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Preface

For a long time, the use of (coherent) sheaves in Algebraic and Analytic Geom-
etry has been well established as a major tool of investigation (see for instance
Hartshorne [H], Griffith and Harris [GH], and Bénici and Stinisils [BS]). On
the other hand, although (constructible) sheaves appeared in Algebraic Topol-
ogy at an early stage, at least in the form of local systems (of coefficients),
and although they play a key role in the intersection homology theory of
Goresky-MacPherson [GoM2], many topologists and geometers either ignore
their usefulness or, more frequently, are scared by the huge formalism behind
the modern approach to sheaf theory involving derived categories and perverse
sheaves.

This situation is even more surprising if we take into account the existence

of a number of excellent books devoted to this subject. For instance, Iversen’s
book [I1] gives a thorough description of the derived categories and of Verdier
duality, while Borel’s seminar [B1] is a detailed study of intersection cohomol-
ogy complexes. The book by Kashiwara and Schapira [KS] is definitely the
most complete reference, treating both the real and the complex spaces and
emphasizing the micro-local aspects of the theory.
The crowning of this theory is the introduction of the perverse sheaves, and
they are amply discussed in [KS] in the analytic setting and in Beilinson-
Bernstein-Deligne’s book [BBD] in the algebraic setting (over an arbitrary
algebraically closed field). Concerning these wonderful objects, one can read
in [KS], p. 411, the following.

“Although perverse sheaves have a short history, they play an important
role in various branches of mathematics, such as algebraic geometry or group
representations. This theory is now well understood, but it is difficult to find
in the literature a systematic treatment of it in the analytic case.”

The first part tells us about the usefulness of the perverse sheaves, a
claim supported by the increasing number of papers and books on perverse
sheaves and their applications. If we restrict our attention to the applications
to the study of singularities and/or the study of the topology of complex alge-
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braic and analytic varieties, then the following references are pertinent [Du2],
[HL1], [HL2], [Ma6], [No], [Pa]. Longer recent texts include [Ma7], [KW], [A],
[Snl]. Some applications use the Riemann-Hilbert correspondence to relate
the topology to the properties of algebraic or analytic D-modules, particu-
larly those of “Gauss-Manin” type, ( [BMM], [DP], [DS2], [DuS], [Sa2], [Sa3],
[S4]).

The final part of the above quotation confirms a certain need for textbooks on
the basic aspects of the theory of perverse sheaves, allowing readers coming
from different areas of mathematics, e.g. Algebraic Geometry or Algebraic
Topology, to understand the papers written in this “jargon” and to enable
them to use this powerful and elegant tool.

The text we propose here aims to fill the gap between

(i) the very complete books such as [BBD], [KS] and [Snl] which may scare
the neophyte by their levels of generality, and

(i) a number of surveys such as Arabia [A], Brylinski [Brl], Kirwan [Ki] and
Massey [Ma7], wonderful as a motivation but necessarily not containing all
the material vital to the active mathematician willing to use this technique in
his creative work.

Our book covers most of the basic notions and results in the theory of
constructible sheaves on complex spaces and provides a rich amount of geo-
metrical examples and applications. The aim is to take the reader from the
simpler, earlier results up to the most powerful and general results currently
available. For example, let X be an n-dimensional affine complex algebraic
variety and F be a sheaf on X. We discuss the vanishing of the cohomology
groups H™(X, F) for m > n first in the classical case when F is a local system
on X (see Proposition 3.4.2). Then the more general case of a constructible
sheaf F is treated in Theorem 4.1.26 and, finally, the most general case with
F as a semi-perverse sheaf is discussed in Corollary 5.2.18 (Artin Vanishing
Theorem). Moreover, in Chapter 6 we offer an application of this last version
to the vanishing of the cohomology of local systems on a hyperplane or even a
hypersurface arrangement complement (see Theorems 6.4.13 and 6.4.18). As
a result, the reader clearly sees that the general machinery developed in these
notes is not just logically beautiful but also very effective.

There is a price to pay for this “user-friendly” approach: in order to keep
the size of the book to a reasonable level and the fiow of the main ideas easy
to grasp by the reader, we have decided to skip most of the proofs of the main
results in the first five chapters. This choice is motivated by the fact that the
other sources such as [I1], [BBD], [KS] and [Snl] contain clear proofs of all
the necessary results. However, some results are proved, usually corollaries
or results that seem new to us, and full details have been provided for all
non-obvious examples and applications. In this way, we hope the reader will
acquire enough experience in proving results with these tools. There are also
a number of exercises scattered throughout the text to encourage an active
response from the reader and to add useful details to the main picture.
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We now describe in detail the contents of this book. Chapter 1 gives a brief

presentation of the derived categories, according to Borel [B2], Iversen [I1],
Gelfand-Manin [GM] and Verdier [V2] and [V3]. There are plenty of excellent
treatments of this subject, so in this chapter we just fix the notation and intro-
duce some of the main characters of the story, namely the derived categories
and the derived functors. For the reader’s convenience we have included some
standard facts on homological algebra, e.g. the universal coefficient theorem,
1.4.5. The survey by Ilusie [I1I] is highly recommended for the global picture
it draws.
As derived categories of coherent sheaves on algebraic varieties have recently
become a topic of active research in Algebraic Geometry and Mathematical
Physics, see [BO2], [Kon], [Or2], this first chapter might be useful for readers
with such an interest as well.

Chapter 2 starts with a general discussion on sheaves and hypercoho-
mology, including various versions of de Rham Theorem, among which there
is one for spaces with isolated complete intersection singularities in Theo-

rem 2.1.13. Then the derived tensor product é) and the Kiinneth formulas
are introduced. A lengthy discussion follows on direct and inverse images of
sheaves under continuous mappings, including their relation to Leray spec-
tral sequences (see Corollaries 2.3.4 and 2.3.24), topology of morphisms of
algebraic varieties (see Example 2.3.5), and links of subvarieties (see Example
2.3.18). We review briefiy the Cech resolution and the Mayer-Vietoris spec-
tral sequence associated with an open covering in Remark 2.3.9. Base change
results and the adjunction triangle are given due attention. We introduce the
Fourier-Mukai transform and show in Example 2.3.33 that it can be regarded
as a natural generalization of the direct image functor.

The last section in this chapter is devoted to the basic properties of local
systems. This special class of sheaves plays a key role in the theory, since the
local systems are the building blocks for more complicated objects, the con-
structible sheaves and, in particular, the perverse sheaves. Here we emphasize
both the topological aspect and the analytic one, i.e. the relation to the inte-
grable fiat connections, the twisted de Rham Theorem (see Theorem 2.5.11)
and the corresponding relative result (see Theorem 2.5.14). As a specific ex-
ample, we review in detail the Gauss-Manin connection associated with an
isolated hypersurface singularity.

Chapter 3 is devoted to the Poincaré-Verdier duality. After some prelim-
inaries on the cohomological dimension of rings and spaces we introduce the
functor f', the dualizing complex, the duality for sheaves and the correspond-
ing duality results at the (hyper)cohomology group level. We discuss briefiy
the Borel-Moore homology and the Vietoris-Begle Theorem (see Theorems
3.3.16 and 3.3.17). We end this chapter with a number of vanishing results,
some of them general, others specific to the case of local systems on smooth
affine varieties. Here again we clearly separate the topological aspect (see The-
orem 3.4.4) from the analytic one (see Theorem 3.4.11 and the final material



X Preface

on the regularity of connections). Most of this last section is based on re-
sults by Deligne in [De2] and by Esnault-Viehweg in [EV1] and can be read
immediately after Chapter 2.

Chapter 4 starts with the definition of constructible sheaves. One of
the main points here is that the triangulated category D?(X) of bounded
constructible complexes on a complex algebraic variety X is closed under

Grothendieck’s six operations Rf,, Rfi, f~ !, f', RHom and é) We prove, and
this might be a new result, that the hypercohomology with constructible coef-
ficients behaves in many ways just as the ordinary cohomology. For instance,
the corresponding Euler characteristic behaves additively with respect to con-
structible partitions (see Theorem 4.1.22), the Euler characteristic coincides
with the Euler characteristic with compact supports (see Corollary 4.1.23) and
the Euler characteristic of a link is trivial (see Theorem 4.1.21). These results
imply that the Euler characteristic of a fiber X of a morphism f: X - Y
is the same as the Euler characteristic of the tube T, about this fiber (see
Corollary 4.1.25), a result we use later in Proposition 4.1.33 to show the
compatibility of direct images of constructible sheaves and of constructible
functions in a more general setting than usual, i.e. for morphisms f: X - Y
which are not necessarily proper. We recall the basic fact that taking the Euler
characteristics of the stalks induces an isomorphism from the Grothendieck
group of the abelian category of R-constructible sheaves on X to the ring of
R-constructible functions on X. And we point out that this result is false for
the corresponding C-constructible objects (see Remark 4.1.30), a key differ-
ence not stated in the other references on the subject as far as we know. We
end the first section by introducing the Euler obstructions.

The second section in Chapter 4 is devoted to the nearby and the vanishing
cycles. We relate these new functors to the more geometric notion of Milnor
fibers (see Proposition 4.2.2 and Example 4.2.6), as well as to the notion of a
stratified singularity (see Proposition 4.2.8).

In the third section we discuss the main properties of the characteristic
variety and the characteristic cycle associated with a constructible sheaf on a
smooth manifold. The concept of non-characteristic mapping is used to obtain
the isomorphism i~} F*[—2¢] - i'F*, where F* is an S-constructible complex
on X and i : S = X denotes the inclusion of a submanifold in X which is
transversal to S (see Corollary 4.3.7). Then we discuss a micro-local Morse
Lemma (see Theorem 4.3.9) and, as an application, we describe the stalks of
the cohomology sheaves of a constructible complex in a very explicit way (see
Corollary 4.3.11) and prove a Kiinneth formula for constructible sheaves in
Theorem 4.3.14. Finally we discuss the local and global index formulas due to
Kashiwara [Ka] and Brylinski-Dubson-Kashiwara [BDK] (see Theorem 4.3.25
and Example 4.3.26 where several special cases are described in detail).

Chapter 5 is the culmination of our story in studying the perverse sheaves.
We start by introducing the formalism of t-structures and we define the p-
perverse sheaves, where p is a perversity function, as the heart of the cor-
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responding p-perverse t-structure on DS(X ). Then we give the usual, more
geometric characterization of perverse sheaves in terms of support and co-
support conditions (Proposition 5.1.16). We introduce the middle perversity
function p, /, and prove topologically that the shifted constant sheaf Ax[n] is
P1/2-perverse on a complex analytic space X which is purely n-dimensional
and locally a complete intersection (see Theorem 5.1.20). We were surprised
to see how difficult it is to find a reference in book form for this fundamental
result!

We discuss the main properties of perverse sheaves after [BBD] and [KS]:
extensions (resp. restrictions) from (resp. to) open and closed subspaces, the
intermediary extension functor ji,. and its properties. In Theorem 5.2.12 we
describe the simple objects in the category Perv(X) of perverse sheaves on
X via the intermediary extensions of shifted irreducible local systems on sub-
varieties in X. We describe thereafter the t-exactness properties of direct and
inverse images and obtain as a special case the Artin Vanishing Theorem men-
tionned at the beginning of this introduction.

To balance the rather formal character of this material, we then give an ex-
plicit description of the germs of perverse sheaves on a smooth curve in terms
of easy linear algebra (see Proposition 5.2.26 and the proceeding discussion).

In the third section we briefiy describe the theory of D-modules. We men-
tion that the integrable connections (V,V) introduced in Chapter 2 are spe-
cial cases of D-modules and the twisted de Rham complex of such a con-
nection is a special case of the de Rham functor DR which transforms a
bounded complex of regular holonomic D-modules M*® into a constructible
complex DR(M?®*) (see Example 5.3.4 and Theorem 5.3.1). In the same vein,
the twisted de Rham Theorem from Chapter 2 and Theorem 3.4.16 from
Chapter 3 are baby-versions of the Riemann-Hilbert correspondence stated
in Theorem 5.3.3. This general and rather abstract result is readily applied
in Proposition 5.3.6 to give a simple proof for a homological result relating
cohomology to perverse cohomology. Again, for the sake of the right balance
between the general theory and the concrete examples, we describe in Propo-
sition 5.3.10 and Theorem 5.3.12 the category of germs of regular, holonomic
D-modules on a smooth curve in terms of two distinct models built using only
linear algebra. By putting together this and the previous description of the
germs of perverse sheaves on a smooth curve, we get an explicit form of the
Riemann-Hilbert correspondence in this important special case.

