM)

be the space formed by glueing the cone C(0M) onto the boundary. It follows
from the long exact sequence

- — Hy(C(OM)) — Hi(M) — Hi(M,C(dM)) — ---
and excision that H,-(J/\/I\ ) & H,(M,0M) for i > 0. By homotopy invariance
H;(M — vertex) & H;(M).

Thus we can rewrite Proposition 4.4.1 as

R H,(M, M) i>k
TH,(M) = { im (Hy(M) — Hy(M,8M)) i=k
H(M) i<k.

4.5 Normalisations

Let X be a topological pseudomanifold with filtration
X=Xn2Xna1=Xn22 2 Xo.

Then X is called (topologically) normal if every £ € X has an open neigh-
bourhood U in X such that U — X,,_» is connected. Note that X is normal
if and only if the link of any stratum is connected. Any manifold is nor-
mal. Furthermore any topological pseudomanifold X has a normalisation
7 : X — X. Here 7 is a continuous surjection from a normal topological
pseudomanifold X onto X which is a homeomorphism onto X,,,_5. This is
constructed as follows. Recall that each point £ € X has a neighbourhood
N, which is homeomorphic to R? x C(L) where L is the link of the stratum
in which z lies. Suppose L has connected components Ly, ...,Ls. Define
N, =;R? x C(L;) and let 7 be the obvious surjection onto N. Then put

= ()

where the equivalence relation R is given by pRq if p,q € 771(X — Xpp—2)
and 7(p) = m(q).
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Proposition 4.5.1 (Goresky and MacPherson [68, §4.3]). Let X be a topolog-
ical pseudomanifold of dimension m. If X is topologically normal then there
are canonical isomorphisms

I'Hi(X) = H(X) and IOHz(X) o Hm—-i(X)
where t : j — J — 2 is the top perversity and 0 : j v 0 is the zero perversity.

Proposition 4.5.2 (Goresky and MacPherson [68, §4.2]). If7: X — X is a
normalisation of X then there is a natural isomorphism

IPH,(X) = IPH,(X)
for any perversity p.

Example 4.5.3. Consider the pseudomanifolds X; and X, defined in the
previous section. The normalisation of X, is the disjoint union of two copies
of $? and the normalisation of Xz is S2. This fits with (4.3).

4.6 Relative groups and the Mayer—Vietoris
sequence

Suppose that U C X is an open subset of a topological pseudomanifold X.
Composition with the inclusion U — X yields natural inclusions

IPS,(U) — IPS,(X) N
which commute with the boundary maps. Thus there is an induced complex
IS, (X)
PSAX,U) = —o)
IPS,(X,U) 775.(0)

whose homology groups are the relative intersection homology groups of
the pair (X, U). Just as for ordinary homology there is a long exact sequence

oo = IPH(U) — IPH(X) — IPHi(X,U) — IPH;_(U) — -+ (4.4)
(Goresky and MacPherson [71, §1.3]).

Warning 2. The ordinary relative homology groups H;(X, A) are defined for
any subset A of X, but this fails for intersection homology.

The relative groups also have the following excisive property

Proposition 4.6.1 (Goresky and MacPherson [71, §1.5]). Suppose U is an
open subset of a topological pseudomanifold X and A C U a closed subset of
U such that X — A (and hence U — A) is still a topological pseudomanifold.
Then there are natural isomorphisms

IPH,(X,U) 2 IPIT(X — A, U — A).
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The easiest proof of this will follow from the sheaf-theoretic treatment of
intersection homology we give in Chapter 7. Alternatively we can adapt the
proof of the analogous result in simpicial or singular homology.

We also have Mayer—Vietoris sequences for intersection homology: when-
ever we express X as a union U UV of two open sets then the usual proof for
ordinary homology can be adapted to show that there is a long exact sequence

> THUNV) = IH,(U) ® IH;(V) = TH{(X) = IH;_;(UNV) = -+,
(4.5)

4.7 The intersection homology of a cone

An m-dimensional manifold is a topological space which is locally modelled
on R™. The key homological calculations for manifold theory are

Hi(mm)={lg :;g and H,'(R"‘,Rm—{o})z{lg j:z (4.6)

We are interested in m-dimensional topological pseudomanifolds, spaces which
are locally modelled on the open cone on a compact topological pseudoman-
ifold of dimension m — 1. Thus the key calculations for us will be the inter-
section homology of an open cone and the intersection homology of the cone
relative to the cone less the vertex.

We will use the following simple version of the Kiinneth theorem. The
proof is an easy adaptation of the proof for singular homology (see Goresky
and MacPherson [71, §1.6]).

Proposition 4.7.1 (cf. King [110, Lem. 3]). If X is a topological pseudoman-
ifold then so is X x (0,1) and, for any perversity p, we have

IpHi(X X (0,1)) = IpHi(X).

Suppose X is a topological pseudomanifold of dimension m > 1 with a
given stratification

X=Xn2Xn22: 2 Xo.

Then the open cone C(X) is also a topological pseudomanifold as it is natu-
rally stratified by

C(X) =C(Xm) 2 C(Xm-2) 2+ 2 C(Xo) 2 {v}.
where v is the vertex of the cone.

Proposition 4.7.2. Suppose X is a compact topological pseudomanifold of
dimension m > 1. Then, for a perversity p,

I’H{(X) i<m—pm+1)

IPH; (C(X)) = { 0 otherwise
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and

0 i<m-—pm+1)

IPH; (C(X),C(X) — {v}) = { IPH; 1(X) otherwise.

Proof. The vertex of the cone has codimension m+1 and so for ¢ < m—p(m+1)
an allowable singular i-simplex cannot meet the vertex because

i—(m+1)+p(m+1) <0
Hence I?S; (C(X)) = I?S; (C(X) — {v}) for i < m — p(m + 1) and so, for
i<m—p(m+1),
IPH, (C(X)) IPH; (C(X) — {v})
IPH; (X x (0,1))
IPH;(X)

R 1R 1R

by the Kiinneth theorem.

Now suppose ¢ : A; — X is an allowable singular i-simplex for some
i > m — p(m + 1). Then, representing a point in A;;; by a pair [s,t] with
s € A; and t € [0, 1], we can define a singular (¢ + 1)-simplex

co i [8,t] — to(s) € C(X)

{which should be thought of as the cone on ). Suppose S is a stratum of
C(X) of codimension k, i.e. if k < m + 1 then Sy is a connected component
of (Xx — Xk—1) % (0,1) and if k = m + 1 then S is the vertex. Thesimplex
co is allowable because

e if 671(Sk) # 0 then o~1(S)) is contained in the ¢ — k + p(k) skeleton of
A; and so (co)~1(Sk) is contained in the (i + 1) — k + p(k) skeleton of
Agya;

e and if 07 1(Sk) = 0 then (co)~1(Sk) = 0 unless Sk is the vertex in which
case (co)~1(Sk) is contained in the O-skeleton of A;,;, which is allowed
since i +1 > m — p(m + 1).

Extending the definition of ¢ linearly to chains, and taking careful account of
signs, 8{co) +c{fc) = 0. Hence if £ € IPC; (C{X)) has 8¢ = 0 then & = 8(c)
is a boundary and so
IPH; (C(X)) =0
for i > m —p(m +1).
The computation of the relative group I?H; (C(X),C(X) — {v}) now fol-
lows from the long exact sequence

= PH; (C(X) = {o}) — IPH, (C(X) = IPH; (C(X),C(X) = {v}) = -+
O
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Exercise 4.7.3. Let X be a (2k — 1)-dimensionsal pseudomanifold. Use the
cone calculation and Mayer—Vietoris to compute the intersection homology of
the suspension Susp(X) = (X x [-1,1]) /(X x {-1,1}). In particular show
that if dim X = 2k then the lower middle perversity groups are

IH,(X) i<k
IH;(Susp(X)) = 0 i=k
IH;, 1(X) i>k.

(Intuitively, in low dimensions allowable cycles must avoid the suspension
points and in high dimensions the only allowable cycles which cannot be ‘coned
off’ are the suspensions of allowable cycles in X.)

An analogous calculation for the simplicial intersection homology of a cone
can be found in Goresky and MacPherson [70, §2.4]. It is worth dwelling for
a moment on this calculation and its implications. Firstly note that R™ is
homeomorphic to the open cone on S™~! and so, in particular, we recover
(4.6).

Since a topological pseudomanifold is locally modelled on a product of
an open cone and R™ we can (with repeated applications of the Kiinneth
theorem) compute the intersection homology I? H;(N,) of a neighbourhood
N, of a point z, and also the relative group I?H;(N,, N, — {z}). These
calculations will be central to our sheaf-theoretic treatment of intersection
homology in Chapter 7.

We can give an intuitive description of these calculations as follows. In
low dimensions allowable chains cannot meet the vertex so the intersection
homology is that of the cone less the vertex. In high dimensions we can
cone off chains to the vertex and so the intersection homology vanishes. The
relative calculation is more easily visualised if we reinterpret it in terms of
closed support intersection homology (this is the approach taken in Borel et
al. [24, Ch. 1]). There are natural maps

IPS{ (C(X)) — I*S, (C(X)) /IPS, (C(X) — {v})
for each % which induce isomorphisms
IPH (C(X)) = IPH,; (C(X),C(X) - {v}). (47)

The closed support intersection homology vanishes in low dimensions because
chains which do not meet the vertex can be ‘coned off to o¢’. In high dimen-
sions closed support intersection homology classes arise as the open cone on
classes in the intersection homology of the cone less the vertex, which is why
we see a dimension shift.

Both the intersection homology of C(X) and the closed support intersec-
tion homology {or equivalently the corresponding relative group) arise entirely
from the intersection homology of the link X of the vertex (and the intersec-
tion homology of the link together with the choice of perversity determine
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both). Since the link is a compact topological pseudomanifold of one lower
dimension than the cone one can often use induction on dimension to prove
results about intersection homology. An important example will occur when
we discuss generalised Poincaré duality in Chapter 5.

The perversity can be viewed as a choice of assignment, according to di-
meunsion, of the intersection homology of the link between the intersection
homology and closed support intersection homology of the cone  classes in
dimension < m — p{(m + 1) are assigned to the former and those of dimension
> m — p(m + 1) to the latter. The extreme cases are the zero perversity,
which assigus all but the top group I?H,,(X) to I?H, (C(X)), and the top
perversity, which assigns all but the bottom group I?Ho(X) to IPHS (C(X)).
This should de-mystify the, at first rather arbitrary seeming, definition of
perversity. The lower and upper middle perversities make as even a split as
possible.

This calculation also has implications for the functoriality of intersection
homology, a subject which deserves its own section.

4.8 Functoriality of intersection homology

If f: X - Y is a continnous map then composition with f induces maps
Si(X) — Si(Y) for each i which commute with the boundary maps, and
hence induces a linear map H;{X) — H;(Y) on singular homology. How-
ever composition with f need not take a p-allowable simplex in S;(X) to a
p-allowable simplex in S;{Y’), as we can readily verify by considering the con-
tinuous map given by the inclusion of the vertex into an open cone. Thus, in
contrast to ordinary homology, an arbitrary continuous map f: X — Y docs
not in general induce a homomorphism f,: IPH,(X) — I?PH,(Y). Further-
more, the inclusion of the vertex into an open cone is a homotopy equivalence,
and yet we can easily construct examples in which the intersection homology
of the cone is different from that of a point  intersection homology is not a
homotopy invariant. What then can we say?

Definition 4.8.1. A continuous map f: X — Y between topologically strat-
ified spaccs is stratum-preserving if, for each stratumm T of Y, the inverse
image f~!(T) is a union of strata of X. Equivalently, the image f(S) of
each stratum S of X is contained within a single stratum of Y. A stratum-
preserving map f: X — Y is placid if for each stratum 7" of Y, we have

codim f~(T") > codim T (4.8)

Exercise 4.8.2. Show that a placid map f : X — Y induces linear maps
fo 1 IPH;(X) = IPH;(Y) on singular intersection homology groups.

If we further strengthen the conditions on the map then we can obtain a
stratified version of homotopy invariance for intersection homology.
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Definition 4.8.3. A stratum-preserving map f : X — Y between topologi-
cally stratified spaces is codimension-preserving if, for each stratum T of
Y we have

codim f~1(T) = codim T. (4.9)

Definition 4.8.4. A stratum-preserving homotopy equivalence be-
tween topological pseudomanifolds X and Y with chosen stratifications {X;}
and {Y,} is a pair of codimension-preservingmaps f : X - Y andg:Y — X
such that g o f and f o g are homotopic to the identity via codimension-
preserving homotopies

h: Xx[0,1]-X and k:Y x[0,1] Y

respectively. Here the stratification of X x [0, 1] is given by {X; x [0, 1]}, and
that of Y x [0,1] by {Y; x [0,1]}.

Proposition 4.8.5 (Friedman [60, Prop. 2.1]). If f : X — Y is a stratum-
preserving homotopy equivalence then composition with f induces isomor-
phisms

fao 1 IPH(X) = IPH(Y).

Example 4.8.6. The obvious inclusion of a topological pseudomanifold X
into X x (0, 1) is a stratum-preserving homotopy equivalence and so the simple
Kiinneth theorem 4.7.1 is a corollary.

Stratum-preserving maps are the natural maps between filtered spaces.
Our spaces are not just filtered but topologically stratified and there is a
more rigid concept of map which is useful in some contexts.

Definition 4.8.7. A stratified map f : X — Y between topologically
stratified spaces is a stratum-preserving map such that, for each stratum T
of Y, the restriction f : f~!(T) — T is a locally trivial fibre bundle whose
fibre is a topologically stratified space. In other words, for each y € T there
exists a neighbourhood N, of y in T', a topologically stratified space Fy and
a stratum-preserving homeomorphism

¢y : Ny x Fy — f71(Ny)

where Ny, x Fy, has the product stratification. (In fact, up to homeomorphism,
F, depends only on the stratum T and not on y.)

The above definitions of stratum-preserving maps etc. rely on having fixed
topological stratifications for X and Y. However, we are often interested in
the topology of the underlying spaces and not in the properties of a particular
stratification. We could rewrite the definitions conditionally; for example a
map f : X — Y is placid if topological stratifications of X and Y exist for
which it is stratum-preserving and satisfies the condition (4.8). However, it
should be noted that the composition of two placid maps in this sense need not
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be placid; we cannot necessarily choose topological stratifications for which
both maps are simultaneously placid. In general, the problem of defining a
suitable category of topological spaces and maps for which intersection ho-
mology is functorial is a difficult one.

We end this discussion more positively with an important result — in-
tersection homology is a topological invariant. In other words any homeo-
morphism f: X — Y between topological pseudomanifolds will induce an
isomorphism

fur IHW(X) — TH.(Y).

In particular, the intersection homology groups are independent of the strat-
ification used to define them, and, in the simplicial case, independent of the
chosen triangulation. A sketch proof will appear in Chapter 7.

4.9 Homology with local coefficients

We can also define intersection homology groups with coefficients in a local
system. Let X be a stratified space.

Definition 4.9.1. A local system L of finite dimensional vector spaces over
F on X is given by data consisting of a finite dimensional vector space £, for
each z € X and an isomorphism

P*: Lo) = Loy
for any continuous path ¢: [0,1] — X satisfying
1. ¢* = ¢* when ¢ and ¥ are homotopic relative to fixed end points, and
2. (p-P)* =¢* o p* if p(1) = Y(0) and ¢ - ¢ is the composite path from
©(0) to %(1).

Remark 4.9.2. Equivalently (if X is connected) £ is given by a locally constant
sheaf, that is a sheaf on X which is locally isomorphic to a constant sheaf
defined by a finite-dimensional vector space, or by a representation of the
fundamental group 71 (X) on a finite dimensional vector space, or alternatively
by a vector bundle on X equipped with a flat connection.

A global section of £ is given by a map
g: X — H Ly
zeX

such that g(z) € £, for all z € X, and if ¢ is a path from z to y then

©* (g9(z)) = g(v)-

(Thinking of £ as a representation of 7 (X) a section is a generator of a 1-
dimensional subrepresentation or, thinking of £ as a vector bundle with fiat
connection, a flat section of the bundle.)
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If o: A; — X is a singular i-simplex, then the pulled back sheaf o* L on
A; is also locally constant and, since A; is simply connected, it is in fact
constant. So, if L, is the space of sections of o* £ over o then the restriction
maps

Ppi Lo — (0*L), = Loy
are isomorpfxisms for all p € 0. Moreover if 7 is a face of 0 and p € T the
composition

p = (pp) topy: Lo — Ly
is independent of p. Let S;(X; L) be the vector space consisting of all formal
finite linear combinations

&= Zf,a
o

of singular i-simplices with £, € £,. Define 8: S;(X; L) — Si—1(X; L) by

8= Y )

T face of o

where the sign + is defined as before depending on a fixed choice of orien-
tations. The ith homology group of X with coefficients in £ is by
definition the quotient

ker 8: S;(X; L) — S;—1(X; £)
im 8: S;11(X; L) — Si(X; L)

Hy{(X;L)= (4.10)
Now suppose that X is a topological pseudomanifold with a fixed topo-
logical stratification

X=Xn2Xn22 2 Xo.

To make this procedure work for intersection homology we only need the local
coefficient system £ to be defined on the open subset X — X,,,_5 of X, not
on the whole of X. This is because the allowability conditions on intersection
i-chaing £ mean that if the coefficient of € indexed by ¢ is non-zero then

O'_I(X — Xm—2) # 0

and similarly 771(X — X,,—2) # 0 for any face 7 of 0. Thus we can use this
procedure to define the intersection homology groups IH;(X; L) of X with
coefficients in £ for any local coefficient system £ on X — X, 5.

4.10 Quasi-projective complex varieties
We end this chapter with a brief discussion of the intersection homology of

complex varieties. This has various good properties, collectively known as the
Kahler package.
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A complex affine variety is a subset X of some CV defined by the
sitnultaneous vanishing of polynomial equations. A complex projective
variety X is a subset

CN +1 _ {0}
XcepVN=———
cCP C=10)
of some complex projective space CPV which is defined by the vanishing of
homogenous polynomial equations. A quasi-projective complex variety
X is a subset of CPV of the form

X=Z-Y

where Z and Y are projective subvarieties of CPY. That is, there exists
homogeneous polynomials fi, ..., fr and g1,...9s in N + 1 variables such that
a point (Zo : ... : zn) € CPY belongs to X if and only if f;(zg, ..., zn) = 0
for all j such that 1 < j < r, and g;(zo,...,zn) # O for some j such that
1<j<s

For example CV can be identified with the quasi-projective variety

{(o:...:2,) € C]P’Nl:vo # 0},

via the mapping (z1,...,Zn) = (1 : Z1 : ... : £y ) with inverse
(o:...:zn)— (a—v—l,..., ﬂ) .
To To

Using the same mapping any affine variety in CV defined by the vanishing
of polynomials fy, ..., fm of degrees di,...,dm in N variables is identified with
the quasi-projective variety

{(o:...:2zN) € C]P’Nlavo #0, f,-(a:o, woZn) =0, 1<j<m}

where

3 —gbpe (TL  IN
f](z07'--7$N) z() f] (zoa'-w z()).
Any quasi-projective variety X is an open subset of its closure in CP" which
is a projective variety.

A point z of X is called non-singular if there is an open neighborhood U
of z in CPN and homogeneous polynomials fi,..., fm in N + 1 variables such
that

XNU={(zo:..:2Nn) EUIf,-(a:o,...,a:N)zo, 1<j<m}

and the Jacobian matrix of partial derivatives a—l has rank m at z. Otherwise
z is called a singular point of X. The set Xnonsmg of non-singular points of
X is a dense open subset of X, and each connected component is a complex
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submanifold of CPV. The variety X is said to have pure dimension n if each
connected component of Xponsing is & complex manifold of complex dimension
n. It is said to be irreducible if it cannot be expressed as the union of two
closed subvarieties Y and Z unless either Y or Z is X itself.

Examples 4.10.1. The variety X = {(z : y : 2) € C]P’2|yz = 0} is not
irreducible; topologically it looks like:

The variety X = {(z:y: 2) € C]P’zla:3+y3 = zyz} is irreducible; topologically
it looks like:

Any quasi-projective variety is the union of finitely many irreducible quasi-
projective subvarieties X1, ..., X such that X; is not contained in X; if i # j.
The subvarieties X1, ..., X are called irreducible components of X. It is easy
to check that X has pure dimension n if and only if

(X5) nonsing = X3 — {singular points of X ;}
is a complex manifold of dimension n for each j. A variety of pure dimension

one is called a curve. A variety of pure dimension two is called a surface.

Whitney stratifications

What we need to define intersection homology is a suitable stratification. For
quasi-projective varieties we use a Whitney stratification.
Let X be a quasi-projective variety of pure dimension 7.

Definition 4.10.2. A Whitney stratification of X is given by a filtration

X=Xn2Xn—12"'2X0
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of X by closed subvarieties X; such that for each j the locally closed subvariety
X i~ X -1

in either empty or is a non-singular quasi-projective variety of pure dimen-
sion j. The connected components S, of the subvarieties X; — X;_, are
called the strata of the stratification and are required to satisfy Whitney’s
conditions (a) and (b) from [179].

e Whitney’s condition (a) If a sequence of points a; € S, tends to a
point ¢ € Sg then the tangent space 1.Sg of ¢ at Sy is contained in the
limit of the tangent spaces Tg, Sy, provided that this limit exists.

e Whitney’s condition (b) If a sequence of points b; € Sg and a; € S,
both tend to the same point ¢ € Sg then the limit of the lines joining
a; and b; is contained in the limit of the tangent spaces to S, at a;,
provided that both limits exist.

(Here we think of the tangent spaces, and the lines joining pairs of points as
linear subspaces of the ambient projective space.)

Roughly speaking, the object of these conditions is to ensure that the
normal structure to each stratum Sg is constant along S3. They imply that
for any points = and y on Sg there is a homeomorphism of X to itself which
preserves all the strata and takes z to y (this follows from Theorem 4.10.5
below).

Example 4.10.3. Consider the quasi-projective variety

X = {(z,y,2) e C? l zt + yt = zy2).
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Let Xo = X, let X, be the z-axis and let Xy be empty. This defines a
stratification of X with two strata

Sa=X—X1 andSp=X1,

both non-singular. This stratification fails Whitney’s condition (b). Consider
sequences of points a; to b; in S, and Sg chosen as in the diagram below so
that the a; are converging to ¢ much faster than the b; are. Then the lines
joining a; to b; will tend to the vertical line through ¢, while the tangent
spaces T,,Sq tend to the horizontal plane through c.

To obtain a Whitney stratification we must take ¢ € Xg. If X5 and X, are
defined as before and X = {c} then we have a Whitney stratification of X.

Theorem 4.10.4 (Whitney [179, Thm. 19.2]). Any quasi-projective variety
X of pure dimension n has a Whitney stratification.

We shall define the intersection homology of X using a fixed Whitney
stratification.

Theorem 4.10.5 (Borel [24, IV §2]). Any Whitney stratification
X=Xn2Xn—12"'2X0

of a complex quasi-projective variety X of pure dimension n makes X into a
topological pseudomanifold of dimension 2n with filtration

Yon 2Yon12---2 Y
deﬁned by Y2j = Y2j+1 = Xj.

Furthermore if we want to work simplicially then the following theorem
tells us we are free to do so.

Theorem 4.10.6 (Lojasiewicz [114], [115], Goresky [66]). Let
X=Xn2Xn-—12"'_D_X0

be a Whitney stratification of a complex quasi-projective variety X of pure
dimension n. Then there is a triangulation of X compatible with the stratifi-
cation.
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Normalisation and curves

We can use a normalisation to compute the intersection homology of a curve
(n complex quasi-projective variety of pure dimension 1).

Definition 4.10.7. A quasi-projective complex variety X is called normal if
the stalk at z of the sheaf of regular functions on X is an integrally closed ring
for every z € X. Tt can be shown using Zariski's Main Theorem (Hartshorne
|79, Ch. V Thm. 5.2]) that if a quasi-projective complex variety X is normal
in the algebraic sense then it is topologically normal.

_ Any quasi-projective variety X has a normalisation 7: X — X. Here
X is a normal quasi-projective variety and 7 is a finite-to-one surjective-
holomorphic map (with a suitable universal property) which restricts to an
isomorphism over the non-singular part Xynonsing of X.

The normalisation X of a curve X is always non-singular (Hartshorne (79,
Ch. III Ex. 5.8]), and hence by Section 4.4 and Proposition 4.5.2 we have

IH;(X) = Hy(X). (4.11)

In general this does not hold for higher-dimensional varieties since the nor-
malisation need not be non-singular.

The Kahler package

We noted in Chapter 1 that the intersection homology of a complex projective
variety satisfies a set of theorems collectively termed the Kéhler package.
These are

1. Poincaré duality. This was proved using simplicial techniques in
Goresky and MacPherson’s original paper [68] and using sheaf theory
in [70]. We will discuss Poincaré duality for intersection homology in
Chapter 5 and sketch the sheaf-theoretic proof in Chapter 7.

2. Lefschetz hyperplane theorem. Proofs of the Lefschetz hyperplane
theorem using stratified Morse theory and sheaf theory (following an
idea of Deligne’s) can be found in Goresky and MacPherson [71] and
[70] respectively. Both proofs hold for a wider range of perversities
than the middle. To be precise, let X be an n-dimensional complex
projective variety, H a hyperplane which is transverse to the strata of
some Whitney stratification of X, and p a perversity for which p(c) < ¢
for all ¢. Then the map

IpH,'(XnH) — IpH,;(X)

is an isomorphism for i < n — 1 and a surjection for i = n — 1. Goresky
and MacPherson [70, §8] point out several interesting consequences for
the homology and cohomology of a normal complex projective variety
X.
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(a) Take p to be the zero perversity. Using Proposition 4.5.1 we can
deduce that the Gysin map

HY(X N H) - H*?(X)

is an isomorphism for ¢ > n — 1 and surjective for i = n — 1.

(b) We can show that JTH,(X) = H,(X). By repeatedly applying the
Lefschetz hyperplane theorem we deduce that IH;(X) is isomor-
phic to the first intersection homology of a surface Y with isolated
singularities. Direct computation shows that this group, and hence
H;(X), has even dimension.

(c) Suppose further that X is a local complete intersection. Then the
natural maps

are isomorphisms (Goresky and MacPherson (70, Prop. 5.6.3]).
Hence the homology groups of a normal local complete intersec-
tion satisfy the Lefschetz hyperplane theorem.

3. Hard Lefschetz theorem. This is a consequence of Beilinson, Bern-

stein, Deligne and Gabber’s decomposition theorem which was proved
in [13]. A different proof, using mixed Hodge modules, can be found in
Saito [151]. We discuss the decomposition theorem in §8.4.

The hard Lefschetz theorem has many important consequences; here is
a simple example. Suppose X is an n-dimensional complex projective
variety in CPV and that Y is the complex cone on X, i.e. Y is the affine
variety in CV*! cut-out by the homogeneous polynomials in N + 1
variables which define X. Let E be the tautological line bundle on X
whose fibre over £ € X is the line in CN*t! represented by the point
z € CPV. (From a different point of view E is the blow-up of Y at the
origin and the zero section X C E is the exceptional divisor.)

The vertex {0} of the complex cone is a singularity of real codimension
2(n + 1) and so

" _ [ IH{(Y —{0}) i<n
1Y) = { 0 otherwise.

The hard Lefschetz theorem states that multiplication by the Euler class
of E induces a map

L: IHY(X) - IH"?(X)
which is injective for ¢ < n, surjective for ¢ + 2 > n and such that

Li: TH" (X)) — IH"(X) (4.12)
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is an isomorphism for each ¢ > 0. It follows that the Gysin sequence for
E breaks up into short exact sequences

0— IH"3(X) - IH{(X) > IH(E—-X)— 0

for i < n. We define the primitive part of the intersection cohomology to
consist of those classes which are not in the image of L, i.e. not multiples
of the Euler class. From (4.12) we have

THp o (X) =

ker (Li+! : TH"=(X) — IH™(X)) i>0
0 i<0.

Noting that Y — {0} and E — X are naturally isomorphic we see that
IHY(Y) 2 IHY(X — E) 2 IHY(X)/im L & IH};.(X)

for i < n and trivially TH(Y) = 0 = IH};,(X) for i > n. Hence we
can identify TH*(Y) with the primitive part of JH*(X). This can be
used in some cases to compute intersection cohomology as a subspace
of the cohomology of a non-singular resolution obtained by successive
blow-ups — see, for example, Kirwan [111].

4. Hodge decomposition and Hodge signature theorem. The
Hodge-theoretic parts of the Kahler package are proved in Saito [151]
(see Saito [150] for a survey or Looijenga [117] for an introduction).

4.11 Further reading

There are many notions of ‘stratified space’. Hughes and Weinberger [82]
is a nice survey of some of these from the perspective of topology. Pflaum
[142] gives a rather different view from the standpoint of differential geometry.
MacPherson’s notes [125] contain an appendix with a lovely explanation of
‘what a singular space should be’ (amongst many other things).

The full details of the simplicial and singular definitions of intersection
homology can be found in Goresky and MacPherson [68] and King [110] re-
spectively. The latter also contains a proof of the topological invariance of
the intersection homology groups. {We will sketch a different proof using
sheaf-theoretic methods, following Goresky and MacPherson [70], in the next
chapter.) Another account of the simplicial theory can be found in the book
[24] by Borel et al. which also includes some interesting examples, a thought-
provoking list of problems and conjectures, and a detailed treatment of the
sheaf-theoretic approach to intersection homology (which is the subject of the
next chapter).

A slightly different approach to intersection homology, using geometric
chains, is explained in Goresky and MacPherson [71] and treated more fully
in MacPherson [125]. These references explain the close connection between
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stratified Morse theory and intersection homology (see also Goresky and
MacPherson [74]).

Rourke and Sanderson [148] give yet another definition of the intersec-
tion homology groups of a PL-space X, essentially as the bordism groups of
pseudomanifolds equipped with allowable (in a sense similar to that for singu-
lar intersection homology) maps to X. From their point of view intersection
homology appears as the stratification-independent theory in a wider fam-
ily of ‘permutation homology’ groups associated to a stratified space. They
also prove the topological invariance of intersection homology (for PL-spaces)
starting from this definition.



Chapter 5

Witt spaces and duality

In this chapter we will take the field F of coefficients to be the rationals Q.

5.1 Generalised Poincaré duality

If M is a compact oriented topological d-manifold then Poincaré duality states
that there is an isomorphism

Hy(M) — Hom(Hy_ (M), Q) = Hy_s(M)V (5.1)

between the ith homology (with coefficients in the field Q) and the dual of
the (d — i)th homology. This is one of the most important propertics of the
homology of a manifold.

Another way of expressing this is to say that there is a non-degencrate
bilinear form, the intersection form,

N: H(M) x Hqg (M) — Q.

If we work with simplicial homology groups (assuming that M is triangu-
lable) then this form arises geomectrically as follows: any a € H;{M) and
b € Hy_;(M) can be represented by simplicial chains £ € C;(M) and n €
Cq—i(M) such that the supports |¢| and |n| meet only in finitely many points.
The number of these points, counted with appropriate weights depending on
the orientation and coefficients of the chains £ and 7, is an element of Q which
is independent of the choice of £ and 1 and is denoted aNb. Moreover, if a # 0
there exists some b such that a Nbd # 0.

If M is not compact then we have a similar result provided we replace
H,_;(M) by homology with closed supports HS! ,(M). In other words there
is an isomorphism

Hi(M) — fil—i(M)V
inducing a non-degenerate bilinear form

N: H(M) x Hi (M) - Q,

73
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and this can be interpreted geometrically as being given by the intersection
number of a compact and a closed support chain. This duality for non-
compact manifolds is sometimes called Borel-Moore duality but we will refer
to it simply as Poincaré duality. As an example take M to be R™ then we
have

H,(R'")={% :;g and Hf’(R’")={ Q 1=m (5.2)

0 i#m
An orientation of R™ induces an isomorphism
Ho(R™) = H3(R™)

of the non-trivial groups. Indeed, when M is compact then we can deduce
(5.1) from this non-compact Poincaré duality by finding a ‘good’ cover of
M by finitely many neighbourhoods homeomorphic to R™ and applying the
Mayer—Vietoris sequence repeatedly — see Bott and Tu [26, I §5]. With a
little more homological algebra this argument can be extended to Poincaré
duality for non-compact manifolds too.

It is easy to see that Poincaré duality does not hold for most singular
spaces. One of the primary motivations in the development of intersection
homology was to obtain groups which satisfied a suitably generalised version
of Poincaré duality.

Theorem 5.1.1 {Generalised Poincaré Duality, Goresky and MacPherson (70,
§5.3] cf. [68, §3.3]). Suppose that X is an oriented topological pseudomanifold
of dimension d. Then if p and q are complementary perversities there is a
non-degenerate bilinear form

IPHi(X) x I"HS (X) — Q.

This form can be interpreted geometrically. Fix a stratification X = X4 D
Xg—2 2 -+ D X of X and, for simplicity, assume X has a compatible
triangulation. We work with simplicial intersection chains defined with respect
to this stratification. Any a € I?H;(X) and b € IHS" ,(X) can be represented
by ¢ € IPC;(X) and 5 € I9CS ,(X) such that the supports 'fl and lnl meet
only in the non-singular part X — X 4_5 and they meet in finitely many points.
The number of these points counted with appropriate weights depending on
the orientation and coefficients of the chains £ and 7 is an element of Q which
is independent of the choice of ¢ and 7 and is denoted aNb. Moreover if a # 0
there exists some b such that a Nbd # 0.

To understand why Theorem 5.1.1 is true we recall the computation of the
intersection homology of a cone from §4.7 (using the description in terms of
closed support rather than relative groups). Suppose L is a compact topolog-
ical m-pscudomanifold and C(L) is the open cone on L. Then

~ | IPH(L) i<d—p(d+1
I”H,-(C'(L)) ={ 0( ) otherwise( )
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nad
0 i1<d—p(d+1)
IpHi_l(L) otherwise,
nnd similarly for the complementary perversity q. If we suppose that the

intersection homology of I satisfies generalised Poincaré duality then we have
isomorphisms

IPHEH(C(L)) = {

IPH(L) 2 I'Hy_;(L)V.
Combining this with the cone calculations for perversities p and g we have

IPH;(C(L)) = IPHy(L)
> IHy (L)Y
IHG ,,_; (C(L))Y

for i < d— p(d+1), or equivalently d —i > d — g(d + 1), and
IPH;(C(L)) = 0= I"Hp11 - (C(L))
for i > d — p(d + 1), or equivalently, d — ¢ < d — g(d + 1). This indicates that

IR

Generalised Poincaré duality for L => Generalised Poincaré duality for C(L)

(with a little more care we can check that the induced isomorphisms do indeed
come from the intersection form). Thus Theorem 5.1.1 could be proved by
choosing a ‘good’ cover of X by open subsets homeomorphic to cones on lower
dimensional pseudomanifolds, deducing by induction on dimension (using the
above calculation) that we have {non-compact) Poincaré duality for each of
these open subsets and then using Mayer—Vietoris sequences to patch. How-
ever, this would be rather fiddly. Instead a more elegant proof involving sheaf
theory (which is designed for this sort of local-to-global argument) will be
sketched in §7.4. An elementary proof in the simplicial setting can be found
in Goresky and MacPherson [68, §3.3].