The last section in this chapter gives a brief introduction to the intersection
(co)homology. The intersection complex ICx can be obtained as the interme-
diary extension of the shifted constant sheaf Q[r] on the smooth part of X (see
Theorem 5.4.1). As an application we describe the intersection cohomology of
a variety having only isolated singularities in terms of the usual cohomology
in Theorem 5.4.4. We also prove the celebrated Lefschetz Hyperplane Section
Theorem for intersection cohomology in Theorem 5.4.6. Then we state the
relative Hard Lefschetz Theorem (perverse version) 5.4.8, the Decomposition
Theorem 5.4.10 and apply the latter in Corollary 5.4.11 to show that the
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ordinary cohomology H*(X') contains as a direct summand the intersection
cohomology TH*(X), if f : X' = X is any resolution of singularities for the
variety X . This chapter ends with a number of results comparing the behavior
of intersection cohomology to that of the usual cohomology, in particular for
links.

In the last chapter the time has come for the reader to receive a reward
for his hard work. He is offered several applications, old and new, of per-
verse sheaves to several geometric situations. This is the longest and the most
original chapter in the book.

In section one we concentrate on hypersurface singularities and prove first
connectivity results for Milnor fibers in Propositions 6.1.1 and 6.1.2, for com-
plex links in Corollary 6.1.3 and for the usual links in Proposition 6.1.4. Then
we show that stronger vanishing results can be achieved by looking at the
eigenspaces of the monodromy action on the cohomology of the Milnor fiber
(see Proposition 6.1.6 and Corollary 6.1.7).

To encode this information efficiently we introduce the Alexander polynomi-
als and the zeta-function of a hypersurface singularity. Theorem 6.1.14 gives a
general formula for this zeta-function in terms of a resolution of singularities,
similar to the one in [GLM1], and from which one easily deduces the classical
A’Campo formula (see Corollary 6.1.15).

We offer then a comparison between the variation in sheaf theory as introduced
in Chapter 4 and the variation usually considered in the study of isolated hy-
persurface singularities.

This section ends with new relations between the link and the complex link of
an isolated singularity, which involves in the proof the use of characteristic cy-
cles and perverse sheaves (the intersection cohomology sheaf), see Proposition
6.1.22 and the generalization in Proposition 6.1.23.

In the second section we study the topology of the fibers of a deformation
f: X — S in which the base S is an open disc in C. The simpler case when f
is proper is discussed first in Propositions 6.2.1 and 6.2.9. To treat the non-
proper case we use a compactification and introduce two good behavior at
infinity conditions, namely tame deformations and deformations having only
isolated singularities at infinity (for details see Definition 6.2.12). The main
results on deformations satisfying one of these conditions are given in Theorem
6.2.15, Propositions 6.2.19, 6.2.22 and 6.2.24.

In the third section we study in detail the topology of polynomial functions
f: €t — C, first without any additional condition on f and, later on, under
the assumption that f satisfies one of the two conditions at infinity introduced
above for deformations. The main results are Propositions 6.3.2, 6.3.5, 6.3.15
and Theorems 6.3.11, 6.3.17, 6.3.23. In the final part of this section we show
how the perverse sheaves/D-modules dictionary introduced in section 5.3 can
be applied to this specific situation, yielding new analytic descriptions for
the cohomology groups of some affine hypersurfaces. In Proposition 6.4.17, a
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new relation is obtained between the complex link and the monodromy of a
function germ f : (X,0) = (C,0).

In the last section we study the topology of the complements of hyperplane

(and, more generally, hypersurface) arrangements in a projective space P”. We
establish the known basic relation between the eigenspaces of the monodromy
and the cohomology of the local hypersurface complement with coefficients
in a rank one local system in Proposition 6.4.8. This is applied to get a very
general new vanishing result in Theorem 6.4.13. A refined version of this result
in the special case of hyperplane arrangements was obtained in [CDO] and
is essentially reproduced here as Theorem 6.4.18. Special cases and examples
are given at each stage, some of them describe new divisibility properties for
the Alexander polynomials of projective plane curves (see Corollary 6.4.16),
others give an improvement of Massey’s result in [Ma2] on the dimension of
monodromy eigenspaces associated with a line arrangement in P? (see Exam-
ple 6.4.14).
All of the results in this final chapter are proved in detail, except three the-
orems quoted to enrich the background of the story, namely Theorems 6.3.1,
6.3.28 and 6.4.23. Some of these results can be obtained without the use of
sheaf theory, but even in such a case the sheaf theoretic viewpoint is useful,
elegant and unifying. Most of the main results here involve properties of con-
structible or perverse sheaves in an essential way, pointing out the ubiquity
of this theory.

These notes have grown out of a series of lectures I gave at Bordeaux Uni-
versity in 2000-2001. Many thanks go to the students and the few colleagues
who attended and survived this emerging course. My former PhD student
Thomas Brélivet prepared a first draft of notes, some eighty pages in French,
and later helped me in my perpetual fight with the mysteries of LaTex.

J6rg Schiirmann has read substantial parts of my manuscript, suggested
valuable amendments and pointed out a number of inaccuracies which I have
done my best to correct in this final version.

Discussions with David Massey, Claude Sabbah, Morihiko Saito and Pierre
Schapira helped me to get closer to the right picture of this deep theory and
provided encouragement at crucial moments.

It is a pleasure to thank all of these mathematicians, as well as my wife
Gabriela, my children Jean, George and Maria who helped in so many ways
towards the completion of this work.

Gradignan, Alexandru Dimca

September 2003.
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1

Derived Categories

In the first section we recall the simplest facts of homological algebra in an
abelian category A. The second section introduces the triangulated categories
as a generalization of the homotopical categories K*(.A). The main aim of this
chapter is to introduce the derived categories and the derived functors, and
this is done in the third section. The last section is devoted to a key example,
the derived functor of Hom.

1.1 Categories of Complexes C*(A)

We assume the reader is familiar to the basic notions of category theory. Many
definitions and results are recalled below.

Definition 1.1.1. A category C is exact if there are zero objects, all the mor-
phisms in C have kernels and cokernels, and for any morphism f, the induced
morphism Coim f — Im f is an isomorphism.

Note that a zero object is an object that is both initial and final in the sense of
[KS], p. 24. One can do a little of homological algebra in an exact category, for
instance one has the “snake lemma” and the long exact sequence associated
to a short exact sequence of complexes in C, see for instance [I1], p. 1-10.

Definition 1.1.2. A category C is additive if the following conditions hold.

(i) for any two objets X,Y in C the set Hom(X,Y) has an abelian group
structure such that all the compositions of morphisms are bilinear;
(i) there is a zero object, denoted by O¢;
(#i) for any two objects X,Y in C, the direct sum X &Y exists in C.
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If we denote by C° the opposite category of C (same objets but all the
morphisms are reversed), then one has

C exact <= C° exact,
C additive <= C° additive.

Using the second equivalence we see that in an additive category the direct
product X x Y exists for any two objects X,Y and X x Y is isomorphic to
X Y, see [I1], p. 11-12.

Definition 1.1.3. A functor F : C — D between two additive categories is
additive if for any two objects X,Y in C, the mapping induced by F

Hom(X,Y) — Hom(F(X),F(Y))
is a morphism of abelian groups.
Exercise 1.1.4. Show that F(0¢) = Op for any additive functor F'.

Hint. For any object X in an additive category, there are two distinguished
morphisms in Hom(X, X), namely 1x, the identity of X, and Ox, the zero
element in the group Hom(X, X).
Show that an objet X isomorphic to the zero object O¢ if and only if these
two morphisms coincide, 1x = 0x.

For the reader’s convenience we include here some basic definitions in
category theory, see also [KS], p. 25 and p. 69.

Definition 1.1.5. A functor F : C — D is fully faithful if for any objects
X,Y in C the map Home(X,Y) = Homp(F(X),F(Y)) induced by F is o
bijection.

Definition 1.1.6. Let F : C — D and G : D — C be two functors. We
say that G is right adjoint to F' and F is left adjoint to G if the following
equivalent statements hold.

(i) There exist morphisms of functorsa : FoG — Id and b: Id - Go F such
that for any object Y in D the composition

a) %) go Foq(y) ) gy

is equal to Idg(y) and for any object X in C the composition
FX) TS pogor(x) "X p(x)

is equal to Idp(x).

(ii) There is an isomorphism of bifunctors C° x D — Set

Homp(F(X),Y) ~ Home(X,G(Y)).
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Exercise 1.1.7.

(i) Show that with the above notation, the morphism a : F o G — Id (resp.
b:Id — GoF) is an isomorphism if and only if the functor G (resp. F) is
fully faithful.

(i) Show that F': C — D is a left adjoint to G : D — C if and only if the dual
functor G° : D° — C° is left adjoint to the dual functor F° : CO — D°.

For the additive categories one may develop a rich homological theory, see
[I1], p. 11-33.

However, most of the categories one meets in geometry and topology have both
properties introduced above, i.e. they are exact and additive. To simplify the
language, one gives the following definition.

Definition 1.1.8. A category C is abelian if it is exzact and additive.
Here is a list of basic examples of abelian categories, see [GM], p. 109-133.

Example 1.1.9.

(i) Ab, the category of abelian groups;
(ii) mod(A), the category of A-modules (left or right), where A is any ring;
(iii) Ab(X), the category of sheaves of abelian groups on a topological space
X;
(iv) mod(A), the category of (left or right) modules over a sheaf of rings 4 on
a topological space X.

Note that (i) (resp. (iii)) is a special case of (ii) (resp. (iv)) obtained by taking
A =17 (resp. A= Zx, the constant sheaf Z on X). Moreover, (ii) is a special
case of (iv) as we see by taking X = pt, the topological space reduced to a
point. Such easy remarks are quite useful, but we will not state them explicitly
in the sequel. The functor “global sections” gives rise to an additive functor

I' : mod(A) — mod(A)

where A = I'(X, A).

Let A be a category. We denote by C(A) the category whose objets are
the complexes of objets in 4 namely

-1 0 1
A% AT S 40 4y g1 4

where the differential d = d4 satisfies d¥t! o d* = 0 for all £k € Z and the
morphisms A* %+ B* are given by commutative diagrams

AL A° Al

B B B!
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The set of such morphisms A* —+ B® is denoted by Hom(A*, B*).
One has an embedding of categories given by the following functor

co: A— C(A)
An—)---—)O—){l—)O—)---

where the point under an object means that this object is in position 0, i.e.
it corresponds to the object A° in the explicit description of A® given above.

If A is an additive (resp. abelian) category, then C(A) is additive (resp.
abelian). If A is exact, then one can introduce the cohomology functors

. k. 4oy Ker d
Y O(4) » A, BH(A%) = £ 8

This definition makes sense since the existence of cokernels in .4 implies the
existence of quotients. The functors H* form a conservative system i.e. to a
short exact sequence in C(A)

0>A*—>B*>C* =0
corresponds a long exact sequence of cohomology
s HE(A%) » HY(B*) » HH(C*) S HM(4%) > -

in A, voir [I1], p. 7-8. The morphism 4 is called the connecting (homo)morphism
and its construction is functorial.

Definition 1.1.10. A compler A® is called acyclic if H*(A®*) = 0 for all
keZ.

Notation. The category C(.4) contains several full subcategories C*(.A) that
are important in the sequal and which we list below.

* = +, the full subcategory whose objects are the bounded below (or to the
left) complexes -+ — 0 = --- = A7! — A% — ... ie. there is an integer
ng € Z such that A™ = 0 for all m < ny.

x = —, the full subcategory whose objects are the bounded above (or to the
right) complexes --- 5 A 5 Al 5 ... 50> ---.

x = b, the full subcategory whose objects are the bounded (both to the left
and to the right) complexes.

We assume from now on in this chapter that .4 is an abelian category.
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Remark 1.1.11. Let X* et Y'* be two complexes in C*(.A). One gets a complex
of abelian groups Hom®*(X*,Y*) by taking as modules

Hom*(X*,Y*) = {(u™)mez 1 u™ : X™ = Y™ morphism }
and the differential d* : Hom*(X*,Y*) - Hom**'(X*,Y*) given by
d*(u™) = d¥E™ o u™ 4 (=1)F+HtymH o 412,
Note that Hom(X*,Y*) = Ker d°.

Definition 1.1.12. Let X°*,Y* € C*(A) be two complezxes.

(i) We say that a morphism u : X* — Y* is a quasi-isomorphism if the
induced morphism at cohomology level H*(u) : H*(X*) — H¥(Y*) is an
isomorphism for all k.

(ii) Let u,v : X* = Y* be two complex morphisms. We say that u and v are
homotopic if there is h € Hom™*(X*,Y*) such that u —v = dyh + hdx.

k—1 J

e Xk—l dX' Xk dxe Xk+1 .
. Yk—l Yk Yk+1 .
dbt d%e

Such a morphism 5 is called a homotopy between « and v and we use the
notation u ~ v to indicate that v and v are homotopic. Note that u ~ v if
and only if u — v € Im d~ 1.