5.2 Witt spaces

The generalised Poincaré duality of Theorem 5.1.1 is useful but it relates inter-
section homology groups defined with respect to complementary perversities.
In general there is no perversity which is self-complementary so there is no
perversity p such that the groups IPH,(X) are dual to one another. How-
ever, if we restrict X to be a Witt space then the lower middle perversity
intersection homology groups have this property.

Definition 5.2.1 (Siegel [162, Prop. 2.5]). A topological pscudomanifold X
of dimension d with a given stratification X = X4 D X3 22 .- 2 Xgis a
stratified Witt space if for each stratum S of odd codimension 2r + 1 the
(lower middle perversity) intersection homology of the link Lg satisfies

IH,(Ls) = 0.
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There is no condition on strata of even codimension.

It turns out that if X is a Witt space when it is given some stratifica-
tion then it is a Witt space when given any stratification (see Goresky and
MacPherson [70, §5.6.1] and also Siegel [162, Defn. 2.1] for piecewise-linear
pseudomanifolds). We will say X is a Witt space if it is homeomorphic to a
stratified Witt space.

Examples 5.2.2. 1. Manifolds are Witt spaces.

2. Any pseudomanifold which can be stratified with only even codimen-
sion strata is a Witt space. In particular, any complex quasi-projective
variety is a Witt space.

3. The suspension of a torus is not a Witt space; the links of the suspension
points are the original torus which has non-vanishing middle homology.

If p and g are two perversities for which p(i) < ¢(¢) for all ¢ then it is easy
to see that I?S,(X) is a subcomplex of J95,(X) and that for each i there is
an induced map

IPH;(X) — ITH(X).

In particular for the lower middle perversity m and upper middle perversity
n there is a natural map

I"H(X) — I"H;{X) (5.3)
for 0 <i<dimX.

Proposition 5.2.3 (Siegel [162, Thm. 3.4]). If X is a Witt space then the
induced map I Hy(X) — I"H(X) in (5.8) is an isomorphism.

This is proved for piecewise-linear Witt spaces in Siegel [162]. A sheaf-
theoretic proof for topological Witt spaces, using obstruction sequences for
relating intersection homology with respect to different perversities, can be
found in Goresky and MacPherson [70, §5.5 and §5.6].

Corollary 5.2.4 (Poincaré duality, Siegel [162, Thm. 3.4]). The (lower mid-
dle perversity) intersection homology of an oriented Witt space X satisfies
Poincaré duality. In other words there are isomorphisms

TH(X) 2 THE (X)Y
for 0 <1< d=dimX, which induce non-degenerate bilinear forms
N: ITH;(X) x IHS ;(X) — Q.

This follows immediately from generalised Poincaré duality and the obser-
vation that the upper and lower middle perversities are complementary.
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Examples 5.2.5. 1. Let X be a 2k-dimensional compact oriented Witt
space with JH(X) = 0. Then the suspension Susp(X) is also a Witt
space. It is apparent from Exercise 4.7.3 that Poincaré duality for the
intersection homology of the suspension follows from Poincaré duality for
the intersection homology of X. The reader is encouraged to think about
the relation between the intersection pairings for X and its suspension
in terms of cycles.

2. Suppose (M,8M) is an cven-dimensional compact oriented manifold
with boundary. Then the space M obtained by coning off the boundary
of M is a Witt space. Poincaré duality for the intersection homology of
M follows from the calculation in Remark 4.4.2 and Lefschetz duality
for a manifold with boundary.

3. Suppose M is an m-dimensional manifold and £ — M an m-dimensional
real vector bundle on M. The Thom space Th(E) of E is the one
point compactification of E. It is naturally stratified by E and the
compactification point; the link of this point is the sphere bundle S(E).
Since dim E = 2m the Thom space is a Witt space. By Proposition
4.4.1, excision and stratified homotopy invariance we have

H;(M) i<m
IH; (Th(E)) = ¢ im (Hy(D (E))—>H( (E),S(E))) i=m
Hi(D(E), S(E)) i>m

where D(FE) is the disk bundle. Cap product with the Thom class 7 of
E induces the Thom isomorphism

H.(D(E),S(E)) 2 Hi_y(M) i — anT.
We deduce from the geometrical description that the pairing on the

intersection homology of the Thom space is given in terms of the pairing
on the intersection homology of M by

(o, B)rnsy = (0, BNT)m = (aN 7,8)m
There is a commutative diagram

D(E)) — Hm(D(E), S(E))

H o

m(M) "—T)HO(M)

where the Euler class n = 7|5. It follows that the middle group

[Hn(Th(E)) 2 Hya(D(E), S(E)) = Ho(M)
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is 1-dimensional and is generated by the class of M. The pairing of this
class with itself is

([M], [M])rn(m) = ((M], [M] Nm) = e(E)
where e(F) is the Euler number.

Remark 5.2.6 (Goresky and MacPherson [68, §6.3]). The calculations in the
third example above are still valid for intersection homology with coefficients
in Z (defined in the obvious way). We note that if e(E) # %1 then the inter-
section pairing on I H,(Th(FE);Z) is not unimodular. In other words Poincaré
duality with integral coefficients does not generalise to the intersection homol-
ogy of Witt spaces. There is a more restrictive class of spaces, the intersection
homology Poincaré spaces, obtained by imposing an extra condition on the
links of even-codimensional strata whose integral intersection homology sat-
isfies Poincaré¢ duality — see Pardon [141].

We can also compute the intersection homology of Th(E) with coefficients
in Z/nZ. If nle(E) then IH,{Th(E)) = 0 and we see that the universal
coefficient theorem fails for intersection homology.

5.3 Signatures of Witt spaces

Let X be a compact oriented Witt space of dimension d = 4r. By Corollary
5.2.4 there is a non-degenerate bilinear form, the intersection form,

N ZIHz.,.(X) X IHz.,.(X) — Q (54)

which we can think of geometrically as being given by counting the inter-
section points of suitable chains representing the classes — see Goresky and
MacPherson [68]. Just as the intersection form on the middle homology group
of a 4d-dimensional manifold is symmetric so too is this intersection form. It
thus has a well-defined signature which is the number of positive eigenvalues
minus the number of negative eigenvalues of any matrix representing the form.
We will denote the signature of the intersection form (5.4) by o(X). If X is
an oriented Witt space of dimension # 0 modulo 4 then we put o(X) = 0.
By definition, the signature is a topological invariant of X.

If X is a manifold this definition of signature agrees with the usual one (for
which see e.g. Davis and Kirk [51, 3.28]). Signature is a bordism invariant of
manifolds; if manifolds M and M’ jointly form the boundary of a manifold of
one dimension higher then (M) = o(M') (Davis and Kirk [51, p74]). There
is a powerful generalisation of this to the signatures of Witt spaces.

Definition 5.3.1. A stratified Witt space with boundary (X,dX) of
dimension d is a pair of topologically stratified spaces X C X such that the
inclusion is a stratified map and
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I. X —0X and X are Witt spaces of respective dimensions d and d — 1,
and

2. 8X has a neighbourhood in X homeomorphic to the collar 8X x [0, 1)
with 8X corresponding to the subspace 8X x {0}.

A pair (X, 8X) of spaces is a Witt space with boundary if it is homeo-
morphic to a stratified Witt space with boundary.

If X — 8X is oriented then the collaring homeomorphism induces an orien-
tation of the boundary X and we say (X, dX) is an oriented Witt space
with boundary.

We say oriented Witt spaces X and X' are Witt-bordant if there is
an oriented Witt space with boundary (Y, 8Y) and an orientation-preserving
homeomorphism

oy =2XxX'uXx
between the boundary dY and the disjoint union of X’ and X with the re-
versed orientation.

Theorem 5.3.2 (Siegel [162, Thm. 2.1] cf. Goresky and MacPherson [68,
§5.2]). If X and X' are compact oriented Witt spaces which are Witt-bordant
then

o(X) =a(X').

This certainly implics the bordism invariance of the signature of manifolds
but it is much stronger. For instance Siegel [162, Chapter IT §3] uses it to
give a very simple and geometric proof of Novikov additivity, the result that
for manifolds with boundary (M, M) and (M’',8M") where M is connected
and homeomorphic to M’ we have

o(M Uy M') = o(M, M) + o(M',0M").

Here M Ug M’ is the union of M and M’ along their boundaries and the
signature o(N,8N) of a 4r-manifold with boundary is the signature of the
pairing
HQT(N7 aN) ® HQT(N) - Q

arising from Lefschetz duality. This is a good example of how intersection
homology not only allows us to understand the topology of singular spaces
but also to prove new results, or give simpler proofs of known results, about
the topology of manifolds.

5.4 The Witt-bordism groups

In this section we will assume that our Witt spaces are piecewise-linear, i.e.
they are each equipped with a collection of triangulations such that any re-
finement is also in the collection and any two triangulations have a common
refinement.
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The relation of Witt-bordism defines an equivalence relation on oriented
Witt spaces (with empty boundary). We define the Witt-bordism group

Witt
Q;

to be the set of equivalence classes of i-dimensional Witt spaces made into an
additive group by the operation of disjoint union:

(X]+ [X']=[XuXx’.

(The empty set is considered to be a Witt space of any dimension and its
equivalence class forms the zero. The additive inverse of X is X, the Witt
space X with reversed orientation, since

[X]+ [X] = [XuX]=[0(X x[0,1])] =0,

Somewhat surprisingly it is possible to give an explicit description of the
Witt-bordism groups.

Theorem 5.4.1 (Siegel [162, Prop. 1.1]). The Witt-bordism groups are given

by
Z i=0
Qtt=! W(Q) i=4r,r>0
0 otherwise,

where W (Q) is the rational Witt group. (The appearance of the rational Witt
group is the reason for the name ‘Witt space’.)

The rational Witt group W(Q) is a classical algebraic invariant, defined
as follows. A non-degenerate symmetric bilinear form on a vector space
V over Q is a bilinear map

B:VxV-Q

such that B(v,w) = B(w,v) and if v # 0 then there is some w such that
B(v,w) # 0. In terms of a basis the form J is represented by a symmetric
matrix B with non-zero determinant such that

B(v, w) = v*Bw.

Two forms (not necessarily on the same vector space) are said to be isometric
if they can be represented by the same matrix. Given forms 8 and 3’ on vector
spaces V and V' we can form their direct sum 8® 3’ which is a non-degenerate
symmetric bilinear form on V @ V'. If 8 and /' are represented by matrices
B and B’ respcctively then the direct sum is represented by the matrix

(25)
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We say a form 3 is hyperbolic if there is a basis in which it is represented

by a matrix
0 I,
I, 0

where I, is the n x n identity matrix. Forms § and g8’ are said to be Witt-
equivalent if there exist hyperbolic forms 7 and 7’ such that 3®n and §' &7/
are isometric. This is an equivalence relation (prove it!) and the rational Witt
group is the set of equivalence classes of non-degencrate symmetric bilinear
forms under it., This becomes an additive group under direct sum. In fact, it
turns out that a form represents zero in the rational Witt group if and only
if it is hyperbolic.

Remark 5.4.2. The structure of the rational Witt group is well-known; see,
for example, Milnor and Husemoller [136]. It is

WQ=Zo @ W (Fp)

primes p
where
Z/2 p=2
W(F,) s Z/2®Z/2 p=1mod4
Z/4 p =3 mod 4.

The inital Z corresponds to the signature of the form, i.e. the number of posi-
tive eigenvalues minus the number of negative eigenvalues of any representing
matrix.

Sketch proof of Theorem 5.4.1. Note that a compact oriented Witt space of
dimension 0 is simply a finite collection of oriented points. It easily follows
that QYVi*t > Z,

If X is an odd-dimensional compact oriented Witt space then the closed
cone X x [0,1]/X x {0} is a Witt space with boundary X and so [X] =0 in
the Witt-bordism group. (The only thing to check here is that the closed cone
is a Witt space and the only possible problem is that the Witt space condition
might fail at the vertex of the cone. However, since this is a stratum with
even codimension the condition is vacuous.)

The most interesting case is when the dimension of X is a multiple of 4,
say 4r. Then the intersection form

N: THyp(X) x THp(X) — Q

is symmetric (and non-degenerate by Poincaré duaslity) and so generates a
class, called the Witt class w(X) of X, in W(Q). Siegel shows that w(X) =
w(X') for Witt-bordant X and X’ using much the same ideas used to prove
that the signature is a Witt-bordism invariant. Hence we obtain a map

w: QP W(Q) (5.5)
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which we wish to show is an isomorphism.

Suppose w(X) = 0. Then the intersection form of X must be hyperbolic,
in other words we can choose a basis {v1,..., v, W1,..., Wy} of TH2.(X) with
respect to which the intersection form is represented by

0 I,
I, 0 /)

In this situation Siegel constructs a compact oriented Witt space X which is
Witt-bordant to X and such that there is a short exact sequence

0 — (v1,w1) — THpp(X) — IHp (X) =0

where (v1,w;) is the subspace generated by v; and w;. Roughly X is formed
by collapsing a simplicial cycle representing the class v1, a process which Siegel
terms elementary surgery. By repeating this we can successively kill off
pairs {v;,w;} of elements in TH>,(X) until we obtain a Witt space Y which
is Witt-bordant to X and with

IH,.(Y) = 0.

It follows that Y, and thereby X itself, is Witt-bordant to the empty set
because the closed cone on Y is a Witt space with boundary Y. So the map
w in (5.5) is injective.

To show that w is surjective Siegel uses plumbing: this is a procedure
which, given a symimetric non-degenerate matrix B (satisfying certain con-
ditions) and an integer r > 1, constructs a compact oriented 4r-dimensional
manifold with boundary (Mp,8Mj) whose intersection form

Hy.(MB) x Hy.(Mp,0MB) — Q

is represented by the matrix B in a natural basis —- see Browder [35]. By
glueing the closed cone on 8Mp onto the boundary we obtain a compact
oriented Witt space whose intersection form

IHQT(M\B) X IHQT(M\B) - Q

is again represented by B. The surjectivity of w follows because for any class
in the Witt group we can find a representative form with appropriate matrix B
and then by the above construct a Witt space with precisely that intersection
form.

Finally, we need to show that Q}''{% = 0, i.e. that all (4r + 2)-dimensional
compact oriented Witt spaces are Witt-bordant to the empty set. The key
point is that the intersection form of a (4r + 2)-dimensional Witt space is
anti-symmetric and so can be represented by a matrix with block form

0 I,
-I, 0 /-

Thus we can construct an explicit Witt-bordism to the empty set using Siegel’s
surgery procedure in almost exactly the same way that we showed w was
injective above. O



5.5 Further reading 83

5.5 Further reading

In addition to a signature, a Whitney stratified (in the sense of Goresky
and MacPherson [74, §1.2]) Witt spacc possesses an invariant called the L-
class. When X is a smooth manifold then the L-class is Poincaré dual to the
Hirzebruch L-class (see Milnor and Stasheff [137] for the definition). More
generally, the L-class L(X) € H,(X;Q) of a Whitney stratified Witt space X
is a class in (ordinary) rational homology which contains information about
the signature of certain subspaces of X. To be precise, a subspace Y of X is
normally non-singular of codimension k with trivial normal bundle
if there is a neighbourhood U of Y in X and a homeomorphism

Y xRF U

which is the identity on Y. Any normally non-singular subspace Y determines
a cohomology class [Y]* € H*¥(X;Q) (Cappell and Shaneson [40. §5]) and the
L-class has the property that if Y has trivial normal bundle then

Y] (L(X)) = a(Y).

In particular, if we suppose X is connected so that Hyp(X;Q) = Q then the
picce of L(X) in Ho(X;Q) is simply the signature o(X) of X.

The L-class was initially constructed geometrically for spaces with only
even codimensional strata in Goresky and MacPherson [68, §5] although iden-
tical methods can be used to construct it for arbitrary Witt spaces (Banagl,
Cappell and Shaneson [6, §2]). A more abstract, sheaf-theoretic construction
can be found in Cappell and Shaneson [40, §5].

Siegel’s resull on the Witt bordism groups has several important conse-
quences, most of which arise from the fact that the Witt bordism groups form
a generalised homology theory (this is a property of bordism rather than a
special property of Witt spaces). Siegel’s calculation identifics the groups of
a point and it is not difficult to use this to prove that Witt bordism gives a
homology theory called rational L-theory which arises in the classification of
manifolds. Hughes and Weinberger [82, §2| contains a nice discussion.

Furthermore, there is an analogous result for integral rather than rational
coefficients, see Pardon [141]. That is, there is a class of piecewise-linear
pseudomanifolds, dubbed intersection homology Poincaré spaces, whose
intersection homology groups with coefficients in Z obey Poincaré duality
and whose bordism groups are given by an appropriate generalisation of the
rational Witt group. To be precise they are isomorphic to the symmetric L-
groups L*(Z) of Mischenko and Ranicki (sec Ranicki [144] for the definition).

The bordism of Witt spaces provides a geometric generalisation of the
rational Witt group. Parallel (orthogonal?) to this there are algebraic gener-
alisations involving bordism groups of self-dual complexes of sheaves. Cappell
and Shaneson [40] use these to prove a beautiful result relating the L-classes
of stratificd spaces with a stratificd map between them (see also Youssin [180)
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and Banagl, Cappell and Shaneson [6]). This result is a broad generalisation
of classical results about the L-classes of fibre bundles. It can also be seen as
an analogue of the decomposition theorem (see Remark 8.4.4).



Chapter 6

L*-cohomology and
intersection cohomology

In this chapter we will briefly discuss Cheeger’s L?-cohomology and its re-
lation to intersection cohomology. In particular we will discuss two classes
of examples, varieties with locally conical singularities and locally symmet-
ric varieties, for which the two theories are isomorphic. We will work with
coefficients in R, except in §6.4 where we take coefficients in C.

6.1 L2-cohomology and Hodge theory

Suppose M is a sinooth manifold with a Riemannian metric. In the same way
as in §1.3 we can define L2-cohomology groups of M. In brief, let A™(M) be
the space of differential r-forms on M. The metric induces an inner product
on each A"(M) and we say a form w € A"(M) is in the subspace L™ (M) if it
is square-integrable with respect to the associated norm, i.c. if

/ |2 < oo
M

The L2-cohomology group H{y (M;R) of M (with real coefficients) is defincd
to be
{we L"(M) | dw = 0}
{ne Lr(M) |3 € L' (M),d¢ = n}’

When M is compact all forms are square-integrable and this reduces to the
usual definition of the de Rham cohomology group. However, if M is not
compact then the L?-cohomology can be significantly different from the de
Rham cohomology; indeed it is not even necessarily finite-dimensional.

The L?-cohomology groups of M depend upon the metric, but only up to
quasi-isometry.

85
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Definition 6.1.1. Two Riemannian metrics g and % on a manifold M are
called quasi-isometric if there exists a positive constant K such that at
every point p of M the inner products g, and h, on the tangent space T, M
satisfy the inequalities:

K™'g, < h, < Kg,.

The norms defined by the metrics g and h then satisfy corresponding
inequalities at each point. In particular if w is a differential r-form on Y then
w is square-integrable with respect to the norm defined by the metric g, if and
only if w is square-integrable with respect to the norm defined by the metric
h. Thus the L2-cohomology groups of M defined using two quasi-isometric
metrics are the same.

Hodge theory allows us to show that the de Rham cohomology of a compact
oriented manifold satisfies Poincaré duality. We briefly recall the argument,
the details can be found in Warner [175, §6]. We choose a metric on our
manifold M™ and define the Hodge star operator

*: AT(M) - A™ (M)
to be the unique operator satisfying
aAxf=(0,B)R

for all @ € A"(M) where the round brackets denote the inner product arising
from the metric and € is the volume form. The Laplacian is the second order
differential operator

A=dé+dd

where 6 = xd+. (In fact § is the adjoint of d with respect to the inner product
but in this infinite-dimensional setting it is easier to define it using the Hodge
star.) A differential form w is said to be harmonic if Aw = 0.

On a compact Riemannian manifold the harmonic forms are both closed
and coclosed, i.e. dw = 0 and dw = 0. It follows that each harmonic form
determines a cohomology class, Furthermore the Hodge theorem tells us that
there i1s a unique harmonic form in each cohomology class; the de Rham
cohomology is isomorphic to the space of harmonic forms. It is clear that
if w is harmonic then so is *w. Thus the Hodge star furnishes us with an
isomorphism

H (M;R) = H™ "(M;R)

which can be identified as the Poincaré duality isomorphism.

It is natural to ask how much of this theory carries over to L2-cohomology.
We can clearly still define the Hodge star, the Laplacian and harmonic forms.
However, it is no longer the case that a harmonic form in L™ (M) is necessarily
closed and coclosed (for example the function z2—y? on the unit disc equipped
with the Euclidean metric is harmonic and square-integrable but it is not
closed, i.e. not constant). In particular a harmonic form may no longer define
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a cohomology class. Therefore we consider the subspace H™(M) of closed and
coclosed harmonic forms in L"(M). There is a natural map

HT(M) - Hpyy(M; R) (6.1)

taking a form to its L2-cohomology class. It is not necessarily an isomorphism
but it is known that if the metric on M is complete then all harmonic forms
are closed and coclosed and that (6.1) is an injection (Cheeger, Goresky and
MacPherson [48, §3]).

Let us suppose that (6.1) is an isomorphism for M (sometimes it is said
that the strong Hodge theorem holds for M). It is easy to see that the
Hodge star defines an isomorphism

HT(M) = H™ (M)

and it is an immediate consequence that the L2-cohomology of M has Poincaré
duality. This suggests that it might be possible to interpret the L2-cohomology
as the intersection cohomology of some singular compactification of M. To
make this idea more precise let us suppose that M is the non-singular part
of a complex projective variety X, so that X is a natural compactification of
M. Let B be a square-integrable differential i-form on

M=X-%

such that dg is also square-integrable. Then one can show that for almost all
intersection chains ¢ € IC;(X) the integral

fe

/adﬁz aeﬁ

is satisfied. (Note that the support of an intersection chain ¢ € IC;(X) is
never contained in the singular set ¥ where 5 is not defined: it meets X in
a subset of dimension at most i — 2.) In this way integration can be used to
define a natural pairing

exists and Stokes’ theorem

(X - @ IH;(X) - R (6.2)
or equivalently a natural map
Hipy (X — £) — (IHy(X))Y = IH*(X). (6.3)
When X is non-singular this map is the de Rham isomorphism

HIZDR(X) - Hi(X)y
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see Griffiths and Harris [77, p44]. Sections 6.3 and 6.4 will be spent discussing
two classes of singular varieties, with metrics on their non-singular parts, for
which (6.3) is an isomorphism. In both cases the strong Hodge theorem will
also hold and so we will have isomorphisms

H7(X — £) = Hipy (X — 5) = [H*(X).

It is conjectured that such isomorphisms hold more generally. For further
details see Cheeger [44, 45, 46] and Cheeger, Goresky and MacPherson [48].

In the next section we will give some evidence for this conjecture based on
the simplest case, that of a cone on a Riemannian manifold.

6.2 The L?-cohomology of a punctured cone

Definition 6.2.1. If Y is a compact manifold with Riemannian metric gy
let C*(Y') be the punctured cone

C*(Y) =C(Y) — {vertex} = (0,1) x Y
with Riemannian metric
g =dtQdt + t’7*gy

where ¢ is the standard coordinate on the open interval (0,1) and 7 : (0,1) x
Y — Y is the projection. (Recall that the cone C(Y) is obtained from the
product [0,1) x Y by identifying the points of {0} X Y to give a single point
which is the vertex of the cone.)

Note that any differential i-form £ on C*(Y') can be written uniquely as
E=n+dtA( (6.4)

where 7 and ¢ are differential forms which do not involve dt. In other words
with respect to (real) local coordinates (y;,...,¥m) on Y we can write

n(t,y) = Y nalt,y)dy” (6.5)
acl(i)

where (i) is the set of all multi-indices & = (o, ..., ;) such that 1 < a; <
<o« < a3 < m, where

dy® =dy** A--- ANdy™

and where 74 is smooth function on (0,1) x Y. Similarly

C(t’ y) = Z Ca(t, y)dy"‘. (66)

acI(i—1)
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'T'hus for fixed ¢ € (0, 1) we can regard 7(t,y) and ((¢, y) as defining differential
forms on Y. The Riemannian metric on C*(Y)) is defined in such a way that
thie norm of £ is given by

e w1 ==l I + 2Vl wIF (6.7)

where || ||y is the norm induced by the metric g, on Y. The factor t~% occurs
because 7(t,y) lies in the ith exterior power of the dual of the tangent space
to C*(Y) at the point (¢,y).

Proposition 6.2.2 (Cheeger [45]). Let Y be a compact Riemannian manifold
of dimension m and let C*(Y) be the punctured cone on Y with the metric
defined at 6.2.1. Then

) ={ B s

Remark 6.2.3. Note that the L2-cohomology of Y is the same as its de Rham
cohomology (since Y is compact) and hence there is a natural isomorphism
Hiy(Y) = H(Y).

It is highly suggestive to compare this calculation with that in Proposition
4.7.2 for the (middle perversity) intersection homology of the cone on a pseu-
domanifold.

Sketch proof of Proposition 6.2.2. Let
m C*(Y)=(0,1) XY - Y

be the projection. If w € A¥(Y) is a differential i-form on Y then with respect
to local coordinates (y1, ..., ¥m) We can write

wy)= Y waly)dy®.

acl(i)

The i-form 7*w on C*(Y) is then defined in local coordinates (¢,y1,..., ym) by

the same formula
*w(t,y) = Z we(y)dy* .
acI(i)

By (6.7) we have
I7*w(t. »I” = ¢~ lw@)II5-

Moreover the volume form on C*(Y) at a point (¢,y) differs from the volume
form on Y at y by a factor of t™ so

1
/ Inwl? = / / 2 w2,
o (Y) o Jy
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Since Y is compact it follows that 7*w is square-integrable if and only if w = 0
or

1
/ ™2t < o0,
0

Therefore if m — 2i > —1 or equivalently ¢ < 3 then 7 restricts to a map
m™: LH(Y) — L}(C*(Y))
which commutes with d and hence induces a natural map
7 HY(Y) 2 Hipy (V) = Hig)(C*(V)). (68)

We shall show that this map is an isomorphism for all i < %, Given a
differential i-form £ on C*(Y") write

E=n+dtA¢

as at (6.4). There is an i-form d7/8t on C*(Y) defined in local coordinates
(1, Ym) by

677 _ aﬂa o
E(tsy)— Z W(tsy)dy

acl(i)
in the notation of (6.5). Similarly there is an (i — 1)-form 8¢/t given by

Zon= Y Setoas

acl(i-1)
We can define dy : 4*(C*(Y)) — A**1(C*(Y)) inlocal coordinates (1, ..., Ym)
by

ety = % a’;“(t,mdy,Ady

1<j<m a€l(i)

+ Z Z aCo‘(tz,ldz,l,/\dt/\dy

1<j<m aEI(t-—l)

Then
dy€ = dy77 —dt A dyc,

and
on O

Now we fix s € (0,1) and define

H: AHC*(Y)) » A7 H{CH(Y))
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in local coordinates (1, ..., ym) by

@ = ¥ ( / Gl ) by

acl(i—1)

where 5 = 7+ dt A { as before. We shall write this more conveniently as

HE = f( Then
}1 }1
dH¢ = dy/C+dt/\%/C
i
= /dy(+dt/\(.
Also
on
Hd¢ = (dyn+dt/\(at —d C))

&
- / (az dy()

i
e [

where 7(®) € A(Y) is given in local coordinates (t,y1,-..,¥m) by

1) = Y nals,y)dy™

a€el()
Thus
dHC+ Hd( = dtA¢+n—a*(n®) (6.9)
= £—n*(y®). (6.10)

Now if £ is a square-integrable i-form then

1
Lo e = [ [ (1] + e 26D ) s
oY) o Jy

is finite. Since H¢ is an (i — 1)-form

1 i
[ waeps [ [ o260 [e0drgema
c*(Y) o Jy s

Using the Cauchy-Schwartz inequality and reversing the order of the in-
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tegration we find if i < Tt then

1 t

/ \HE|? < / / =242 / 1 3 dr
c(Y) 0o JY s

8 T . 1 1 .
| L1eo [ em-ssaar+ [ [ 1ol [ em-oe2diar
0 Y 0 s Y T

L AL ez pmeziss i e
< - T m—2i+34 +/ / T d )
—m_zz+3(/o /Y“C e | ) I

1+5—m+2i—2 2
<| —m———— .
—( m—2i+3 )/C.(y)”ﬂ' <0

Hence HE is square-integrable.
We have shown that if £ is a square integrable i-form on C*(Y') and i <
then H¢ is square-integrable and

¢ = dHE + Hdg + 7" (1), (6.11)
Therefore if d€ = 0 then
§ed(L7H(CH (V) + 7 (IHY))

dt

) . .
7 H(Y) — zz)(C*(Y))

is surjective for i < Z:. Moreover since d? = 0 we have by (6.11)
d¢ = d(HdE) + dr*(n®)
= d(HdE) +*(n®).

It comes straight from the definition of H that Hd¢ = 0 if d¢ € = (L¥(Y)),
and hence it follows easily that 7*: H'(Y) — Hf, (C*(Y)) is injective for
i<m,

It remains to show that Hj, (C*(Y)) = 0 for ¢ > 2. The Cauchy-
Schwartz inequality tells us that if ¢ is a square-integrable i-form on C*(Y)
and we have 0 < a < b < 1 then

([ ||¢<t>||2’ydt)2 (f y 160 ar) ([ [ omar)
(g0 (1) (Emr™)

Therefore the integral fol Jy 1649 ||y dt exists if i > 2, and so for almost all

Yy € Y the integral
t t
0 0

IA
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oxists for all ¢ € (0,1). The idea is now that if £ =  + dt A is a square-
integrable i-form and 7 — 1 > % then we define

H°§=/Ot(.

The argument used above can be easily modified to show that HY¢ is square-
integrable and that
€ = dHY¢ + Hd¢,

[n particular if d§ = 0 then £ = dH%. From this it can be deduced that
Hp,) (C*(Y)) = 0 when i — 1 > %, though technical difficulties arise because
HY¢ is not necessarily differentiable.

The only case we have not yet covered is when m is odd and ¢ =

This case is more delicate but it can be shown that H(,, (C*(Y)) =0 in this
case also (see Cheeger [45]). O

m+1
=

6.3 Varieties with isolated conical singularities

When the singularities of the complex projective variety X are particularly
simple it is possible to show that

Hyp)(X) = TH*(X)

by doing a local calculation for L2-cohomology and comparing it with the
local calculation in §4.7 for intersection cohomology.

Definition 6.3.1. Let X C CP" be a quasi-projective variety with isolated
singularities. Let
3= {3.’?1, ...,xq}

be the set of singular points of X. We say that X has isolated conical sin-
gularities if there exist compact Riemannian manifolds Y7, ..., Y, and disjoint
open neighbourhoods Uy, ..., U, of z1,...,24 in X such that U; is homeomor-
phic to the cone C(Y;) and U; —{z;} is quasi-isometric to the punctured cone
C*(Y;) for 1 < j < q. Here the metric on U; — {z,} is given by the restriction
of the Fubini-Study metric on CP™ and the metric on C*(Yj;) is given by the
metric defined in Definition 6.2.1.

Suppose that X is a projective variety with isolated conical singularities,
and let dimc X = n.

Lemma 6.3.2. Every x € X has arbitrarily small open neighbourhoods U in
X such that the natural maps

H{y(U) — TH*(U)

are isomorphisms.
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Proof. Tt is easy to check that if z € X is a non-singular point of X then
has arbitrarily small open neighbourhoods U in

Xnon.sing =X-X

which are quasi-isometric to cones on a sphere. A simpler version of the
argument used to prove Proposition 6.2.2 shows that the L2-cohomology of
such a neighbourhood is trivial, i.e.

i o R =0,
He) )= { 0 otherwise.

On the other hand

N~ e ] R =0
IH'(U) = H'(U) = { 0 otherwise,
since U is non-singular and contractible. It is clear from the definition of (6.2)
that the natural map
H,(U) — THY(U)

is non-zero when ¢ = 0 and hence is an isomorphism for all ¢ > 0.

Now suppose z is a singular point of X. Then since X has isolated conical
singularities there is a compact Riemannian manifold Y and an open neigh-
bourhood U of z in X such that U is homeomorphic to the cone C(Y) and
U —{z} is quasi-isometric to the punctured cone C*(Y). It is easy to see that
U may be chosen arbitrarily small. Then by Proposition 6.2.2 since the real
dimension of Y is 2n — 1 we have

i HYY) i<n-1,
(2)(U)§{ (()) i >n. (6.12)

On the other hand since U has a single isolated singularity at z it follows from
Proposition 4.4.1 that

H,(U - {z}) i<n-—1,
IHi(U) = { im (H,(U - {.’E}) -— Hi(U)) i=mn,
H(U) i>2n+1.

Moreover since U is contractible we have H;(U) = 0if i > 1, and since U~ {z}
is homeomorphic to C*(Y) = (0,1) x Y we have

Hi(U - {z}) = H;((0,1) x Y) = Hy(Y)
for all . Thus,

H(Y) ifi<n—1,
IHi(U)E{ (¥) 15 m (6.13)
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'Taking duals and comparing with (6.12) we find that Hf, (U) = ITH*(U) for
all 4. In order to check that this isomorphism corresponds to the natural map

oy (U) — TH'(U)

it suffices to consider the case 1 < n — 1. Then the isomorphism H("z) U) -
HY(Y) of (6.12) is the composition of the inverse of the map

s H(iz)(Y) - H(iz)(U— {z}) = Hfz)(U)
induced by the projection
mU—{z}=(0,1) xY =Y

with the natural isomorphism Hf, (V) = Hpp(Y) — H*(Y). On the other
hand the isomorphism IH;(U) = H;(Y) of (6.13) is the composition of the
identification

IH(U) = IH;(U — {z}) = Hy(U — {z})

with the isomorphism
et Hy(U — {z}) — H(Y).

The result follows. |

Let X be a projective variety with isolated conical singularities. It turns
out that the existence of the natural map

Hpy(X) — TH*(X)

together with Lemma 6.3.2 implies the following theorem. (The proof follows
fairly easily from the sheaf-theoretic treatment of intersection cohomology we
give in the next chapter.)

Theorem 6.3.3 (Cheeger [45]). The natural map
H(X) — TH*(X)

from the L?-cohomology of X to its intersection cohomology is an isomor-
phism.

The strong Hodge theorem for varieties with isolated comical singulari-
ties also follows from Lemma 6.3.2, essentially because the L2-cohomology is
then finite-dimensional. The proof can be found in Cheeger, Goresky and
MacPherson [48, §3].
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6.4 Locally symmetric varieties

Locally symmetric varieties are of great importance in Riemannian geometry,
algebraic geometry, number theory and representation theory. There is a vast
literature on the area but we will give only the briefest of treatments here,
sufficient to state the result (Theorem 6.4.6) in which we are interested. Our
treatment is heavily influenced by Zucker’s introduction [184]. We will assume
some familiarity with the theory of Lie groups, for which see Atiyah et al. [4],
Carter, Segal and MacDonald [42] and Springer [165].

Let G be a semi-simple Lie group with finite centre and K a maximal
compact subgroup. Let D = G/K be the quotient of G by the natural right
action of K. Clearly G acts on the left on D making it into a homogeneous
space.

There is a unique automorphism 6 of G {called the Cartan involution)
such that

¢ 0 is an involution, i.e. 6% =id,
e K is the fixed point set of 4.
The Killing form is the symmetric bilinear form defined by

B(z,y) = tr (adg(x)adg(y)) .

It is invariant under the adjoint action of K on g and restricts to a positive
definite form on the negative eigenspace of § on the Lie algebra g. This
eigenspace is naturally identified with the tangent space to D at the class of
the identity. The adjoint action of K preserves this eigenspace and we can
define a G-invariant Riemannian metric on D by translation. Furthermore
this metric is complete.

Example 6.4.1. Take G = SP2,(R) to be the symplectic group, i.c. the
group of invertible linear transformations which preserve the anti-symmetric
bilinear form on R?" represented by the matrix

0 I
= (5 5)

SPyn(R) = {X: ( _“g 5 ) |4,Be Mn(R),detXaéo}.

In concrete terms we have

The Lie algebra sp,, (R) of SP,(R) can be identified with the same set of
matrices where we remove the condition that the determinant is non-zero.

The symplectic group can be naturally identified with a subgroup of the
n X n complex matrices via the injective homomorphism

@:(_‘% i)l——»A+iB.
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Note that ®(JX) = i®(X). Under this identification the unitary group U,
corresponds to the maximal compact subgroup K of symplectic matrices with
A'A+ B'B = 1 and A*B — B*A = 0. These are precisely the symplectic
matrices X for which X! = X* It follows that the Cartan involution is
0 : X +» X~t. The negative eigenspace of the induced map on the Lie agebra
8po,, (R) is the subspace of matrices such that

A= A'and B=-B".
The Killing form on the Lie algebra is given by
(A+iB,C +iD) — 4 [n {tr(AC) —tr(BD)} —trA-trB + trB - trD].

Some unpleagant algebra verifies that this is invariant under conjugation by
clements of K. It is easier to see that it is positive definite on the negative
eigenspace of the Cartan involution.

In many cases (whenever the intersection of K with each irreducible factor
of G contains a circle in its centre) there is also a G-invariant complex structure
with respect to which the metric is Kéhler. When this occurs we say D is
Hermitian. For instance, the above example is Hermitian.

We can embed G into G L,, (R) for some n using a finite-dimensional faithful
representation. A discrete subgroup I' of G is said to be arithmetic if there is
such an embedding for which I is comnmensurable with Gz = GNGL,(Z),
i.e. if the intersection I' N Gz is of finite index in both I" and Gz. In Example
6.4.1 the group I' = SP,,(Z) is an arithmetic subgroup.

Definition 6.4.2. A locally symmetric space is a quotient
I'\D =T\G/K

of D by some arithmetic subgroup I of G. The metric on D induces a metric
on the quotient '\ D.

Remarks 6.4.3. 1. In general I may act on D with finite stabilisers so that
the quotient I'\D is a Riemannian orbifold. This introduces certain
technical difficulties but it is not a serious problem; all the results we
require go through {with technical modifications) just as they would in
the simpler case when I acts freely and the quotient is a manifold.

2. The terminology is explained by the following observation. For any point
p in a Riemannian manifold M we can find a convex neighbourhood U
of 0 € T, M such that the exponential map

exp:U—-M

is a diffeomorphism onto its image. The involution v — —v of T, M
induces a smooth involutive diffeomorphism of a neighbourhood of p.
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When M is a locally symmetric space this local involution is an isometry
for each point p. In fact, it is possible to show that any Riemannian
manifold with this latter property has the form I'\G/K for some Lie
group G, compact subgroup K and discrete subgroup I' (although not
all such spaces are locally symmetric in this sense), see e.g. Ji [86].

We say a locally symmetric space X = I'\D is Hermitian if D is Hermi-
tian; in this case X clearly inherits a complex structure from D with respect to
which its metric is Kahler. In fact a much stronger result is known; every Her-
mitian locally symmetric space can be given the structure of a quasi-projective
variety (Baily and Borel [5]), although it is important to realise that in general
the metric does not arise from the restriction of the Fubini-Study metric on
projective space. A locally symmetric variety is a locally symmetric space
considered with this extra structure of a complex variety.

Example 6.4.4. Take G = SLy(R) and K = SO;(R). We can identify
D = G/K with the upper half-plane

{r+iyeC|y>0}

as follows. Recall that SL,(R) acts transitively on the upper half-plane via
fractional linear translations:

a b\ . e ¥ +b

c d )’ cz+d
The stabiliser of the point ¢ under this action is easily seen to be SO2(R) and
hence the orbit of 7, which is the whole of the upper half-plane, is naturally

identified with D = G/K. The natural metric is the hyperbolic, or Poincaré,
metric

dz? + dy?
v
Since SO2(R) = S! manifestly contains a circle this example is Hermitian;
the invariant complex structure is of course the usual one.

Take the arithmetic subgroup I' to be SL2(Z). Figure 6.1 shows a fun-
damental domain for the action of SLz(Z) on the upper half-plane. The
corresponding Hermitian locally symmetric variety X is obtained by glueing
the edges of this domain according to the SLz(Z) action. We can interpret X
as the moduli space of elliptic curves.

Example 6.4.5. Here is one way (of several) in which this example generalises
to higher dimensions. Take G and K as in Example 6.4.1. Then for n > 1
the quotient G/K can be identified with the Siegel upper half-space of genus
n consisting of the symmetric complex n x n matrices with positive definite
imaginary part. If we take our arithmetic group to be I' = SP,,(Z) then the
associated locally symmetric space is a {coarse) moduli space for principally
polarised Abelian varieties of dimension n.
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Figure 6.1: A fundamental domain for the action of SLz(Z) on the upper
half-plane is shown shaded. The other regions are the images of this domain
under the action; in this picture the regions become smaller and smaller as we
approach the z axis (although they are congruent in the hyperbolic metric).

We can define the L2-cohomology groups H, 2 (X; C) of alocally symmetric
variety X (with coeflicients in C). The metric is complete and so we know
that the natural map

H(X) — Hipy(X)

is injective. If X is Hermitian this map is actually known to be an isomor-
phism (Zucker [184, p153]). In particular the L2-cohomology satisfies Poincaré
duality and this raises the possibility of a topological interpretation as the in-
tersection cohomology groups of some compactification. (One also obtains a
Hodge decomposition on the L2-cohomology of a locally symmetric variety
but that is another story.)

A locally symmetric variety has compactifications called Satake com-
pactifications obtained by adding in lower dimensional locally symmetric
spaces. In general there is no unique way to do this; there are 27 — 1 Satake
compactifications where r is the rational rank of G (the rational rank is the
dimension of a Q-split torus in the group Gg = GNGL,(Q)). However, when
D (and hence X) is Hermitian, there is a distinguished Satake compactifica-
tion X™* called the Baily—Borel compactification which is furthermore a
complex projective variety. {Indeed, this is how one proves that Hermitian
locally symmetric spaces are varieties.) For example, (as a set) the Baily-
Borel compactification of the moduli space of principally polarised Abelian
varieties of dimension n is obtained by adding in a boundary component for
each moduli space of principally polarised Abelian varieties of dimension < n.

If we suppose X is Hermitian then we can consider the natural map

H{ (X;C) — IH*(X*;C) (6.14)

to the intersection cohomology of the Baily-Borel compactfication. More gen-
erally, suppose E is an irreducible finite-dimensional cormplex representation
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of G. There is a natural action of G on the trivial bundle D x E on D given
by
g- (hK,e) = (ghK, p(g)e) (6.15)

where p : G — GL(E) is the representation. The quotient £ =TI'\(D x E) is
a bundle on X =T\ D again with fibre E. The obvious flat connection on the
trivial bundle descends to a flat connection on £ so that we can also think of
£ as a local system, or locally constant sheaf.

We can put a Hermitian metric on the bundle € as follows. There is a
Hermitian inner product { , ) on the irreducible representation E such that
for all g € G and e;,e; € E we have

(e, p(g)ez) = (0 (8(g) ") €1, €2)

where 6 is the Cartan involution (Borel and Wallach [23, 11.2.2]). Such an inner
product is unique up to multiplication by a scalar and is called admissible.
Note that it is invariant under the action of the compact group K. This inner
product gives a Hermitian metric p on the trivial bundle D x E with

Kok (€1, €2) = <P(9—1)€1, P(9_1)€2)~

Since (, ) is K-invariant this does not depend on the choice of representative
of gK. Furthermore this metric is invariant under the action of G on D x E
described in (6.15). Hence it descends to a Hermitian metric on €. Note that,
although € is a flat bundle, this is not a flat metric.

We can extend our previous definition to define L2-cohomology H, (2) (X;€)
with coeflicients in the metrised bundle €. Furthermore there is a natural map

Hpyy (X;€) — TH*(X*€) (6.16)

to the intersection cohomology of the Baily-Borel compactification X™* with
coefficients in the local system €. When F is the trivial 1-dimensional repre-
sentation (with the usual Hermitian inner product) we reduce to (6.14).

Theorem 6.4.6 (Zucker’s conjecture). For a Hermitian locally symmetric
variety X = I'\G/K and irreducible complex representation E of G the map
(6.16) is an isomorphism.

Zucker made this conjecture in 1980. It was subsequently proved by Looi-
jenga [116] and independently by Saper and Stern [157]. The proofs are
quite different; Looijenga’s uses an explicit desingularisation of the Baily-
Borel compactification X* whereas Saper and Stern’s is Lie-theoretic. More
recently Saper has developed a theory of £-modules, a combinatorial ana-
logue of constructible sheaves on the reductive Borel-Serre compactification
of a locally symmetric space, which provides yet another proof of Zucker’s
conjecture.
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6.5 Further reading

(‘heeger developed the theory of L?-cohomology in the mid 1970s and first
announced his results in [44], with more details following in [45] and [47].
Cheeger, Goresky and MacPherson [48], Saper [153] and Saper and Zucker
'158] are good overviews of L?-cohomology and its relation to intersection
cohomology. For a more recent approach to the conjectural isomorphism
etween the L? and intersection cohomology of a singular projective variety,
using the Riemann Hilbert correspondence, see Bressler, Saito and Youssin
[34].

The literature on locally symmetric varieties is vast and we make no at-
tempt to survey it here. For an introduction to locally symmetric spaces and
their compactifications see Ji [86] and Borel and Ji [21]. Zucker's paper [184] is
an excellent introduction to the L2-cohomology of locally symmetric varietics.
His earlier papers [182] and [183] give the context for his conjecture, discuss
its proof in various special cases and also explain the (important) relation
of the conjecture to automorphic forms and the Langlands program. Zucker
[185] is a useful survey of Saper and Stern’s and Looijenga’s proofs of the con-
jecture. Saper’s article [154] provides a more recent survey of developments
in the area.

In 1983 Borel extended Zucker’s conjecture from Hermitian locally sym-
metric varieties to arithmetic quotients of equal-rank symmetric spaces. In
this situation there is no longer a Baily -Borel compactification. Borel conjec-
tured instead that the intersection cohomology of a Satake compactification
whose boundary components are quotients of equal-rank symmetric spaces
is isomorphic to the L2-cohomology of the locally symmetric space. This
removes the complex geometry whilst leaving the Lie-theoretic and combina-
torial elements of the problem. The methods of Saper and Stern’s proof of
Zucker's conjecture can be adapted to this case. Recently Saper has given
a proof based on the theory of £-modules [155]. Saper [154] provides an ex-
position of the theory of £-modules and also shows how they can be used to
prove Rapoport and Goresky and MacPherson’s conjecture that the intersec-
tion cohomology of an equal-rank compactification is isomorphic to that of
the reductive Borel-Serre compactification (see also Saper [156]).



Chapter 7

Sheaf-theoretic intersection
homology

Let X be a topological pseudomanifold with a fixed topological stratification
defined by the filtration

X:Xm_D_Xm—I:Xm—2_D_"'2X0'

We have defined the intersection homology groups I H,(X) as the homology
groups of a chain complex IC,(X). In this chapter we shall give a sheaf-
theoretic description of I H,(X) which leads, amongst other things, to a proof
that TH,(X) is a topological invariant of X.

We work with coefficients in a field F.

7.1 Sheaves of singular chains

If U is an open subset of X then I”S,(U) is a subcomplex of I*S,(X). However
the complexes I?S,(U) do not define a complex of sheaves on X because if U
and V are open subsets such that V' C U the natural map goes from I?S;(V)
to I?S;(U), not the other way round. To get a complex of sheaves we shall use
the complexes I?S; ((U)) of singular intersection chains with closed support
instead (see Remark 4.3.2).

Remark 7.1.1. If we are interested in intersection cohomology then we can
dualise and obtain a complex of presheaves whose sections over U are the
singular intersection cochains on U. Using similar techniques to those of this
chapter one can show that the hypercohomology groups of the associated
complex of sheaves are the intersection cohomology groups of X.

Recall that a formal linear combination
§ = Zé.oo'
g
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of singular i-simplices in X, that is continuous maps from the standard -
simplex A; C R¥*! to X, is a locally finite singular i-chain in S; ((X)) if for
each z € X there is an open neighbourhood U, of z in X such that the set

{falé.o # 0, U_I(UZ) # 0}

is finite. It is a singular 4-chain in S;(X) if {£,|£, # 0} is finite.
Suppose V C U are open subsets of X. We now define a restriction map

S:((U) = S (V) : £ Elv.

First note that it is sufficient to define the restriction for a single singular i-
simplex ¢ in U and then extend linearly. Given o we define a set J of singular
i-simplices in V' as follows:

e Ifimo C V then put J = {c};

e Otherwise perform a barycentric subdivision of o (see e.g. Hatcher [80,
§2.1]). If 7 is an i-simplex in the subdivision withim 7 C V then add r to
J. Further subdivide those i-simplices in the subdivision with im7 ¢ V
and repeat.

In this way we obtain a well-defined set J of singular i~-simplices in V. We
define the restriction by
a 'V = Z a.

ocd

This is a locally-finite i-chain in V' with the property that its support is Ia[ nv.
We can now extend linearly to define the restriction S; (U)) — S; (V).

Thus we obtain a presheaf U — S;((U)) on X which we can verify is
in fact a sheaf. Note that the restriction commutes with taking boundaries,
ie. (8¢)|ly = 8(&]v) so that the boundary operator on chains induces a sheaf
map. By convention, because people like to work with cochain complexes of
sheaves, not chain complexes, the sheaf defined by U +— 5; ((U)) is denoted
by S;(’ so that the boundary induces a sheaf map 9: S%" — S""’l

The same construction works for intersection chains. A locally finite sin-
gular i-chain £ is in the subspace I*S; ((U)) if it is p-allowable (see Definition
4.3.1). If £ is p-allowable then so is its restriction £|y to an open subset V' of
U. It follows that we can define a complex of sheaves I?S% with

IPSEHU) = IPS; ((U)) -

Warning 3. Unfortunately there is inconsistency in the literature in the
indexing of the sheaf complex ZPSj. The only consistency is in working
with sheaves of cochain complexes and not with sheaves of chain complexes.
Sometimes the index —i is replaced by m — i or ¢ — 4 if X is a complex
variety (because Z is then the complex dimension of X). See Goresky and
MacPherson [70, §2.3].



7.1 Sheaves of singular chains 108

Remark 7.1.2. The sections F(U) of a sheaf F over an open subset U are
olten denoted I'(U; F) and the subspace of sections with compact support
by Te(U; F). In particular T(U; ZIPS%*) = IPC*((U)) and the sections with
compact support are the finite chains, i.e.

T (U; ISyY) = ICi(U).

Under this identification the sheaf map 8: I”S}i — I”S}i“ induces the
original boundary map 8: I?S;(U) — I?S;_,(U).

Remark 7.1.3. If £ is a local coefficient system over X then we can define
complexes of sheaves Six,cy and IPSey, ) over X in the obvious way (cf.
Section 4.9). Indeed to define I?Sty . we only need a local coefficient system
L over the non-singular open subset X — X,,,_5 of X, not over X itself.

Our aim is to compute the hypercohomology of the complexes S5 and
IPS%. The first step is to show that the higher cohomology groups of the
sheaves S% and ZPS% vanish.

Definition 7.1.4. A sheaf F on X is soft if for every closed subset A C X
the restriction map
F(X) — F(A)

is surjective. Here, by definition, F(A) = colim y54F(U) is the colimit over
open subsets U containing A (which can be thought of as the ‘stalk’ of F at
the closed subset A). A sheaf F on X is c-soft if for every compact subset
K C X the restriction map F(X) — F(K) is surjective.

In fact, since topological pseudomanifolds are locally compact and count-
able at infinity, c-soft sheaves on X are soft (the converse is clear) — see
Kashiwara and Schapira [97, Ex. I1.6]. Soft sheaves are cohomologically triv-
ial, in other words if F is a soft sheaf then HP(X; F) = 0 for p > 0, see Iversen
(84, p157).

Lemma 7.1.5. The sheaves 8% and IPS% are c-soft (and hence by the above
are soft). In particular, for each i and for p >0 we have

HP(X;S%) = 0= HP(X;IPS%).

Proof. Let K C X be compact and suppose { € Si(K). We can represent {
by a locally finite singular chain & € S%(U) for some open neighbourhood U
of K. Every point z € K has a neighbourhood V,, which meets only finitely
many singular simplices of £. The V,, form an open cover of K; take a finite
subcover. There are finitely many simplices {o;|j € F'} of £ meeting the open
sets in this subcover, so we have a (finite) chain

£=3 &,0;€S%(U)

JEF
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and composing with the inclusion map U < X we can think of £ € S%(X).
Since every singular simplex of £ which meets K is in {o; l j € F} we have
€l = Elx = ¢.

The argument for ZPS% is the same. (|

Suppose F is a soft sheaf on X. Since its higher cohomology groups vanish
the complex px,Z°*(F) of global sections of the Godement resolution must be
exact except at the degree zero term. It follows that the quasi-isomorphism
F — I*(F) of F with its Godement resolution induces a quasi-isomorphism

Px F — px, I (F)

on global sections. The double complex theorem (see the proof of Proposi-
tion 3.5.8) allows us to generalise this to complexes: if F* is a complex of
soft sheaves then there is a quasi-isomorphism px,F* — px,Z°*(F). This
immediately implies

Hi(px,F*) = H'(px,I*(F)) = H(X; F*),

i.e. the hypercohomology of F* is isomorphic to the cohomology of the complex
of global sections of F*. The important examples for us are

H{{(X) = H ' (px,Sk) = H™H(X; S%)

and
IPHMX) = H  (px , IPSy) = H™H(X; I7S¥).

The same arguments apply to sections with compact support and so we also
have

Hy(X) = H ' (px:1S%) = H;'(X; S%)

and
PH(X) = H(pxZPSk) = H (X, IPS%).

Remark 7.1.6. In the first edition of this book sheaves of locally finite sim-
plicial chains C% and IC% were used. Section 5.2 proved that Ci was a
fine sheaf (see Remark 5.2.4 in the first edition) and it was asserted, follow-
ing Goresky and MacPherson [70, §2.1], that ZC% was also fine. However,
Habegger pointed out in [24, II §5] that this is not immediately clear since,
unlike ordinary simplicial chains, intersection chains cannot be broken into
pieces arbitrarily (because this may create non-allowable boundary compo-
nents). Fortunately the sheaves ZC’ are soft (Borel et al. [24, I §5]) and this
is quite sufficient for our purposes.
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7.2 Constructibility and an axiomatic charac-
terisation

l.et X be a topological m-pseudomanifold. We fix a stratification X = X,,, D
Xi-1=Xm-22 D Xgof X and label it by S.

In the previous section we showed that the closed and compact support in-
tersection homology groups are respectively the hypercohohomology and com-
pactly supported hypercohomology of a certain bounded complex of sheaves
[?S%. Put another way, this complex determines the groups. Since we are
really only interested in the groups up to isomorphism, we are only inter-
ested in the complex of sheaves up to a sequence of quasi-isomorphisms or,
cquivalently, up to an isomorphism in the bounded derived category DP(X)
of sheaves on X.

In this section we give a set of conditions or axioms on a complex of
sheaves which are satisfied by ZPS%. In fact, although we will not prove it,
these conditions determine ZPS% up to isomorphism in D?(X). Before we
give the axioms we need to introduce some terminology.

Constructibility

Definition 7.2.1. A sheaf F on X is constructible with respect to the
stratification S, or S-constructible, if the restriction

flxm—k—xm koL

is a locally constant sheaf on X,,—x — X;m—k—1 with finite-dimensional stalk
for each k > 0.

A bounded complex F* of sheaves is cohomologically S-constructible
if the cohomology sheaves H*(F*) are constructible for all i.

Remark 7.2.2. The restriction F'ly of a sheaf F' on X to a subspace Y is the
sheaf on Y defined as follows. If U is an open subset of Y then F IY(U ) is the
colimit with respect to the restriction of the vector spaces F(V) for V' open
in X such that U C V.

It is convenient to consider the full subcategory of complexes in D?(X)
which are cohomologically S-constructible (that is, the category whose ob-
jects are bounded complexes of sheaves on X which are cohomologically S-
constructible and with the maps between any two such being the same as in
Db(X)). We denote this by D5(X) and refer to it as the S-constructible
bounded derived category of X. It is a triangulated category (Gelfand
and Manin [63, Ch. 7 §1.6] or Dimca [56, Ch. 4]).

Remark 7.2.3. More generally, il we specify a collection A of stratifications
of X such that any two stratifications in A have a common refinement in
A then the full subcategory D% (X) of complexes which are cohomologically
constructible with respect to some stratification in A is triangulated.
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Taking A = {8} we recover the previous definition but there are other
important examples. If X is a complex algebraic variety then we can consider
the algebraically constructible derived category D%, .(X) where we take A
to be the collection of Whitney stratifications by algebraic subvarieties. In a
similar vein we can consider the analytically constructible derived category
Db (X) of a complex analytic variety or the PL constructible derived cat-
egory D% _(X) of a piecewise-linear pseudomanifold. See Dimca [56, Ch. 4]
for more details.

Stalks and costalks

Let 7, : {z} — X be the inclusion of a point z. Recall that the stalk at z of
a sheaf £ is the vector space

72€ = colim y5,I'(U; £).

The functor j% is exact and so we can extend this to a functor D¥(X) — Db(z)
on derived categories simply by applying j% term-by-term to a complex. For
a bounded complex F* of sheaves on X we will refer to the resulting complex
J=JF* of vector spaces as the stalk of F* at z.

There is a complementary construction called the costalk. If V C U are
nested neighbourhoods of z then a section which is compactly supported in
V can be extended by zero (remember sections of sheaves which agree on
overlaps can always be patched together) to obtain a compactly supported
section over U. In other words ‘extension by zero’ defines a map

To(V;€) = Le(U; €).
The costalk at z of a sheaf £ on X is the limit
I, =1ImI.(U;F*).
Usz

The functor Iy, is left exact (Iversen [84, II Prop. 6.8]) and so there is a right
derived functor

RT, : D*(X) — Db(z).

Remark 7.2.4. We will actually use the notation R, = j}, because this is a
special case of a more general functor f' : D¥(Y) — D?(X) which is associated
to a continuous map f : X — Y between finite-dimensional locally compact
spaces — see Iversen (84, VIII Thm. 3.1].

Although we will neither use nor emphasize this, the functor f' can be
described as Dx f* Dy where Dx and Dy are the Verdier duality functors on
DP(X) and D®(Y) respectively (see §7.4). This is a sheaf-theoretic general-
isation of the following construction of a map between the homology groups
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of manifolds: if f : X — Y is a map of manifolds then we define f' by

Hi(Y) ———— HémX—i(y)

S

Hiim v —dim x+i(X) <—— HImX—i(x)

where the horizontal maps are the isomorphisms given by Poincaré duality.

For a bounded complex F* we will refer to the complex jLF* of vector
spaces as the costalk at z.

The axioms

We say a complex of shcaves £°* € D?(X) satisfies AX,[§] if it is cohomologi-
cally S-constructible, in other words it is in the subcategory D§(X), and

(a) for any z € X the stalk cohomology H*(j%£*) =0 for i < —m;
(b) for any z € X — X,,,_» the stalk cohomology satisfies

; F i=—m

T * Se\ A
H'(3€°) = { 0 otherwise,
and, furthermore, the (—m)th stalk cohomology forms the constant local
system on X — X, _o;

and, for each z in a codimension k& > 0 stratum, i.e. £ € X, — Xn—k—1
(c) the ith stalk cohomology H*(s%£€*) =0 for i > p(k) — m;
(d) the ith costalk cohomology H*(3,£*) = 0 for i < —q(k).

Here q is the complementary perversity to p, i.e. p(k) + q(k) =k — 2.

These axioms are equivalent to the reformulation AX1[d”] of AX1 in
Goresky and MacPherson [70, §3.3]. We sketch a proof that they are sat-
isfied by ZPS% below. The full details of the simplicial case, which is entirely
analogous, are in Goresky and MacPherson [70].

Recall that a neighbourhood of a point in X is modelled on a cone and we
have vanishing results (see §4.7) for the intersection homology of a cone. In a
little more detail, suppose S is a stratum of codimension k, i.e. a connected
component of X,, y — X,,.x—1. Recall that there is a topological pseudo-
manifold Lg, the link of S, of dimension k — 1 such that for any z € S there
is a neighbourhood N, of z in X and a homeomorphism

N, 2R™ % x C(Ls).

(We allow the case k = 0 for which Lg = 0 and C(Lg) is a single point.) We
have (using the fact that taking cohomology commutes with taking stalks)

Hi(:IPSy) = IPH(N,).
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Axiom (a) is satisfied because dim N; = m. Axiom (b) is satisfied becausc
any £ € X — X,,_2 has a neighbourhood N, & R™ and

F j=m
0 otherwise.

IPHS(R™) = HH(R™) = { (7.1)

Note that for z € X,,—r — Xn—k—1 we have
IPH® (N,) = IPHY(R™F x C(Lg)) = IPHE . _;(C(Ls))

by a version of the Kiinneth theorem for closed support intersection homology.
So axiom (c) holds because the closed support intersection homology of a
cone vanishes in ‘low’ dimensions (see §4.7). It also follows that ZPS% is
cohomologically S-constructible.
The cohomology of the costalk at a point ¢ € X,,,_x — X;n—g—1 turns out
to be
H*(5,T?S%) = IPH_i(C(Ls)).

So axiom (d) holds because the intersection homology of a cone vanishes in
‘high’ dimensions (see §4.7) and we are done.

Not only does ZPS% satisfy these axioms, it is determined by them up to
unique isomorphism in D(X). The proof in Goresky and MacPherson [70,
§3.5] proceeds inductively beginning with X — X,,,_2 and adding strata in
order of increasing codimension. To recapitulate

Theorem 7.2.5 (cf. Goresky and MacPherson [70, §3.5]). Up to canonical
isomorphism in the S-constructible bounded derived category DE(X) there is a
unique complez of sheaves £* which satisfies the azioms AX[S]. Since I?S%
satisfies the azioms it follows that there are canonical 1somorphisms

HY(X;£) = IHY(X) and HY{X;E%)=IH_(X).

Remark 7.2.6. Suppose L is a local system on X —X,,,_5. Then, with the obvi-
ous modification to (b), these axioms characterise Z’Sx, ¢ up to isomorphism
in D§(X).

7.3 The topological invariance of intersection
homology

Following Goresky and MacPherson [70, §4.1] we can recast the axioms AX,[S]
in a stratification-independent form. We say a complex £° of sheaves in the
bounded derived category D*(X) of a topological pseudomanifold X satisfies
AX, if

(a) for any z € X the stalk cohomology H*(s%£*) =0 for i < —m;
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(b) there is a closed subset ¥ C X of codimension > 2 such that for any
z € X — ¥ the stalk cohomology satisfies

; F i=-m
Tk O\ s
H'(32£7) = { 0 otherwise,

and, furthermore, the (—m)th stalk cohomology forms the constant local
system on X — X;

and for i > 0 we have the following restrictions on the codimension of the sets
on which the (—i)th cohomology of the stalk and costalk are non-vanishing:

(c) codim {H*(55€*) # 0} > p~'(m — i)
(d) codim {H™*(5,€°) # 0} > ¢7()

where, as before, ¢ is the complementary perversity to p.

Remarks 7.3.1. 1. Here by p~! we mean the subinverse, i.e.

pl(n) = min{alp(a) >n},

and similarly for ¢~1.

2. To make sense of these axioms we need a notion of dimension for subsets
of a topological space; Goresky and MacPherson use that of Hurewicz
and Wallman [83] in [70].

3. As with AX[S], we can modify (b) so that the modified axioms char-
acterise ZPSx  where £ is a local system on X — X,

Exercise 7.3.2. A complex satisfies AX,[S] if and only if it satisfies AX,
and is cohomologically S-constructible.

We want to show that intersection homology is a topological invariant, i.e.
that a homeomorphism f: X — Y induces an isomorphism

foi THW(X) = THL(Y).

In order to show this it now suffices to find a complex P* which satisfies
the stratification-independent axioms AX, and which is cohomologically S-
constructible with respect to any stratification S. For it then follows from Ex-
ercige 7.3.2 that P* satisfies AX;[S] for any topological stratification, and so
by Theorem 7.2.5 it is canonically isomorphic in D¥(X) to the complex ZPS,
defined with respect to that stratification. These isomorphisms induce canon-
ical isomorphisms between intersection homology groups {with both closed
and compact supports) defined with respect to different stratifications.

To carry out this programme we need two ideas, Deligne’s construction
and the canonical filtration.
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Deligne’s construction
Suppose we have a fixed filtration
X=Xmn2Xm-22--2Xo

of X by closed subsets, which we denote by S. Note that we do not require
that this is a stratification, or even that X; — X;_; is a manifold. Let

U X —Xm—k —- X _Xm——k——l

be the inclusion. Recall from Section 3.4 that if F is a sheaf on X — X,
then 1, F is the sheaf on X — X,,, ;1 satisfying

() (V) = F (VN (X = X i) = F (55(V) (7.2)
for any open subset V of X — X, _g—1.

Definition 7.3.3. If £° is a complex of sheaves on X and r € Z we define
the truncated complex 7<,£* to be the complex which in degree 4 is

o i<p,
ker (d: £7 — E™F1) i=p,
0 i>p.

Theorem 7.3.4 (Deligne’s construction, Goresky and MacPherson [70, §3]).
If S is a topological stratification then the complex of sheaves

2 (S) = Tsp(m)_mRzm* e ’i’sp(z)_,,,,R?q,,(]FX__Xm_2 [m]

satisfies AXp[S], and hence is isomorphic to IPS%. (As in Section 3.7 Ry,
is the right derived functor of u.,.)

This construction is very important because it can be used to define in-
tersection homology in any situation where there is a good sheaf theory and
good stratifications, for example algebraic geometry in characteristic p > 0
(see Chapter 10). Moreover, this construction does not require the filtration
of X to be a topological stratification.

The canonical filtration
There is a ‘canonical filtration’
X= X222 X352 2 X5

of X by closed subsets X7*" which is coarser than any topological stratification
in the sense that X7** C X; for any topological stratification

X=Xn2Xn-22 f2 Xo.

The X7*° — X529 will not necessarily be manifolds but they will be uniquely

determined by X without the need of choice.
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Definition 7.3.8. Let U be the largest open subset of X such that the co-
liomology sheaves of the complex S% restricted to U are all locally constant.
(Fquivalently U is the union of all open subsets of X upon which the restric-
tion of the cohomology sheaves of S} are locally constant). Let X222, be the
closed subset X — U of X.
If z € X is not in the singular set X,,_2 of some topological stratification
X 2 X2 2 --- 2 Xo of X then the ith cohomology stalk of S§ at z is
given by
, F i=-m
Pk Qe Y — cl m —
H'(535%) = HS,(R™) = { 0 otherwise.
It follows that
X2, C X
and so has codimension > 2. Define X"‘“‘k inductively for 2 < k < m as
follows. If 1 < 5 < k let
X - Xt - X —

mgl

and
e X — X, - X

be the inclusions. Then let X{2", | be the complement in X", of the largest
open subset of X2, on which the cohomology sheaves of both

Sieen,  80d R (k). T<ph-1)-mB (521), R (15°"), T<p(t)-m R (1*),. Sy

are locally constant. By induction each X", is a closed subset of X and the

filtration
X =X32" 2 X2, D Xg™

is coarser than any topological stratification
X=Xpn2Xpn22: 2 Xo
(in the sense that X7*" C X for all 0 < j < m).

Deligne’s construction can be applied to the canonical filtration to give
a complex P* which satisfies AX;, and furthermore, because the canonical
filtration is coarser, P* is cohomologically S-constructible for any topological
stratification 8. As noted on page 111 it follows that intersection homology
is a topological invariant.

7.4 Duality in the derived category
One of the most important properties of vector spaces is that there is a notion

of dual vector space. More formally there is a contravariant functor V
Hom(V,F) from the (Abeclian) category of vector spaces over F to itself which
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takes a vector space to its dual. It is natural to ask whether there is a similar
notion of dual for sheaves of vector spaces on a space X. The naive attempt
to define the dual of a sheaf £ by

U — EU)Y = Hom(£(U),F)

for open U C X fails. This is because there is no natural way to make this
into a sheaf, i.e. to define restriction maps: the duals of the restriction maps
of £ go in the wrong direction.