This algebraic notion of homotopy is related to the corresponding topolog-
ical notion as follows. Let f : V — W and g : V — W be two continuous maps
between topological spaces V and W. We say that f and g are homotopic if
there is a continuous mapping H : V x I = W such that for any v € V one
has H(v,0) = f(v) and H(v,1) = g(v). Then it follows that the induced mor-
phisms at the level of complexes of singular cochains f* : C*(W) = C*(V)
and g* : C*(W) — C*(V) are homotopic in the above (algebraic) sense. See
for details [GM], p. 50-52.

Ezample 1.1.13 (Mayer-Vietoris Ezact Sequence). Let X be a topological
space and {U;,Us} an open cover of X. Then there is an obvious exact se-
quence of complexes of singular chains

0= Cu(U1NU3) = Cu(Uh) @ Cu(Uz) = C(Ur) + C(Uz) = 0

where the last sum takes place in C.(X). It can be shown that the natural
inclusion

i: C({Ur,U2}) := Cu(Uy) + Cu(Us) = Ci(X)
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is a quasi-isomorphism, see [Sp|, Theorem 4.4.14. Passing to singular cochains
gives rise to a short exact sequence of complexes

0— C*({U17U2}) - C*(Ul) ©® c* (U2) — C*(Ul n U2) =0
as well as to a quasi-isomorphism, obtained by duality from 4,
i C*(X) — C*({Ul, UQ})

The corresponding long exact sequence in which we replace H*(C*({U1, Uz}))
by H*(C*(X)) via the isomorphism H*(i*) is the following Mayer-Vietoris
long exact sequence

— H¥X) - H*(U,) ® H¥(U) = HY(U, NU,) - H*L(X) > .
One has a similar exact sequence
0— é*({Ul,Ug}) - é*(Ul) ®C* (U2) = é*(Ul NUz) =0

of reduced cochain complexes.

Definition 1.1.14. For any complex

m—1 m m-41
A%y AL gm AT gm0

in C*(A) and any integer m, we introduce the following associated truncated
complezes.

m—1
TsmA.:"'—)Am_ld—) Kerd® 50—-30—---
7SmAS oy gL gm gm0

TZmA. = A./TSM—IA.

and
TZMA® = A®[rS™71 40,

These constructions extend in the obvious manner on morphisms in C*(A)
and give rise in this way to truncation functors

Tem, TS™ 1 C*(A) = C~(A)

and

Tom, T2™ : C*(A) = CT(A).

The notation for these truncations differs from one paper to the other, see
for instance [KS], p. 33 and [A], p. 10. This fact causes no big problems, since
the inclusion 7<;, A* — 7S™A* is obviously a quasi-isomorphism. A standard
application of the 5-lemma shows that the projection 7>mA® — 72™A° is
also a quasi-isomorphism.
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Remark 1.1.15. Note that H*(7<,,, A*) = H¥(1S™A*) = H*(A*) for all inte-
gers k < m and H¥ (1<, A*) = H¥ (5™ A*) = 0 if k > m. Similar results hold
for H*(r>mA*) = H*(72™A*). Hence these four truncations preserve some
of the cohomology groups of the complex A* and replace the other ones by
zero. For this reason, these truncations are called wise (or good) truncations,
as opposed to the stupid (or brutal) truncation given by

LI m a" m—l—ldm-'-1
O>mAt - — 00— A" — A — .

which has a new nontrivial cohomology group, namely H™ (0>, A®) = Ker d™.
The above stupid truncation gives rise to a decreasing stupid filtration

cee D 02m+1A. D) UZmA. D) UZm—lA. D

on the complex A°®. For relations of this filtration to Hodge theory, see [De4]
and [EV2], p. 156.

Exercise 1.1.16. Show that for any complex A*, the two complexes 7>07<¢A*
and 72970 4* are two-term complexes quasi-isomorphic to the complex hav-
ing as the only nontrivial term H?(A*) placed in degree 0.

We introduce the shift automorphism T' : C*(4) — C*(A) given on objects
by T(X*®) = X°*[1] where for n € Z we define a shifted complex by setting
(X*[n])® = X"** and dr(xe) = —d5&! for all s € Z. On morphisms f the
shift T is given by T'(f)® = f**'. The inverse automorphism is denoted by
T7HX*) = X°*[-1].

Definition 1.1.17. Let u : X* — Y* be a morphism of complezes in C*(A).
The mapping cone of u is the complez in C*(A) given by

C.=Y*o (X°[1)),
where dy(y,z) = (dy + u(z), —dz). Sometimes we denote the mapping cone
C: by Cone(u) or Cone(u: X* = Y*).

Exercise 1.1.18.

(i) Let w : X* — Y* be a morphism of complexes in C*(A). Show that the
two mapping cones Cone(u) and Cone(—u) are isomorphic via the morphism
(y,iII) = (y,—z)

(i) Consider the following commutative diagram in C*(A4).

X ——v°
)
X ——1

Show that there is a complex morphism (a,b) : Cone(u) — Cone(v), functo-
rial in an obvious sense, and given by (y,z) — (b(y),a(x)).
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The mapping cone of the morphism « gives rise to a triangle
T,:X* 375 C: 5 X1

where ¢ is the inclusion on the first factor and p is the projection. Such a
triangle is sometimes denoted in the following more intuitive way.

N

Definition 1.1.19. Two complezes X* and Y* are homotopically equivalent
if there are two morphisms X* 3 Y* and Y* 5 X* such that

X.

Y.

voun~ Idxs.
uov ~ Idys.

If this is the case, we use the notation X®* ~Y*.

If u, v are as above, then they both are quasi-isomorphisms. However, the
existence of a quasi-isomorphism « : X* — Y* does not imply in general that
X* ~Y* (see Proposition 1.3.10 for a related result).

Lemma 1.1.20.

(i) The composition of any two consecutive morphisms in the triangle T, is
homotopic to 0.

(i) For any complex X*, the mapping cone of the identity CI‘dX. is homotopic
to the zero complez.

(ii) If w ~ v, then there is a complex isomorphism ¢ : C3 = C3 such that
the following diagram is commutative.

C.

IS
ve  ~le X[

RN

cy
Proposition 1.1.21. To a triangle T, as above there is an associated long
ezact sequence in cohomology

*

— BYX*) 25 BR YY) S BYOp) BB B S BRY(Y) —
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The fact that the connecting homomorphism § exists already at the complex
level and not only at the cohomology level explains the usefulness of the
mapping cone construction.

Corollary 1.1.22. A morphism u is a quasi-isomorphism if and only if the
corresponding mapping cone C;, is acyclic.

Proposition 1.1.23. Let
0 X*3Y*5H2Z° >0
be an exact sequence in C*(A). Then

(i) There is a quasi-isomorphism m such that

is a commutative diagram (with q the inclusion as above).

(i) If the exact sequence is semi-split (i.e. there is a section s : Z* - Y* of
v:Y* = Z°), then m is a homotopy equivalence.

Note that the above section s is a morphism in the category of graded objects
of A, i.e. s is not necessarily a complex morphism. Proofs of all these results
on the mapping cone can be found for instance in [B2], p. 41-42.

1.2 Homotopical Categories K*(.A)

Let A be an abelian category. We define the homotopical category of com-
plexes of A by setting for objects

Ob(K™(A)) = 0b(C*(A)),
and for morphisms
Homgr(a)(X*,Y*) = Hom(X*,Y*)/ ~= H (Hom*(X"*,Y*)).
The last abelian group is also denoted by [X*,Y*].

Remark 1.2.1.

(i) The category K*(A) is additive, see [B2], p. 44, but not abelian. Hence in
such a category we can no longer talk about short exact sequences, kernels or
images. The short exact sequences are replaced by the more abstract notion
of exact, or distinguished, triangles, see Definitions 1.2.2 and 1.2.6.
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(ii) For a morphism ¢ € Homg.(4)(X*®,Y*) in this new category, the corre-

sponding mapping cone Cg, is defined only up to isomorphism in K*(A), i.e.

homotopy equivalence in C*(A), see Lemma 1.1.20 (iii).
(iii) We have the following diagram

C*(A) us A

S

K*(A)

in other words, u ~ v implies H*(u) = H*(v) for any integer k.

(iv) The category K*(A) has a shift functor T' defined exactly as the shift
functor for the category C*(A).

Definition 1.2.2. Let T be the family of triangles in K*(A) which are iso-
morphic to a standard triangle T,, associated to some morphism u in C*(A).
This family is by definition the family of distinguished, or ezact, triangles in
K*(A).

Ezample 1.2.3. A semi-split exact sequence in C*(.4) induces a distinguished
triangle in K*(A) in view of Proposition 1.1.23.

One can prove the following basic properties of the exact triangles in K*(A),
see [B2], p. 50.

Proposition 1.2.4. The distinguished triangles in K*(A) have the following
properties.

(Tr1) Any triangle isomorphic to a distinguished triangle is distinguished. For
any object X*, the triangle X* — X* — 0 — X °*[1] where the first morphism
is the identity is distinguished. Any morphism u : X* — Y° is part of a
distinguished triangle X* 5 Y* = Z* — X°[1].

(Tr2) A triangle X* 5 Y* 5 Z* B8 X*[1] is distinguished if and only if the
triangle Y* 5 Z* % X*[1] 4 Y*[1] is distinguished.

(Tr8) Any diagram

)]’o Yj’o zZe X‘[]_]
A B* c* A*[1]

where the rows are distinguished triangles and the square is commutative ex-
tends to a morphism of triangles as defined below.
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(Tr4) For any pair of morphismsu : X* = Y*® andv : Y* — Z° and any triple
of distinguished triangles X* 3 Y* 5 A* = X°*[1],Y* 3 Z* = B* 5 Y°[1]
and X* 2% Z* — C* — X°[1] there are morphisms a: A* — C*, b:C* — B*
such that (idxe,v,a) and (u,idz.,b) are triangle morphisms and the triangle

A0S o0 Y pe A*[1] is distinguished.

Note that in (T'r1) the triangle X* % Y* — Z* — X*[1] is unique up-to
isomorphism. In particular, one can take Z* = Cone(u), and with such a
choice for Z* and C* in (T'r3) the morphism Z* — C* can be obtained as in
Exercise 1.1.18.

By definition, a morphism from the triangle X* —» Y* — Z* — X°*[1] to
the triangle A* — B* — C* — A°®[1] is given by a commutative diagram in
K*(A) of the following type.

X Ye zZ* X°[1]
bl b
A* B* c* A*[1]

The last property (T'r4) is called the octahedral axiom since the objects and
the morphisms involved in it can be organized in space according to the ver-
tices and the edges of an octahedron, see [KS], p. 38.

Ezample 1.2.5 (Mapping Cone in Algebraic Topology). The algebraic notion
of mapping cone is related to the following mapping cone construction in
algebraic topology. Given a continuous mapping f : V — W, the mapping
cone of f is the space Cone(f) = CV Uy W obtained from the disjoint union
of CV, the cone over V, and W after identifying all the points x € V to
y = f(z) € W. Here V is considered as a subspace in the cone CV in the
usual way. This mapping cone has an obvious cover consisting of two open
sets U1 and Us such that U; is contractible, U has the homotopy type of W
and U; N U; has the homotopy type of V. As in Example 1.1.13 we get an
exact sequence

0— é*({U17U2}) - é*(Ul) ©® é* (U2) — é*(Ul n U2) =0

of reduced cochain complexes. Moreover, the above (topological) homotopy
equivalences imply that C*(Uy) ~ 0, C*(Uz) ~ C*(W) and C*(U; N Uy) ~
C*(V). To simplify the notation we set X* = C*({Uy,Us}), Y* = C*(U1) @
C*(Us) and Z* = C*(U; NUs). It follows that the above exact sequence

05 X*3Y*5H2Z° >0

is semi-split (as all these complexes are free) and hence Z* ~ C}; by Proposi-
tion 1.1.23. Hence X* % Y* 5 Z* % X*[1] is a distinguished triangle exactly
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as in Example 1.2.3. Using the axiom (T'r2) above, we get that the shifted
triangle

ve S ze % xon] 4 yep

is also distinguished. Using the above (algebraic) homotopical equivalences, it
follows that the triangle

C*W) L &*(v) - C*(Cone(£))[1] » C*(W)1]

is also distinguished. This gives a homotopy equivalence

C* (Cone(f))[1] ~ Cone(C*(W) L &*(v)).