A more sensible (categorical) approach is to recall that for any sheaf F on
X there is a functor Homgy x)(—, F) which takes a sheaf £ on X to the sheaf
with sections over an open subset U of X given by the space of sheaf maps
from the restriction of £ to the restriction of F, i.e.

Homgy(x) (€, F)(U) = Homgyy)(Elv, Flu).

By analogy with the situation for vector spaces we might hope that there is
a sheaf Dx on X, a dualising sheaf, for which the assignment

& — Homgy(x) (€, Dx)

is an appropriate dual. This is not the case and the reason is that for non-
0-dimensional spaces the dualising object is not a sheaf (which we should
think of as a complex concentrated in degree zero) but a complez of sheaves.
Thus we are forced to think in terms of complexes of sheaves, more precisely
in terms of the derived category, rather than of sheaves. (Indeed this is a
strong motivation for introducing the derived category.) Specifically, if X is
a topological pseudomanifold then the contravariant functor

Dx(—) = RHomgn(x)(—,S%) : D*(X) — Db(X),

is called the Verdier dual. Here S% is the sheaf complex of singular chains
with closed support (see p104) and RHomgy(x)(—,S%) is the right derived
functor of the left exact functor Homgyx)(—, Sk )-

Theorem 7.4.1 (See Gelfand and Manin [63, Ch. 4 §5]). Suppose X is a
topological pseudomanifold. Then the Verdier dual Dx : D*(X) — D*(X) is
a contravariant functor such that

1. Dx is triangulated (in the contravariant sense), i.e. Dx takes distin-
guished triangles to distinguished triangles and

Dx (£°[1]) = (Dx€%) [-1];

2. when X is o point the Verdier dual Dy, is (isomorphic to) the standard
dual of a complex of vector spaces, i.e. Dy V'* is the complex with (V"')V
in degree i and with differentials given by the duals of the differentials
of V.;



7.4 Duality in tho dorived category 115

8. for any E* € D*(X) there is a natural map £° — D%E°;
4. the Verdier dual commutes with restriction to open subsets, i.e.
Dy(£°lv) = (Dx€*) v
for any complex £ of sheaves on X;

5. [Verdier duality] for any continuous map f: X — Y and £* in D*(X),
there is a natural isomorphism,

DyRf.E* ~ RfiDxE";

6. the Verdier dual preserves cohomological constructibility, i.e. it descends
to a contravariant functor Dx : D§(X) — D§(X) for any topological
stratification S of X. Furthermore, the natural map £ — D%E* is an
isomorphism for a cohomologically constructible complex £°.

Remark 7.4.2. If D% is a complex of sheaves on X for which the functor
RHomgy(x)(—, DY) satisfies the above properties then, since we noted in
(35) that ’HmnSh(X) (]Fx,g) 2 £ for any sheaf £, we find that

D% = RHomgnx)(Fx,D%)

is the ‘dual’ of the constant sheaf Fx. Hence, using Verdier duality,

HY(X;Dx) = H ‘(Rpx.D%)
& H*(DpRpx\Fx)
~ H'(Rpx,Fx)¥

IR

H{(X)Y

is dual to the compactly supported cohomology of X. A local version of this
argument shows that the above properties force the ‘dualising complex’ to be
the sheaf complex S% of singular chains with closed support.

Verdier duality relates the hypercohomology of the dual Dx£* to the com-
pactly supported hypercohomology of £° because

H(Rpy,Dy&*)
H' (DptRpu/E*)
H=(Rpy\U)Y
HIHU; ).

HY(U; DxE*)

R 12 1R

An important consequence is that £° satisfies AX(c) and AX,(d) if and
only if (Dx&*) [m] satisfies AX,(d) and AX,(c) respectively. Here ¢ is the
complementary perversity to p. In fact, if X is orientable then

E* satisfles AX, < (Dx&*)[m)] satisfies AX.



It follows from Theorem 7.2.5 that we have a canonical isomorphism
I98% = (DxIPS%) [m] (7.3)

which, upon taking compactly supported hypercohomology groups, induces
isomorphisms
IH;(X) 2 IPHZ _(X)V.

These give rise to the non-degenerate pairing in Theorem 5.1.1. Hence, gener-
alised Poincaré duality follows from the fact that Verdier duality interchanges
the axioms AX, with AX,.

i

7.5 Further reading

The proofs of the assertions we have made in this chapter can be found in
Goresky and MacPherson [70]. This paper also includes a proof of the Lef-
schetz hyperplane theorem for the intersection homology of a singular projec-
tive variety. Gelfand and Manin [63] contains a concise treatment, placed in a
much wider context, which is extremely useful as an overview and reference.

A detailed account of the sheaf-theoretic machinery, in particular of the
constructible derived category of sheaves on a stratified space, can be found
in Borel et al. [24]. Another self-contained treatment can be found in the
compendious Kashiwara and Schapira [97], which concentrates on the case
when the underlying space is a Whitney stratified manifold. In this situation
the theory can be greatly refined by considering the micro-local geometry, i.e.
the geometry of the cotangent bundle. Dimca [56] provides a condensed and
digestible exposition of this theory (with some proofs and technicalities omit-
ted) and includes a wealth of examples and applications, mostly for complex
analytic or algebraic varieties. See also Schiirmann [159].

Beilinson, Bernstein and Deligne’s seminal paper [13] puts the construc-
tions of this chapter in the wider context of perverse sheaves (see the next
chapter) and also explains how they can be applied to algebraic varieties over
finite fields (see Chapter 10). Brylinski [36] provides a brief survey.



Chapter 8

Perverse sheaves

In this chapter X will be a 2r-dimensional topological pseudomanifold and
S will be a stratification of X with no odd-dimensional strata. The typical
cxamples we have in mind are complex analytic or algebraic varietics Whitney
stratified by subvarieties.

8.1 Perverse sheaves

Local systems (locally constant sheaves, representations of the fundamental
group. ..see §4.9) are fundamental tools in geometry and topology. If one is
working with stratified spaces then it is natural to consider a ‘stratified local
system’, i.e. a sheaf which is locally constant on each stratum. These are
precisely the constructible sheaves introduced in Definition 7.2.1. Thinking of
a constructible sheaf as a complex concentrated in degree zero we see that the
S-constructible sheaves form an Abelian subcategory of the cohomologically
constructible derived category DE(X). At the end of the last chapter we
introduced Verdier duality, a contravariant functor Dx from DE(X) to itself
which generalises the usual duality of vector spaces. It is natural to ask
whether the Verdier dual of a constructible sheaf is again a constructible
sheaf, and perhaps disappointing to discover that the answer is no. However,
Beilinson, Bernstein and Deligne showed in [13] that there is another Abelian
subcategory of D2(X) which is preserved by Verdier duality. Furthermore
this subcategory is intimately related to intersection homology, and arises
naturally in a wide range of contexts in topology, analysis and algebra. The
objects of this subcategory are the perverse sheaves (although we will see that
they arc not sheaves at all but rather complexes of sheaves).

Definition 8.1.1 (Beilinson, Bernstein and Deligne, [13, §2]). A complex of
sheaves £* € D(X) is a perverse sheaf if for each stratum S and point
z€S

H(s2E*) = 0 for i > —dim S/2 and H(7,€*) = 0 for i < dim S/2. (8.1)
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Alternatively we can reformulate the conditions independently of the stratifi-
cation: £* € DE(X) is a perverse sheaf if

dim{H (7€) #0} <2 and dim{H!(jL,E*) # 0} < 2. (8.2)

The full subcategory of perverse sheaves in D(X) will be denoted Ps(X).
(We have formulated the conditions in terms of the stalks and costalks as
in Kashiwara and Schapira [97, §10.3]. In Beilinson, Bernstein and Deligne
[13] they are written in terms of 7§ and j5 where jg is the inclusion of the
stratum.)

Example 8.1.2. If X is a manifold trivially stratified with only one stratum
then a perverse sheaf is a local system placed in degrec —dim X/2, i.c. a
complex L[~ dim X/2] where L is a local system on X.

The conditions (8.1) and (8.2) closely resemble the axioms for the in-
tersection homology sheaf. Let m be the lower middle perversity so that
m(2k) = k — 1. Recalling that X and all strata of X are even-dimensional,
axioms (c) and (d) on page 109 become

Hi(7£*) =0 for i > (—dim S — dim X)/2
Hi(3L.€°) =0 for i < (dim S — dim X)/2

respectively, for ¢ in a stratum S of codimension > 0. Thus the precise
relationship with the conditions for a complex to be a perverse sheaf is given
by

Lemma 8.1.3. A complex of sheaves £* € D§(X) is a perverse sheaf if and
only if the shift £°[r] (where dim X = 2r) satisfies axioms (c) and (d) for the
lower middle perversity — that is (8.3) -- with the incqualities replaced by
weak inequalities and without the restriction that codim S > 0. In particular
IS8%[—r] is a perverse sheaf.

(8.3)

The only point with which we need to take care is that ZS% [—r| satisfies
the conditions (8.1) for the codimension 0 strata of X. This follows since ZS%
satisfies (b) on page 109.

More generally, if S is a stratum of X then its closure S =Y is a closed
union of strata of X and is naturally a stratified pseudomanifold with only
even dimensional strata. Let £ be a local system on S. Then we can define the
intersection homology sheaf 7Sy, on Y with coefficients in the local system
L. Its extension by zero (which in a mild abuse of notation we denote in
the same way) is a cohomologically S-constructible complex on X and we can
verify that ]

18y,cl-sl
is a perverse sheaf, where dim S = 2s. We can recover the stratum S and local
system L from this perverse sheaf so we have a plentiful supply of examples
of perverse sheaves, one for each local system on a stratum of X.

The perverse sheaves have many good properties, prominent amongst
which are the following two theorems.
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Theorem 8.1.4 (Beilinson, Bernstein and Deligne [13, §2]). The category
Ps(X) of perverse sheaves is Abelian. A sequence

0-E& =-F -G =0

of perverse sheaves is a short exact sequence if and only if there is a map
G* — £°[1] such that
& - F -G —E]

is a distinguished triangle in D3(X).

The proof involves a general theory of Abelian subcategories of derived
categories, the theory of t-structures, developed in Beilinson, Bernstein and
Deligne [13] (see also Dimca [56, §5.1], Kashiwara and Schapira [97, §10.1]
and Gelfand and Manin [63, Chapter 5 §3]).

Theorem 8.1.5 (Beilinson, Bernstein and Deligne, [13, §4]). The Verdier
dual Dx preserves the perverse sheaves; in fact it restricts to an exact con-
travariant functor from Ps(X) to itself.

The fact that it preserves the perverse sheaves follows from the discussion
on page 115 which shows that the two conditions in (8.1) are dual to one
another in the sense that if £° satisfies the first then Dx£* satisfies the second
and vice-versa. The fact that Dy induces an exact functor on the Abelian
category of perverse sheaves follows from the general theory of t-structures.

Example 8.1.6. Recall that a local system £ on a space X is given by data
consgisting of a vector space £, for each z € X and an isomorphism

©*: Loy = Lo()

for each continuous path ¢: [0,1] — X. There is a dual local system £V
with £Y = Hom (L., F) and with isomorphism

@) : Loy — Loqy

corresponding to the path ¢, where % is the same path but traversed in the
opposite direction. If X is a d-manifold then a direct computation shows that
the Verdier dual of £ (which we now think of as a locally constant sheaf) is

DxL = LV[d].

Using this computation {and the facts about the Verdier dual listed in
Theorem 7.4.1) we can compute

) Dx (IS c[~5]) = (DyISy..) [s] & TSy v [—s].

where, as before, Y is the closure of a 2s-dimensional stratum S of X and £
is a local system on S. This verifies the first part of Theorem 8.1.5 for the
examples of perverse sheaves which we have met so far.



—— Perverse sheaves

We saw above that the intersection homology sheaves on the closures of
strata with coefficients in a local system are perverse sheaves. In fact every
perverse sheaf is ‘built up’ from a finite number of these in a sense which we
now explain,

Definition 8.1.7. An object a in an Abelian category A is simple if there
are no non-trivial short exact sequences

0—=p—a—q—0
in A (i.e. either p or g is zero).

Theorem 8.1.8 (cf. Beilinson, Bernstein and Deligne [13, Thm. 4.3.1]). The
category Ps(X) of perverse sheaves is Artinian. In other words, every perverse
sheaf £* has a finite length composition series

0=&f =& =, =E°

for which the quotients £; /E;_, are simple perverse sheaves, and the mazimal
length of any such composition series for £° is finite. (The quotients make
sense because the category of perverse sheaves is Abelian.)

Furthermore, any simple perverse sheaf in Ps(X) has the form ISy, ;[—s]
where Y is the closure of a connected stratum S of dimension 2s and L is an
irreducible local system on S. (A local system is irreducible if the correspond-
ing representation of the fundamental group is irreducible.)

In outline the argument goes as follows. If we have a (strict) descending

chain

Ay DA D ...

of perverse sheaves then we can show that, for sufficiently large ¢, the perverse
sheaf A3 is supported (in the sense that its stalks vanish elsewhere) on a subset
of strictly higher codimension than .A3. Because X is finite-dimensional we
cannot increase the codimension indefinitely and so any descending chain of
perverse sheaves must terminate, i.e. Ps(X) is Noetherian. Since Verdier
duality preserves the perverse sheaves we obtain the dual statement for free:
ascending chains must also terminate, i.e. Ps(X) is Artinian.

It is not hard to see that a simple perverse sheaf £* must be supported on
the closure Y of a connected stratum S. The perverse conditions ensure that
its restriction to S must be a local system L, shifted by half the dimension of
S. Suppose T is a stratum of minimal codimension in the closure of S. Then
the following are equivalent:

e the restriction of £* to S U T has no subobject or quotient perverse
sheaves which are supported on T}

e £° obeys the strong vanishing conditions

Hi(2£*)=0 fori> (—dimT —dim X)/2
Hi(3.6)=0 fori< (dimT —dim X)/2
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forzeT.

By induction, adding a stratum at a time, we find that £* obeys the same
nxioms as, and therefore is isomorphic to, the shifted intersection homology
complex

18y,c[-5]

and, furthermore, that the latter is simple if and only if £ is irreducible.

Another way of expressing this is to say that Deligne’s construction pro-
vides the unique minimal extension of a perverse sheaf over a stratum, in
the sense that there are no subobject or quotient perverse sheaves of this ex-
tension which are supported on the newly-added stratum. In particular, the
(shifted) intersection homology complex ZS% [— dim X] is the unique minimal
extension of the constant sheaf on the non-singular part of X.

8.2 Perverse sheaves on varieties

If X is a quasi-projective complex algebraic variety then we can define a
category Pgig—c(X) of (algebraic) perverse sheaves on X without choosing a
stratification. An (algebraic) perverse sheaf on X is a complex in D} g—c(X)
which satisfies the stratification-independent conditions (8.2), i.e.

dim{H*(72€*) #0} < 2 and dim{H*(}.£°*) # 0} < 2i.

Equivalently, it is a bounded complex £°* such that there exists a Whitney
stratification by algebraic subvarieties with respect to which £° is cohomolog-
ically constructible and satisifies the conditions (8.1).

There is an entirely analogous construction of (analytic) perverse sheaves
Pun—c(X) on a complex analytic variety.

Both Pgjg—c(X) and Pgn—(X) are Artinian Abelian categories, preserved
by Verdier duality. The simple objects are once again intersection homology
sheaves; more precisely they are the objects

IS}#[—S]

where £ is an irreducible local system on the non-singular part of an irre-
ducible subvariety Y of X. Moreover the perverse sheaves

ISy c[—s] and ISy, pi[—s]
are isomorphic if and only if Y NY” is dense in ¥ and in Y’ and
Llyny = L yny’,

see Beilinson, Bernstein and Deligne [13, 4.3.1].
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8.3 Nearby and vanishing cycles

Perverse sheaves arise naturally in the study of singular fibres of complex
polynomials. In this section we give the briefest introduction to this subject.
Suppose f : C" — C is a polynomial. We will write X = C" and X; =
F~1(t) for the fibre of X over the point ¢t € C. There is a diagram of analytic
varieties
XOC_L>X<_13X_XO<_"_X’_:XO

I
{0}~ C<~—C— {0} <<—C_ {0}

where C,—\—{T)} is the universal cover of C — {0} and X,—\—j(o is the pullback
of X — X, along the covering map

m:C - {0} - C - {0},
. as a set it is {(z,£) € (X — Xo) x (C — {0}) | f(z) = =(£)}.
Definition 8.3.1. The nearby cycles functor
Uy : Db, o(X) = Dby o(Xo)
is given by W;£° = ¢*Rp,p*E* where p = j7: X,:X'o — X.

Recall that the pullback p* of sheaves is left adjoint to the pushforward
P« An important consequence is that there is a natural map

£ — Rp,p*&°,

see, for example, Iversen [84, p98]. Restricting to the fibre X by applying +*
we have the comparison map

1*E® — *Rp,p*E°* = W&°.
Definition 8.3.2. The vanishing cycles functor
¢f : Dzn—c(X) - Dgn—c(XO)

is the mapping cone (see Definition 3.7.4) on the comparison map. Thus there
is always a distinguished triangle

?ES = Wl — B8 — 1" E°[1]. (8.4)

In order to understand the geometric significance of the nearby and van-
ishing cycles functors we consider the simplest case; take £* = Fx to be the
constant sheaf on X with coefficients in the field F.
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Suppose that U is a neighbourhood of 0 € C such that every ¢t € C— {0} is
a regular value of f. Then for ¢t € U — {0} the fibres X; are all homeomorphic
and the restriction of f to f~1(U — {0}) will be a locally trivial fibration
called the Milnor fibration of f at 0 — see Milnor [134]. The pullback of this
fibration to the universal cover is trivial and a fibre of it, i.e. a fibre of

for sufficiently small £, can be thought of as a ‘generic fibre’ of f near 0.
Readers familiar with sheaf theory will not find it hard to prove the following
proposition.

Proposition 8.3.3 (Dimca [56, Prop. 4.2.2]). For any 0 # t € U an identi-
fication of X; with this generic fibre gives an isomorphism

HY(Xo; UsFx) = HY(Xy). (8.5)

Indeed, if 3. : x — Xy is the inclusion of a point, then for sufficiently small t
we have isomorphisms

H(539;Fx) = H'(X,N B;) (8.6)

where B, 18 a small ball about z in C" and X;N B, is the local Milnor fibre
at x. This should explain the term ‘nearby cycles’.

The long exact sequence of cohomology groups arising from the distin-
guished triangle (8.4) is

-+ — HY(Xo) — H(X;) — H(Xo; ¥sFx) — H*'(Xo) — - -
Geometrically it is simpler to think in terms of the dual sequence
-+ = Hyp1(Xo) — HY(X0; ¥ sFx)Y — Hy(X:) — Hi(Xo) — -

The (dual of the) comparison map H;(X;) — H;(Xo) arises from a continuous
map X; — Xp called the specialisation map (Goresky and MacPherson [71,
§6]). Typically, specialisation involves collapsing certain cycles in the fibre X,
and the homology of these ‘vanishing cycles’ is given by the image of the
second term in H,(X;).

Theorem 8.3.4 (Goresky and MacPherson [71, §6], Brylinski [37] and Kashi-
wara and Schapira [97, 10.3.13]). The right shifts W¢[—1] and ®f[—1] of the
nearby and wvanishing cycle functors preserve perverse sheaves, i.e. they re-

strict to functors
Pan—c(X) - Pan—c(X0)~

Example 8.3.5. Take X = C2 and f : (z,y) — z3+y3—zy. The special fibre
Xp is the affine part of the plane projective curve {(z : y : 2) € CP? | 23+ =
zyz} and the general fibre X; for ¢ # 0 is its smoothing (see Figure 8.1).
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Figure 8.1: Topological pictures of z3 + y* — zy = 0 (left) and its smoothing
x3 4+ y3 — zy = t # 0 (right). The three dots represent three punctures; the
corresponding projective curves in CP? are obtained by filling in these points.

Figure 8.2: The local Milnor fibre of f(z,y) = z3 + y3 — zy at the sifigular
point {0, 0) is pictured above — the waist collapses to a point in the singular
fibre. At all non-singular points the local Milnor fibre is contractible.

We can find the local Milnor fibres at points (z,y) € X (see Figure 8.2)
and hence compute

] F i=0
H(3U;Fx)={ F i=1,(z,y) =(0,0)
0 otherwise.

Similarly we can compute the cohomology of the costalks. Note that the
nearby cycles form a perverse sheaf but not an intersection homology sheaf,
i.e. not one of the form ZSy , for some subvariety ¥ and local system L.

We can also compute that the vanishing cycles are supported at the sin-
gular point (0, 0) with

; F i=1,z=(0,0)
ip % ~ ’ ’
H'(5;24Fx) = { 0 otherwise.
This corresponds to the 1-cycle, the waist of the Milnor fibre, which contracts
to a point in the singular fibre.
A priori the singularity of X at (0,0) could arise in two ways; either two
points in a nearby fibre could coalesce or a circle could contract to a point.
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Since we know from Theorem 8.3.4 that the shifted vanishing cycles ®;Fx
must be a perverse sheaf we can deduce that it is the second possibility which
occurs. {Of course we could also obtain this conclusion from global topological
considerations.)

8.4 The decomposition theorem

One of the most important theorems about intersection homology is the de-
composition theorem of Beilinson, Bernstein, Deligne and Gabber (see Beilin-
son, Bernstein and Deligne [13], Goresky and MacPherson [69] and MacPher-
son [124]).

Definition 8.4.1. Let X C CP™ and Y C CP" be quasi-projective complex
varieties. A regular map

p: X Y
is a map such that for each z = (zp: ... : z,) € X there exists homogeneous
polynomials fy,..., fm in n + 1 variables, all of the same degree and not all
vanishing on (zg,...,Zy), such that
o 1yn) = (folgo - i¥n) i B0t - - 1 Yn))
for all (yg: ... : yn) in some neighbourhood U of z in X. The map ¢ is called

projective if it can be factored as
X—L>cpV x y2>Y

for some N, where 1y is an isomorphism (i.e. a regular map with a regular
inverse) of X onto a closed subvariety of CPY x Y and Y is the projection of
CPY x Y onto Y. Note that every fibre o ~!(y) of ¢ is then a quasi-projective
subvariety of CP".

Theorem 8.4.2 {Decomposition theorem for intersection homology). Let
w: X — 'Y be a projective map between complex quasi-projective varieties.
Then there exist closed subvarieties V, of Y, local systems L, on the non-
singular parts (Va)nonsing 0f Vo and integers £, such that

ITH;(X) = D IHj ¢, (Va La) (8.7)

for all j 2 0.

This decomposition is a consequence of a more powerful result about the
behaviour of perverse sheaves with respect to projective maps.

Theorem 8.4.3 (Decomposition theorem for perverse sheaves). Suppose @ :
X — 'Y is a projective map of quasi-projective varieties and £° € Pgrg—c(X)
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is a perverse sheaf of ‘geometric origin’ on X. Then the pushforward Rp.E*
is isomorphic to a direct sum of (shified) simple perverse sheaves.

In particular, since we can characterise the simple perverse sheaves on'Y
as intersection homology complezes (Theorem 8.1.8), there erist closed subva-
rieties Vo of Y, local systems L, on the non-singular parts (Vo )nonsing 0f Vo
and integers £, such that there is an isomorphism

Rp.£* = PISy, 1, [b]

in the algebraically constructible bounded derived category D%, ().

We refer the reader to Beilinson, Bernstein and Deligne [13] for the def-
inition of a perverse sheaf of ‘geometric origin’. However, we note that the
intersection homology complex ZS% is always of geometric origin. (In fact it is
conjectured that the assumption that £* is of geometric origin is unnecessary,
see Drinfeld [58].)

The proof of Theorem 8.4.3 in [13, §6] involves relating the intersection
homology of a variety to the £-adic intersection cohomology (see Chapter 10) of
varieties over fields of non-zero characteristic. Saito [151] gives an alternative
proof, based on the relation of perverse sheaves to D-modules (see Chapter 11)
and the theory of mixed Hodge modules. An overview and further references
can be found in Saito [150].

In order to understand the connection between these two results we need
to know that for any bounded complex F* on a topological space A and
continuous map f : A — B we have isomorphisms

H*(A; F*) & H*(B;Rf.F*) and HX(A;F*) = H!(B;RfF*) (88)

of hypercohomology groups, see e.g. Gelfand and Manin [63, Ch. 4 §5]. Fur-
thermore if f is a proper map then Rf, & Rf,. To obtain (8.7) from Theorem
8.4.3 we put £* = IS% and note that, since projective maps are proper,

TH(X) = H;(X;I8%) & H;*(Y; Rp, ISk).

Remark 8.4.4. The decomposition theorem is an algebro-geometric result; it
does not hold for more general stratified spaces and maps. However, Cap-
pell and Shaneson [40] prove a weaker, but still very useful, result for any
proper stratified map f: X — Y between Whitney stratified spaces with only
even codimension strata. To do so they define an equivalence relation, which
they term cobordism, on self-dual complexes of sheaves on such a space. (A
self-dual complex of sheaves on X is a bounded, constructible complex F*
together with an isomorphism

F* = Dx F*[dim X

to the shifted Verdier dual. The most important example is the intersection
homology complex ZS% equipped with the Poincaré duality isomorphism.)
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They then prove that the pushforward Rf,F* of any self-dual complex F* on
X is cobordant to a direct sum

Pzs; . [codim 5/2] (8.9)
S

where the Lg are local systems, given explicitly in terms of the map f and the
complex F*, on the strata S of Y. The self-dual structure on this sum arises
from non-degenerate bilinear forms on the local systems and Poincaré duality
isomorphisms for the intersection homology complexes. Youssin [180] gives a
proof which emphasizes that this result is a formal consequence of the struc-
ture of the constructible derived category of Y and its Abelian subcategory
of perverse sheaves.

Since IS% is a self-dual complex on X we obtain an expression (8.9) for
Rf.IS%. When f is a projective map of complex algebraic varieties then the
terms in this expression can be related to those that appear in the decompo-
sition theorem.

Cobordant self-dual complexes need not have the same hypercohomology
so Cappell and Shaneson’s result cannot be used to compute intersection
homology groups. However, important invariants of self-dual complexes are
preserved under cobordism, in particular the result has applications to the
signatures and L-classes of stratified spaces (sce Cappell and Shaneson [40]
and Banagl, Cappell and Shaneson [6]).

Two special cases of the decomposition theorem are very important:

Proposition 8.4.5. 1. Suppose that p: X — Y is a resolution of singu-
larities of Y. That is, X is non-singular and ¢ is a surjective projective
map which restricts to an isomorphism from a dense open subset of X
to the non-singular part Yyonsing 0f Y. Then there is a unique o, say
oy, such that Vo, =Y, and moreover £,, = 0 and L, ts the constant
local system F. Thus

Hi(X) = IH;(X) 2 IH;(Y) ® | €D IH;j-r,(Va, La)
01-760‘0
In other words the intersection homology of any quasi-projective variety

Y is a direct summand of the ordinary homology of any resolution of
singularities X of Y.

2. Suppose that ¢: X — Y is a projective map which is topologically a
fibration, with fibre V' (a projective variety). That is, every y € Y has
an open neighbourhood U in'Y such that there is a homeomorphism

e U)-UxV

such that @: =Y (U) — U corresponds to the projection onto U. In
such a situation there is a Leray spectral sequence for computing
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the cohomology of X which has Ey term given by
EP?=HP(Y; HY(V)).
Here HY(V) denotes the local system L on'Y with stalk
Ly = H%(V,)

where V, = o™ Yy) X V for each y € Y (Bott and Tu [26, p169],
Griffiths and Harris [17, p463]).

There is also a Leray spectral sequence for computing the intersection
cohomology of X with E; term IHP((Y;IHY(V)). The decomposition
theorem for o is equivalent to the degeneration of this spectral sequence
at the Eo term. That is, it says that

IHI(X) = € IH"(Y;IHY(V))

p+g=j7

or eguivalently

IH;(X) = @D IH,(Y;IH,(V)).

ptg=j

In special circumstances we can compute the intersection homology of a
complex variety using a resolution of singularities. The simplest example is
that of small resolutions.

Definition 8.4.6. A resolution of singularities ¢: X — Y is called small if
for every r > 0
codim {y € Y|dim¢~'(y) > r} > 2r,

i.e. the fibres are small in the sense that their dimension is < r except on a
subset of codimension > 2r.

Theorem 8.4.7 (Goresky and MacPherson (70, §6.2]). Ifo: X — Y is a
small resolution then

IH,(X) & IH,(Y) & H*(Y).

To prove this we consider the complex Rp,ZS% of sheaves on Y. On the
one hand by (8.8) its compactly supported hypercohomology is TH.(X). On
the other hand we can show that it satisfies the axioms (a)-(d) on page 109
which characterise ZSy up to isomorphism in D*(Y).

Remark 8.4.8. Every quasi-projective complex variety has a resolution of sin-
gularities but not every quasi-projective complex variety has a small resolu-
tion. Some varieties have more than one small resolution. One can show, for
example, that intersection cohomology has no natural ring structure general-
ising the cup product on ordinary cohomology by exhibiting a variety with
two small resolutions whose cohomology rings are not isomorphic.
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Example 8.4.9 (Cheeger, Goresky and MacPherson [48, §5.2]). If a < b are
positive integers the Grassmann variety

Gr(a, C®) = {a-dimensional subspaces of C*}

is a non-singular projective variety of dimension a(b — a).
If M is a fixed subspace of C® and ¢ < a is a positive integer then

S ={V € Gr(a,C*)|dimV N M > ¢}

is a projective subvariety of Gr(a, C) called a single condition Schubert
variety. There is a resolution of singularities ¢: S — S where

S = {(V,W) € Gr(a,C®) x Gr(c,C?)|W C V n M}

and ¢(V,W) = V. It is an easy exercise to show that the resolution ¢ is a
small resolution. Thus

IH,(S) = H,(S).

If we choose an isomorphism of M with C¢ where d = dim M then we can
define

p: 8§ — Gr(c,C% : (V, W) > W.

It is easy to check that p is a projective fibration with fibre Gr(a — ¢, C*~°).
Thus the decomposition theorem applied to p tells us that

Hi(®)= @ Hy(Gr(c,C"); Hy(Gra— c,C9)).

p+q=j

Grassmann varieties are simply connected. It follows that any local system
over Gr(c,C?) is trivial. Hence we have

IH;(S) > Hy(S)= @ Hp(Gr(c,C%) @ Hy(Gr(a—¢,C*9)).

p+a=j

The homology of Grassmann varieties is well known (see e.g. Griffiths and
Harris [77, Ch. 1 §5]. The Betti numbers

B; = dim H; (Gr(a, Cb))

of Gr(a,C?) are given by the formula

ZB P o= Hagz‘<b(1+t2+t4+___+t2i)
J

>0 T Migjcp-a(T+ 82+ 84+ 4 129)
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8.5 Further reading

The full theory of perverse sheaves on algebraic varieties is developed in Beilin-
son, Bernstein and Deligne [13]. Rietsch [146] is a nice introduction. For
perverse sheaves on analytic varieties and a treatment of the micro-local ge-
ometry of perverse sheaves {an aspect of the subject we have ignored) see
Kashiwara and Schapira [97] or, for a gentler introduction, Dimca [56). The
latter contains several applications including a full discussion of nearby and
vanishing cycles.

Goresky and MacPherson [69] is a nice survey of applications of the de-
composition theorem to the homology of complex algebraic varieties.

We defined perverse sheaves as an Abelian subcategory of the bounded
derived category of sheaves but there are alternative approaches which avoid
this formalism.

e MacPherson and Vilonen [126] provide an ‘elementary’ construction of
perverse sheaves. The idea is to build up the category of perverse sheaves
stratum-by-stratum by ‘glueing’ together Abelian categories; see also
Beilinson [10, 11], Kashiwara [93], Verdier [174] and Gelfand and Manin
(63, Ch. 7].

e The Riemann—Hilbert correspondence (see Chapter 11) describes the
perverse sheaves on a complex algebraic variety as a natural category
of D-modules. Very roughly, a perverse sheaf can be thought of as the
solutions to a certain kind of system of differential equations.

e MacPherson [125)] uses ideas from stratified Morse theory to define per-
verse sheaves in a very geometric way.

e In some special cases it is possible to give a quiver presentation of a
category of perverse sheaves, i.e. a description in terms of linear algebra
— see e.g. Gelfand, MacPherson and Vilonen [62], Braden and Grinberg
[29] and Braden [28].

Perverse sheaves and intersection cohomology play an important réle in
representation theory. This is too large a topic (and the authors’ ignorance
too profound) to which to do justice in a short space, but here are three
examples which serve as pointers.

1. Let G be a complex simple algebraic group and B a Borel subgroup.
The flag variety G/B has a natural stratification by Schubert cells. The
category of perverse sheaves on G/B is equivalent to a category whose
simple objects are certain irreducible representations of the Lie algebra g
(Beilinson, Ginzburg and Soergel [14]). Perverse sheaves on flag varieties
and the Kazhdan-Lusztig conjecture form the subject matter of Chapter
12.
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2. Let k be an algebraic closure of a finite field F,. The general linear
group GL,(F,) is the fixed point set of the Frobenius automorphism

F:GLn(k) — GLy(k) : (9i5) = (g5;)-

The group GL, (k) acts on itself by conjugation and a character sheaf
is an cquivariant perverse sheaf on G L, (k) with respect to this action.
The reason for the name is that we can associate a character of GL,,(Fp)
to each character sheaf which is invariant under the Frobenius automor-
phism F. This sets up a bijection between irreducible characters of
GL,(Fp) and (isomorphism classes of) character sheaves invariant un-
der F'. In fact the theory of character sheaves applies much more widely
than just to general lincar groups. It has been extensively studied by
Lusztig in a series of papers beginning with [119]. See [122] for a survey.

3. Let G be a complex reductive group and g its Lie algebra. G acts on g
by the adjoint action. The most singular fibre of the associated quotient
map g — g/G is called the Springer fibre. The nearby cycles of the
constant sheaf at this fibre form a perverse sheaf which decomposes as
a direct sum of simple perverse sheaves. The summands parameterise
the irreducible representations of the Weyl group of G — see Borho and
MacPherson [25].

Further information on the applications of perverse sheaves in representation
theory can be found in Lusztig’s survey [121].



Chapter 9

The intersection
cohomology of fans

In the first few sections of this chapter we present some aspects of the geom-
etry of toric varieties. These form a rich set of examples of complex varieties.
Their properties are closely related to combinatorics and consequently are of-
ten unusually tractable to computation. By and large we omit proofs; these
can be found in Danilov [50] or in Fulton [61]. As the name might suggest,
torus actions play a central r6le in the theory of toric varieties and so we will
be interested in equivariant cohomology and intersection cohomology — §9.7
provides a brief introduction sufficient for our present purposes. In sections
9.8 and 9.9 we discuss the intersection cohomology of toric varieties, its gen-
eralisation to fan spaces and the relation of these with Stanley’s conjectures
[167] on the combinatorics of polytopes.

We begin with the notion of a torus embedding: this is an algebraic
variety X which

1. contains an algebraic torus T 2 (C*)” as a dense open subset,

2. has an action T' x X — X of T which extends the standard left action
of T on itself by mutiplication.

Although this definition has the advantage of brevity it tells us little about
the structure of such varieties. In order to elucidate the latter, we will give a
much lengthier definition of a toric variety and then indicate that it amounts
to the same thing.

9.1 Affine toric varieties

Let L be an n-dimensional lattice, i.e. an additive Abelian group isomorphic
to Z™, and let V = L xz R be the associated real vector space.
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Figure 9.1: On the left, two examples of strongly convex rational cones in Z2;
on the right, their duals (which are rational and convex but not necessarily
strongly convex). We have implicitly identified the lattice with its dual using
the standard basis for Z2.

Definition 9.1.1. A convex cone o in V is a subset

Z a;v; | a; € Ryp,v; €V EEN

i=1,..,k

The dimension of a cone is the dimension of the subspace spanned by the
generating set {v1,...,vx}. The support of a cone is the subset jo| = {v € o}
of V. A convex cone is strongly convex if it does not contain any linc
through the origin.

A convex cone is rational in L if we can choose the generators vy,..., vk
to lie in the lattice L. If the lattice is understood we will simply refer to this
as a rational cone.

The dual of a cone o is the subset

oV ={leVV|l{v)20Vveo}

of the dual vector space VV. The dual of a cone is also a convex cone, and it
is rational in the dual lattice

LY =Hom(L,Z) c VY

if o is rational in L. (See Figure 9.1.)
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Lemma 9.1.2 {Gordon's lemma). If o is a rational cone in L then the in-
tersection

M,=L"NoY
is a finitely-generated monoid, or semigroup, under addition; that is, it is a
set equipped with a binary operation which obeys the group axioms except for
the ezistence of inverses. Furthermore, if o is strongly convex then

M = M, + (—M,).

We will be interested almost exclusively in strongly convex cones and so
henceforth whenever we use the term ‘cone’ without qualification we will mean
‘strongly convex cone’.

Definition 9.1.3. If M is a monoid then the free C-algebra over M is the
algebra C[M] over C which as a vector space has basis {X,, | u € M} with
multiplication given by

XuXv = Xu+v-
If M is finitely-generated as a monoid then C[M] is finitely-generated as an
algebra.

The affine toric variety X, associated to a rational cone o is defined as
follows. We choose a set of generators {X},..., X} for C[M,] and this allows

us to write
C[M,] = C[Xy,..., X, )/

for some ideal I. The affine variety X, is defined to be the vanishing set of
the polynomials in I. A different choice of generators lecads to an isomorphic
variety; X, is well-defined up to isomorphism.

Remark 9.1.4. A more sophisticated approach would be to define X, =
Spec(C[M,)).

The elements of C[M,] are polynomial functions on the variety X,. A
point in X, determines an evaluation map

CM,]—C

which is a surjective map of algebras. Conversely such a map uniquely de-
termines a point of X,. This leads to an invariant description of the points
of X, as maps M, — C of monoids, where C = C* U {0} is considered as a
monoid under multiplication. Explicitly, a map z : M, — C gives a map

CM,] — C: X, — z(u).
It is easy to check that Xy — z(0) =1 and
XXy = Xuyy — z{u+2) = z(u)z(v)

so that this is a surjective map of algebras.
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Figure 9.2: Three 2-dimensional cones in R? and their duals. In the next
section we will see that this is a picture of CP?.

Examples 9.1.5. 1. Consider the cone {0} in L = Z". The monoid My,

is isomorphic to (Z>()?". The corresponding algebra is generated by
2n elements Xi,...,X,,Y:,...Y, with relations X;Y; = 1. The corre-
sponding affine variety is the algebraic torus (C*)™ which we will denote
by Tg.

Consider the three 2-dimensional cones in Z? shown in Figure 9.2. The
monoid M, is
Lo e+ ZLsp - ez,

where e; and e» are the standard basis of LY, and the monoids M, and
M, are

VANE (—e1)+ VASE (e2—e;) and VANE (e1 —e2) + Lp - (—62)
respectively. The corresponding algebras are
ClX,Y],C[Xx ', X7 'Y] and C[XY ', Y],

all of which are free algebras on two gencrators and so correspond to
the variety C2. Check that the three 1-dimensional cones correspond
respectively to the algebras

CIX,x L Y],Cxy ', x 'y, X'y~ and C[X,Y,Y ]

and that these algebras all give the variety C x C*.

A non-zero element | € VV determines a hyperplane [t = {{ =0} in V.
Such a hyperplane is said to support a cone ¢ if [(v) > 0 for all v € 5. A
face of ¢ is the intersection of ¢ with a supporting hyperplane. Any face of
a cone is also a cone, and if 7 is a face of ¢ we write 7 < 7.
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Lemma 9.1.8 (Sce Fulton [61, §1.2]). If 7 = oNI+ is a face of a rational cone
o in L then the monoid M, arises from M, by inverting the single element I,
i.e.

M, = M, +Zx>o(-1).

An immediate consequence is that the algebra C[M,] is obtained from
C[M,] by localising at the element X}, i.e.

C[M,] = C[1\’-fc'r](-’(z)'
It follows that the variety X, can be identified with the dense open subset
Xz N {Xl # 0}

of X,. Since the cone {0} is a face of every cone the torus Xqy = Tp & (C*)"
is a dense open subset of any X,,.

9.2 Toric varieties from fans

Definition 9.2.1. A fan ® in the vector space V is a finite set of cones in V
such that

e if o € ®@ then any face of ¢ is in ®;
e the intersection of any two cones in ® is also a cone in ®.

The fan @ is rational if each cone in @ is rational. The support of the fan
is the closed subset
|®] = Usealo|

and we say the fan is complete if the support is the whole of V.

For a subset S of cones we define [S] to be the minimal subfan containing S
(defined as the intersection of all subfans containing .5). The boundary of S is
the subset 8S = [S]—S. The star of S is the subset Star (S) = {r > o|o € S}.

Suppose @ is a rational fan in V' with respect to the lattice L. The (ab-
stract) toric variety X associated to ® is constructed as follows. For
each cone o we have a complex variety X,. The fan determines a ‘glueing
diagram’; for cones o and 7 in ® the intersection is a face of both and we have
open inclusions

Xy & Xonr — Xr.

The variety X is obtained by identifying the image of X, in X, and X for
each pair of cones o and 7 in ®. The subsets X{o; = T}, of each X, are glued
together and it follows that there is a dense open subset of X¢ isomorphic to
TL.
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Remark 9.2.2. We say abstract variety because the result of glueing, although
locally affine, need not be quasi-projective, i.e. it need not arise as a subsct
of projective space cut out by polynomials. We will give a necessary and
sufficient criterion for X to be a projective variety below (Proposition 9.4.1).

Example 9.2.3. Consider the fan depicted in Figure 9.2. We identified the
affine toric varieties corresponding to the cones in the fan in Examples 9.1.5.
Each 2-dimensional cone corresponds to a copy of C? with coordinates X, Y
for X, coordinates X!, XY for X, and coordinates Y1, Y1 X for X,,.
The resulting glued-up variety is CP?.

This correspondence between fans and varieties is very natural. For ex-
ample if we have fans ® and ® in lattices L and L’ respectively then there
is a product fan ® x ®’ in the product lattice L x L’ whose cones are of the
form o x ¢’. By definition the monoid

Moxo = {(l,I"Y e Lx L'|(L,I') - (v,2") >0 V(v,?v') €0 x'}.

Since (I,I') - (v,v") = l{(v) + I'(v') and 0 € 0,0’ we see that we must have
le My and ' € My, ie.

MO‘XO'/ = Mg- X MO‘"

It follows that C[M,x,/] = C[M,] ® C[M,] and so the corresponding affine
toric variety is simply the product X, x X,. This is all compatible with
glueing so we conclude that the product of fans corresponds to the product
of toric varictics.

In the next section we will see that maps of fans correspond to maps of
varicties.

9.3 Maps and torus actions

If 7 is a face of a cone o then we saw earlier that there is an open embedding
X, — X,.

This is a special case of

Proposition 9.3.1. Suppose ® and & are rational fans with respect to lattices
L and L’ and that o © L — L’ is a map of lattices such that for each cone
o € ® the image (o) is contained in a cone of ®'. Then there is an induced
map

ay: Xo = Xogr.

Proof. If a(o) C ¢’ then the dual map

v (L)Y = LY
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takes My to M,. This is because for f € M, and v € o we have

a’(f)(v) = f(e(v)) > 0

since a(v) € o’. Hence o induces a map of algebras C[M,.] — C[M,]. Any
such map induces a map X, — X, (see, for example, Hartshorne [79, Ch.
II, Prop. 2.3]). We can check that these maps are compatible and so patch
together to give the desired map X — Xg’. |

Examples 9.3.2. 1. If we take a to be the identity on L and ® to be a
subfan of ® then the induced map Xp — Xg- is an open embedding.
We have met this before in the case of a face of a cone.

2. Suppose we take ® and ®’ to be the cone {0}. Then we obtain a map
T, — T/ of tori, which is a map of groups (as well as of varieties).
Embeddings of lattices correspond to embeddings of tori and quotients
of lattices to quotients of tori.

We can also use this construction to see that all toric varieties carry torus
actions. Given the lattice L there is a map L x L — L given by the group
operation of addition. The cones of the fan {0} x & in L x L clearly map
into the cones of ® under this. Since the product of fans corresponds to the
product of varieties and the cone {0} in L corresponds to the torus T we
obtain a map

T x Xo — Xo

It is easy to check that this defines an action of Tz, on Xg.

Exercise 9.3.3. When & = {0} show that the resulting action is the standard
(left) action of T}, on itself by multiplication.

These torus actions are natural in the sense that if & : L — L’ is a map
of lattices inducing a map «. : X — Xg as above then we also have a map
a : T, — Ty of tori and these maps satisfy

. (t-z) = ax(t) - ox()

for t € Tt and = € Xg. In particular, by considering the open embedding
Ty, < X¢ arising from the inclusion {0} — @ of fans we see that the action of
T on X g extends the usual action of Tr, on itself. Hence the toric variety X
is a torus embedding. Indeed, although we will neither show nor use this fact,
all normal, separable torus embeddings arise in this way as the toric variety
associated to some rational fan (Oda, [139, Thm. 4.1]).

The description of the torus action on a toric variety above is rather ab-
stract and it is uscful to have a more down-to-earth description too. Suppose
o is an rational fan with respect to L. Recall that the points of the torus T7,
and of X, correspond respectively to monoid maps LY — C and M, — C
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where C = C* U {0} is made into a monoid under multiplication. Given ele-
ments ¢ € Tt and = € X, we define £ - 2 to be the point of X, corresponding
to the map

M, — C:uw- t(u)z(u).

We can verify that thesc actions on affine toric varieties are compatible with
the glueing procedure and thus obtain an action of Tj, on any toric variety.
It is a good exercise in unwinding abstractions to show that this agrees with
the earlier definition!

Examples 9.3.4. 1. When o is the cone {0} in an n-dimensional lattice
L then points of the associated affine toric variety Tr correspond to
monoid maps LY — C = C* U {0} and the action of the torus on itself
defined above is given by pointwise multiplication of functions. This
corresponds to the usual multiplication of functions in the algebra

C[LV] 2 C[Xy, XTL,..., Xn, X1

In terms of the toric variety T7, this is (of course) the standard left action
of the torus on itself. In particular the action is free.

2. At the other extreme of dimension, if ¢ is an n-dimensional cone in V
then the affine toric variety X, has a unique fixed point under the action
of Tr. This is because a point ¢ € X,, which we think of as a map of
monoids M, — C, is fixed if and only if

tu)z(u) =x(u) YueE Myt €T, < z(u)=0 V0#ueM,.

Since z is a map of monoids (where C is a monoid under multiplication)
we must have z(0) = 1 so that the map z is uniquely determined. We
will refer to this distinguished fixed point as z,-.

9.4 Projective toric varieties and convex
polytopes

We will be particularly interested in toric varieties which are projective, i.e.
which can be embedded as a subset of projective space cut out by homogeneous
polynomials. If a toric variety is to be projective it must be compact (in the
analytic topology). It is not hard to see that Xg is compact if and only the
fan ® is complete. However this is not sufficient to guarantee that Xg is
projective.

Proposition 9.4.1 (See Fulton [61, §2.4]). The toric variety X¢ is projective
if and only if the fan ® is complete and there ezxists a continuous function
£:V — R such that

e [ is cone-wise linear, i.e. the restriction of £ to the support |o| of any
cone 18 a linear function v v £,(v) for some £, € LY,



8.4 Projective toric varleties and convex polytopes 141
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Figure 9.3: The group Pic(C]P’l) represented as (the graphs of) continuous
cone-wise linear functions on the fan ® — see Remark 9.4.2.

o / is strictly convex, i.e. £,(v) > {(v) forv eV —|o|.

We will call such a function ample and will call a complete fan equipped with
such an ample function a projective fan.

Remark 9.4.2. For readers familiar with algebraic geometry the explanation of
this result and terminology is as follows. There is an isomorphism between the
group Pic(Xg) of isomorphism classes of line bundles on X3 and the quotient
of the group of cone-wise linear continuous functions on the support |®| =
V by the subgroup of linear functions. Under this identification ample line
bundles correspond to the classes of strictly convex cone-wise linear functions
— see Fulton [61, §3.4].

As an example consider the toric variety CP* corresponding to the unique
complete fan @ in dimension 1. On the one hand it is well-known that
Pic(CP') = Z with the ample bundles corresponding to negative integers.
On the other hand, a continuous cone-wise linear function on ® corresponds
to a pair of linear functions

Il_:Z<o—Z and 14 :Z>o—Z

which agree at the origin. Each class in the quotient by the linear functions is
represented by a unique continuous cone-wise linear function which vanishes
on Z<o — see Figure 9.3. Such a representative is determined by its value at
1, i.e. by a single integer. The function is strictly convex if and only if this
integer is negative.

The data of a complete fan and an ample function is equivalent to the
data of a convex polytope. Thus there is also a correspondence between
convex polytopes and projective toric varieties which we now describe.

A convex polytope P in V'V is the convex hull of a finite set of points.
It is rational if these points lie in the lattice LY. We will always assume that
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Figure 9.4: The polar polytope of the cube with vertices at (£1,+1,+1) is
the octahedron with vertices at (+1,0,0), (0,+1,0), (0,0, +1).

the origin O is contained in the interior of P which, in particular, ensures that
P is n-dimensional.
Given v € V and d € R there is a hyperplane

H={leVV{)=d}

We say H supports P if p(v) > 0 for all p € P. A proper face is the
intersection of P with a supporting hyperplane. Note that we allow the empty
set as a proper face.

A rational convex polytope P (with the origin in its interior) determines
a rational fan ®p with one cone for each proper face. This fan is the fan over
the polar polytope P° which is the rational convex polytope in V given by

{veV |pl) >~-1Vpec P}
(Sce Figure 9.4.) We recall the following properties of polar polytopes:

1. if F is a face of P then F° = {v € P° | f(v) = -1 Vf € F} is a face of
P° with
dimF +dim F° =dimV -1,

2. the mapping F' — F° is an inclusion-reversing bijection between faces
of P and of P?,

3. the polytope P is the polar of P°.

Let ®p be the fan over the polar polytope P°. In other words ®p has one
cone
{A | veF° AeRy}

for each face F of P (with the cone {0} corresponding to the empty face).
The fan ®p is complete because it is the fan over a polytope with 0 in the
interior. Furthermore, there is an ample function

fp . |q>p| —R
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given by £p(v) = min p;(v) where p; ranges over the vertices of P. We denote
the projective toric variety associated to the fan ®p by Xp.

Conversely, a rational fan ® in V and an ample function ¢ : |#|] — R
determine a convex polytope

P(®)={f eV | f(v) 2 £(v) Yo € |2}
in the dual space V'V.

Exercise 9.4.3. Show that these constructions are inverse to one another,
i.e. that & = @p(@) and £ = ep(q:.).

To recapitulate: there are correspondences

toric variety <« rational fan

!

compact toric variety complete rational fan

!

projective toric variety with complete rational fan with

a chosen ample line bundle a chosen ample function
+« rational convex polytope

Remark 9.4.4. There are complete rational fans on which there are no ample
functions (see Fulton [61, p71]). Hence there are compact toric varieties which
are not projective and there are fans which do not arise as the fan over any
convex polytope.

9.5 Stratifications of toric varieties

Suppose L is an n-dimensional lattice and ® is a rational fan in L. The
associated toric variety Xg has a decomposition into orbits under the action
of the torus T' = Tr. In this section we explain how these orbits can be
explicitly described in terms of ®.

Recall that X is covered by open subsets X, for o € . We consider the
structure of the affine toric variety X, in more detail. The elements of L No
generate a sublattice of L with real span the subspace Span(c) of V. Clearly
o and its faces form a rational fan in L, which we denote (¢). Write T, for
the torus T, . It acts on the affine toric variety X,y and, by Example 9.3.4,
there is a unique fixed point z,-.

The inclusion L, < L induces a map f : Xy — X, which is T,-
equivariant (where T, acts on X, via its inclusion into T'). In this situation
we can define a T-equivariant map

T x X(o-) — Xg: (t,a:) —1- f(a:) (9.1)

where T acts by left multiplication on the first factor on the left-hand side.
For any s € T, we have
ts- f(z) =t- f(s7)
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so that (9.1) factors through the quotient T'x1, X,y of T'X X, by the action
s-(t,x) = (ts~. s -z) of T,.

Proposition 9.5.1. The induced map T xT, X5y = X, is a T-equivariant
isomorphism. In particular, the image of

T xr, {€,} = T/T, == (C*)"~%me,

is an orbit of T in X, which we will denote by O,. The complement of this
orbit in X, is naturally identified with the toric variety Xo, associated with
the boundary fan of o.

Clearly we can also consider O, to be an orbit in Xg. Indeed every orbit
is of this form for some unique cone because if O is any orbit then

0=0,

where o is the minimal cone for which @ C X,. This sets up an inclusion-
reversing correspondence between orbits and cones because dim O, = n —
dimo and O, C O, if and only if 7 < 0. Furthermore, the orbits form a
Whitney stratification of Xg.

We refer the reader to Fulton [61, §2.1,3.1] for proofs of these facts (which
can readily be verified in the examples we have seen). Note that it follows
from this description that the affine toric variety X, is a normal slice to the
orbit O,. The closure of O, can also be explicitly described as a toric variety
associated to the fan Star (o) whose cones correspond to {r € ®|r > 7}.

9.6 Subdivisions and desingularisations

When is a toric variety X¢ non-singular? This is a local question because a
variety is non-singular if it is non-singular at each point. Thus we can reducc
to the question: when is an affine toric variety X, corresponding to a rational
cone o in V non-singular? There is a simple answer:

Proposition 9.6.1 (Fulton, [61, §2.1]). X, is non-singular if and only if o
is generated by a subset of some basis for the lattice L (in which case we say
o is ¢ non-singular cone).

Examples 9.6.2. 1. Let {e;} be the standard basis for Z™ and suppose ¢
is a cone generated by a subset of k of these basis vectors. Then o is a
product of k cones of the form R>y C R and the 0-dimensional cone in
R”~*. It follows that the affine toric variety X, is isomorphic to

CF x (C*)"*,

Clearly any non-singular affine toric variety is of this kind.
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2. Now consider the cone 7 in Z3 generated by the four vectors (1, +1, +1).
The standard basis determines an identification of Z3 with its dual under
which the cone 7 is identified with its dual. It follows that M, is a
monoid generated by four elements fq,..., fy with the single relation

H+Ffo=fs+ fa

The corresponding affine toric variety X, is therefore isomorphic to the
complex cone

{{X,Y,Z,W)eC' | XY = ZW}

over the quadric XY = ZW in CP3. It is easy to see that there is a
singularity at the origin of the cone.

Non-singular toric varieties thus correspond to fans all of whose cones are
non-singular. This is a rather strong condition and we will actually be more
interested in a slightly weaker one.

Definition 9.6.3. A cone o is simplicial if it is generated by linearly inde-
pendent vectors. A fan is simplicial if all its cones are simplicial.

If ¢ is an n-dimensional simplicial rational fan with respect to L then
it is generated by n elements vy,...,v,. The minimal non-zero elements in
LNRyo- v for i =1,...,n generate a sublattice L' of finite index in L. By
definition the cone ¢’ generated by these minimal elements is a non-singular
rational cone with respect to L’. The inclusion of L’ in L induces a map
from the non-singular variety X, to X,. Fulton [61, §2.2] shows that this is
the quotient of X, by an action of the finite group L/L'. There is a similar
picture for simplicial fans of lower dimension and we deduce

Proposition 9.6.4. If ® is simplicial then the toric variety Xg is an orb-
ifold. (Very roughly an n-dimensional orbifold is a space locally modelled on
a quotient of R™ by the action of a finite group — see Ruan [149] for details.)

Later we will want to drop the rationality condition on the fan. If a fan is
not rational it cannot be non-singular (since it is not generated by elements
of the lattice at all) but it can be simplicial, and the latter turns out to be
the appropriate ‘non-singularity’ condition for non-rational fans.

We can measure how far a fan is from being simplicial. We say an edge,
that is a one-dimensional face, of a cone is free if all the other edges are
contained in a single codimension one face. A cone is called deficient if it
has no free edges. In these terms, a fan is simplicial if and only if it has no
deficient cones.

We can always reduce the number of deficient cones by subdividing — a
subdivision ¥ of a fan ® is a fan with |¥| = |®| and such that each cone of ¥
is contained in a unique cone of ®. For example, if p is a one-dimensional ray
in the interior of a cone o then we can define a new fan, the star subdivision
of ® at p, by

Star (®,p) =® — Star (o) U {p+ 7 | 7 € OStar (o)}



146 The intersection cohomology of fans

where p + 7 is the cone spanned by p and 7. The edge generated by p is free
in any cone of which it is a face. It follows that if p is a ray in the interior
of a deficient cone of maximal dimension amongst such cones then the star
subdivision Star (®, p) contains fewer deficient cones than ®. Continuing in
this way we can eliminate all the deficient cones and so obtain a simplicial
subdivision.

If the fan ® is rational then by subdividing at rational rays we obtain a
rational simplicial subdivision ¥. Since each cone of ¥ is contained in a cone
of @ the identity induces a map

X\I; — Xq>.

By Proposition 9.6.4 Xy is an orbifold and it turns out that this map is
surjective and an isomorphism on a dense open subset. In fact we can fur-
ther subdivide ¥ so that it is a non-singular fan — see Fulton [61, §2.6]. It
follows that we can always desingularise a toric variety by subdividing the
corresponding fan.

9.7 Equivariant intersection cohomology

When a group G acts on a topological space X we can define equivariant
homology groups H%(X). The example we have in our sights is the torus
action on a toric varicty. Thus, although the theory applies much more widely,
we will simplify our treatment by assuming that G = T is an algebraic torus
acting on a complex variety X. We will take the coeflicients of our homology
groups to be in the reals R.

There are several equivalent approaches to defining equivariant homology.
Perhaps the most common is to define

HI(X) = H,(ET xr X)

where ET is a contractible space upon which T acts freely on the right, and
the Borel construction ET X1 X is the quotient of ET x X by the action

t-(e,x)=(e-t7' ¢t ).

(The notation for the equivariant homology groups should not be confused
with that for the homology groups with respect to a triangulation introduced
in §2.1 which was, unfortunately, the same!) This is well-defined because such
a space ET is unique up to T-equivariant homotopy. For a non-trivial torus
the space ET is infinite-dimensional; when T' = C* the standard model is
C* — {0} where C* acts via

A (1‘0,1:1, T2, .. ) = ()\ivo,)\.’tl,)\xg, .o )

More generally, for a k-dimensional torus ET is (C*™ — {0})*. However, if we
wish to avoid infinite-dimensional spaces then we can express ET as a limit
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of spaces ET;, = (C* — {0})* and put
HY(X) = lim H,(ET, x1 X).

Alternatively, we can take a more geometric approach. Suppose that X
has a piecewise-linear structure and that T acts via piecewise-linear maps.
(This is the case, for instance, for the torus action on a projective toric vari-
ety.) A T-equivariant simplicial i-chain is determined by an (i + dim T')-
dimensional simplicial chain in some R™ (with respect to some given trian-
gulation of R"), together with a free action of T on the support |£| and
a T-equivaraint piecewise-linear map f : |€| — X. Two such pairs (€, f)
determine the same equivariant simpicial chain if they are the same up to
the equivalence relation generated by subdivisions of triangulations and the
standard embeddings R* C R"*! C .... The boundary (€, f|i¢)) of an
equivariant simplicial chain is again an equivaraint simplicial chain so that
we obtain a complex CT(X) of equivariant simplicial chains. The (simplicial)
T-equivariant homology of X is the homology of this complex. A version of
this construction using subanalytic rather than simplicial chains is discussed
in more detail in Goresky, Kottwitz and MacPherson [67].

Finally, one can define equivariant homology via sheaf theory as the co-
homology groups of an object S% x of the equivariant derived category of
sheaves on X. The theory, developed in Bernstein and Lunts [16], is rather
subtle and we will do no more here than remark its existence.

All of these definitions generalise to intersection homology. If T' acts pre-
serving a stratification of X then we can define

IPHY(X) = IPH,(ET x1 X)

where ET X7 X is stratified in the obvious way with strata ET X7 S for the
strata S of X, see Kirwan [112]. If we prefer a geometric to a homotopy-
theoretic approach, we can say that an equivariant simplicial i-chain is p-
allowable if

dim f "N (Xm—k — Xm—g-1) < i+ dimT — k+ p(k),

and define the equivariant intersection homology as the homology of the com-
plex I?ST(X) of p-allowable equivariant chains with p-allowable boundaries
— the subanalytic version of this construction is explained in Goresky, Kot-
twitz and MacPherson [67]. Finally, if we want to think in terms of sheaf
theory then following Bernstein and Lunts [16] we can construct a complex
IPSt x in the equivariant derived category whose cohomology groups are the
equivariant intersection homology of X.

We can define equivariant cohomology and intersection cohomology groups
by dualising and henceforward we will work with thesc. Both the equivariant
cohomology and intersection cohomology of a space are graded modules over
the equivariant cohomology Hj of a point. This additional structure is very
useful and so we digress briefly on the subject of graded rings and modules.



148 The intersection cohomology of fans

Definition 9.7.1. A graded ring is a ring R together with a decomposition
R = R{) @ R1 D...

into additive subgroups such that if » € R; and s € R; then the product
rs € Ri4;. Note, in particular, that Ry is a subring. We say the elements
of R; have homogeneous degree i and write R* for the ideal generated by
the homogeneous elements of strictly positive degree. Similarly, a graded
module M over R is a module over R together with a decomposition

M=MoM®o...

into additive subgroups such that if r € R; and m € M; then the product
rm € My ;.

There are two constructions involving graded modules which we will re-
quire.

Definition 9.7.2. For a graded R-module M we let

o M{(k) be the graded module whose homogeneous degree i elements are
M(k); = Mg+ and,

e M be the quotient M/R+ M. This is naturally a module over R/Rt &
Ry and inherits a grading from M (which is preserved by the action of

Ro).

The example we have in mind is the graded ring H} where T is a k-
dimensional torus. This is the cohomology ring

H* ((C®)* x7 {pt}) = H* ((CP™)F) = (H*(CP>))®*.

The cohomology of CP* is the polynomial ring over R with one generator of
degree 2 and so H} can be identified with the polynomial ring in n variables of
degree 2. The structure of the equivariant intersection cohomology ITHF(X)
as a module over this ring in many important cases is very simple. We say X
is equivariantly formal if there is a (non-canonical) isomorphism

IH}(X) & H: @r IH*(X),

i.e. if TH}(X) is a free module over the graded ring H}. generated by a basis
for TH*(X). (This occurs if and only if the Leray spectral sequence for the
fibration

X——ET X X

l

ET/T

degenerates.)
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Proposition 9.7.3 (Goresky, Kottwitz and MacPherson [67, Thm. 14.1]). If
X is a complex projective variety, or if all the odd-dimensional intersection
homology of X vanishes, then X is equivariantly formal.

For an equivariantly formal space we note that we can recover the inter-
section cohomology from the equivariant intersection cohomology as

IH*(X) =~ THA(X)

where TH7(X) is constructed from the graded Hj-module TH}(X) as in
Definition 9.7.2.

For (non-equivariant) intersection cohomology we have a local calculation
relating the intersection cohomology of a cone to the intersection cohomology
of the cone less the vertex. This allows us to obtain results inductively by
adding a stratum at a time. There is no direct analogue for equivariant
intersection cohomology and in general the situation is more complicated.
However, Bernstein and Lunts [16] prove an important result which plays a
similar role in the cases in which we are interested. Before we state it we need
to introduce some terminology.

Definition 9.7.4. If M is a module over a ring R then a projective cover
of M is a projective module P together with a surjection onto M such that
any other surjection P’ — M from a projective module factorises uniquely
through a surjection P/ — P, i.e.

Pl
/
/ l
/
¥
P — M.
Projective covers exist and are unique up to isomorphism.

The projective cover of a finitely-generated Hy-module M is easy to con-
struct. Since Hp is a principal ideal domain, projective and free modules
will be the same thing, so we can replace prO_]eCthe by ‘free’ in the above
definition. We let P = Hjy ®r M, where M i constructed as in Definition
9.7.2. Then we choose a linear, grading-preserving, section 8 : M — M of the
quotient M — M and define a map 7 : P — M by

w(a ®m) = a- s(m).

We need to check that this is a surjection: suppose v € M and write 7 for the
residue class in M. Recalling that s is a section we have

v—s8{¥)=0

It follows that we can find @ € Hy and u € M such that
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e degu < degv;
e v—3(T)=a-u

Since M is finitely-generated as a module over H} we may assume inductively
that any element of M with degree strictly less than that of v is in the image
of the map 7 : P — M. In particular we have u = 7(b ® W) for some b € H}
and w € M. It follows that v is in the image of 7 too, because

v=8T+a-u=7(l®T+abRW).
We leave the reader to verify that P is the projective cover of M.

Theorem 9.7.5 (Bernstein and Lunts, [16, §14]). Suppose T acts algebraically
on an affine variety V with a fized point v. Furthermore, suppose that there
is o 1-dimensional subtorus C* — T such that v is the unique fived point of
the C*-action and that v is an attraction point, i.e. that A-w — v as A — 0
for anyw € V. Then TH}(V) is the projective cover of IH3(V — {v}) via the
restriction map.

9.8 The intersection cohomology of fans

In this section we will show how the equivariant intersection cohomology of
a toric variety may be computed from combinatorial data. When the toric
variety is affine or compact we can also compute the intersection cohomology.
These ideas can be generalised to define a notion of intersection cohomology
for fans.

Suppose that ® is a fan in a real vector space V' of dimension n.

Definition 9.8.1. We make ® into a topological space, the fan space which
we also denote by ®, by decreeing that a subset U C @ is open if and only if
o € U and 7 < o implies 7 € U. More succinctly: the open subsets are the
subfans.

The closure of the point o is Star (¢) = {r > ¢}. The point ¢ is contained
in a smallest open set; namely the open set [o] corresponding to the subfan
generated by o. It follows that the stalks of a sheaf £ on the fan space ® are

Es = colim y5,E(U) = E([o]).

Furthermore, the open sets [o] form a basis for the topology and so £ is
determined completely by the assignment ¢ — £, and the restriction maps
Es — & for T <o

Now suppose that ® is rational. Then the fan space is (homeomorphic
to) the quotient of the associated toric variety Xs by the natural action of a
torus T'. This follows immediately from the description of the orbits of a toric
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variety Xg in Proposition 9.5.1 with one orbit O, for each cone o in ®. Let
q:Xe — Xo/T = ® be the quotient map.

There is an equivariant complex of sheaves ISt x, on Xg whose coho-
mology groups are the equivariant intersection cohomology groups IH$(Xg).
Consider the push-forward

RQ*I S'},X 3

of this complex to ®. We define a sheaf of graded vector spaces Lo whose
i*" graded piece is the cohomology sheaf H*(Rg,IS% x,). Since [o] is the
smallest open set containing o the stalk of L4 at a cone o is

Loo = IH1(q7 [0]) = IH}(X,) = THH(T x1, X(s)) = IHf, (X())

where we have used the identification X, = T xT, X(,) from §9.5. The sheaf
Lo has additional structure. The stalk £, is a module over Hy. and these
module structures on the stalks are compatible. What this amounts to is that
L is a module over a certain sheaf of graded rings As with stalks

Aso = Hy,. 9.2)

(By a module over Ag, or an Ag-module, we mean a sheaf M on & whose
sections over an open set U form a graded module over the ring A¢(U) com-
patibly with the restriction maps. By this we mean that for any open sets
U D V there is a commutative diagram

As(U) x M(U) —> As(V) x M(V)

l

M)

M(V),

in which the horizontal arrows are restrictions and the vertical ones the action
of Ag.)

Using the description of the equivariant cohomology of a point as the ring
of polynommial functions on a vector space we can describe Ag as follows: the
sections over an open set U are the cone-wise polynomial functions on the
subset

Ul = Useula]
of V. The restriction maps of A¢ arise from restriction of functions. The stalk
Ag , at a point ¢ is the ring of polynomial functions on || or, equivalently,
the ring of polynomial functions on Span{c). If we grade these so that the
linear functions have degree two then we obtain (9.2).

Theorem 9.8.2 (Theorem A). 1. Lg is a flabby sheaf, i.e. the restric-
tion map L&(®) — L&(U) from the global sections is a surjection for
every open subset U.

2. The oddly graded pieces of the stalks Lo, all vanish.
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Theorem 9.8.3 (Theorem B). For any subfan U of the rational fan ® there
is an isomorphism of graded H-modules

TH7(Xg) = Lo(¥).

(Here the global sections Lo(¥), which naturally form an Ag(¥)-module, are
made into an H}-module via the ring map H} — Ae(¥) arising from restric-
tion of a polynomial function on V to a polynomial function on |¥|.)