Definition 1.2.6. An additive category C endowed with a shift self-equivalence
T and a family of distinguished triangles T is a triangulated category if these
data satisfy the above properties Tr1-Tr4, with X[1] = TX. A full edditive
subcategory D C C is called a triangulated subcategory if T(D) C D and if two
vertices in o distinguished triangle in T are in D, then so is the third.

A triangle X Y — Z — X[1] is also denoted by X — Y — Z L x.
It follows from Proposition 1.2.4 that the homotopical category K(A) is a
triangulated category in a natural way, and the category K*(A) for * = +,—,b
is a triangulated subcategory in K (A).

Remark 1.2.7. Note that in a triangulated category C any morphism u : X —
Y is the base of a distinguished triangle X =Y — Z — X[1] by axiom (T'r1)
and moreover the object Z is unique up-to isomorphism. However we do not
have in general an explicit construction of Z as the cone Cone(u). One can
define in this setting the cone Cone(u) of the morphism « : X = Y to be this
object Z. It is one of the delicate points of the theory that there is no “cone
functor”. This comes from the fact that only the isomorphism class of Z is
well-defined and, more importantly, the morphism Z — C whose existence is
stated in axiom (T'r3) is not at all unique. See in this respect [Ill], 1.7 and [I1],
p. 431 where it is shown that even in C = K(A) the corresponding morphism
is not unique.

Exercise 1.2.8. Let C be a triangulated category and let u : X — Y be
a morphism. Show that the double shifted mapping cone Cone(X[—1] —
Y[—1])[1] is isomorphic to Cone(—u).

Note that in a general triangulated category it is not clear that we have an
isomorphism Cone(—u) ~ Cone(u) as we do in Exercise 1.1.18.
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Definition 1.2.9. Let C be o triangulated category and A an abelian cate-
gory. An additive functor F : C = A is a cohomological functor if for any
distinguished triangle (in the triangulated category C)

X—y—z5%Xx
the associated sequence under the functor F' (in the abelian category A)
FX)— FY)— F(2)

is exact. If F' is a cohomological functor, we set F*(X) = F(X[i]) = FoT%X).
The family of functors F* is conservative if for any distinguished triangle

X—vy—zX%Xx
the long sequence
ci — FY(X) — FY(Y) — FY(Z2) — FY(X) — -
15 ezact.

Ezample 1.2.10. If A is an abelian category then H® : K*(4) — A is a
cohomological functor and the system of functors H* is conservative.

Definition 1.2.11. Let C and C' be two triangulated categories. A functor
F :C — (' is a 6-functor, or a functor of triangulated categories, or an exact
functor, if F is compatible with the shift functors (i.e. FoT =T'o F) and
F transforms any distinguished triangle in C in o distinguished triangle in C'.

Definition 1.2.12. Let C be a triangulated category. We say that an object Y
in C 1is the extension of an object Z by an object X if there is a distinguished
triangle in C of the form X — Y — Z x4 subcategory D in C is said
to be stable under extensions if for any distinguished triangle in C of the form

X—)Y—)Zil)X, if X and Z are objects in D, soisY.

In particular, a triangulated subcategory D C C as in Definition 1.2.6 is
stable by extensions.

1.3 The Derived Categories D*(.A)

The derived category D*(A) is in some sense the closest category to the
homotopical category K*(A4) such that all the quasi-isomorphisms in K*(A)
become isomorphisms in D*(A). The formal definition is rather involved, so
we concentrate it as follows.
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Definition 1.3.1. The derived category of the abelian category A is the tri-
angulated category D*(A) obtained from the homotopical category K*(A) by
localization with respect to the multiplicative system formed by all the quasi-
isomorphisms in K*(A).

For details about this construction we refer to Verdier [V2] or to [KS], pp.
45-50. Localization with respect to other multiplicative systems plays also an
important role, see for instance [Or2].

At the level of objects, one has Ob(D*(A)) = Ob(K*(A)) = Ob(C*(A)). The
morphisms in Homp.4)(X*®,Y*) are given by equivalence classes of diagrams
(Z*;s,u) in K*(A) of the following type

X'/Z.xw

where the morphism s is a quasi-isomorphism. We say that a diagram
(Z?; 51, u1) dominates another diagram (Z3; sq,us) if there is a commutative
diagram

BN

Z3

Two diagrams (Z7;s1,u1) and (Z3;s2,u2) are equivalent if they are both
dominated by a third diagram (Z3; s3, u3). The composition of two morphisms
is given by the equivalence class of the fibered product

N
X/ \Y,/ \Z,

We denote by p% : K*(A) — D*(A) the localization functor which is a
d-functor, see [B2], p. 54. Under this functor, a morphism u : X* —» V* is
sent into the class of the diagram (X*;Idx,u). If s : X* — Y* is a quasi-
isomorphism in K*(.4), then it is easy to check that the diagram (X*;s, Idx),
regarded as an element in Homp-(4)(Y*, X*®), is an inverse for p¥(s). In this
way s becomes an isomorphism in the derived category D*(A).
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One has also the following result describing D*(A4) in terms of full subcate-

gories of D(A), see [KS], p. 45, Proposition 1.7.2.

Proposition 1.3.2. The category D®(A) (resp. Dt(A), resp. D=(A)) is

equivalent to the full triangulated subcategory of D(A) consisting of objects

X* such that H*(X*) =0 for all |n| >> 0 (resp. n << 0, resp. n >>0).
Using this result, whenever we have a functor defined say on D?(A), we

can apply it to any object X* such that H*(X*) = 0 for all |n| >> 0. The

following basic result is proved in [B2], p. 55-57 and in [KS], p. 45, Proposition
1.7.2. For the last claim, see [V2] and compare it to Example 1.2.3 to see why
the derived categories are better than the homotopical categories.

Proposition 1.3.3.

(i) A morphism o € Homp.(4)(X°®,Y*) is an isomorphism if and only if o
can be represented by a diagram of quasi-isomorphisms

X-/ | \r

(i) Let u : X* — Y* be a morphism in K*(A); then p%(u) = 0 implies
u* = 0 where u* : H*(X*) - H*(Y*) is the morphism at the cohomology
level induced by u.

(iii) The embedding functor D : A —D*(A) given by A — (0 > A — 0) is
fully faithful, i.e. there is a bijection HomA(X,Y) = Homp«a) (DX, DY).
Moreover, under D, the category A is equivalent to the full subcategory of
D*(A) consisting of objects X* such that H*(X*) =0 for n # 0.

(iv) A short exact sequence in C*(A) induces an ezact triangle in D*(A).

Remark 1.8.4.If v : X* — Y* is a morphism in the derived category
D*(A), then there is a (well-defined up-to isomorphism) mapping cone ob-
ject Cone(u), see [Sad], 2.29. However, a commutative diagram

Xt —>Y*
-k
X ——>Yr

would not give rise to a morphism (a, ) : Cone(u) = Cone(v) as in Exercise
1.1.18. See also Remark 1.2.7.

One has a simpler, more concrete description of the derived category D(.A)
when the category A has many injective objects, a situation rather frequent
in practice as shown by the examples below.
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Definition 1.3.5. An object I in an abelian category A is injective if the
functor Hom(—,I) is exact. A complex I® is injective if all the terms I* are
injective.

Exzample 1.3.6.

(i) If C is the category Vect;, of all the vector spaces (and linear maps) over

a field k, then any objet X € Ob(C) is injective.

(if) If C = Ab, then the abelian group G € Ob(C) is injective if and only if the
group G is divisible (see [G], p. 6 or [W], p. 39).

(iii) If C is an abelian category and I and J are injectivethen I @ J =1 x J
is injective.

Definition 1.3.7. An abelian category C has enough injective objects if any

object X in C is a subobject of an injective object I in C, i.e. there is an exact

sequence 0 = X — I in C with I injective.

One can prefer to work with projective objects, and the corresponding
definitions and results are obtained by dualising, i.e. working in the opposite
category. However, there are fewer “geometric” categories having enough pro-
jective objects than “geometric” categories having enough injective objects.
In some cases the projective resolutions are replaced by fiat resolutions, see
Proposition 2.2.4.

The following result is proved in [G], I.1.2, [H], II[.2.2 and [W], p. 34.

Theorem 1.3.8.

(i) For any ring A, the category mod(A) has enough injective objects and
enough projective objects.

(ii) The category mod(A) has enough injective objects for any sheaf of rings A
on o topological space X .

The interest in categories having enough injective objects comes essentially
from the following result.

Proposition 1.3.9. IfC is an abelian category having enough injective objects
then for any complex X* € Ct(C) there is a quasi-isomorphism X* — I* with
I* € C*(C) an injective complez.

In this situation I*® is called an injective resolution of the complex X°.
One can construct the resolution I* as follows. Take an injective resolution
X* — I** for any term of the complex X*. We get in this way a double
complex (I%*). Let s(I**) be the total complex associated to this double
complex. Then, using the spectral sequences associated to a double complex,
see for instance [BT], p.165 we get a quasi-isomorphism

X* — s(I*).

Let I(A) be the full subcategory of .4 whose objects are the injective
objects in A. For the following result refer to [B2], p. 72-73.
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Proposition 1.3.10. In the associated homotopical category K+ (I(A)) one
has the following.
(i) A morphism u is a quasi-isomorphism if and only if u is an isomorphism.
(ii) If A has enough injective objects, then the natural functor
pt K (I(A)) — D*(A)
is an equivalence of categories.

The functor _;jr in the above statement is the composition

KH(I(A)) <5 K+(A) 2 D+(a)

of the embedding functor j and the localisation functor pj{t.
This result allows us in many cases to replace the more abstract derived
category DT (A) by the more concrete category K+(I(A)).

Let K*(A) RN K (B) be a é-functor (recall the definition 1.2.11).
Definition 1.3.11. We call the right derived functor of F' a couple (R*F, &)
where R*F is a 6-functor D*(A) = D(B) and {r : pgo F —> R*F op’ isa
natural transformation satisfying the following universality property.

For any é-functor G : D*(A) = D(B) and any natural transformation ¢ :
pg o F' = G opY, there is a unique transformation n : R*F — G such that
¢=(noph)olr.

The data involved in this definition can (partly) be described by saying that
the diagram

K*(A) T~ K(B)
D*(A) FE. p(B)

is commutative up-to the natural transformation £z. The notion of left derived
functor L*F is obtained by duality.

Remark 1.3.12.
(i) If R*F and L*F exist, then they are unique up-to isomorphism.

(ii) If ¢ : F — G is a transformation of é-functors F, G : K*(A) — K(B) and
if the derived functors R*F' and R*G exist, then there is a natural transfor-
mation R*p : R*F — R*@ such that
psoF —"~R*Fopy
PBOY R*popy

psoG— R*Gopy
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Theorem 1.3.13 (Existence of Derived Functors). Let A and B be two
abelian categories and let F : K*(A) — K(B) be a 6-functor. Suppose there
is a triangulated subcategory I'(A) C K*(A) such that

(i) for any X* € Ob(K*(A)), there is M* € Ob(I'(A)) and a quasi-
isomorphism X* — M*,
(ii) if M* € Ob(I'(A)) is acyclic, then F(M?®) is also acyclic.

Then the right derived functor (R*F,£p) exists and for any complex M*® €
Ob(I'(A)), the induced morphism Ep(M*) is an isomorphism in D(B).

This result, a proof of which can be found in [B2], p. 75, allows us to com-
pute R*F(X*) using the resolution X* — M*. Indeed, X* ~ M*® in D*(A)
implies R*F(X*®) ~ R*F(M?*) ~ F(M*) in D(B). An important special case
is described below.

Corollary 1.3.14. Let A and B be two abelian categories and F : Kt (A) —
K(B) be a 6-functor. Suppose that

(i) A has enough injective objects;

(ii) F transforms the acyclic complezes in KT (I(A)) into acyclic complezes
in K(B).

Then the right derived functor RTF ewists.

To simplify the notation, the derived functor R+ F is often denoted by RF.

Remark 1.8.15. It F : K*(A) — K(B) is an additive functor, then the condi-
tion (ii) is automatically satisfied. Indeed, if M*® € K*(I(A)) is acyclic, then
0 - M* is a quasi-isomorphism hence u is an isomorphism in K+ (I(A4)) by
Proposition 1.3.10 (i). The induced morphism F(u) : F((0) — F(M?*) is then
also an isomorphism and F'(0) = 0 since F' is additive, see Exercise 1.1.4.

Here is an explicit construction for the functor RF in the case described
in the previous corollary. If

X* — s(I**)
is the injective resolution of X*® constructed above, then
RTF(X*®) ~ pg o F(s(I**)).

If the functor F is exact, then F'(X*) — F(s(I**)) is still a quasi-isomorphism
(look again at the corresponding spectral sequence of a double complex) and

hence
R+F(X‘) ~ppo F(X*).

For this reason in such a situation the derived functor Rt F is simply denoted
by F' . This easier notation is sometimes used for all the derived functors, see
for instance the monograph [BBD)].
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To each derived functor R*F', there are two associated families of “higher
direct image” type functors: the functors R"F : 4 — B pour n € Z defined
as the composition

AL Do) EE prB) I B
and the “hyper” functors R*F : D*(A) — B defined as the composition
D (A) ¥ p*B) &5 B.
When the functor F is left exact, one has F = R°F.

Definition 1.3.16. Let F' : A — B be a left exact functor. An objet X in A
is F-acyclic if R'F(X) =0 for all i > 0.

Ezample 1.8.17. An injective object is F-acyclic for any left exact functor F,
see [KS], 1.8.5-1.8.6, p. 51.

In practice, to work with derived functors, one finds the following results very
useful, see [I1], 1.7.15, [GM], IIL.7.1 and [GM], p. 207.

Proposition 1.3.18. Let A S B E ¢ e two additive functors between
abelian categories having enough injective objects, F being left exact. If G
transforms injective objects into F-acyclic objects, then there is an isomor-
phism

RY(FoG)=RYFoR*'G.

Theorem 1.3.19. With the notation and assumptions above, one has the fol-
lowing.

(i) For any objet X in A, there is a spectral sequence
EP? = RPF(R'G(X))

converging to RPYI(F o G)(X).

(ii) For any complex X* € DV (A), there is a spectral sequence
EP?" = RPF(RIG(X*))

converging to RFTI(F o G)(X*).

These spectral sequences, called the Grothendieck spectral sequences of
F o@, are functorial in X, resp. in X*. To simplify the notation, in the sequel
we usually denote the functors R™F by R™F.
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1.4 The Derived Functors of Hom

Let A be an abelian category. We have already introduced the bifunctor
Hom®(—,-) : C(A)° x C(A) — C(Ab)
where C'(A)° is the opposite category of C(A), given by

Hom™(X*,Y*) = [[ Homa(X?,Y?Hm).
PEZ

Here the differentials d® : Hom™(X*,Y*) — Hom™t!(X*,Y"*) are given by
d*p=dy op+ (=1)""rpodx.
We have also noted that

_ Kerd®

HO(Hom'(X‘,Y')) = m

= [X*,Y*] = Homg4(X*,Y*).

This fact has the following generalization, see [B2], p. 92.

Lemma 1.4.1. One has H*(Hom*(X*,Y*)) = Homg4)(X*,Y*[n]) for all
integers n.

The bifunctor Hom® is compatible with the homotopies and as a result
induces a bifunctor on the homotopical categories

Hom*(—,—) : K(A)° x K(A) — K(Ab).

This functor Hom?* is a bi-é-functor, i.e. it is compatible in the obvious way
with the distinguished triangles. If one has enough projective objects in the
category A, then one can construct the right derived functor

RHom® : D™ (A)° x D(A) — D(Ab).

Similarly, if one has enough injective objects in the category .4, then one can
construct the right derived functor

RHom® : D(A)° x D+(A) —s D(Ab).

If the category A has in the same time enough projective objects and enough
injective objects then the above two derived functors coincide on the sub-
category D~ (A)° x Dt (A), see [B2], p. 95. This derived functor is again a
bi-é-functor.

Definition 1.4.2. For any integer n, one defines the n-th hyperext of a pair
(X°*,Y*) in D~ (A)° x DY (A) by the formula

Ext™(X*,Y*) = H*(RHom*(X*,Y*)).
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Usually Ezt'(X*,Y*) is abreviated to Ext(X*,Y*). The embedding functor
A — D?(A) from Proposition 1.3.3 is used to define Ezt"(X,Y) for two
objects X,Y in A.

With this notation, one has the following result, see [B2], p. 97.

Proposition 1.4.3. Ext"(X*,Y*) = Homp(4)(X*,Y*[n]) for all integers n.

Remark 1.4.4. If the abelian category A has enough projective and injective
objects and if X, Y are two objects in A such that Ex#(X,Y) = 0, then any
extension

0=2Y—>Z2-X->0

of X by Y is trivial, i.e. the above exact sequence is split. Indeed, applying the
functor Hom(X, —) to the above exact sequence we get a long exact sequence
containing the sequence

Hom(X,Z) - Hom(X,X) - Ext(X,Y) = 0.

This implies that the projection p : Z — X has a section s : X — Z, ie. a
morphism s such that pos = Idx.

Note that a complex X* € C(mod(A)) of modules can be regarded as a
graded differential module with a differential of degree —1, i.e. as a homology
type complex X,, just by setting X,, = X~ ™ for any m € Z and using the
same differential for both X* and X,. With this notation, one has H,,(X,) =
H~™(X?*). In Godement [G], pp. 33-34, one defines a complex Hom*(X,,Y*)
for any complex Y* € C(mod(A)) by setting

Hom™(X,,Y*) = ®pyg=nHom(X,,Y9).

It follows that there is an identification of the complexes Hom?®(X,,Y*) and
Hom*(X*,Y*) as soon as there is a finite number of non zero terms in the
direct sum above and hence we can identify direct sums and direct products.
This happens in particular under the following finiteness condition.

Condition F. Assume that either

(i) X* € C~(mod(A)) and Y* € C*(mod(A)), or

(ii) X* € C(mod(A)) and Y* € C*(mod(A)), or

(iii) one of (i) or (ii) above holds when we interchange X*® and Y™°.

With these preliminaries, Theorem 5.4.2 in [G], p. 101 can be restated in the
following way.

Theorem 1.4.5 (Universal Coefficients). Let A be a principal ideal do-
main. Let X*,Y* € C(mod(A)) be two complezes satisfying the condition F
above. If moreover X* is free or Y* is injective, then for any integer m € Z
we have the following short exact sequence
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0= Bg_p=m—1Ext(H?(X*),HI(Y*)) > H™(Hom*(X*,Y*)) =

Dy—pm Hom(HP(X*), HI(Y*)) — 0.

In particular, if A — Y* is a bounded injective resolution, then we have for
any compler X* and any m € Z the following exact sequence

0 — Ext(H™(X*), A) = H-™(Hom*(X*,Y*)) » Hom(H™(X*), A) — 0.

Exercise 1.4.6. Let A be the category mod(A) for some principal ideal do-
main A. For two complexes X* Y* € C(A) satisfying the condition F above
consider the morphism H : [X*,Y*] = Hom(H*(X*),H*(Y*)) given by
w > H®(u). Show that if X* is a free complex, then H is an epimorphism. If
in addition H*(X?*) is also free, then H is an isomorphism.

Exercise 1.4.7. Let A be the category mod(A) for some principal ideal do-
main A. For any complex X* € C®(A) show that there is a quasi-isomorphism
X* ~ H*(X*). Hint: first show that there is a quasi-isomorphism X* ~ X?
where the second complex is a free complex in C~(A). Then apply the previ-
ous exercise to X7 and to Y'* = H*(X*).

Ezample 1.4.8. Let A be the category of k-vector spaces, &k being a field. Then
I(A) = A, D¥(A) = K*(A) = K®(I(A)). The morphisms are the homotopy
classes of morphisms and they are described by the previous exercise. Indeed,
it follows from 1.4.6 that

Hompy4)(X*,Y*) = Homew 4 (H*(X*®), H*(Y*))

where the cohomology is considered as a complex having zero differential.
Let now A be the category of abelian groups, i.e. take A = Z. For any complex
X* € C*(A), we can compute Homp+(4)(X*,Z) as follows. Replace X* by
an injective resolution I* and replace Z by its standard injective resolution
K*:0—- Q— Q/Z — 0. Then we have by Proposition 1.3.10

HomD+(A)(X‘,Z) = HomK+(A)(I.,K‘) = HO(Hom‘(I‘,K‘)).
Hence applying Theorem 1.4.5 we get the following exact sequence
0 — Ext(H'(X*),Z) - Homp+(4)(X*,Z) - Hom(H"(X*),Z) - 0.

This shows that Ext(H'(X*),Z) is the obstruction for the last (nontrivial)
morphism above to be injective.
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Derived Categories in Topology

The first section contains various basic facts on sheaves, including the defini-
tion of (hyper)cohomology, some standard associated spectral sequences and
several versions of the celebrated de Rham Theorem. After briefiy discussing
the derived tensor product in the second section, we give an ample introduc-
tion to the direct and inverse images of sheaves under continuous mappings in
section 3. The adjunction triangle is singled out in the forth section, since this
is one of the recurrent tools used in these notes. The last section is devoted
to the first properties of the local systems. These are the building blocks for
more complicated sheaves and, in the same time, the sheaves were the mar-
riage between algebra and topology is easily seen.

2.1 Generalities on Sheaves

Let X be a topological space, Ab(X) the abelian category of sheaves of abelian
groups on X. For A a commutative ring (most often we take A = Z,Q C),
let Ax be the constant sheaf on X associated to the ring A and denote by
mod(Ax) the abelian category of sheaves of Ax-modules.

For X = {pt}, a one point space, we identify Ax = A, Ab(X) = Ab,
the category of abelian groups, and mod(Ax) = mod(A), the category of A-
modules. To simplify notation, we denote by D*(Ax) the derived category
D*(mod(Ax)); the even simpler notation D*(X) is used when the ring A is
known in advance. Similar meaning is given to C*(X) and K*(X).

Definition 2.1.1. If F,G € mod(Ax) are two sheaves, then one can define
the following objects.

(i) Hom(F,G) € mod(A), the A-module of sheaf morphisms from F to G;
(i) Hom(F,G) € mod(Ax), the sheaf U — Hom(F|U,G|U);
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(iii) F @ G € mod(Ax), the tensor product of the two sheaves, which is the
sheaf associated to the presheaf U — F(U) ®4 G(U).

If 7*,G* € C*(mod(Ax)) are two complezes, then one can define a complex
Hom®(F*,G*) € C*(mod(Ax)) as in section (1.4).

Remark 2.1.2. Note that Hom(Ax,G) = I'(X,G), Hom(Ax,G) = G and
I'(X,Hom(F,G)) = Hom(F,G). Moreover (F ®G), = F,®4G, since the
tensor product commutes with direct limits, see [I1], p. 119. On the other hand,
in general Hom(F,G). # Homa(F;,G,) as the following exercise shows.

Exercise 2.1.3. Let X = C and F = @, the skyscraper sheaf such that
Fr=0for z # 0 and Fo = Q. Let G = Qx and let u : F — G be the
natural monomorphism. Let H = Coker . Show that Hom(Gy,Ho) = 0 and
Hom(G,H)o # 0.

The global section functor K+(mod(Ax)) & K+(mod(A)) has a derived
functor Rt I" by Corollary 1.3.14.

Definition 2.1.4 (Hypercohomology of a Sheaf Complex).
We define the hypercohomology groups of a complex of sheaves F* € C*(Ax)
to be the A-modules given, for any k € Z, by the formula

H* (X, F*) = (H* o R*I o p)(F*) = (R*T o p)(F*).

For a sheaf F € mod(Ax), its cohomology groups are defined in a similar way,
using the embedding co of the category A = mod(Ax) into C*(A), i.e.

H¥(X,F) = (R o poco)(F).

The functor I" being left-exact, it follows that H°(X, F) = I'(X, F).
For a complex F* € C*(mod(Ax)), we denote by H*(F*) € mod(Ax) the
k-th cohomology sheaf of F*°.

Exercise 2.1.5. Let A be a field. For a complex F* € D*(X) such that
all the hypercohomology groups are finite dimensional vector spaces over A
and H™ (X, F*) = 0 except for finitely many m € Z, we define the Euler
characteristic of X with coefficients F* to be the alternated sum

X(X, F*) =) _(-1)Fdim 4 HF (X, F*).
k

Show that a distinguished triangle
A* — B —c

of such complexes in D*(X) yields x(X, B®*) = x(X, A*) + x(X, C*).
A similar result holds for the Euler characteristic with compact supports of a
topological space X with coeflicients in a complex F*, given by
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Xe(X, F*) = (—1)Fdim 4HE (X, F*)
k

(see Example 2.3.22 below for the definition of the groups HF (X, F*)).

Remark 2.1.6.

(i) For any complex F* € C*(mod(Ax)) there is a spectral sequence relating
sheaf cohomology and hypercohomology

Ep = HP (X, HY(F*)) = BPHI(X, F*)

which is a special case of Theorem 1.3.19 (ii) (we take FF = I’ and G =
identity).

When all these (hyper)cohomology groups are finite dimensional over a field
A and when EP? = 0 except for finitely many pairs (p,q), it follows that
H™ (X, F*) = 0 except for finitely many m € Z and

X(X, F*) =) (—=1)PH9dim A H? (X, HI(F*)).