We prove these theorems inductively in tandem using the following scheme:
Theorem A for ® 4 => Theorem B for ® ., => Theorem A for <
where @ ., is the subfan
{o € ®|dimo < k}.

consisting of cones of dimension < k, and ®<, is defined similarly.

Assume Theorem A holds for $.x. Then each stalk of Lo, is a graded
vector space whose oddly-graded pieces vanish. We can consider Lg_, as
a complex of sheaves concentrated in even degrees with zero differentials.
The terms are the cohomology sheaves of the restriction of Rq.IS7 x, to
® ;. Straightforward homological algebra shows that the vanishing of the
odd degree terms means that Le_, is quasi-isomorphic to the restriction of
Rq.IST x, t0 k-

It is a standard result that the higher cohomology of a flabby sheaf van-
ishes, see for example Iversen [84, 11.3.5]. Thus the i** hypercohomology of
Ls, (thought of as a complex of flabby sheaves) over a subfan ¥ is simply
the sections over ¥ of the i** term in the complex. Combining this with the
above quasi-isomorphism we have an isomorphism of graded vector spaces

Lo(T) = H*(¥; Lo) = H*(V; RguIST x,) = H* (X w3 ST, x,) = IH7(Xv)

for any subfan ¥ of ®.;. We can check that this is actually an isomorphism
of graded Hp-modules and hence we have proved Theorem B for ® .
In order to prove Theorem A for @< we study the restriction map

Ls,, = La([o]) — L&(d0) (9.3)

for a cone o of dimension k. We know that the stalk Lo, is the equivariant
intersection cohomology group

THT(X,)
and, by Theorem B, that the sections £g(00) are isomorphic to

TH:(X56).
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Assume for a moment that £k = dimV. Then X, has a unique fixed point
z, and Xp, is the complement X, — {a:,,} Thus the restriction map can be
identified with the restriction

IH3(X;) = THH X, — {z4})-

If k < dimV then we can use the identification X, = T X7, X(,,) from §9.5
to obtain a similar result where we replace T by T, and X, by X<,,).

The hypotheses of Theorem 9.7.5 are satisfied and we deduce that the
Ag o-module L, is the projective cover of Lg(00). In particular, the re-
striction (9.3) is surjective. The latter is equivalent to flabbiness for we have

Lemma 9.8.4. A sheaf £ on ® is flabby if and only if the restriction maps
Es — £(80) (9.4)
are surjective for all cones o.

Proof. If £ is flabby then (9.4) follows immediately from the commutative
diagram
£(2)

N

£([o]) — £(00).

Conversely, suppose (9.4) holds for all g. Then (9.4) guarantees that we can
extend a section over the open set UU®P <, to one over UU® <« 1. By induction
we can then extend a section over U = UU®«g to oneover ® = UU®,. O

Finally, note that the oddly-graded pieces of the stalks of Lg at points
7 € Ao vanish (by Theorem A for ® ;) which implies that the oddly-graded
pieces of
Le(00)

vanish. It is easy to see that the same then holds for the projective cover
Ls,s. This completes the proofs of Theorems A and B.

Combining Theorems A, B and Theorem 9.7.3 we obtain the following
corollary which enables us to compute the intersection cohomology of affine
and projective toric varieties.

Corollary 9.8.5. The affine toric variety X, associated to a rational cone is
equivariantly formal, as is the projective toric variety associated to a projective
rational fan ®. Hence the equivariant intersection cohomology of such a vari-
ety is a free Hy-module generated by a basis for the intersection cohomology.
In particular, for any cone in a rational fan ® we have

IH*(Xs) = Lo 6

and if the fan is projective (i.e. complete and equipped with an ample function)
we have TH*(Xg) = L(D).
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If we abstract the properties of L¢ then we are led to the following defi-
nition, where now ® is an arbitrary, not necessarily rational, fan.

Definition 9.8.6. A sheaf M on ® is a minimal extension sheaf if M is
an Ag-module with stalk Mo} = R at the origin and such that

Mg — M(80o)
is the projective cover for each cone o.

Theorem 9.8.7. For any fan ® there is a unique minimal extension sheaf
(up to isomorphism). For a rational fan it agrees with Lg as defined above.

Proof. A minimal extension sheaf can be constructed inductively; if we have
already defined M over the subfan ®.; then we let the stalk M, at a cone
of dimension k be the projective cover of M(8c) and use the surjection

M, = M(80)

to define the restriction maps. The uniqueness follows from the uniqueness of
projective covers. We have already seen that the sheaf L4 on a rational fan
satisfies the conditions. O

Example 9.8.8. If ® is a simplicial fan then the graded sheaf Ag is the min-
imal extension L constructed above. To see that Ag is a minimal extension
sheaf for simplicial ® we note that for any simplicial cone o the restriction

As » — As(00)

is surjective. This is equivalent to the statcment that, given a set of k linearly
independent vectors in R* and real polynomials defined on the hyperplanes
spanned by the subsets of size k — 1, whose restrictions to the intersections
agree, there is a polynomial defined on the entirety of R* which extends the
given ones. The corresponding statement is false if the vectors are linearly
dependent; there are some sets of polynomials which do not have a common
extension to R*. It follows that if ® is not simplicial then Ag is not a minimal
extension sheaf.

Minimal extension sheaves have good properties. They are flabby and are
locally-free as Ag-modules, i.e. the stalks are finitely-generated free modules
over the graded ring Ag ». These properties follow directly from the properties
of projective covers. The terminology arises because the minimal extension
sheaf is (in a precise sense) the ‘smallest’ flabby, locally-free sheaf with stalk
R at the origin.

We can extend the definition to say that a minimal extension sheaf
based at ¢ is a sheaf M on ® which is supported on the closure Star(c) of
a cone, has stalk M, = R and is such that

M, — Ma,
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is the projective cover for each 7 > . We denote such a sheaf by Lgtar(a)-
This agrees with our earlier notation since Star({0}) = ®.

By analogy with the situation for rational fans we make the following
definition.

Definition 9.8.9 (Bressler and Lunts [32, Defn. 5.7]). The intersection
cohomology IH(®) of a fan ® is the graded vector space

Lo(P) = Lo(P)/AT - Lo(2)
where A is the graded ring of polynomial functions on |®|.

It follows from Corollary 9.8.5 that if ® is a projective fan we have
IH(®) = IH*(X3).

Many of the theorems which hold for the intersection cohomology of a toric
variety can be generalised to the context of the intersection cohomology of a
fan. In particular there are analogues of the decomposition theorem and the
hard Lefschetz theorem.

Theorem 9.8.10 (Dccomposition theorem for fans, Bressler and Lunts [32,
Thm. 5.3 and 5.5]). If7: ¥ — ® is a subdivision of a complete fan then the
push-forward Rm, Ly is quasi-isomorphic to a direct sum each of whose terms
is a minimal extension sheaf Lstar (o)(Mo) based at a cone o with grading
shifted by an integer m,. One of the terms will be the minimal extension
sheaf Lo. In particular, there is a direct sum decomposition

IH(¥) =~ TH(®) & P IH (Star(c:)) (ma,). (9.5)
el

It is important to note that this theorem is much easier to prove than the
decomposition theorem for a proper map of complex varieties.

Theorem 9.8.11 (Hard Lefschetz theorem for fans). Suppose ® is a complete
fan in a vector space V and £ : |®| — R s an ample function, i.e. a strictly
convex, cone-wise linear continuous function. Then £ is a degree two element
in Ag(®) and so multiplication by £ induces a degree two map of the graded
vector space IH(®). The composite

£ THH(®) — TH™ ()
i8 an isomorphism for 0 <i<n=dimV.

This was conjectured by Bressler and Lunts [32] and then proved by Karu
[90]. Subsequently the proof was streamlined by Bressler and Lunts [33]. The
proof involves reducing to the case of a simplicial fan for which the result was
proved by McMullen {129]. This reduction is achieved by noting that every
fan has a simplicial subdivision and then carefully analysing the inclusion
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of TH(®) into the intersection cohomology of a subdivision arising from the
decomposition (9.5).

An important consequence of the hard Lefschetz theorem for fans is that
we can use it to obtain a combinatorial formula for the intersection Betti
numbers of a complete fan (Bressler and Lunts [32, §7]). It tells us that the
ith Betti number

dim TH*(®)
is the coefficient of #* in a polynomial h(®,¢) which is defined recursively by
W®,8) =D g(o,t)(t? — 1)dimVdime (96)
ced

where g(o,1) is the polynomial with coefficients g;(o) given by

v | hi(80) —hi_2(0) 0<i<dimo
gi0) = { 0 otherwise.

Here the fan O is the projection of the fan §o onto a subspace W C Span(o)
where Span(c) = W & {p) for some p in the interior of o. (Effectively we
take the boundary of o and flatten it out.) do is always a complete fan and
the graph of do defines an ample function on it. To get the recursion off the
ground we put A({0},2) =1 = g({0},¢).

In geometric terms (which can be made precise for rational fans) the in-
tersection cohomology of the fan @ arises from local contributions from each
of the ‘affine open subsets’ corresponding to cones. The contribution from a
cone o is the ‘primitive part’ of the intersection cohomology of the ‘projective
variety’ associated to the complete cone do (cf. the discussion of the hard
Lefschetz theorem in §4.10).

Exercise 9.8.12. Prove that if o is a cone over a k-dimensional simplex then

. 241 _q
h(@mt) = —t—zT

Deduce that g(o,t) = 1.

Remark 9.8.13. The intersection Betti numbers of the toric variety X¢ cor-
responding to a complete rational fan ® can be computed recursively in this
way. Note that they only depend on the combinatorics of the cones and not
on how they sit as subsets of V' (information which certainly enters into the
construction of Xg). This is not true of the ordinary Betti numbers if the
polytope is not simplicial (Stanley [169, p20]).

Example 9.8.14. As an example we compute the intersection Betti numbers
of the toric variety X¢g where @) is the octahedron with vertices at (+1,0,0),
(0,+1,0) and (0,0,+1). This is the toric variety associated to the fan ®g
over the polar polytope, which is the cube with vertices (1, +1,£1). The
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Small resolution \ Blow-up at 4 points

-
Fd

”

Figure 9.5: The fan over a cube can be desingularised by subdividing at an
inscribed tetrahedron. The corresponding map of toric varieties is a small
resolution. The cube with inscribed tetrahedron is also a subdivision of the
tetrahedron corresponding to the blow-up of CIP? at four points.

variety is obtained by glueing six copies (one for each face of the cube) of the
complex cone over the quadric XY = ZW which we met in Examples 9.6.2.
We deduce that Xq is a 3-fold with six singular points.

We need to compute the polynomial g(o,t) for each cone o € ®g. We
saw above that g(o,t) = 1 when o is a cone over a simplex. It remains to
compute g(a,t) for the cone over a face of the cube. It is easy to see that fo
is a complete fan in R? with four 2-dimensional cones so that we have

h(@o,t) = (12 —1)2 +4(t2 —1)+4=t* + 262 +1
and g(o,t) = 1+ ¢2. It follows that
h(®g,t) = (t2—1)34+8(t2 —1)2 +12(t2 —1) + 6(1 +¢2)
= 1456245t 445,

We can verify this result by giving a second description of Xg. Inscribe a
tetrahedron in the cube as shown in Figure 9.5. The fan ¥ over the resulting
polytope is a subdivision of ®¢ representing a desingularisation. The fibre of
the map

Xe — Xq

over each singular point is a CP* and so this is a small resolution (in the scnse
of Definition 8.4.6). In particular

H*(X\I;;R) =] IH*(XQ;R).

The fan ¥ is also a subdivision of the fan over the tetrahedron, which corre-
sponds to the toric variety CP3. The map

Xg — CP?
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is the blow-up of CP? at the four fixed points of the torus action. Hence we
have

h(Dg,t) = h(¥,t) = h(CP,t) +4 (R(CP?,¢) — 1) = 1 + 5t + 5¢* 4 ¢

as before.

9.9 Stanley’s conjectures

Suppose P is an n-dimensional convex polytope. Define the face vector or f-
vector to be (fo(P), ..., fn—1(P)) where f;(P) is the number of i-dimensional
faces of P. By convention we set f_;{P) = 1 (taking the empty face to have
dimension —1). A basic combinatorial question is to characterise the possible
f-vectors of convex polytopes. In general, this is intractable. However, if
P is a simplicial polytope, i.e. all the faces are simplices, then necessary
and sufficient conditions, first conjectured by McMullen [128], are known for a
vector to be the face vector. The conditions are given in terms of the h-vector
(ho(P), ..., hn(P)) which is related to the f-vector by

Y fiaP)a 1" =D hy(P)z™ (9.7)
i=0 i=0
It should be clear that this contains the same information as the face vector.

Theorem 9.9.1 (The g-theorem). A sequence (ho,...,hn) of integers is the
h-vector of an n-dimensional simplicial polytope if and only if

1. the Dehn—Somerville relations h; = hyn—; hold for 0 <i < |3,

2. we have 0 < hg <h1 <...< bz and,

3. the differences h; — h;—1 do not grow too fast; to be precise if
ny>ni_1>...>n,2k2>1

are the unique natural numbers such that

wone (1)) ()

(this is not a condition — any natural number can be written uniquely
in this way) then

n;+1 n;—1+1 ng +1
ponmtes (B ) (P Y ()

for1<i<|3]-1
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(The name of the theorem arises because the difference k; — 2;_; is some-
times denoted by g;.) When n = 2 these conditions reduce to the single
condition fo = fi. We can also check that they hold for the tetrahedron,
octahedron and icosahedron (but not, for instance, for the cube). It is also
suggestive of a topological interpretation to note that in three dimensions the
condition hg = hj is equivalent to Euler’s formula

fo—h+f2=2

Given an f-vector satisfying these conditions Billera and Lee give an
explicit construction of a convex simplicial polytope with that face vector
[17, 18]. The necessity of the conditions was proved by Stanley [166]. The
idea is to interpret the h-vector in terms of the topology and geometry of
a projective toric variety associated to P. The first step is to perturb the
vertices of P so that it is rational. We can do this without changing the
face vector because P is simplicial. Thus we may assume that P is rational,
and also that the origin is in the interior. The fan over P then defines a
projective toric variety. Slightly confusingly, as a result of our earlier (and
standard) convention, this variety is the toric variety Xp. associated to the
polar polytope P°. For ease of notation we will write Yp for Xpo.

We can compute the intersection Betti numbers using (9.6). Recall that
g(o,t) = 1 for a cone o over a simplex. Since i-dimensional cones of the
fan over P correspond to (¢ — 1)-dimensional faces of P it follows that the
intersection Betti numbers of the toric variety Yp are the coefficients of the
polynomial

Zfz’—l(P)(tz _ l)dim P—i’

=0

i.c. we have h; = dim TH?(Yp;R). We know that the intersection cohomology
of the projective variety Yp satisfies the hard Lefschetz theorem. Thus there
is a map

L : IH*(Yp;R) — IH***(Yp;R)

given by multiplication by a class [w] € H?(Yp;R) which induces isomor-
phisms
Li . IH™(Yp;R) — TH™(Yp; R) (9.8)

for 0 < i < m. In particular
L: IHYYp;R) — IH*?(Yp;R) (9.9)

must be an injection for ¢ < m. The first two conditions of the g-theorem are
immediate consequences of (9.8) and (9.9) respectively. The third condition
is more subtle. Since P is simplicial the variety Yp is an orbifold. Hence the
intersection cohomology (with real coeflicients) is isomorphic to the ordinary
cohomology. The third condition follows from the fact that the cohomology
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H*(Yp;R) is generated as a ring by classes of divisors in H?(Yp;R) — sec
Fulton [61, §5.6] and Stanley [169, §IIL.1].

In this proof of the g-theorem deep results in algebraic geometry furnish us
with results about the elementary (in the sense of easy to state) combinatorics
of polytopes. Alternatively, a purely combinatorial proof of the g-theorem is
known (McMullen [129, 130]) so that we can reverse the implications and
deduce information about the intersection cohomology of toric varieties from
combinatorics.

If P is not simplicial then it is no longer necessarily possible to perturb
the vertices to obtain a rational polytope whilst preserving the face vector.
(The non-rational polytopes form a strictly bigger class than the rational
ones: there are non-rational polytopes whose combinatorial type is distinct
from that of any rational polytope, see Ziegler [181, Ex. 6.21].) However there
is still a complete fan ¥p over P. The intersection Betti numbers of this fan
are the coefficients of the polynomial 2{¥p,t) defined at (9.6) and are easily
seen to be zero in odd dimensions. Stanley [167] defined the generalised
h-vector h{P) = (ho(P),...,hn(P)) of an n-dimensional polytope to consist
of the even dimensional Betti numbers, i.e,

hi(P) = dim TH?(¥p). (9.10)

We saw above that this agrees with the original definition of the h-vector for
simplicial polytopes but in general it is given in terms of the combinatorics of
the faces by the more complicated recursive definition (9.6).

Stanley [167] proved that the generalised h-vector always satisifes ‘Poincaré
duality’, i.e. that h; = h,—; for 0 < 4 < |dim P/2|. In the same paper he also
conjectured that h; > 0 for all 7 and that

ho < hy <...< hiamepy2)s (9.11)

i.e. that the generalised h-vector has the ‘hard Lefschetz property’. This
conjecture was the stimulus for the work on the intersection cohomology of
fans described in the previous section, and it gained the status of a theorem
when Karu proved the hard Lefschetz theorem for fans in [90]; in fact Karu
proved the stronger result that the Hodge-Riemann bilinear relations hold. In
brief: for a complete n-dimensional fan ® Karu constructs a Poincaré duality
pairing
(,):IH"%®) x IH"(®) — R.

Using the Lefschetz operator £ : ITH"#(®) — IH™*+*(®) we obtain a bilinear
form B(z,y) = (£iz,y) on TH""*(®). The Hodge-Riemann bilinear relations
state that the form

(-n"dg

is positive definite on the primitive part, i.e. on the kernel of

£+ TH(®) — IH™+2(9),
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This result was proved for simplicial fans in McMullen [129] (see also Timorin
[172]). Karu’s proof involves making a choice of simplicial subdivision of ®
and defining the pairing in terms of the known one on a simplicial fan. Bressler
and Lunts [33] simplify the proof by showing that there is a canonical pairing
(which agrees with Karu’s).

9.10 Further reading

A good survey of the g-theorem, Stanley’s conjectures and their proofs can be
found in [169]. Stanley’s book [168] puts the g-theorem in its combinatorial
context, and Fulton’s [61] in the geometric one of toric varieties.

General treatments of equivariant intersection cohomology can be found
in Joshua, [87], Brylinski [38], Bernstein and Lunts [16] and Goresky, Kottwitz
and MacPherson [67]. The sheaf-theoretic viewpoint developed in Bernstein
and Lunts’ book culminates in a treatment of the intersection cohomology of
toric varieties. The theory of sheaves on fans, and in particular of minimal
extension sheaves, is developed in a similar spirit in Bressler and Lunts [32].
They give a detailed treatment of the analogue of Verdier duality, leading
to a proof of Poincaré duality for the intersection cohomology of fans. As a
consequence they prove the Kalai conjecture, made in [89], which states that
for a cone T > o there is a coeflicient-by-coefficient inequality

9(0', t) 2 g(T’ t)g(Star(T)a t)'

This was initially proved for rational fans by Braden and MacPherson in [30].

An alternative treatment of sheaves on fans, combinatorial Verdier duality
and Poincaré pairings which avoids the use of derived categories can be found
in the series [7, 8] and [9] of papers by Barthel, Brasselet, Fieseler and Kaup.

Braden and MacPherson [31] uses similar ideas to those in §9.8 to com-
pute equivariant intersection cohomology and intersection cohomology for a
class of varieties with torus actions which includes Schubert varieties in flag
varieties. The structure of the 0 and 1-dimensional orbits is used to define
a ‘moment graph’. There is a canonical sheaf on the moment graph, akin
to the minimal extension sheaf, which can be used to compute equivariant
intersection cohomology.



Chapter 10

Characteristic p and the
Welil conjectures

In 1973 Deligne completed the proof of the famous Weil conjectures which
relate the arithmetic of projective varieties defined over finite fields and the
homology of non-singular complex projective varieties (Deligne [563, 54]). The
conjectures were stated by André Weil in the 1940s (Weil [178]) and progress
(leading to partial proof) was made by Grothendieck and others in the early
1960s.

10.1 Statement of the Weil conjectures

Let X C CP" be a non-singular m-dimensional complex projective variety
defined over an algebraic number ring R (e.g. R = Z). That is, X can be
defined by the vanishing of homogeneous polynomials with coefficients in R.

Example 10.1.1. The Fermat curve of degree n is defined in CP? by the
equation

over Z.

Let 7 be a maximal ideal of R. (For example if R = Z then m = pZ where
p is a prime.) Then R/7 is a finite field. Let p be the characteristic of R/x.
Then
R/m =T,

is a field with ¢ = p® elements for some positive integer s.
We can define a projective variety

F<11V+1 _ {0}
F, - {0}

163
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by reducing modulo 7 the equations with coeflicients in R which define X, If
we choose 7 so that the characteristic p of R/m is not one of finitely many
“bad” primes for X then X, is a non-singular m-dimensional projective vari-
ety over the field F,. _

Let X be the corresponding variety defined over the algebraic closure F,
of F, by the same equations as X.. For each r > 1 there is a unique subfield
Fgr of Fy such that Fyr has g” elements. Moreover

Fp CFy

if and only if » divides ¢. .
Let N, be the number of points in X, of the form (z, : ... : zx) where
each z; lies in Fgr. Define Z(t) by

2() =exp (Y N, 2) e [l (10.1

r>1
Example 10.1.2. If X = CP™, R =Z, = = pZ then
Ny=14p +p¥ +...+p™

and

t’l‘
Z{t) = exp (Z(l +p" + ...+p"")?)
r>1
1

A-8)A-pt)(1—p?)...(1—p™t)

The Weil conjectures relate the numbers N, to the Betti numbers
dim H;(X) of X. They can be expressed in terms of the function Z(t) as

follows.
P (t)Ps(2) ... Paym—1(2)
Po(t)Pa(t) . .. Porn(t)

where Po(t) =1—1t, Pon(t) =1 — g™t and if a < j < 2m — 1 then P;(t) is a
polynomial in ¢ with integer coefficients satisfying

Pity= JI (Q—aut)

1<i<dim Hy(X)

Z(t) = (10.2)

where each aj; is an algebraic integer and |aj;| = g%. Note that these con-
ditions mean that Z(t) uniquely determines the polynomials P;(t) and hence
the Betti numbers of X since dim H;(X) = deg P;(?).
Let E = };(—1)7 dim H;(X) be the Euler characteristic of X. Then Z(t)
satisfies a functional equation
1

Z(W) = +q™E/I2 P 7(1). (10.3)
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Remark 10.1.3. The statement “|aj,-| = q*” is called the Riemann hypoth-
esis by analogy with the Riemann Zeta function as follows. Put ¢ = ¢~¢ in

Z(t) to get
Z(g™°) = exp (Z qu;”) .

r>1
Define a prime divisor p of X to be an equivalence class of points of X
modulo conjugation over Fg, and let its norm be
Norm p = ¢i°&?

where degp is the number of points in the equivalence class. Then since
Fy C Fy if and only if ¢ divides j the number of points of X, defined over
qu is
N, = Z degp.
deg p|r
Hence
rm p)—s'r/ deg p

Z(g™°) = exp), Y degp (No

r>1 deg p|r

_ (Norm p)~#
= Hexp (— log (1 — (Norm p)_s))
p
H (1 — (Norm p)_a) - .
P

Recall that the classical zeta function is give by

=Y n7= [[ a-p)"

n>1 p prime

r

The classical Riemann hypothesis says that the zeros of ((s) lie on the line
Re(s) = 1 in C. When dim¢ X = 1 the statement that |a;;| = ¢//2 where

(_1):i+1
Z(t) = H( I1 (l_ajit))

i \1<i<dim H,(X)
- [ C-an)a-9rc-ao
1<e<dim Hy (X)

is equivalent to the statement that if Z(f) = 0 then [t| = q3, ie. that if
Z(g~*) = 0 then Re(s) = 3.
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Weil proved some special cases of his conjecture and realised that the
general case followed if one could define a suitable cohomology theory for va-
rieties over fields of non-zero characteristic analogous to ordinary cohomology
for varieties over C. Grothendieck was able to define such a cohomology the-
ory, £-adic cohomology, using the theory of étale topology (due to himself and
Artin) and thus proved part of the conjectures (the rationality of Z(¢) and
the functional equation). Deligne finished the proof in 1973, by proving the
analogue of the Riemann hypothesis. Before defining f-adic cohomology let
us see how its properties lead to a proof of the Weil conjectures.

10.2 Basic properties of /-adic cohomology

Let Y be a quasi-projective variety over an algebraically closed field &k of
characteristic p > 0. Let £ be a prime number different from p. Let

Ze =imZ/CZ
T

be the ring of f-adic integers, and let @ be its field of fractions. The ith f-adic
cohomology group of Y is written H*(Y; Q). It has the following properties
(see e.g. Milne [133]).

Proposition 10.2.1. (a) {-adic cohomology is a contravariant functor from
the category of quasi-projective varieties over k to the category of vector
spaces over Q.

(b) HY(Y;Q¢) = 0 unless 0 < i < 2m where m is the dimension of Y.
The dimension of H(Y;Qy) is finite for all i if Y is projective (and
conjecturally for any quasi-projective Y ).

(c) Poincaré duality IfY is non-singular and projective then there is a
natural perfect pairing

H{(Y;Qp) @ H™H(Y;Qq) — H™(YV; Q) = Q
for0<i < 2m.

(d) Lefschetz fixed point formula IfY is non-singular and projective of
dimension m over k and f: Y — Y has only tsolated fized points each
of multiplicity one (i.e. 1 is not an eigenvalue of the derivative of f at
any y € Y such that f(y) = y) then the Lefschetz number L(f) of f
defined by

2m
L(f) = Y (-1 Te(f*: H(V;Qe) = H(Y; Q)
J=0
18 equal to the number of fized points. More generally when f has isolated
fized points of multiplicities possibly greater than one then L(f) is the
number of fized points counted according to multiplicities.
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(e) Comparison and change of base field If X is a non-singular complex
projective variety then H7(X;Qpg) is the ordinary cohomology of X with
coefficients in Q,, so

dim¢ HY(X) = dimg, H?(X; Q).

Moreover if X is defined over an algebraic number ring R, as in Section
10.1, then . o
HY(Y;Qq) = H?(Xr; Q).

These are the properties of ¢-adic cohomology which we shall need. #-
adic cohomology also satisfies most of the familiar properties of cohomology,
such as the existence of relative cohomology, long exact sequences, spectral
sequences and so on.

Let X be a non-singular complex projective variety defined over an alge-
braic number ring R, and define X as in Section 10.1. The properties (a)—(e)
of ¢-adic cohomology can be used to prove the Weil conjectures (10.2). The
crucial ingredient is the definition of the Frobenius mapping.

Definition 10.2.2. The Frobenius mapping f: X, — X, is given by
flxo:...:an)=(d:...: z}).

This makes sense because the equations defining X, as a subset of PV (F,)
have coefficients in the field F,, and if p(Xo,...,X~) is a polynomial with
coefficients in Fy then

p(X4,....X%) = (»(Xo, .- ,XN))q.

A point z € X, is fixed by the rth iterate f” of f if and only if it has
coordinates in Fy,. Hence the number N, of points in X . with coordinates
in Fg is the same as the number of fixed points of f”. One can check that
all the fixed points of f™ have multiplicity one. Thus by the Lefschetz fixed

point formula (d) we have

N, = L(f") (10.4)
for all » > 1. This means that
20 = ey T
r>1
= e T (CITE () B (K3 Qe) - HI (X Q) &
>l 0<j<2m r

j=0 r>1 r
2m

= Hdet (1—tf*: H(Xn;Qe) = H (X3 Q)
j=0

2m b
=1 (epo(—l)jTr ((F)*: H (X3 Qe) — H? (Xx; Q) t—)

(_1)J+1
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P (t)Ps(t)... Pop—1 (2)
Py(t)Pa(t) . .. Parn(t)

where P;(t) = det (1 — ¢f*: HY(Xx,Q¢) — H¥(X#,Q¢)). Then

P;(t) = II (1 —ajit)

1<i<dim H7 (X ~,Q¢)

where the aj; are the eigenvalues of the action of the Frobenius map on
HI(X r;Q¢). Thus the Riemann hypothesis is equivalent to the eigenvalues of
the Frobenius action on HI(X »; Q) being algebraic integers of modulus ¢//2.

The functional equation (10.3) for Z(¢) comes straight from Poincaré du-
ality and the fact that if @ € H(Xr; Q) and 8 € H?>™#(X,;Q;) then the
Poincaré pairing of f*a and f*g is g™ times the Poincaré pairing of a and
B. This is because of the naturality of the Poincaré pairing and because the
Frobenius map

F* H™ (X Q) = H?™(Xx; Qe)

is multiplication by ¢™.
Having said why f-adic cohomology is useful for proving the Weil con-
jectures, let us consider how it is defined. For more detail see Milne [133].

10.3 Etale topology and cohomology

Let Y be a quasi-projective variety defined over an algebraically closed field
k. The Zariski topology on Y is the topology whose closed subsets are the
subsets defined by the vanishing of homogenous polynomials (i.e. the closed
subvarieties of Y'). This topology reflects the algebraic structure of Y. How-
ever it is too coarse for many purposes. Of course when & is the complex field
C we can also give Y the usual complex topology, by regarding it as a subset
of a complex projective space, but in general this topology is not available.

The étale topology on Y plays a role similar to that of the complex
topology. It is not a topology at all in the usual sense but it behaves in much
the same way as a topology. Instead of open subsets of Y one works with
étale morphisms g: U — Y.

A morphism is étale if it is flat and unramified, or roughly speaking if
it is an unbranched cover of a Zariski open subset of Y. More concretely,
a morphism of varieties is étale if it induces a local isomorphism between
tangent cones. In terms of algebra, if U is a quasi-projective variety over k
then g: U — Y is an étale morphism if and only if every u € U satisfies the
following condition. There are Zariski open neighbourhoods V of « in U and
W of f(u) in Y, functions

aji:W—k, 1Z<j<mn,
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such that each a, is a rational function in inhomogeneous coordinates on W
and for each £ € W the polynomial

P(t,z) =t"+ a1(z)t" " +... + an(x)
in ¢ has simple roots, and an isomorphism
V - {(t,z) € kx W | p(t,z) = 0}

whose projection onto W is g.

Ifg: U - Y and f: V — U are étale morphisms thensois go f: V — Y.
Moreover, if g: U — Y and f: V — Y are étale morphisms then there is a
commutative diagram of étale morphisms (called a pullback diagram),

W———U

V————Y

f
with the universal property that if

w—2 >y

V——F——Y

f

is another commutative diagram then there is a unique 7: W' — W such that
@ =ao7 and b= bor. The composition goa = fob: W — Y plays the role
for the étale topology of the intersection g: U — Y and f: V — Y.

The definition of a sheaf F on Y with respect to the étale topology is
closely analogous to the definition of a sheaf for a genuine topology on Y.

Definition 10.3.1. For each étale mor;')hism g: U — Y there is an Abelian
group F(g) satisfying the following conditions.

(i) If g: U - Y and f: V — U are étale morphisms then there is a restriction
map

F(g) — Flgof)

s — 8lgof

with the usual functorial properties (Milne [133, Ch. 2 §1]).
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(i) Ifg : U — Y and g;: Uy — U are étale morphisms such that U =
Uier 9.(U;) and if s; € F(g o g;) satisfy
si‘gog” = sj‘goglj

for all ¢ and j where g;;: U;; — U fits into the pullback diagram

Uij —_— Ui

gij

Uj 4] u

then there exists a unique s € F(g) such that s; = 8|40y, forall i € I.

Sheaf maps are defined in the obvious way and we get a category EtSh(Y)
of étale sheaveson Y.

The definition of right derived functors given in Section 3.8 for left exact
additive functors between categories of sheaves can be adapted directly to
define the right derived functors of functors from EtSh(Y) to Ab. There is a
functor I'y : EtSh(Y") — Ab defined by

Ty(F)=F(ly: Y - Y) (10.5)

where ly is the identity map on Y and I'y is a left exact additive functor.
The étale cohomology groups of F are defined to be the right derived functors
of T'y applied to F:

(Y3 F) = RTy (F). (10.6)

Remark 10.3.2. Alternatively one can adapt the definition of Cech cohomology
and define étale Cech cohomology groups

FIéit (Y;F)
which for sufficiently well-behaved sheaves F are canonically isomorphic to

the groups ’
He (Y5 F).

Now suppose that £ is any prime number different from the characteristic
p of k. The constant sheaf (Z/¢"Z)y on Y is defined by

(Z)rZ)y(g: U — Y') = {continuous maps h: U — Z/{"Z}

where U is given the Zariski topology and Z/{"Z has the discrete topology
(so that a continuous map h: U — Z/f"Z is constant on every connected
component of U/). The restriction map

(z/f2)y(9) — (Z/C L)y (g o f)

is given by composition with f.
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Definition 10.3.3. The /-adic cohomology of Y is defined to be
H*(Y;Qe) = (lim HE (Y5 (Z/0Z)y)) @ Qe-

Remark 10.3.4. This definition is rather subtle; the £-adic cohomology is not
simply the étale cohomology of a constant sheaf. We must first take the étale
cohomology with coefficients in (Z/¢"Z)y and only then pass to the limit and
tensor with the field of fractions. One way to think of this is that we must
work with categories of projective systems and avoid passing to the limit (even
though it exists) too soon.

10.4 The Weil conjectures for singular varieties
and /-adic intersection cohomology

Suppose that ¥ = X, where X, is the reduction modulo a prime ideal 7 of
a complex projective variety X C CPY defined over an algebraic number ring
R and X, is the extension of X to a variety defined over the algebraic closure
F, of F, = R/m. We have secn that if X is non-singular and 7 is chosen
appropriately then the properties of the ¢-adic cohomology of Y can be used
to prove the Weil conjectures for X. What happens when X is allowed to be
singular? The Weil conjectures certainly fail as they are stated, but they can
be made to work if one uses intersection cohomology throughout instead of
ordinary cohomology. To see why this might be true we must define fadic
intersection cohomology.