Similar equalities hold for all the spectral sequences described below, but will
not be explicitly stated.

(ii) The stupid filtration, defined on the complex F* as in Remark 1.1.15,
gives another useful spectral sequence

EPY = HY(X,FP) = HPHI(X, F*)
see for details [GH] and [EV2].

The above definition of (hyper)cohomology groups combined with Theorem
1.3.13 gives a way to compute these groups using injective resolutions. In
practice it is very difficult to work with injective resolutions and it was proved
that several other types of resolutions can be used. The key property one
needs in order to be able to work only with the complex of global sections is
acyclicity as follows easily from the first spectral sequence in Remark 2.1.6.
For this reason one considers several classes of sheaves enjoying this property.

Definition 2.1.7.

(i) A sheaf F € mod(Ax) is called flabby if for any open subset U in X the
restriction of sections p : F(X) = F(U) is surjective.

(i) A sheaf F € mod(Ax) is called soft if for any compact subset K in X
the restriction of sections p% : F(X) = F(K) from X to K is surjective.
Here we set by definition F(K) = 1£>n F(V), for V open in X.

VDK
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Sometimes a soft sheaf as defined above is called c-soft, see for instance
[KS], p. 104, a soft sheaf having the above extension of sections property for all
closed subsets K. Since our spaces are usually locally compact and countable
at infinity, the two notions of soft sheaves coincide, see [KS], Exercise IL.6, p.
132. These classes of sheaves have the following fundamental properties. For
more details and a proof of these claims, see [I1], p. 152, p. 155, p. 157 and p.
206. For the definition of I, H:, see Example 2.3.22 below.

Proposition 2.1.8.
(i) F injective = F flabby = F soft.
(i5) If F is flabby, then F is I'-acyclic, i.e. H*(X,F) =0 for all i > 0;

(iii) If F is soft, then F is I'.-acyclic, i.e. HY(X,F) = 0 for all i > 0; if in
addition X is locally compact and countable at infinity, then F is I'-acyclic,
i.e. H(X,F) =0 for all i > 0.

(iv) If X is a smooth manifold, then the sheaf C§ of smooth functions on X
is soft. Moreover, any sheaf F which is a C¥-module is also soft.

As a first major example, let X be a real smooth manifold (by definition,
a manifold is countable at infinity!) and consider the de Rham complex of
sheaves of smooth differential forms

DRX)=0%:0-0% H 0oL %5 . 5o %o

where n is the dimension of X and d is the corresponding exterior derivative.
The classical Poincaré Lemma and the claim (iv) above imply the following,.

Theorem 2.1.9 (Smooth de Rham Theorem). Let X be a real smooth
manifold. Then the natural morphism Rx — (2% is an acyclic resolution of
the constant sheaf Rx on X. In particular, we have functorial isomorphisms

_ Ker {d: 2% (X) » 257 (X)}
T Im {d: Q5 (X)) o 25(X)}

H¥(X,R)

A similar result holds when X is a complex analytic manifold, since the
Poincaré Lemma, still holds in this situation. The corresponding sheaves of
holomorphic differential forms Qé’( are no longer acyclic in general, since there
is no holomorphic partition of unity. The acyclicity property holds however
when X is a Stein manifold, in particular an affine smooth algebraic variety,
and for any coherent sheaf, in particular for any locally free Ox-module. For
details, see [KK], p. 230 as well as [BS].

Theorem 2.1.10 (Complex Analytic de Rham Theorem). Let X be a
complez manifold. Then the natural morphism Cx — 2% is a resolution of
the constant sheaf Cx on X. In particular, we have functorial isomorphisms

HY¥(X,0) = BF (X, 2%)-
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When X is a Stein manifold, then we also have

Ker {d: 2% (X) —» 257 (X)}
Im {d: 25 1(X) = 0% (X))}

H*¥(X,C) =

The corresponding spectral sequence, obtained as in Remark 2.1.6, (i),
EPY = HY(X, %) = H**1(X,C)

is called the Hodge-to-de Rham spectral sequence and degenerates at E» in
many important cases, e.g. when X is a compact Kahler manifold, see [GH].

De Rham complexes of holomorphic differential forms can be defined on
singular spaces as well, see [L], Chapter 8, and can be used to study the
topology of such spaces. We discuss now the case when the complex space has
only isolated complete intersection singularities (for short ICIS).

We start with the local situation, namely let (X,0) be an n-dimensional ICIS
at the origin of CV, for some N > n > 0. Consider the corresponding de
Rham complex

.DR(.X)O . 0 _) 'Q())(,O _d) 'Q}(,O _d) s _d) Qﬁ’o _) 0.
The following properties are well-known, see [L], pp. 159-163.

Lemma 2.1.11.
(i) The truncated de Rham complex

DR(X)5: 0= 0% -5 0% -H .. 5 2%y—0

is ezact except in degrees 0 and n, where one has H*(DR(X)}) = C and
dimH™(DR(X)}) = p(X,0), the Milnor number of the singularity (X, 0).

(i) the stalks 2%, for m > n are finite dimensional C-vector spaces and

HN(DR(X)}) = 0.

Remark 2.1.12. In the case when (X, 0) is an isolated hypersurface singularity,
i.e. N=n+1 > 1, there is an obvious epimorphism

H"(DR(X)}) -4 0¥,

This implies that dimH"(DR(X)o) = u(X,0) — (X, 0), where 7(X, 0) is the
Tjurina number of the singularity (X,0), see [L], p. 95.

Consider now the global case, i.e. let X be an n-dimensional complex
analytic space having only finitely many singularities, say at the points a; for
J =1,...,s and such that all singularities (X, a;) are ICIS. We can consider
two de Rham complexes on X, namely the total de Rham complex
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DR(X): 05 0% 5oL % 5oV 50
where N is the maximum of the set of embedding dimensions of the singular-
ities (X, a;), and the truncated de Rham complex
DR(X)': 05 0% 5 0L 4 S 0n 5o
Theorem 2.1.13. With the above notation and assumptions, the following
hold.
(i) H™(X,DR(X)?) ~ H™(X,C) for any integer m ¢ [n,n + 1].
(ii) There is an ezact sequence
0 — H™(X,C) » H"(X,DR(X)}) = C*¥) & H"(X,C) —»
— H " (X, DR(X)}) = 0
where p(X) = 32, , (X, a;) is the total Milnor number of X.

As before, if in addition X is a Stein space, we can replace hypercohomology
H™ (X, DR(X)?) by cohomology H™(I'(X, DR(X)?)) of the complex of global
sections and the exact sequence above implies

dmH™(I(X, DR(X)) = bp(X) + p(X).

Proof. Let Qx be the subcomplex in DR(X)? obtained by replacing the last
term 2% by Im (d: 2% ' — 2%). By Lemma 2.1.11 it follows that Qx is a
resolution of Cx . Moreover, in the exact sequence

0— Qx - DR(X)* - DR(X)*/Qx =0

the last complex is concentrated in degree n and its stalk at a point z € X
is a C-vector space of dimension u(X, ). Taking the hypercohomology yields
the claimed result.

O

Applying now the same idea to the exact sequence
0—- @x » DR(X)—> DR(X)/Qx — 0

in the case when all the singularities (X, a;) are hypersurface singularities, we
get by Remark 2.1.12 the following result.

Proposition 2.1.14. Let X be an n-dimensional Stein space having only
finitely many isolated singularities, all of them of embedding codimension one.
Then the following hold.

(i) H"(I'(X,DR(X)) ~ H™(X;C) for any m < n;
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(i) dimH™(I'(X, DR(X)) = bp(X) + p(X) —7(X), where the integer 7(X) =
2 j=1,s T(X,a;) is the total Tjurina number of X.

The situation is completely different when we consider the case of a smooth
complex algebraic variety X and the de Rham complex .Q;(alg of algebraic
(regular) differential forms on X. Then the Poincaré Lemma is no longer
true, essentially since the Zariski open sets are too big. However, we have the
following result due to Grothendieck [Gro], see also Deligne [De2], I1.6.2 and

Example 3.4.19 here in our book for more on this topic.

Theorem 2.1.15 (Algebraic de Rham Theorem). For any smooth com-
plex algebraic variety X there are functorial isomorphisms

H*(X,0) = HF (X, 25%9).
When X is in addition offine, then we also have

Ker {d : 2599 (X)) - Q&bels (X))
Im {d: 2519 (X) » pheba(x)}

H*(X,0) =

The remarkable fact here is that H*(X,C) is defined using the strong
(analytic) topology on X, while H* (X, 25*") is defined using the Zariski
topology on X.

Remark 2.1.16. The functor Hom : mod(Ax)° x mod(Ax) — mod(A) in-
duces a functor
Hom® : C° x C — C(mod(A))

where C = C(mod(Ax)) and hence by the constructions described in the
section 1.4, a derived functor

RHom® : D™ (X)° x DY(X) — D(mod(A)).
This gives the hyperext groups in this context
Ext™(F*,G*) = H"(RHom*(F*,G*))

for any two sheaf complexes F* € D~(X),G®* € DT(X). According to Remark
2.1.2 we have RHom*(Ax,G*) = RI'(X,G*) and hence Ezt"(Ax,G*) =
H" (X, G*) for any integer n € Z.

In the same way, the functor Hom : mod(Ax)° X mod(Ax) — mod(Ax)
induces a derived functor

RHom® : D™(X)° x DT(X) — D(X).

This derived functor gives the hyperext Ax-module sheaves
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Ext™(F*,G%) = H™(RHom* (F*,G%))-

The isomorphism Hom = I' o Hom implies as in Proposition 1.3.18 an iso-
morphism
RHom® = RI" o RHom"*

on D¥(X) x D*(X), see [KS], p. 111. In particular for any sheaf complexes
F* € D¥(X),G* € D¥(X) one has

Ext™(F*,G*) = H" (X, RHom*(F*,G*))
and hence a spectral sequence
EP? = H?(X,Ext1(F°*,G*)) = ExtPT1(F*,G°).
Moreover Proposition 1.4.3 for n = 0 implies the following isomorphism:

Homp+(x)(F*,G°%) = Ezt®(F*,G*) = H’ (X, RHom* (F*,G*)).

2.2 Derived Tensor Products

Given two bounded to the right complexes F*,G* € C~(X), we define their
tensor product F* @ G* € C~(X) in the usual way, namely

(P ® g.)m = @p—fq:mfp ® gq

and
d(z? ® y?) = da” ® y? + (—1)P2? @ dy*
for any 2P € F? and y? € G9.

Exercise 2.2.1.

i) Show that a pair of morphisms u; : F — G2, for i = 1,2 induces a
K3 K3

morphism u; @ uz : Fy @ F3 = G ® G3.

(ii) Show that the morphism z™*? @ y"+7 » (—1)P"g™*? @ y"*7 induces a

natural isomorphism

Tm,n * P[m] ®g.[n] - F* ®g'[m+n]

It can be shown that if ug,u; : F* = G*® and v, v; : A® — B® are two pairs of
homotopic morphisms, then the morphisms wy ®vo and u; ® v; are homotopic.
In other words, there is an induced bifunctor

@: K (X)x K (X) > K (X).
Moreover, for any distinguished triangle in K~ (X) of the form

A B 5 B A
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and any complex F* € K~ (X), the diagram
Ao F "B B o rF B g r Y (4 g F)

is a distinguished triangle in K—(X). For details, see [I1], p.121. In other
words, the functor ® is a bi-d-functor exactly as the functor Hom considered
in section 1.4. above.

Definition 2.2.2. An A-module F is called flat if for any exact sequence
0->M ->M->M"-0
in mod(A), the associated sequence
0-MQF->MQF—>M"'®F -0

is exact. A sheaf F € mod(Ax) is called flat if it satisfies the above ezactness
property for sequences in mod(Ax) or, equivalently, if oll the stalks F, are
flat A-modules.

Exzample 2.2.3.

(i) When A is a field, then any module F' and any sheaf F are fiat.

(ii) Every projective module (in particular every free module) is fiat. This
shows that the category mod(A4) has enough fiat objects, see [W], p. 68. When
A is a principal ideal domain, then M is fiat if and only if M is torsion free,
see [W], p. 69.

Concerning the existence of fiat resolutions for sheaf complexes we have
the following result, see [I1], p. 143. For a related discussion see the end of
section 3.1. in our book.

Proposition 2.2.4. For any complex G* € K~ (X) there is a flat resolution
F® = G* with F* € K~ (X).

Let F(X) be the full subcategory of the category mod(Ax) whose objects
are the fiat sheaves. Then the category K~ (F'(X)) is a triangulated subcate-
gory of the category K~ (X). Using the dual version of Theorem 1.3.13 in a
similar way as in the case of the Hom-bifunctor, one can prove the existence

L
of a left derived functor ® for the tensor product, namely a functor
L
®: D (X)x D™ (X)—> D™ (X)
which is given by the following explicit formula
L
A*@B*=F"®¢G*

for any A*,B* € D~ (X) and any fiat resolutions F* — 4* and G* — B*.
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This derived tensor product allows us to define the hypertor modules

Torm(A®,B%) = H™ (X, A* ® B*)

and the hypertor sheaves

L
Torm(A®,B*) =H™(X,A* ® B*).
Note that Toro = ® and that usually one writes T'or for Tor;.
Remark 2.2.5.

L
(1) In many important cases the derived functor ® can also be defined as a
functor

L
®: DY(X) x DH(X) —» DH(X)
see our discussion at the end of section 3.1 or [KS], p. 110.
(if) When X = {pt}, one gets as above the usual Tor modules considered
in homological algebra. In particular, an A-module M is fiat if and only if

Tor(N, M) = 0 for any module N and this holds if and only if Tor(A/I, M) =
0 for any ideal I in A, see [W], pp. 69-70.

The following algebraic result is very useful, see [G], p. 102.

Theorem 2.2.6 (Kiinneth Formula). Let A be a principal ideal domain
and let X°*,Y* € C~(mod(A)) or X*,Y* € Ct(mod(A)) be two complezes
such that X* is torsion free. Then there are natural exact sequences for any
integer m € Z

0 @ptg=mHP(X*) @ HI(Y®*) > HM"(X*QY"*) >
— ®pyqem_1Tor(HP(X®), HI(Y'*)) = 0.

A Kiinneth formula for sheaf complexes is discussed below in Corollaries 2.3.30
and 2.3.31 and in Theorem 4.3.14.

2.3 Direct and Inverse Images

Let f : X — Y be a continuous mapping between two topological spaces X
and Y.

Definition 2.3.1 (Direct Image). The direct image under f functor f. :
mod(Ax) — mod(Ay) is defined on objects by (f«F)(V) = F(f~1(V)), for
any sheaf F € mod(Ax) and any open set V C Y. On morphisms, the direct
image functor f. is defined in the obvious way.
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The functor f, is also called the push-forward functor via f.

Exercise 2.3.2.

(i) Show that f.F is a sheaf of Ay-modules for any sheaf F of Ax-modules.
(if) Show that the functor I" of global sections is a special case of the direct
image functor f,.

(iii) Show that the functor f. is additive and left exact.

The direct image functor f. has a derived functor Rf,. by Corollary 1.3.14
and the corresponding higher direct image sheaves can be described in a ge-
ometric way. Namely for all i € N, Rf,(F) is the sheaf associated to the
presheaf V s Hi(f~1(V), F), see [I1], p. 105.

Proposition 2.3.3. For any two continuous maps f : X =Y andg:Y — Z,
one has the following equalities (in fact, isomorphisms of functors): (go f). =
g« © fu, R(go f)« = Rg« o Rf.

Proof. The first equality is an easy exercise, and the second one follows from
1.3.18. O

Let f : X — Y be a continuous mapping between two topological spaces
X and Y. Let A be the base ring. The functor f, transforms the injective
objets in I'-acyclic objects, see Corollary 2.3.11 below. Since I'y = I'y o f,,
one has RI'x = RIy o Rf, by Proposition 1.3.18, hence we get the following
very useful result via Theorem 1.3.19

Corollary 2.3.4 (Leray Spectral sequence). For any continuous map-
ping f : X - Y and any sheaf complex F* € DV (X) there is a functorial
isomorphism

H* (X, F*) =H*(Y,Rf.F*).

Moreover, there is a functorial spectral sequence
EPY = HP(Y,R1f.(F*)) = HPYI(X,F*).

Ezample 2.3.5 (Topology of regular functions). A situation which will appear
often in our book is that when X is a complex algebraic variety, ¥ is a
smooth curve and f is a regular function. As explained above in the general
setting, for y € Y, the fiber R'f.(C), is equal to the fibre in y of the presheaf
V = H{(f~1(V),C). In the specific situation at hand, using the theory of
stratified spaces, see for instance Verdier [V1], it follows that there is a finite
bifurcation set By C Y such that if we set Y* = Y\B;, X* = X\f~1(By),
then f induces a topologically locally trivial fibration f : X* — Y*. The
fiber of this fibration will be denoted by F' and called the general fiber of the
function f. The fibers Fy = f~1(b) for b € By are called the special fibers of
the mapping f.

In particular, the existence of this fibration implies that the fiber R'f.(C),
is exactly HY(T(F,),C), where T(F,) = f~}(D,,) is a small tube around
the fiber F, = f~1(y) of the function f, i.e. Dy is a small topological disc
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in Y centered at y. If F, is the general fiber F' of f, ie. if y € Y*, then
R f.(C), = H{(T(F,),C) = H'(F,,C) for any integer 1.

Similar considerations apply to the general case of a morphism f : X = Y
between two complex algebraic varieties and for a constructible complex of
sheaves F* see Theorem 4.1.5 (i)(b) and Corollary 4.3.11 later on in this book.

Definition 2.3.6 (Inverse Image).

For a continuous mapping f : X — Y between two topological spaces X
and Y, we define the inverse image functor associated to f to be the functor
Ft:mod(Ay) — mod(Ax), f~1F being the sheaf associated to the presheaf

U— lim F(V).

—
VO F(U)

Here F € mod(Ay) and U C X is open. The action of the inverse image
functor 1 on morphisms is the obvious one.

The functor f~! is also called the pull-back functor via f. Many people denote
this functor by f*, but we prefer to reserve this latter notation for the pull-
back functor acting on algebraic or analytic coherent sheaves, namely

f*]: = f_1.7: ®f—10y Ox.

Ezample 2.3.7.1f f : U C X is the inclusion of an open set, then f~! is
just the restriction of sheaves to the open set U, f='F = F|U. For any
space X, we denote by ax : X — {pt} the unique constant mapping; then
Ax = a}l (A{pt}).

Remark 2.3.8.

(i) The obvious isomorphism (f~'G), = Gy(,) implies that f~! is an exact
functor. According to the practice described in the previous chapter, the cor-
responding derived functor Rf ! : D*(Y) — D*(X) for * =, +,— is usually
denoted by f1.

(ii) Exactly as in Proposition 2.3.3, we have (go f)~! = f~1 o g~!. Note that
this equality covers in fact two cases: the composition of the inverse image
functors and also the composition of the associated derived functors.

L
(iii) One has natural isomorphisms f'!F® f~1G ~ f~1(F®§) and f'F*®

Fige ~ (P é) G*), see [KS], Proposition 2.3.5 p. 92 for the first iso-
morphism and Proposition 2.6.6, p. 113 for the second. Actually the second
isomorphism follows from the first one since the functor f~! obviously pre-
serves both resolutions and fiatness.

The direct and inverse image functors allow us to compare sheaves defined
on different topological spaces. They also occur in several standard construc-
tions in sheaf theory, an instance of which being given in the following.
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Remark 2.3.9. In this remark we discuss briefly the Cech complex and the
Mayer-Vietoris spectral sequence . Let X be a topological space, U = (U;)er
an open covering of X indexed by a subset I of N and F a sheaf in mod(Ax).
For any p > 0 and any sequence J : jo < ... < j, of elements in I such that
Us =Uj N...nUj, # 0 we consider the inclusion iy : Uy = X and deflne a
sheaf in mod(Ax) by setting

crU, F) = [Jinis' 7.
J

There is a Cech differential
6:CP(U,F) > C”H(U,f)

given by
SN =Y (=D*s(J)Us.
k=0,p+1
Here J : jo < ... < jpt1 is a multi-index of length (p + 1), Ji is the multi-
index of length p obtained from J by deleting the element j; and, for a section

o € C?(U,F) and a multi-index of J' length p, the notation o(J') indicates
the component of ¢ in the factor ¢ Jr*z'j,l]-' . Thus we get a complex of sheaves

U, F): 0=CU,F) L our) L

which turns out to be a resolution of the sheaf F, see [G], Theorem 5.2.1, p.
206. This resolution is called the Cech resolution of the sheaf F.

If instead of a single sheaf F € mod(Ax) we have a complex of sheaves
F* € DT (Ax), then there is a similar quasi-isomorphism

F*=>T*

where 7* is the total complex associated to the double complex DP? =
C(U,FP). The spectral sequence associated to a double complex (obtained
by taking flrst the cohomology along the rows, see [BT], p. 165.) yields in this
situation the following Mayer-Vietoris spectral sequence

EPY = Y (U, F*) = HPHI (X, F*).

Here U/!?] is the disjoint union of all the intersections U for multi-indexes J
of length p and the flrst differential d; is induced by the Cech differential 4.
When I = {1, 2}, then this spectral sequence degenerates at E; and is equiv-
alent to the well-known Mayer-Vietoris long exact sequence

—)Hm(X,]:.) —)Hm(Ul,]:.) @Hm(UQ,]:.) —)Hm(Ul ﬂUQ,]:.) —
S HM(X, F) -
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We say that the complex F* is acyclic with respect to the covering U if
H?(Ujy,F*) = 0 for any q > 0 and any multi-index J. In this case the above
Mayer-Vietoris spectral sequence degenerates at Ey and shows that the hy-
percohomology groups H* (X, F*) can be computed as the homology of the
complex of global sections of the Cech resolution 7* of F°.

The two functors we have introduced so far are strongly related by the
following adjunction properties, see [I1] p. 98, [B1], p. 156 and p. 185.

Proposition 2.3.10 (Adjunction Formulas). Let f: X — Y be a con-
tinuous map, F a sheaf on X, G a sheaf on Y. Then one has the following
functorial isomorphisms at sheaf level

(Z) Hom(f_1g7‘7:) = Hom(g7f*‘7:)’
(i) fHom(f~1G, F) = Hom(G, fuF).

For complezes in the corresponding derived categories, one has the following
functorial isomorphisms.

(iii) Rf« RHom®*(f 1 A®,B*) = RHom*(A*,Rf.B*) for A* € D=(Y) and
B* € DT(X).

(iv) Homp+(x)(f 71 A®,B%) = Homp+yv)(A®, Rf.B*) for A* € D*(Y) and
B* € DT(X).

Proof. The first two claims are easy to check from the definitions. Moreover
() is a consequence of (ii) by taking global sections. The claim (iv) in the
special case of A® € D*(Y") comes from (iii) using the Proposition 1.4.3 and
Remark 2.1.16:

Homps (4, )(A®, Rf.B®) = H (Y, RHom® (A°*, Rf.B*)) =

H® (Y, Rf.RHom*(f~1A°*,B*%)) = H*(X, RHom*(f "1 A*,B*%)) =
= Homp+x)(f 1 A*, B®).
0O

Corollary 2.3.11. The functor f. transforms injective objects into injective
objects.

Proof. Use the previous proposition, claim (i), and the fact that the functor
F1is exact.
O

Ezample 2.3.12. When Y is a point, we have seen that Ay = A, mod(Ay) =
mod(A), f« = ['(X,—) and the functor f~! associates to any A-module M
the constant sheaf Mx. Hence in this case the adjunction (f~!,f.) is the
adjunction of the functor M — Mx and the functor I'(X, —).
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Definition 2.3.13. Let i : Z — X be the inclusion of the subspace Z in X
and let F € mod(Ax) be a sheaf. We set F|Z =i~ F, I'(Z,F) .= I'(Z, F|Z)
and H*(Z,F) = H*(Z,F|Z).

There is a natural restriction morphism I'(X, F) — I'(Z, F) given by s —»
s|Z. If Z is closed, we set Fz := i,i~1F. Note that

_[oifz¢ Z
(]:Z)“”_{J-‘w ifzez

More generaly, when Z is locally closed and/or the sheaf F is replaced by a
complex F* one can define Fz (resp. Fy) with the same property on the
fibers, see [KS|, Proposition 2.3.6. Namely, when Z is open in X we set
Fz = Ker (F = Fx\z) where the morphism F — Fx\z corresponds via
Proposition 2.3.10 (i) to the identity ¥~'F — k~1F, k : X\Z — X being
the inclusion. Finally, when Z is locally closed in X we can write Z=UNY
where U (resp. Y) is open (resp. closed) in X and we set Fz = (Fy)y. It can
be shown that Fz does not depend on the choice of U and Y in the equality
Z=UnY.

Proposition 2.3.14. The transformation F — Fz is an exact functor from
mod(Ax) to mod(Ax).

Proof. Use the fact that a sequence of sheaves 0 > F' - F - F" - 0 is
exact if and only if for any € X one has an exact sequence 0 =+ F, = F, —
F¥ — 0 at stalks level. Consider now the two cases: z € Z and z ¢ Z.