By enlarging the algebraic number ring R if necessary, we can assume that
X has a Whitney stratification given by a filtration

X=Xm_D_Xm—1_D_QX0

where each X is defined over R. Moreover we can assume that if Y; is the
extension to IF, of the reduction of X; modulo 7 then

Y=Yn2dYm12...2Y0

is a filtration of .
Y=X.

by closed subvaricties Y; such that Y; — Yj_ is either empty or is non-singular
of dimension j for each j. We can now use Deligne’s construction of intersec-
tion homology (Section 7.3) to define the f-adic intersection cohomology

TH*(Y;Qy)

of Y as follows. Let iy : Y — Yip—r — Y — Yiu—r—( be the inclusion. Define a
complex of sheaves ICy (Z/¢"Z) on Y in the étale topology by

Ts_m_lR(im)* . Ts_zm_,.lR(’iz)*Ts_sz(il)*(Z/ZTZ)y_ym_l [2m] (10.7)
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where
(Z/ L)y Y, [2m)]

is the complex on Y — Y;,_; which is the constant sheaf (Z/¢"Z)y_y,, , in
degree ¢ = —2m and 0 in other degrees (all with respect to the étale topology).
By analogy with the /-adic cohomology we define

TH,(Y;Qe) = (lim HZ,(Y; ICY (Z/€7Z))) @ Qo

and let the /-adic intersection cohomology IH*(Y'; Q) be its dual. For more
details see Beilinson, Bernstein and Deligne [13], Brylinski [36].

Proposition 10.4.1. For a (possibly singular) complex projective variety X
defined over an algebraic number ring R the £-adic intersection cohomology
thus defined has the following properties.

(i) Comparison and change of base field.
With the notation above we have

TH*(Y; Q) = TH*(X;Qy)
where Y = X . Moreover
dimg, TH*(X;Q,) = dimg TH (X).

(if) Poincaré duality.
There is a perfect pairing

THY(Y; Q) ® TH*™(Y;Q,) — Q.

(iii) Lefschetz fixed point formula.

If f: Y — Y is an isomorphism with isolated fixed points then the Lef-
schetz number

2m
L(f) =Y (=17 Tx (f*: IH/(YV;Qp) — TH(Y; Q)
j=0

of [ is equal to the number of fized points of f counted according to
multiplicity. Unfortunately the definition of multiplicity becomes more
complicated when the fized point is a singularity of Y (cf. Goresky and
MacPherson [72]).

As in Section 10.2 we consider the Frobenius map f: X, — X defined
by
flowo:...:zon)=(zd:...: z%).

_The Lefschetz number L(f") of the rth iterate of f is the number of points
of X, defined over the field F,-, but counted according to multiplicity. The
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maultiplicity of a non-singular point is one, but in general the multiplicity
depends on the singularity of X, at the point in question.

Just as in the non-singular case, the Frobenius map acts trivially on
ITH%(X ; Q) and as multiplication by ¢™ on TH?*™(X,;Q;). Moreover the
eigenvalues of its action on

IH 7 (X-w QE )

for any j between 0 and 2m are algebraic integers a;; with modulus
1
Iaj,-l =q-=. (108)

This fact, sometimes called the Riemann hypothesis as in Section 10.1, is
very important. (Its proof makes use of Poincaré duality: once it has been

shown that Ia,-,-l < q% for all j then Poincaré duality gives the reverse inequal-

ity |aﬁ| > q§ .) Its importance is not merely that it can be used to generalise
the Weil conjectures to apply to singular projective varieties, provided one
uses intersection homology and counts points according to multiplicities de-
pending on the singularities of the points. Its main importance is that in any
reasonable cohomology theory such as f-adic intersection cohomology there
are natural boundary maps and degeneracy maps appearing in long exact se-
quences, spectral sequences, etc. These maps often go from the cohomology
of one space to the cohomology of another space in a different dimension.
Because these maps are natural, in the case of the f-adic intersection coho-
mology groups of subvarieties of PN (F,) defined over F, they must commute
with the Frobenius maps. But since the eigenvalues of the Frobenius maps
acting on Z-adic intersection cohomology groups of projective varieties in dif-
ferent dimensions are different this means that the boundary and degeneracy
maps between such intersection cohomology groups must vanish. Using the
comparison theorem one finds that the corresponding boundary maps and
degeneracy maps for the ordinary intersection cohomology of complex pro-
jective varieties must vanish also. This enables one to prove theorems about
ordinary intersection cohomology of complex varieties. An important exam-
ple is Beilinson, Bernstein, Deligne and Gabber’s decomposition theorem (see
Chapter 8).

Remark 10.4.2. At first sight this argument only applies when the complex
varieties involved are defined over algebraic number rings. However a finite
set of equations defining any complex projective variety can be “deformed”
slightly without altering the intersection cohomology so that the equations
become equations with coefficients in an algebraic number field.

10.5 Further reading

Serre [161] is a very lucid survey of zeta and L-functions. Katz [103] gives an
overview of Deligne’s proof of the Weil conjectures. A much more detailed, and
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fairly self-contained, account can be found in Freitag and Kiehl [59] and Kiehl
and Weissauer [109]. The former deals with étale cohomology and Deligne’s
proof of the Weil conjecture in the non-singular case, the latter with perverse
sheaves on schemes and the extension of the proof to singular varieties.



Chapter 11

D-Modules and the
Riemann—Hilbert
correspondence

This chapter contains a brief sketch of the theory of D-modules and their
relationship to intersection homology.

11.1 The Riemann—Hilbert problem

Consider the system of m first-order differential equations
df‘ Za,J(z)f,(z 1<i<m (11.1)

in m complex-valued functions of one complex variable z, where each a;;(2)
is a meromorphic function of z defined on a connected open subset U of
CP! = CU {o0}.

Example 11.1.1. A single mth order differential equation

dmf m—lf _
o +a1(z)d —T+...+an(2)f(2) =0
is equivalent to the system of equations
df; .
d—J;=fi+1, 1<i<m-—1,
dfm
Ir a2 = - = am(D ().

175
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If each meromorphic function a;;(2) is holomorphic on U then the solutions
of the system (11.1) are multi-valued holomorphic functions of 2z € U and the
space X of solutions is a vector space of dimension m. However if at least
one of the coefficients a;;(2) has a singularity at some b € U then in general
the solutions have branch points at b and b is called a singular point of the
system.

Definition 11.1.2. A singular point b € U is called a regular singular
point of the system (11.1) if whenever

(fl(z)a . -afm(z))

is a multi-valued solution of the system near b then there is some positive
integer r such that
Ir —8l" f5(z) = 0

for each j as z — b. Otherwise b is called an irregular singular point.

When all functions a;;(2) are rational (i.e. they are meromorphic on CP')
then the system (11.1) is said to be of Fuchsian type if all the singular
points are regular. The mth order equation in Example 11.1.1 is said to
be of Fuchsian type if the corresponding system of m first order differential
equations is of Fuchsian type.

Example 11.1.3. Let & be a fixed complex number. The equation

df «a

dz _z_f(z)

has solutions f(z) = c2® for ¢ € C. If o is not an element of Z these solutions
are multi-valued with branch points at 0, and 0 is a regular singular point of

the system.

In fact the system (11.1) has a regular singular point at 0 if and only if
it is equivalent to a system of the same form such that the coefficients a;;(z)
have poles of order at most one at 0 (see e.g. Borel [20, IT1, 1.3.1]).

Now let bp,...,b; be the points of U which are singular points for the
system (11.1). If v is a closed path in

U — {bo,...,br}

then analytic continuation along <y induces a linear transformation ¢(y) : & —
T of the space of solutions. If we choose a basis of 3 we get a representation

¢ :m(U — {bo,...,b}) = GL(m,C) (11.2)

of the fundamental group of U — {by, ..., bx}. This representation ¢ is called
the monodromy of the system (with respect to the chosen basis of ). Note
that up to a choice of basis such a representation ¢ corresponds exactly to a
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local system £ on U — {bg,...,bx} with £, 2C™ forallz € U~ {bg, ..., bk}
(cf. Section 4.9).

In 1857 Riemann posed the following problem. Given points by, ...,b; €
CP! and a faithful representation

¢:m(U - {bo,...,b}) = GL(m,C) (11.3)

find all systems of Fuchsian type whose singular points are bg,...,b; and
whose monodromy (with respect to some basis of the space of solutions) is ¢.
Riemann showed that when m = k = 2 there is a unique system of Fuchsian
type with given singular points bg, b1, b2 and given monodromy

¢ : m (CP! — {bg, b1, b2}) — GL(2;C).

When the singular points are 0,1,00 this system is given by the hyper-
geometric equation

2
z(z—l)j?+('y—(a+ﬁ+ 1)2)% —-aBf=0 (11.4)

where a, 3,7 are constants depending on the monodromy ¢.

When in 1900 Hilbert listed twenty three problems as targets for mathe-
maticians in the twentieth century he included a generalisation of Riemann’s
question, It is easy to extend to arbitrary compact Riemann surfaces the
definitions of systems of first order differential equations with meromorphic
coeflicients, systems of Fuchsian type and monodromy. (One way is to identify
functions on a fixed compact Riemann surface S with multi-valued functions
on CP'.) Suppose we are given a compact Riemann surface S, points by, . . . , by
of S and a representation

¢:m(S — {bo,...,0}) = GL(m,C) (11.5)

of the fundamental group (S — {by, ..., b }). Hilbert’s twenty first problem
(often called the Riemann—Hilbert problem) was to find those systems of
differential equations of Fuchsian type over S whose monodromy is ¢.

Many mathematicians worked on this problem and it was finally shown a
hundred years after Riemann posed his original question that there is an ex-
act correspondence between systems of Fuchsian type and their monodromy
representations (see Rohrl [147]). This correspondence is often called the
Riemann—Hilbert correspondence. However systems with irregular sin-
gularities are not determined by their monodromy representations.

So far we have been considering systems of differential equations in one
complex variable, i.e. over a 1-dimensional complex manifold. In this chap-
ter we shall discuss a more general form of the Riemann-Hilbert correspon-
dence which relates differential systems (or D-modules) on a complex quasi-
projective variety X to the intersection sheaf complexes of subvarieties of X
with coefficients in local systems.
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11.2 Differential systems over C"

Fix n > 1 and let O denote either the ring of holomorphic functions on C”
or the ring of polynomial functions on C". The choice we make depends
on whether we wish later to study holomorphic D-modules or algebraic D-
modules. We shall mainly be interested in algebraic D-modules, but the
theories are very closely related. Let D be the ring of differential operators
generated by the ring O together with

Dy, Ds,...,Dn
(which are to be thought of as %,...,% where 2i,...,2, are complex

coordinates on C™), satisfying the relations
D;D; = D;D;,

Dig=9D1.+a—3 if g €0.

1

Then D actson O via g - f =gf, Di-f=g£forf60.
Definition 11.2.1. A differential system on C" is a left D-module M such
that there is an exact sequence of left D-modules

PP D! —->M—-0

where PP = D@ ...®D is the direct sum of D with itself p times. A solution
of the differential system M with values in a left D-module JF is a map of left
D-modules

o: M- F

Motivation
If M is a differential system with an exact sequence
DP DI M0

then M is generated as a left D-module by the images f1,..., f; under the
surjection D¢ — M of the usual basis e1,...,eq of D? as left D-module.
Moreover the kernel of this surjection is the image of the map DP — D1,
Hence it is generated as a left D-module by the images ry,...,rp, say, of the
standard basis of DP. We can write

r; = E dije;
1<j<q

where each d;; is an element of D. Then the generators fi,...,f;, of M
satisfying the relations

> dyfi=0, 1<i<p.

1<j<q
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A solution ¢ of M with values in F is uniquely determined by the images
&(f1)s .-, 8(fg) of generators fi,..., f, of M in F. If ¢1,..., ¢, are elements
of F then there is a solution ¢ : M — F such that ¢(f;) =¢;for 1 < j<gq
if and only if the ¢; satisfy the equations

Y diy¢;=0, 1<i<p.

1<1<q

Thus a differential system M on C™ together with a choice of generators and
relations for M is ‘equivalent’ to a finite set of partial differential equations
in a finite number of unknown functions in the variables z,..., zn.

Example 11.2.2. 1. The equations

of _

=0, Zigl 42ttt =
0z z z

define a differential system M; on C" with one generator f and two
relations D, f and (21D3 + 22D3 + ... + zn—1Dp) f. Thus there is an
exact sequence of left D-modules

D? -+D— M; —0.

2. The equations

of _

of of _ of
621 -

0, =0, ... ,7——
622 aZn

=0
define a differential system Mg on C" with one generator f and n re-
lations D f,..., D, f. Recall that the commutator of two elements
(51, (52 of Dis

(61, 02] = 0102 — 626,

The differential systems M,; and M, are isomorphic (as left D-modules)
because
[Dj, 21D3 + 2203+ ...+ z,,_an] = Dj+1

for 1 < j < n, so the left ideal of D generated by Dy and 2,02+ ... +
2zn—1D,, is the same as the left ideal generated by D), ..., D,.

3. When n = 1 write z for z; and D for D;.

Consider the differential system M3 with one generator f and one rela-

tion
D™ f+a, D™ f+.. . +anf
where a1, ...,a,, € O, corresponding to the differential equation
om om-1
f +a1(2) 5= +... +an(2)f =0.

azm dzm—1
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It was observed in Example 11.1.1 that Mj is isomorphic to the differ-
ential system M, with m generators fi, ..., fr» and m relations

Dfl _f2a'-'anm—1 _fm

and
Dfn+ar1fm—+...+amh.

11.3 Dyx-modules and intersection homology

We can globalise the definition of a differential system. Let X be either a
complex manifold or a complex quasi-projective variety. Denote by Ox the
sheaf of holomorphic (respectively regular) functions on X. That is, if U is
an open subset of X (in either the complex topology or the Zariski topology)
then

Ox(U) = {holomorphic functions s : U — C}

or
Ox(U) = {regular functions h : U — C}.

Recall that a regular function % is one which can be expressed locally
with respect to homogeneous coordinates on the ambient projective space as
the quotient P/Q of a homogeneous polynomial P by a locally non-vanishing
homogeneous polynomial Q of the same degree. A regular function C* — C
is just a polynomial function.

A differential operator on X is a sheaf map

§:0x — Ox

such that in local coordinates § is given by a differential operator on a subset
of C" with either holomorphic or regular coefficients. Equivalently for some
positive integer k and every open U C X

8(U) : Ox(U) — Ox(U)

satisfies o o
e, [Fr=1--- [f1,[fo,0]]...]] =0

for any fo,...,frx € Ox(U) where fj is the operator on Ox(U) given by
multiplication by f;.
The sheaf DPx on X is defined by

Dx(U) = {differential operators on U}

for U open in X. Note that both Ox and Dx are sheaves of rings on X, in
the sense that if U is open in X then Ox(U) and Dx(U) are rings and the
restriction maps preserve the ring structure.

If A is a sheaf of rings on X then a left .A-module is sheaf M on X such
that for each open U in X the Abelian group M(U) is an .A(U)-module and
the restriction maps respect the module structure.
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Definition 11.3.1. A sheaf of rings A on X is called coherent if given any
map of left .A-modules

0: AP — A?
then for all x € X there exist open neighbourhoods U of z in X and finitely

many sections o1,...,0, of ker8 over U such that oy,...,0, generate ker 0|U
as an A|U-modu1e. That is, the map

(AIU)" — ker0|U
given by sending (a1, ...,a,) € A(V)" to
o], +... + ararlv € ker6(V)

for V C U is surjective. Equivalently there is an exact sequence of left AIU-
modules

ATIU - Aplu & AqIU'

Theorem 11.3.2. (see e.g. Borel [20, II §3]). Ox and Dx are coherent
sheaves of rings on X.

Definition 11.3.3. If A is a coherent sheaf of rings on X then a left A-
module M is called coherent if every z € X has an open neighbourhood U
in X such that there is an exact sequence

APly — Afly = M|, =0
of left A| p-modules.

Coherent A-modules on X are better behaved than .A-modules in gen-
eral. Some pathological examples are avoided by imposing the condition of
coherence (cf. Pham [143, §2.6]).

The natural way to globalise the definition of a differential system is now
the following.

Definition 11.3.4. A differential system on X is a coherent Dx-module
M.

We shall see that differential systems are closely related to intersection
homology. Let X be a non-singular complex projective variety of dimension
n. Let Q% be the sheaf of holomorphic sections of the bundle A"T*X where
T*X is the complex cotangent bundle of X. Then 2% is a left Ox-module.
A local section w of % is given in local coordinates 21, ...,2, on X by

w(z) = Z Gig..0.(2)d20, Ao N d2,,

1<, <ty
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where the coefficients ay,..;,. are holomorphic functions of z = (z1,...,2n)-
We define d : Q% — Q5F! in local coordinates by

dw(z) = Z Z (Bau ") dzy Ndziy A... Ndz,.

11<... <t 1<k<n

Given a coherent Dx-module M we define the de Rham complex of M
to be the complex DR(M) given by

d d
0——>M—i>9§( Qox M—L>0% R0y M -+ % @0y M—>0
where in local coordinates 21, ..., 2z, the sheaf map daq is given by

dmwe®m) =dw@m+ Y (dox Aw)® Dyw.
1<k<n

(cf. Pham [143, §2.14.2]).

The Riemann—Hilbert correspondence will tell us that, under the de
Rham functor DR, irreducible holonomic Dx-modules with regular singu-
larities correspond exactly to the intersection sheaf complexes of irreducible
subvarieties of X with coefficients in local systems, up to generalised quasi-
isomorphism.

In order to explain the Riemann—Hilbert correspondence we must define
holonomic Dx-modules with regular singularities.

11.4 The characteristic variety of a Dx-module

Let P € D be a differential operator on C". Then we can write

P= )" ca(z)D*

laj<m

where a = (a1,...,a,) € N*, |a| = a1 + ...+ an, D* = Df* ... D% and
caz) € O. If m is chosen as small as possible then m is called the order of
P, and the principal symbol of P is

a(Py= Y cal2)€* € Olty,... 5]

laj=m

where £* = £ ... &9 and O[f, . ..,&n] is the polynomial ring in &,...,&n
with coefficients in O. For any m € N we define the mth symbol o,,,(P) of
P by the same formula.

Let D{™) C D be the set of differential operators of order at most m. (By
convention the operator 0 has order —o0). Let ¥ be the ring

» = @ D) /plm=1)

m>0
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with multiplication
(D(m)/D(m—-l)) ® (D(E)/D(E—l)) — D(€+m)/D(€+m—1)

defined by the composition of differential operators
pm) g DO _, ple+m),

There is an isomorphism

2—90[61,...,611]

whose restriction to D™ /D{™~1) is induced by the symbol o,,,. We shall use
this isomorphism to identify ¥ with the polynomial ring O[¢,,...,&n].
Now consider a differential system M on C" with a given exact sequence

DP D1 > M — 0.

Let M(™) be the image of (D™)? in M, and let

Mm)
GTM = @ W.

m>0

Then GrM is a coherent Y-module. Let Z be the ideal in ¥ which is the
annihilator of GrM and let v/Z be the radical. Then

I={pe€ O, ...,&] | pu=0, Vuec GrM}

and
VI={peO[,. ...t Fk>1,p° eI}

Theorem 11.4.1. /T depends only on M, not on the choice of ezact se-
quence

PP - M—0.

Sketch of proof. (For more details see e.g. Pham [143, §2.8].) One shows
that +/Z is a homogeneous ideal (that is, it is generated by homogeneous
polynomials) and that the following two statements hold.

(i) If P € D™ and p = 0,,(P) then p € +/T if and only if
PME C MEEmeT() wpeN, seN
where 7(8) — 00 as 8 — 00.

(ii) If {/W (m)|m > 0} is another such filtration of M then there exist A, 4 € N
such that . ~
MO MEN MO C pmEtn)

for all £ > 0.
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This is enough to prove the theorem.

We can globalise Theorem 11.4.1. Let X be a complex manifold or a non-
singular quasi-projective complex variety as before. Then the sheaf of rings
Dx has a filtration by the Dg:,") in the obvious way and the associated graded
sheaf of rings

(m)
GrDx = @ &_

can be naturally identified with the sheaf of holomorphic (or regular) functions
on T*X which are polynomial in the variables in the fibre direction.
If U is an open subset of X and

PeDM™W)

is a differential operator of order m over U then the symbol o(P) of P is the
image of P under the composition

D(m) U
(m) X ( )
D (U)——>—————>GrDX ).
X g;n_l)(U) ( )

Now let M be a coherent Dx-module. One can always find a ‘good filtra-
tion’ locally (Borel [20, II §4], Pham [143, §2.8])

MO MDD . cMmmC. .,
of M; that is, a filtration which satisfies the conditions
(i) DOM C ME+™) with equality when m is sufficiently large;
(ii) M(m) is a coherent Ox-module.

Then (locally)
M)
GtM = @ )

m>0 M
is a coherent sheaf of GrDx-modules, and its annihilator Z is a coherent sheaf
of ideals in GrDx. Moreover locally +/7 is a coherent sheaf of ideals in GrDx
which is independent of the choice of filtration. This means that /7 is well
defined globally as a sheaf of ideals in GrDx, which is a sheaf of functions on
T*X. The set of zeros of this sheaf of ideals is a closed analytic (or quasi-
projective) subvariety of T* X called the characteristic variety

Ch(M) (11.6)

of M. Since /T is generated by elements which are homogeneous polynomials
in the variables £, ..., &, of the fibre directions of T* X it follows that Ch(M)
is a conical subvariety of T*X, i.e. it is invariant under scalar multiplication
in the fibres of T*X.
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11.5 Holonomic differential systems
It is easy to prove the following lemma.

Lemma 11.5.1. If P € D™ and Q € D© then the commutator [P, Q] of P
and Q is an element of D¥+™=1) and

of o
sem(PQ)= 3 28 -8

1<i<n
where f = om(P) and g = 0¢(Q).-

Definition 11.5.2. If f and g lie in O[¢,,. .., &,] then the Poisson bracket
{f,9} € Of&,...,&)] of f and g is defined by

_ 8f 89 Of oy

1<i<n
Theorem 11.5.3. (cf. Pham [143, §2.9], Saito, Kawai and Kashiwara [152]).
If M is a differential system on C™ and /T is defined as in Section 11.4 then
VT is involutive, in the sense that if f € VI and g € VT then {f, g} € V.

This theorem can be globalised in the obvious way.
If X is a complex manifold then 7™ X has a holomorphic symplectic form
w defined in local coordinates by

w= Y d&Adu.

1<i<n
That is, w is a holomorphic section of A27T*(T*X) such that
dw=0

and when elements of the fibres of A2T*(T*X) are identified with skew-
symmetric bilinear forms on the tangent spaces to T*X the skew-symmetric
bilinear form defined by w on each tangent space is non-degenerate.

Theorem 11.5.3 has an infinitesimal counterpart in terms of this symplectic
form w.

Theorem 11.5.4. Let 1 be a non-singular point of the characteristic variety
Ch(M) of a differential system M on X. Then

(T,Ch(M))* C T,,Ch(M) (1..7)

where L denotes the orthogonal complement in T, (T*X) with respect to the
holomorphic symplectic form w.
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It follows immediately from Theorem 11.5.4 that if the characteristic va-
riety Ch(M) is non-empty then its dimension satisfies

dim Ch(M) > dim T* X — dim Ch(M),

dim Ch(M) > dim X. (11.8)

Definition 11.5.5. A differential system M on X is called holonomic if
M=0or
dimCh(M) =n

where n is the dimension of X. Equivalently for every non-singular point 7 of
Ch(M) we have
(T,Ch(M))L = T,,Ch(M).

Such a subvariety of T* X is called a Lagrangian subvariety of T* X.

Holonomic differential systems used to be called ‘maximally over-deter-
mined’; ‘over-determined’ because the number of independent equations is
greater than or equal to the number of unknowns (otherwise v/Z = 0 so the
system is not holonomic) and ‘maximally’ because v/Z is as large as possible
(equivalently the characteristic variety as is small as possible).

11.6 Examples of characteristic varieties
Consider the differential system M; on C defined by one generator u and one

equation
(zD—a)u=0 (11.9)

where a € C, ¢ € N, 2 is the coordinate on C and D = E;Qz“ The filtration
MO cmPc...
of M, defined by this choice of generator u is given by

M™ = DMy
= {am(z)D"u+...+ ao(z)ul a;(2) € O, 0< j <m}.

Hence M{™ /M{™1) is generated as an O-module by the image of D™u in
M ME™D| The Gr D-module structure on

GtM; = @Mgm)/Mgm—l)

is such that if p € D{™ /D™ C GID is represented by P € D™ and if
z € MO /MY C GrM is represented by X then px is the image of PX in

ME™ A C G,
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Thus when the symnbol is used to identify GrD with O[¢] the image of D™u
in M{™ /M{™D is ¢mu. Hence GrM is generated as an O[¢]-module by w.
Moreover if

am(2)E™ + ... + ag(2) € Of¢]

then » » .
aj(2)fu e ng)/M(f—l) for 0<j<m
SO
(@™(2)€™ + ...+ ap(2))u=0
if and only if

a;(2)6u =0
for 0 < j < m, and this happens if and only if
a;(2)Diu € mE=D
for 0 < j < m. But a;(z)D%u € MYV if and only if there exist
bo(2),...,0;-1(2) € O

such that ‘ .
a;(2)Diu = bj_1(2) DI tu + ... + bg(2)u,

i.e. if and only if a;(2)¢? is the symbol for some P € D such that Pu=0. In
our case Pu = 0 if and only if

P e D(zD — a)?

80 a;(2)¢u = 0 if and only if (2¢£)? divides a;(2)¢?. Thus GrM, is generated
as O[¢]-module by one generator u with relaxation

(26)%u = 0.

Thus the annihilator Z of GrM; in O[¢] is the ideal generated by (2£)? and
VT is generated by z¢€. Thus

Ch(M) {(2,€) € T*C|z¢£ = 0}

= {(z,¢eT*Clz=00r¢{ =0}.
We can choose a different set of generators and relations for M, as follows.

Let »
u,=(zD—a)u for1<j<gq.

Then u; = u so ui, ..., 4, generate M, with relations

2Du; = ujqp1+ou;, 1<j<m,
z2Du,, = ounm.
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With this set of generators GrM; becomes the O[£]-module generated by
U1, ..., uq with relations

2€u; =0, 1<j<m.

Thus in this case both Z and +/Z are the ideal generated by z€.
M extends to a different system M on CP' = CU {oo} as follows. Let
w be the local coordinate on CP' — {0} given by

w=z"}

for z € C — {0} and such that w takes the value 0 at co. Then on C — {0}

d dw d 1d
ZD—ZE —Za% ——;% =—’LUDw

where Dy, = 4&. Thus if M; is the differential system on CP' — {0} defined
by one generator u and one relation

(wDy +0)u=0

then there is an obvious isomorphism between the restrictions of M; and M,
to C — {0}. Hence there is a Dy-module M on X = CP' such that

Ml =M1, Mgy = Mo,

The characteristic variety Ch(M) is the subvariety of T*CP' which is the
union of the zero section and the fibres over 0 and oc. Since

dim Ch(M) = 1 = dim CP",

M is holonomic.

Remark 11.6.1. Of course when X is 1-dimensional a coherent Dx-module
M is holonomic if and only if its characteristic variety Ch(M) is not equal
to T*X, or equivalently the sheaf of ideals v/7 is non-zero. In particular a
non-zero differential system on X defined locally by one generator and one
non-zero equation is always holonomic.

The differential system M on C? defined by one generator u and one
equation
D?u + D3u + a(21,22)u =0 (11.10)

has characteristic variety Ch(M) defined by
& +& =0,

in T*C2. Thus dim Ch(M) = 3 > dim C? so M is not holonomic.
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11.7 Left and right Dx-modules

The sheaf of holomorphic (respectively regular) vector fields on a non-singular
complex variety X (i.e. holomorphic or regular sections of TX) can be re-
garded as an Ox-submodule of the sheaf of rings Dx. In local coordinates a
vector field

1o} 1o}
0,1(2)52 +...+ an(Z)gz—n,

where the a;(2) are holomorphic or regular functions of z = (z1,...,2,), is
identified with the differential operator

a1(2)Dy + ...+ an(2)Dy,

given by differentiation along the vector field. As a sheaf of rings Dx is gen-
erated by these vector fields together with Ox. Thus a Dx-module structure
on an Ox-module M is determined by the action on M of these vector fields.

We have been working with left D x-modules but we can go freely between
left Dx-modules and right Dx-modules. (For more details see e.g. Pham [143,
§2.13]). If v is a holomorphic vector field on an open subset U of X and if w
is a holomorphic n-form on U (i.e. a holomorphic section of A*T*X over U)
then we can contract v and w using the dual paring between TX and T* X to
get a holomorphic (n — 1)-form 2,w on U. Clearly 1,w is regular if both v and
w are regular, If n = dim X then the Lie derivative of w along v is the n-form

Lie,(w) = d(1,w).

Given a left Dx-module M we can put a right Dx-module structure on the
tensor product

UM) = 0% ®ox M

where Q% is the sheaf of holomorphic (or regular) sections of A"T*X, as
follows. If U is an open subset of X and if w € Q%(U), u € M(U), f €
Ox(U) C Dx(U) and v is a holomorphic (or regular) vector field on U define

weuwf = we fu, (11.11)
(w®u)z = —Lie,(w)®u—wQvu. (11.12)

This defines a right Dx-module structure on Q{(M).

The motivation for this definition is the usual process of identifying func-
tions with distributions by multiplying by a fixed differential form of top
degree. It is not hard to check (see c.g. Bernstein [15, Lect. 1 §4], Borel |20,
VI §3], Pham [143, §2.13]) that  is a functor which induces an equivalence
of the category of left Dx-modules with the category of right Dx-modules.
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11.8 Restriction of Dx-modules

Let Y be a non-singular subvariety of a non-singular variety X,leti:Y — X
be the inclusion and let M be a Dx-module. One would like to be able to
restrict the Dx-module M to give a Dy-module in some sensible way. If Y
is an open subset of X then this is casy (because then open subsets of Y are
open subsets of X) so we may as well assume Y is a closed subvariety of X.

It is not hard to restrict M as a sheaf on X to a sheaf M|Y onY. IfU
is an open subset of Y we set

M|, (U) = colim M(V)

where the limit is over all open subsets V of X containing U. Then if y € Y
the stalk of M|Y at y is the same as the stalk of M at y.
The sheaf M|Y is an Oy |Y-modulc, and so is the sheaf Oy . The tensor
product
i°M = Oy ®OX|YM|Y (11.13)

has a natural Oy-module structure given by f(g® u) = fg ® u. In order to
make °M a Dy-module it is necessary to define the action of holomorphic
vector fields (cf. Section 11.7).

Suppose that U is an open subset of Y and u € M|Y(U ). Then there is
an open subset of V of X such that U = VNY and

for some & € M(V). By choosing U and V small enough we can assume that
there are coordinates zq,...,2, on V and 4;,...,%m on U. If

- ¥ e

1<i<m Y

is a holomorphic vector field on U and f € Oy (U) is a holomorphic function
on U then v(f) is the holomorphic function on U given by

Z ai(y 8yl

1<i<m

Now define the action of v on the element of f @ u of i°> M (U) by

v(fou) =v(f)Qu+ Z fo(z) g:

1<i<n

(11.14)

Yy

It can be checked (see e.g. Borel [20, VI, 4.1]) that this action is independent
of the choice of coordinates and defines a Dy-module structure on :°M. In
a similar way given any holomorphic map 7: Y — X and Dx-module M we
can define a Dy-module 7° M.



11.8 Restriction of Dy-modules 101

Example 11.8.1. Suppose M = Dx. Locally we can choose coordinates
Z1,.+., 2y such that Y is defined by

=2 =...=23=0.

Then ° M is the locally free Dy-module with local basis the set of all mono-
mials in Ds,..., D4 where

Example 11.8.2. Let X = C? and let
Y = {(z1, 22) € C?|2p = 2%}.
We can identify Y with C via the isomorphism
2€Cwrs (2,22 €Y.
Let M be the Dx-module with one generator u and two relations

(D} +Du = 0,
2w = 0.

We can change coordinates on C2? from (z1, 22) to (z,w) where 2 = z; and
w=2 —22. Then z; = z and 2, = w+ 22 s0

3] 3]
5; = D1 +2ZD2, 5&)‘ = D2.
Hence
Di(D? + D?) = Dg(% +22D;)% + Dit?
8\* ) 41 2y 2
=13 D} — (42 5 +2 | DI +(1+42%)Dj
and . .
D‘é21=21D;.

Thus i°(M) is the quotient of the free Dy-module with basis
{Djulj > 0}
by the submodule generated by
{D?Diu— (2 +42D)Di* u + (1 + 422)DJ 2ulj > 0}

and

{zD4ulj = 0}
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where z is the standard coordinate on Y = C and
d
D= o
Equivalently i°(M) is generated as a Dy-module by u and v = Dau subject
to the relations
zu=0=zv, Duy=0= Dv.

Remark 11.8.3. Suppose that F' is a left exact covariant functor from the cat-
egory of quasi-coherent Dx-modules to the category of quasi-coherent Dy-
modules. (Quasi-coherence is a technical condition which is weaker than
coherence; for the definition see Bernstein [15, §1.1], Borel [20, VI ,1.4],
Hartshorne [79, II §5]). Recall the definition of right derived functor given in
Section 3.8: given a Dx-module M we choose an injective resolution

do dy

0“_‘_>M I() > I]_ 1-2 s
of M (as a quasi-coherent Dx-module) and define RF(M) to be the complex

0—F(Z0) " p(2) X P (L) —> -
If F is left exact then this complex is independent of the choice of injective
resolution up to quasi-isomorphism. Similarly if F' is right exact then we can
define the left derived functor LF of F by using a projective resolution and
reversing all arrows in the definitions. LF(M) is a complex of Dy-modules
defined up to quasi-isomorphism.

Sometimes it is convenient to think of the restriction of a Dx-module M
to Y as a complex of Dy-modules rather than a single Dy-module. We can
regard 1° as a right exact covariant functor from the category of quasi-coherent
Dx-modules to the category of quasi-coherent Dy-modules, and thus we can
consider its left derived functor Li°. It turns out to be convenient to make a
dimension shift and so we define

i'(M) = Li*(M)[d]

where

d=dimX —dimY
(Borel [20, VI §4.2], Bernstein [15, §1.8]). It is often useful to regard either
the complex i' M or the Dy-module H°(i'M) as the restriction of M to Y.
From our point of view the main reason for this is the following theorem.

Theorem 11.8.4. (Kashiwara). Let i : Y — X be a closed embedding of
non-singular varieties. Then the functor

M — HO (M)
8 an equivalence between the category of holonomic Dx-modules with support
in Y and the category of holonomic Dy -modules.

For the proof of this theorem see Bernstein [15, §1.10, §3.1] or Borel [20,
VI §7.11].
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11.9 Regular singularities

Definition 11.9.1. A Dx-module M on a non-singular variety X is called a
connection if it is a coherent locally free Ox-module for the Ox-structure
coming from the embedding Ox — Dx.

Remark 11.9.2. In fact a Dx-module which is coherent as an @x-module is
locally free as an Ox-module (Bernstein [15, §2.1(a)], Borel [20, IV §1.1]).
Remark 11.9.3. Let M be a coherent locally free Ox-module. Then locally
M is freely generated as an Ox-module by finitely many sections wui,. .., Um,
say. This means that M can be identified with the sheaf of holomorphic (or
regular) sections of a complex vector bundle V' of rank m over X. If moreover
M is a Dx-module then there exist local sections Ffj of Ox such that

D,-uj= Z Ffjuk.
1<k<m

The local sections F{-‘j define a flat connection on V in the sense of differential
geometry. Flatness corresponds to the commutativity conditions
[D,, D) = 0.

Remark 11.9.4. Let M be a connection on X generated locally as an Ox-
module by a basis of sections {u;,...,u,}. Then GrM is generated locally
as an Ox|[&1,. .., &p]-module by u1,..., 4, with relations

Thus /7 is locally the sheaf of ideals generated by &1,..., &, in Ox[€1, . .., &)

Hence the characteristic variety Ch(M) of M is the zero section in T*X. In
particular any connection is a holonomic Dx-module.

Example 11.9.5. Consider the differential system M on C defined by one
generator u and one equation

(2D—-a)"u=0
where o € C and m € N. Then Mlc— ©} is generated by the global sections
U =u, u; = (2D — o)’ 'u, 1<j<m,
with relations
Dy, = % a1+ %u,-, 1<j<m (11.15)
Du, = -;Zum. (11.16)

If « is not an element of N the space of solutions of M in Ox over any simply
connected subset of C — {0} is spanned by the solutions

u = z%(log 2/, 0<j<m-1.
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Mlc_ (0} is a connection. But M has no sections over any neighbourhood

of 0 in C so M itself is not a connection. It is the presence of z~! factors in
the relations (11.15) and (11.16) which prevents M from being a connection
over C.

If X is quasi-projective and non-singular of dimension one (ie. X is a
non-singular curve) then we can choose an embedding of X in a non-singular
projective curve X+ such that X+ — X is a finite set of points. Fix s € X+
and choose a local coordinate z on a neighbourhood U of 8 in Xt such that
z vanishes at 8. Let D = d% be the corresponding differential operator on U.

Definition 11.9.6. Let M be a holonomic Dx-module. Then M has a
regular singularity at s if U and z can be chosen such that

MIU—{&}

is a connection on U — {s} and is generated as a Dy_(,}-module by a finitely
generated Op-module which is invariant under the action of 2D. That is,
on U — {s} the module M is defined by a system of equations in variables

u1,...,Up such that for all ¢ we can write
ZDU,; = E Qi Us
1<i<p

where a;; € Ox(U). Equivalently
Du,- = Z aziu,
1<ji<p
where the a;; cxtend to holomorphic functions of 2z on U.

In fact a system M on C has a regular singularity at 0 if and only if near
0 it is isomorphic to a finite direct sum of D-modules of the form

D/D(zD — a)™
form € N and o € C—N (see c.g. Pham [143, §2.11.6]).

Definition 11.9.7. The holonomic Dx-module M has regular singulari-
ties if it has a regular singularity at each s € X*. It is not hard to check
that this definition is independent of the choice of X*.

Definition 11.9.8. A complex of Dx-modules is holonomic (and has regular
singularities) if all its cohomology sheaves are holonomic (and have regular
singularities).

Finally if M is a holonomic Dx-module on a non-singular variety X of
any dimension we make the following definition.

Definition 11.9.9. M has regular singularities if, for any non-singular curve
C in X whose inclusion map 7 : C — X is a closed embedding, the restriction
i'M of M has regular singularities.
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11.10 The Riemann—Hilbert correspondence

Definition 11.10.1. Let A be a non-singular subvariety of a non-singular
variety X. The conormal bundle to 4 in X is

TiX={yeT*X|r(y) € A, y€ (Try)4)°}

where 7 : T*X — X is the projection and (Tr(,)4)° is the annihilator of the
tangent space Tr(,)4 to A at 7(y) in the dual TiyX of Tr(y) X.

If A is a singular subvariety of X with
A = {non-singular points of A}

then we define T4 X to be the closure in T*X|, of T4X. Note that T%X is
the zero section of T X.

Proposition 11.10.2. (sec e.g. Pham [148, §2.10.1]). Let V C T*X be an
irreducible Lagrangian conical closed subvariety of T*X . Then the image w(V)
of V under m: T*X — X is an irreducible subvariety of X and

V =TiX
is the conormal bundle to ©(V) in X.

Recall from Sections 11.4 and 11.5 that if M is a holonomic Dx-module
then the characteristic variety Ch(M) of M is a closed conical Lagrangian
subvariety of T*X.

Corollary 11.10.3. If M is a holonomic Dx-module then every irreducible
component V of Ch(M) is of the form

V=T¢X
where S is an irreducible subvariety of X.

Lemma 11.10.4. (Pham [143, §2.10.3]). Let M be a holonomic Dx-module.
IfVi,...,Vp are the irreducible components of Ch(M) and if V; = T, X let

s= s.
S, #X

Then the restriction of M to X — S is a connection (possibly zero).

Let M be a connection on a quasi-projective variety X. The sheaf of
horizontal sections of M is the sheaf F on X such that if (21,...,2,) are
local coordinates on an open subset of V' of X then

FV)={ue M(V){Du=0, 1<i<n}.
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It is easy to check that this is a good definition, independent of the choice of
local coordinates. Now suppose that M is freely generated as an Ox-module
over V by sections u1,. .., U, of M(V) with

D,’Uj= Z Ff;’u,k
1<k<m

Then a general element u of F(V) can be written in the form
u=f1u1 ++fmum

where f1,..., fm € Ox (V) are functions on V satisfying

B+ Y =0

z.
O 1<k<m

forl <i<mnand 1l < j <m. The theory of existence and uniqueness of
local solutions of differential equations implies that if V' is simply connected
then the restriction to V' of F is isomorphic to the constant sheaf C}?, or
equivalently the restriction map

F(V) > Fx

is an isomorphism for all z € V. This means that F defines a local system £
on X with Lx = Fx (cf. Section 4.9).

We can now give a classification of irreducible holonomic D x-modules
which is itself sometimes called the Riemann-Hilbert correspondence (cf. Borel
[20, IV], Deligne [52], Bernstein [15, §3.14 and §4.1]).

Theorem 11.10.5.

(1) LetY be a closed irreducible subvariety of a non-singular variety X, and
let L be an irreducible local system on a dense open non-singular subva-
riety U of Y. Then there is a unique irreducible holonomic Dx-module
with regular singularities, denoted M(Y, L), whose support is contained
'Y and whose restriction to U is a connection such that the local sys-
temn defined by its sheaf of horizontal section is L.

(ii) Any irreducible holonomic Dx-module with regular singularities is iso-
morphic to M(Y, L) for someY and L as in (i).

(iii) M(Y”’, L") is isomorphic to M(Y,L) if and only if Y = Y’ and the
restrictions of L and L' to some non-empty open subset of Y, on which
they are both defined, are isomorphic.

In order to relate this form of the Riemann-Hilbert correspondence to one
which involves intersection cohomology, we need the following theorem (cf.
Bernstein [15, §5.9]).
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Theorem 11.10.6. Let Y be a closed irreducible subvariety of a non-singular
n-dimensional variety X and let L be a local system on a dense open non-
singular subvariety of Y. Then the de Rham complex

0 — M(Y, L) = Q% @ox MY, L) = ... = ¥ ®p, M(Y,L) — ...

of M(Y,L) has support in Y and its restriction to Y is isomorphic in the
derived category D®(X) to the intersection sheaf complex ICly,py with a shift
in degree.

The idea of the proof of Theorem 11.10.6 is to check that, after a shift
in degree, DR{M(Y, £)) satisfies the conditions which uniquely characterise
ICZY,L'.) (Cf Section 73)

Using Theorems 11.10.5 and 11.10.6 one can obtain the Riemann-Hilbert
correspondence in the following form, first proved by Kashiwara [91] and
Mebkhout [131] in the holomorphic case and Beilinson and Bernstein in the
algebraic case (see Bernstein [15] and Borel [20, VIII]).

Theorem 11.10.7. The de Rham functor DR induces a one-to-one corre-
spondence between isomorphism classes of irreducible holonomic Dx-modules
with regular singularities and isomorphism classes (in D¥(X)) of intersection
cohomology complexes of irreducible closed subvarieties of X with coefficients
in irreducible local systems.

Remark 11.10.8. In fact the de Rham functor gives an equivalence of cate-
gories between the category of holonomic D-modules with regular singular-
ities on X and the derived category of perverse sheaves of X (Borel [20,
VI 14.4], Bernstein [15, §5.9]). (The derived category of perverse sheaves is
obtained from the category of perverse sheaves by formally inverting all quasi-
isomorphisms, so that they become isomorphisms.) By considering only the
irreducible objects in each category this gives the Riemann-Hilbert correspon-
dence in the form above.

11.11 Further reading

Deligne’s paper [52] was pivotal in the formulation of the modern version of
the Riemann-Hilbert correspondence. Mebkhout [131] and Kashiwara [91]
give proofs of the Riemann-Hilbert correspondence for analytic D-modules.
Borel [20] contains a detailed treatment of the Riemann—Hilbert correspon-
dence for algebraic D-modules (see also Bernstein [15]). A good reference
for the analytic version of the theory is Kashiwara [95]; see also Bjork [19],
Malgrange [127] and Mebkhout [132]. Dimca [56] and Gelfand and Manin [63,
Chapter 8] contain more condensed expositions. Tréng and Mebkhout [173]
is an introductory survey and Oda [140] an ‘elementary’ survey in the case
when the underlying space is a complex manifold.
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The notion of characteristic variety belongs to micro-local analysis, for
further details on this topic see e.g. Kashiwara [92], [95] and Kashiwara and
Schapira [97]. Kashiwara, Kawai, and Kimua [96] is another approach which
avoids the apparatus of derived categories. More recently there have been at-
tempts to prove a micro-local version of the Riemann—Hilbert correspondence,
see Andronikof [2, 3], Neto [138] and Waschkies [176].



Chapter 12

The Kazhdan—Lusztig
conjecture

In this chapter we shall describe briefly the proof of a conjecture of Kazhdan
and Lusztig [104], [105] concerning the representation theory of Lie algebras.
The proof (following Bernstein [15]) involves translating the problem first into
the language of D-modules, then via the Riemann-Hilbert correspondence
into a problem involving intersection cohomology and finally, using /-adic
intersection cohomology, into the theory of Hecke algebras.

First it is necessary to review some basic facts about the representation
theory of complex Lie groups and Lie algebras. For more details see e.g.
Atiyah et al. [4], Bourbaki [27], Chevalley [49], Jacobson [85], Kac [88] and
Springer [165].

12.1 Verma modules

Let K be a compact Lie group. For simplicity let us assume that K is con-
nected and simply connected. Let € be the Lie algebra of K and let

g=¢txrC

be its complexified Lie algebra. The Lie bracket [ , | on g is the unique
complex bilinear extension of the Lie bracket on &,

There is a unique connected, simply connected complex Lie group G whose
Lie algebra is g. We shall assume for simplicity that G is semisimple; that
is, that its Lie algebra g has no non-zero Abelian ideals. For many reasons
mathematicians have long been interested in the complex representations of
such complex Lie groups G and their Lie algebras g.

Let T be a maximal torus of G and let Ng(T) be its normaliser in G.
Then

W = Ne(T)/T

199
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is a finite group called the Weyl group of G.
Example 12.1.1. We can take

K = S8SU(n),

G = SL{»n,C),

T = {diagonal matrices in SL{n,C)},
W~ %,

where ¥, denotes the symmetric group.

Let b be the Lie algebra of T and let h* be its dual vector space. Then
a € h* — 0 is called a root of g if there exists some non-zero £ € g such that

[, €] = a(h)§
for all h € h. Let g* be the set of all £ € | such that
[, €] = a(h)¢

for all h € h. Let X be the set of roots of g. Then

=00 (Pga)

a€X

The Weyl group W acts on h and h* and permutes the roots. W is generated
by elements which act as reflections in hyperplanes. We can choose a funda-
mental domain (called a Weyl chamber) for the action on W on §* which
is a cone in §* bounded by hyperplanes.

Let b% be the chosen Weyl chamber (called the positive Weyl chamber).
Then a € X is called a positive root if

a(z) >0

for all z in the interior of h% . Let £* be the set of positive roots. Then ¥ is
the disjoint union of X+ and —X*. Let

N = @ ge.

a€Xiy
Then M is a nilpotent subalgebra of g. There is a partial order on h* defined
by
a>Bealz)>p(x) Veeb,.
Now let M be a g-module, that is, a complex representation of g. Then

M is a complex vector space (possibly infinite-dimensional) with an action of
g given by a complex linear map

p:g—EndM)={a: M- M I o complex linear}
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which takes the Lie bracket on g to the usual Lie bracket
[a’ﬂ] = aff — Ba

on End(M). Assume that M is finitely-generated, i.e. that there exist my, ...,m
M such that the only g-submodule of M containing m,, ..., mg is M itself.

If we restrict the representation p of g to the Abelian subalgebra § (or
equivalently think of M as an h-module) then M decomposes as a direct sum

M= m*

xXER*

where
MX = {m € M | hm = x(h)m Vh € b}.

X is called a weight of M if MX # 0 and a highest weight if in addition

7 < x whenever M7 #£0. ff a € ¥ and € € g* and m € MX and h € § then
h(¢m) = [h,€lm + £(hm)

a(h)ym + §(x(h)m)

(a+ x)(h)ém

80
gYMX C MotX,

But if @ € &1 then a+x > x. Thus if x is a highest weight and a € £+ then
MetXx =0 so
geMX =0.

Hence if x is a highest weight then
NMX =0,

M is called a highest weight g-module if it is generated by a single element
m € MX where X is a highest weight. Any finitely generated g-module has a
filtration

M=My2M..2M;=0

by g-module M; such that the quotient g-modules M;/M;,, are all highest
weight modules.

Proposition 12.1.2. For each x € h* there erists a unique (usually infinite-
dimensional) g-module M,, generated by one element m, satisfying

(i) émy =0 VEe,
(ii) Amy = x(h)my, Vh €MD,
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with the universal property that every other g-module M generated by one
element m satisfying (i) and (it) is o quotient module of My via a map which
sends my, to m. The module M, is called the Verma Module for g with
highest weight x.

If P is a proper submodule of M, then every weight 7 of P satisfies n < x.
From this it is easy to see that any sum of proper submodules of M, is
again a proper submodule, so My has a unigue maximal proper submodule.
Equivalently M, has a unique irreducible quotient module called L,. This
module is the unique irreducible g-module with highest weight x.

A Verma module M, has a filtration by submodules

My=Myo02M12..2My,=0

such that the quotient modules M, ;/M, ;.1 are all irreducible. This fil-
tration is not necessarily unique but the modules My ; /My ,11 are uniquely
determined by M, up to isomorphism and change of order. It turns out that
these modules are all of the form L, where ¢ € b, and ¢ < x, and moreover
¢ + p lies in the same Weyl group orbit as x + p where

1
p= 3 Z o
ack+

is half the sum of the positive roots of g. The module L, occurs exactly once
in the list. An important problem in the study of Verma modules {and hence
of all representations of g) is to determine how many times L, occurs in the
list when ¢ # x.

This problem can be rephrased using the Grothendieck group of g-
modules. This is the Abelian group generated by isomorphism classes [M] of
finitely generated g-modules M with relations

[M3] = [Mi] + [M3]

for every exact sequence 0 — M; — My — M3 — 0 of g-modules. In the
Grothendieck group we can formally write

M= Y byelly) (12.1)
o+pEW (x+p)

for some integer coefficients b 4. Our problem then becomes that of determin-
ing these coefficients. The coefficient by, is always 1, but the other coefficients
are more mysterious.

The matrix (by,) where x + p and ¢+ p run over a fixed Weyl group orbit
in h* is lower triangular with respect to the partial order < on h* and has
ones on the diagonal. Hence this matrix is invertible. It is more convenient
to work with the inverse matrix (ay,) defined by the equation

[Ly] = Z axe[ My (12.2)
¢+pEW (x+p)
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in the Grothendieck group.

The Kazhdan—Lusztig conjecture (see Kazhdan and Lusztig [104],
[105], Brylinski and Kashiwara [39], Beilinson and Bernstein [12]) identifies
the coefficients ay, in the special case when x + p and ¢ + p lie in the Weyl
group orbit of —p. If w and v lie in the Weyl group W let us write @y, for
axe and also L., for Ly and M, for M, where

x=w(=p)—p
and
¢ =v(-p) —p.
Then the Kazhdan-Lusztig conjecture is concerned with the coefficients gy,
satisfying
[Lw] = Z awv[Mv] (12'3)

veW

in the Grothendieck group. Following Bernstein [15] we shall first identify
these coefficients in terms of Dx-modules for a suitable X.

12.2 D-modules over flag manifolds
Recall from Section 12.1 that the Lie algebra g of G can be decomposed as
g=bho (@ 9“) :
(133
Let B be the Borel subgroup of G whose Lie algebra is
b=bo ( ® ga) .
aeXt

Then
X =G/B
is the fiag manifold of G.
Examples 12.2.1. If G = SL(n, C) as in Example 12.1.1 then we can take B

to be the subgroup of'SL(n, C) consisting of upper triangular matrices. Then
X can be naturally identified with the space of flags

0CVNCVC..CV,=C"

such that V; is a j-dimensional subspace of C™ for cach j.
The flag manifold X is a non-singular complex projective variety and G
acts transitively on X. Hence if M is Dx-module then the space I'(M) =
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M(X) of global sections of M has a natural g-module structure defined as
follows.

Given any £ € g the infinitesimal action of G on X induces a vector field
z— & on X. Here &, is the tangent at 2 to the smooth path

t—exp(t).z (t€R)

in X where exp: g — G is the exponential mapping (see e.g. Warner [175]).
In local coordinates zy, ..., 2, we can write
0

0
é.z = a,]_(Z)EZT +... +a,n(z)§z: .

We can define a differential operator D¢ on X by
DE = al(z)Dl + ...+ an(z)Dn

in local coordinates. This gives a Lie algebra homomorphism from g to the
space Dx(X) of differential operators on X defined by

& Deg.
Hence there is a g-module structure on I'( M) = M(X) defined by
£-0 = Dqo, E€g, oeT(M).

The transitive action of G on X = G/B restricts to an action of B which
has finitely many orbits, corresponding to the finitely many double cosets in
B\G/B. The Bruhat decomposition tells us that these orbits are indexed by
the Weyl group W. If w € W = N¢(T)/T is represented by @ € Ng(T) then
the B-orbit X, of X indexed by w is the B-orbit of the coset WB in X, i.e.
the image in X of the double coset B@B in G. The closure X, of any B-orbit
X, in X is a union of B-orbits.

We wish to find Dx-modules A, and p. supported on X,, such that the
associated g-modules I'(\,,) and I'(u,,) are naturally isomorphic to L,, and
the Verma module M,,. How can we describe these Dx-modules )\, and py,?
We can use the Riemann-Hilbert correspondence (Section 11.10) between Dx-
modules and intersection sheaf complexes of subvarieties of X.

Consider the intersection sheaf complex IC”?W of the irreducible closed

subvariety X,, of X. By the Riemann-Hilbert correspondence (Theorems
11.10.5 and 11.10.6) there exists a unique irreducible holonomic D x-module
A with regular singularities such that the de Rham complex DR(\,) of Ay
is isomorphic in D*(X) to IC%_ with a dimension shift.

Let 7., be the sheaf complex on X which is the extension by zero of the
trivial sheaf Cx, on X,,. In other words 7;} is zero when i is non-zero, and
when ¢ is zero its restriction to X,, is the constant sheaf defined by C and its
stalk at any x not in X, is zero. There is a Dx-module u,, on X supported
on X,, whose de Rham complex DR(ji) is isomorphic in D*(X) to the sheaf
complex 7 with a dimension shift,
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Theorem 12.2.2 (Bernstein [15], Beilinson and Bernstein [12], Brylinski and
Kashiwara [39]). The g-modules I'(i1,,) and I'(Ay,) are isomorphic to My, and

we

It follows that for suitable integers d(v, w) coefficients a,,, defined by equa-
tion (12.3) can also be defined by the equation

IC% ~ Y awn T [d(v, w)] (12.4)

vew

where ~ denotes the equivalence relation on the free Abelian group of isomor-
phism classes in D?(X) of bounded constructible complexes of sheaves on X
given by quotienting by the subgroup generated by all elements of the form

A*—-B*+C°
such that there is a distinguished triangle
A*— B —C — A°[1).

In particular, A*[n] ~ (—1)"A* for any complex .4° so we can replace equation
(12.4) by the equation

IC%, ~ Y (-1)%ay,, T (12.5)
veW

The Euler characteristic of a complex C* of Abelian groups with only
finitely many non-zero homology groups is by definition

x(C*) =Y (~1)* dim H,(C").

i€Z
It is easy to check that if
0—-A"—B" —-C*"—0
is a short exact sequence of complexes then
x(4%) — x(B*) +x(C*) = 0.

Thus by restricting equation (12.5) to the orbit of X,, and taking Euler char-
acteristics of stalk complexes one finds that

G = 0 (12.6)
unless X, € X,, and

Gy = (—1)3m Xo—dimXu N 1yi dgim THY (X ) (12.7)
>0
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if X, C X, where .
dim IHY, (Xw)

denotes the dimension of the stalk of the (—i)th cohomology sheaf of 1C%,
at any point in X,,.

The question arises whether we can work out the dimensions of these
intersection cohomology groups? The answer is that in general we cannot
give explicit formulas for their dimensions but we can express them in terms
of some polynomials related to Hecke algebras, which can be computed by
recursive formulas, given enough time and patience.

The first step is to consider the whole setup in characteristic p where p is
a prime number, as in Chapter 10.

12.3 Characteristic p

Let us assume that G is an algebraic group defined over an algebraic number
field R (see Springer [165]) and that 7 is a prime ideal in R such that R/ is
isomorphic to the finite field F, with ¢ = p™ elements. Let us assume that
the reduction of G modulo 7 is an algebraic group G, defined over F,. As in
Chapter 10 when we were considering the Weil conjectures we assume that 7
is not one of finitely many ‘bad’ primes for G. Then we can assume that the
reductions moduloe 7 of the Borel subgroup B, the flag manifold X = G/B and
each orbit Xw are respectively a Borel subgroup B, of G, the flag manifold

Xy =G,4/B,
and an orbit (Xy)q = Xu,q of By on X,. Then if £ is a prime different from

p the f-adic interscetion cohomology sheaf complex

ICy

w,q

and the sheaf complex 7,5 , given by extending the trivial sheaf complex

Qo%,,.,

on X,,q by zero satisfy

dim X, ~dim X
1€, ~ 3 (~1)dim Xu=dim Xog e
veW

(12.8)
where the equivalence relation is defined as in Section 12.2.

The Frobenius mapping (Definition 10.2.2) lifts naturally to actions on
IC}{w,q and on 73 ;. Let us modify the equivalence relations ~ by considering
bounded constructible complexes of f~adic sheaves together with distinguished
‘Frobenius’ endomorphisms which lift the Frobenius mapping, and quotienting
by the subgroup generated by expressions of the form

A._B._*_C.
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for each distinguished triangle
A*— B —C* — A*[]]
which respects the Frobenius actions. Let us also write
A ~giB

if A® is the tensor product of B* with a 1-dimensional vector space over Q,
on which the Frobenius endomorphism acts as multiplication by an algebraic
integer of modulus g%. Then

IC, . ~ D pun(@)T (12.9)

vew
where py.(g) is polynomial in g% such that
Puw(g) =1 and pyy =0
if X, € X, while
pun(a) = D _(-1)'q"/? dim IHY (Xuw) (12.10)
i>0

if X, € X,. This can be deduced from Riemann hypothesis (10.8) (see
Kazhdan and Lusztig [105]).
In particular it follows from the local calculation in Proposition 4.7.2 that
if w # v then py.(g) is a polynomial in q? of degree less than dim X,,—dim X,,.
In fact
IHi,(Xu) = 0

when i is 0dd, S0 pwy(g) is & polynomial in g of degree less than
1

Note that if we formally put ¢ = 1 then by comparing equations (12.8) and
(12.9) we get . .
Pun(l) = (- XemdinXeg,, (12.11)

for all w,v € W.

12.4 Hecke algebras and the Kazhdan—Lusztig
polynomials

The Hecke algebra H of the Weyl group W of G with parameter ¢ is an
algebra over the ring Z[g3, ¢ f] of polynomials with integer coefficients in g2
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and g~%. As a module over Z[q*,q“f] it has a basis consisting of 1 and one
element 7, for each w € W. Its multiplication is uniquely determined by the
rules

TwTe = Twy (12.12)

if w,v € W and dim X, = dim X, + dim X,,, and

(e + 1) (76 —q) =0 (12.13)
if ¢ € W acts as a reflection on b (see e.g. Bourbaki [27, Ch. IV §2 Ex. 22,
24])'.I‘here is a unique involution D : H — H satisfying
D(gt)=q% (12.14)
and
D(rs+ 1) =¢q (15 + 1) (12.15)

whenever o € W is a reflection.

Proposition 12.4.1 (Kazhdan and Lusztig (104, Thm. 1.1]). For eachw € W
there is a unique Cy, € H of the form

Cw = Tw + Z Puv (Q)Tv
’UGW—‘{w}yXug_Xw

where pyy(q) is a polynomial in q of degree less than
—;-(dim Xy — dim X)),

satisfying )
DC,, = q dim X, Cuw-

The polynomials pyw{q) are called Kazhdan—Lusztig polynomials.

Theorem 12.4.2 (Kazhdan and Lusztig [105]). The polynomials py, and
Dwy, defined in (12.9) and Proposition 12.4.1 respectively, coincide.

Sketch proof Let Cx, be the trivial sheaf on X,. If w € V' let 7, , be the
extension by zero of the trivial sheaf on X, 4 as in Section 12.3. Consider the
set of all formal linear combinations with coefficients in the ring Z[q?,q %] of
bounded constructible complexes of ¢-adic sheaves on X, with distinguished
‘Frobenius’ endomorphisms, modulo the equivalence relation defined in Sec-
tion 12.3. Let H be the submodule generated by the equivalence classes T,
of 7,3 , for w € W and the equivalence class of Cx,. One can show that H

has a natural Z[q%, q‘%]-a.lgebra structure with Cx_ as multiplicative identity
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and that there is an isomorphism ¢ : H — H such that ¢(T,,) = 7, for all
w € W. Verdier duality (see §7.4) enables one to define an involution A of
this algebra H such that

Algh)=q*
and
A(Tos1) =g Ty +1)

if 0 € W is a reflection.
It follows from Section 12.3 that the intersection cohomology sheaf Z C%, .
represents the element

Tw + Z DPuw (Q)Tv
veW—{w}, X CX

of H. Moreover IC%,  is self-dual with respect to Verdier duality by (7.3)
but the Frobenius map s multiplied by the scalar factor

q-—dimX,,,

un-er this duality. It therefore follows from the uniqueness of the Kazhdan—
Lusztig polynomials py,,(g) that

DPuwvy (Q) = Puw (Q)

for all w and v in W.

The Kazhdan—Lusztig conjecture is obtained by combining Theorem
12.4.2 with (12.11) and (12.3). It was proved by Brylinski and Kashiwara and
by Beilinson and Bernstein.

Theorem 12.4.3. (Kazhdan—Lusztig conjecture). The coefficients a,., such

that
(L] = Z Qo [My)]
veWw

in the Grothendieck group of g-modules are given by
Qo = (_l)dim Xw—dim X“pwv(]-)

where pyy(q) are the Kazhdan-Lusztig polynomials.

12.5 Further reading

The original Kazhdan-Lusztig conjecture spawned several similar conjectures
about other representation theories:

1. Lusztig [118] for rational representations of finite Chevalley groups;
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2. Deodhar, Gabber and Kac [55] for highest-weight modules of Kac-
Moody algebras;

3. Lusztig [120] for finite-dimensional representations of quantum envelop-
ing algebras at roots of unity.

Further details can be found in Lusztig’s wide-ranging survey [121] of the uses
of intersection cohomology in representation theory.

These conjectures are now known to be equivalent (under some mild re-
strictions); see Kazhdan and Lusztig [106, 107] and [108] for the equivalence
of (i) and (ii), and Andersen, Jantzen and Soergel [1] for the equivalence of (ii)
and (iii). The Kazhdan-Lusztig conjecture for Kac- moody algebras (ii) has
now been solved. There are two cases, for symmetrisable Kac-Moody alge-
bras of positive level sce Kashiwara [94], Kashiwara and Tanisaki [98, 101] and
Casian [43] and for affine Kac-Moody algebras of negative level see Kashiwara
and Tanisaki [99, 100]. It follows that (with certain restrictions) the conjec-
tures (i) and (iii) are also proved. See Kashiwara and Tanisaki [102] and
Tanisaki [171] for surveys.
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Borel subgroup, 203

boundary map, 19

canonical filtration, 112, 113
Cartan involution, 96
chain
allowable, see allowable chain
intersection, see intersection chain
locally finite, 20
piecewise linear, 18
simplicial, 16
singular, 18
with closed support, 21
with compact support, 21
change of base field, 167, 172
character sheaf, 131
characteristic variety, 182-188
cochain map, 39
codimension-preserving map, 62
coherent
module, 181
sheaf, 181
cohomology, 20
L?-cohomology, 7, 85-101
Cech, 29-33
de Rham, 7
derived functor, 42
equivariant, 146

étale, 170
£-adic, 171
simplicial, 20
singular, 20
cohomology sheaf, 40
commensurable subgroups, 97
commutator, 179
comparison theorem, 167, 172
complex (of sheaves), 33
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convex, 134
deficient, 145
face of, 136
intersection homology of, 58-61
mapping, see mapping cone
metric, 88
non-singular, 144
rational, 134
simplicial, 145
strongly convex, 134
support of, 134
cone-wise linear function, 140
conical subvariety, 195
connection, 193
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constructible
cohomologically, 107
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cup product, 22, 128
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with regular singularities, 193-194
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equivariant
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morphism, 168
sheaf, 169
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face vector, 158
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rational, 137
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Fuchsian, see differential system
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module, 148
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Grothendieck group, 202
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hard Lefschetz theorem, 11, 70
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Hecke algebra, 207
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module, 201
Hodge decomposition, 8, 71
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Hodge star, 86
holonomic, see differential system
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Borel-Moore, 20
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relative, 23
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singular, 18-20
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axioms, 107-110 Morse function, 4
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relative, 57 Morse inequalities, 5

sheaf-theoretic, 103-106 generalised, 6

simplicial, 51-52 Morse theory, 4-7

singular, 54 stratified, 6, 130
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with local coefficients, 63- 64
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topological space, 56
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isometric bilinear forms, 80 Novikov additivity, 79
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Kazhdan-Lusztig
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Kiinneth theorem, 58 placid map, 61
plumbing, 82

f-adic Poincaré duality, 3, 69, 73-75, 166, 172
cohomology, 166-168, 171 Poisson bracket, 185
intersection cohomology, 172 polytope

L-class, 83 convex, 141

L2-cohomology, see cohomology polar, 142

Lagrangian subvariety, 186, 195 simplicial, 158

Laplacian, 86 presheaf, 25

Lefschetz fixed point formula, 172 primitive cohomology, 11

Lefschetz hyperplane theorem, 10, 69 principal symbol, 182

Leray spectral sequence, 127 projective cover, 149

Lie algebra, 199 projective map, 125

Lie derivative, 189 projective variety, 65

link, 50 pseudomanifold, 49-50

local coefficients, 63, 105 irreducible, 50

local system, 63 orientable, 50

locally symmetric piecewise-linear, 51
space, 97 topological, 50
variety, 98 pullback (of sheaves), 36

punctured cone, 88
mapping cone, 44 pushforward
Mayer—Vietoris sequence, 58 of sheaves, 36

Milnor fibre, 123 with proper support, 36
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quasi-isometric, 86

quasi-isomorphism, 40

quasi-projective variety, 65
singular point of, 65

refinement
of a covering, 31
of a triangulation, 17
regular function, 180
regular map, 125
resolution
Godement, 39
injective, 40
resolution of singularities, 127
Riemann hypothesis, 165, 168, 173, 207
Riemann -Hilbert
correspondence, 177, 182, 195-197
problem, 175-177
root, 200
positive, 200

Satake compactification, 99
Schubert variety, 129
self-dual complex, 126
sheaf, 26
associated to presheaf, 27
c-soft, 105
cokernel, 29
constant, 26
constructible, 107
étale, 169
fine, 106
flabby, 151
image, 28
injective, 38
intersection homology, 103-106
kernel, 28
locally-free, 154
map of sheaves, 27
injective, 29
surjective, 29
minimal extension, 154
of sections, 26
perverse, see perverse sheaf
quotient sheaf, 28
restriction map, 25
section of, 27
skyscraper, 37
soft, 105

stalk, 26
subsheaf, 28
shift (of a complex), 44
short exact sequence, 29
simple object, 120
simplex, 15
face, 15
orientation, 15
singular, 18
simplicial complex, 15
skeleton, 54
small resolution, 128
Springer fibre, 131
square-integrable, 10
stalk, see sheaf
of a complex, 108
Stanley’s conjectures, 160
star, 137
stratified map, 62
stratified space, 49
strata, 50
stratum-preserving
homotopy equivalence, 62
map, 61
strictly convex function, 141
strong Hodge theorem, 87
support (of a section), 36
symbol, see differential operator
symplectic form, 185

Thom class, 77
Thom space, 77
toric variety, 133
affine, 133-137
associated to a fan, 137-138
associated to a polytope, 143
projective, 140-143
torus embedding, 133
triangulated category, 45
triangulation, 16
truncated complex, 112

vanishing cycles, 122
Verdier duality, 113-116
Verma module, 202

weight, 201
Weil conjectures, 163-166
for singular varieties, 171-173
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Weyl chamber, 200
Weyl group, 200
Whitney stratification, 66
Witt space, 75-78
bordism group of, 80
bordism of, 79
signature of, 78
surgery, 82
with boundary, 78
Witt-equivalent, 81

Zeta function, 165