O

Definition 2.3.15. For a sheaf F € mod(Ax), we define the sheaf ['z(F) of
sections of F with support in Z, for Z closed in X, by setting ['z(F)(U) =
I'znu (U, F), where I'zny (U, F) := Ker (F(U) — F(U\Z)).

When Z is only locally closed in X, then one can still define I'z(F) but the
definition is more involved, see [KS], 2.3.8. Note that in general, Fz # I'z(F).

Remark 2.5.16.
(i) The above definition gives rise to two left exact functors
I'z(X,—) : mod(Ax) — mod(A)
and
I'z(—) : mod(Ax) — mod(Ax).

The second functor satisfies I'z o 'z = I'znz and Iy = jx o 5~ when
J : U = X is the inclusion of an open set, see [KS], Proposition 2.3.9, p. 95.

The corresponding higher direct images are HE (X, F) = R*I'z(X, F), the co-
homology groups with supports in Z, and respectively H% (X, F) = R*I'z(F),
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the local cohomology sheaves with supports in Z. The corresponding derived
functors on the derived category D¥(Ax) are denoted by HE (X, F*) and
HE(X,F*) = R¥I'z(F*). See also Definition 2.4.1.

The obvious equality I'(X, —)oI'z = I'z(X, —) passes to the derived functors
and yields via Theorem 1.3.19 the following spectral sequence

EPY = HP(X,HEL(F)) = HEM(X, F).

This spectral sequence is quite useful, see for instance the applications given
in Looijenga [L], p. 155.

(if) One has an isomorphism h_r)n I'(U,F) ~I'(Z, F) if either
U>z
(a) X is separated and Z is compact, or
(b) X is paracompact and Z is closed.

We suppose in the sequal that all the topological spaces are locally com-
pact. In particular, the complex algebraic varieties will be considered with
their strong topology and as such they are paracompact topological spaces.

Exercise 2.3.17. Show that for any sheaf complex F* € C*(X) and any
point £ € X there is an isomorphism

F* ~lim RI(U, F*)
—

2EU

in the derived category DT (A).

Ezample 2.3.18 (The link of a subvariety.). Let X be a quasi-projective com-
plex variety. Let Z C X be a closed algebraic subvariety. Then Z has a closed
tubular neighborhood U in X such that the inclusion i¢z7 : Z — U is a ho-
motopy equivalence. In the case when Z is compact this follows from Durfee
[Dul]. In case Z is a stratum of a Whitney regular stratification of X, the exis-
tence of such tubular neighborhoods is established in [GWPL]. The remaining
cases can be treated by using triangulations of X in which Z corresponds to
a subcomplex. See also the discussion in [DuS].

In fact, the subvariety Z has a fundamental system of tubular neighbor-

hoods of this type (U;);cr such that the inclusions U; — U; are homotopy
equivalences. The homotopy type of the space U = U;\Z is independent of
i, and will be denoted by Lx(Z) and called the link of Z in X.
In many cases, one chooses U such that the link Lx(Z) can be identified
to the boundary of U, a closed subset of X. For instance, if Z = f~1(0)
with f : X = R, a real semialgebraic function, then is is usual to take
U = f71([0,¢]), for € small enough. Then Lx(Z) = 80U = f~!(e). With this
choice for the link, and under the assumption that Z is a smooth stratum in
a Whitney regular stratification of X, it follows that, for any stratum Y of
this stratification satisfying Z C Y, the intersection Y N Lx(Z) is transversal,
yielding a smooth real hypersurface in the stratum Y.
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The next result computes the cohomology of this link using the direct image
functor. Let V = X\Z and let j : V — X and i : Z — X be the two
inclusions. Then

H*(Lx(2); A) = H*(Z, Rj. Av)

for any k& € N, result also obtained in Corollary 2.6 in [DuS]. Indeed, using
the Remark 2.3.16 (ii) for the closed subset Z in the paracompact space X,
we get an isomorphism of derived functors

lim RI'(U;, F*) ~ RI'(Z, F*)
U;

see also [KS], (2.6.9). Apply this isomorphism to F* = Rj.Ay. First we have
for any i € I the isomorphism

F*\U; = Rijg,(Aug)

where j§ : U? — U, is the inclusion. Hence R*I"(U;, F*|U;) = HF (U;, F*|U;) =
HE(U?; A). This gives

H*(lm RT(U;, F*)) = H*(Lx(2); 4)

since the morphisms occuring in the direct limit are all isomorphisms.

With the above notation, it can be shown that x(Lx(Z)) = 0, see [Sull].
This result follows also from the additivity of the Euler characteristic

x(X) =x(V) +x(2)

see [F], pp. 141-142. Indeed, the Mayer-Vietoris exact sequence associated to
the open covering X = VUU gives x(X) + x(Lx(2)) = x(V) + x(2).
The vanishing of the Euler characteristic of the link of a compact analytic
subvariety also holds, see [Snl], 6.43 and Remark 6.0.9 on pp. 413-414.

Definition 2.3.19 (Supports).

(i) For a sheaf F € mod(Ax), U C X an open subset and s € F(U) a section,
the support of the section s is the closed subset in U given by

supp(s) = {z € U;s, # 0}.

(ii) The support of a sheaf F € mod(Ax) is the closed subset in X denoted
by suppF and equal to the the complement of the union of all the open
subsets U in X such that F|U =0.

(ii) The support suppF*® of a sheaf complex F* is the closure in X of the
union of the supports of all the cohomology sheaves H™(F*).
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Exercise 2.3.20.

(i) For any sheaf F € mod(Ax), show that = ¢ suppF implies F, = 0. Find
an example showing that the converse implication is false.

(ii) Prove the following more precise equality.

suppF = {z € X ; F, #0}.

Definition 2.3.21 (Direct Image with Compact Supports).

Let f : X — Y be a continuous mapping. We define the functor of direct
image with compact supports under f to be the functor fi which to a sheaf
F € mod(Ax) associates the sheaf on'Y defined by

HFV)={se (7' (V),F); flsupp(s) : supp(s) — V is proper}.

Ezample 2.8.22. If f is proper, then the two different types of direct image
functors coincide, i.e. fx = fi. Moreover, we can introduce the functor of global
sections with compact supports defined by

I (X,F) :={seI'(X,F) ; supp(s) is compact}

and note that I,(X,F) = (ax)i(F). The corresponding higher direct images
are exactly the (hyper)cohomology groups with compact supports HE (X, F*).

The derived functor Rf of the functor f exists by Corollary 1.3.14 either as a
functor DT (X) — D*(Y) see [KS], p. 109 or as a functor D~ (X) —» D~ (Y)
see [I1], pp. 319-320 and one has the following result. In the sequel, when
stating a result involving some derived functors, we assume tacitly that the
necessary conditions (on the spaces X, Y and on the ring A) for the existence
of these derived functors are fulfilled.

Proposition 2.3.23. g1o fi = (g o )1 and Rg1o Rfi = R(g o f).

Note that the obvious natural transformation fi — f. induces a natu-
ral transformation Rfi — Rf. and, in particular, natural transformations
HE (X, F®) — HF (X, F*).

Corollary 2.3.24 (Leray Sequence with Compact Supports).
Let f : X — Y be a continuous mapping. Then there is a functorial isomor-
phism HY (X, F*) = H (Y, RfiF*) and a functorial spectral sequence

BpY = HE(Y, RO fF*) = BBV (X, F°).
Proof. Use that ay o f = ax implies RI.(Y,—) o Rfy = RI.(X,-). O

Remark 2.8.25. If j : U = X is the inclusion of an open subset, then we have
induced morphisms
gt HE(U,F) - HY (X, F)
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for any sheaf F € mod(Ax). Indeed, the extension by zero morphism
#1i Y F — F yields morphisms jf : H¥(X, jij ~'F) — H¥(X,F). Using the
relation axi o fi = agn it follows that H¥(X, jij~1F) = H¥(U, F), hence the
claim is proved.

The following result will be extensively used in the sequel. For a proof, see
[B1], p. 159 and p. 189-190, [KS], p. 104 and p. 113 or [I1], p. 322.

Theorem 2.3.26 (Proper Base Change). Let f: X — Y be a continu-
ous mapping and let F, = f~1(y). One has the following.
(i) (iF)y = I.(Fy,FF,), and also (R" iF)y = H}(F,,F) for any integer n.

(ii) Let i : Z — X be the inclusion of a locally closed subspace. Then the
functor iy is exact and Fz = iyi 1 F.

(iii) If the diagram
Xl L X

I

Y'—,>Y
9

with X' = X xy Y’ is the fibered product of X andY' overY (in other words,
if the above diagram is cartesian), then (¢') "o fi= flog™L.
Remark 2.3.27.

(i) We point out in relation with (ii) above that our notation implies that
(Ax)z = i1(Az). Moreover, for any sheaf F € mod(Ax) we have Fz ~
F® (Ax)z and Fz(]:) ~ 'Hom((AX)Z,]-').

(if) Using the claim (iii) in the above theorem, we can get a more general
version of the claim (i) in 2.3.26. Consider the cartesian diagram

FyC—j> X
| Lf
[
By the claim (iii) in the above theorem, one gets the following diagram.

=1
mod(Ar,) < mod(Ax)

oer:| |7

mod(A) <——— mod(Ay)
Iy
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Passing to the associated derived objects, we get the diagram

-1

D*(Ap,) <— D+(Ax)

Rpcl lnﬁ

D*(4) o Dt (Ay)

This diagram being commutative by 1.3.18, we have RIt(F, ) = RA(F*)y,
and hence, by taking the cohomology, HI* (Fy, F*) = (R™ fi(F*))y, for any
sheaf complex F*® € DT (Ax).

The following exercise shows that the use of compact supports is essential
in the above result.

Exercise 2.3.28. Consider the cartesian diagram in (iii) above and take X
to be the unit circle in the plane R? with the point (0,1) deleted, ¥ = [—1, 1]
on the Oz-axis. Let f : X — Y be the projection on the first co-ordinate,
Y’ = {0} and ¢’ the inclusion. Show that the equality (¢') ™1 o fu = flog™!
does not hold in this situation. Hint: take F = Ax and look at what happens
at {0}.

Theorem 2.3.29 (Projection Formula). Let f: X =Y be a continuous
map, F* € D(X), G* € D= (Y). Then there is a natural isomorphism in
D=(¥)
(] L L] (] L —1pe
RAF*®G* ~RA(F* @ f7°G°).

For a proof of this version of the projection formula see [I1], pp. 320-322.
Note that there is a similar version for complexes in D+ (X), D*(Y) under
certain assumptions on the spaces X,Y and on the ring A, see [KS], p. 113,
Proposition 2.6.6 as well as our discussion at the end of section 3.1.

Corollary 2.3.30 (Kiinneth Formula). Let X7 and Xs be two topological
spaces, p; : X1 x Xa = X; for i = 1,2 be the two projections. Let F? € D*(X;)
for i = 1,2 and for any choice of ¥ = +,—,b be two complexes. Then

L L
RI(X1 x Xo,p1 " Fy ® p; ' F3) = RI(X1,Fy) ® RI.(X2,F3).

Proof. Set a; = ax,. Using first the projection formula and then the base
change we get

—1.L—10_ —10Lo_—1 L
Rpor(py " Fy ®@py F3) = Rpar(py " F1) @ F5 = a3 (annF7) @ F3.

Apply now agr to the first and the third of these expressions and use once
again the projection formula to rewrite the third term.
O
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L
In such a situation, the sheaf complex p; ' Ff ®p; ' F3 is called the external

L
(derived) tensor product and is denoted by F; K F3. In a similar way p; 1.7-'1‘ ®
p; 1 F$ is denoted by Fp K F3, see [KS] p. 97 and p. 110.

Corollary 2.3.31 (Kiinneth Formula, Field Coefficients). With the
above notation, if A is a field, then for any m € Z there is a natural iso-
morphism

L
HE" (X1 % Xo, FY W F3) = @pig=mH (X1, FT) ® HE (X, 7).

Proof. Use the previous corollary and take H™ by using Theorem 2.2.6.
O

L
Using the derived tensor product ®, one can define the Fourier-Mukai
transform as follows. With the notation in Corollary 2.3.30, consider a fixed
bounded complex G* € D?(X; x X»).

Definition 2.3.32. The functor $g. : D*(X;) — D*(X5) given on objects by
the formula
L
Bge (F*) = Rpau(p7 ' F* © G°)
is called the Fourier-Mukai transform associated to the complex G°.

The following example shows that this functor can be regarded as a general-
ization of the direct image functor.

Ezample 2.8.33. With the above notation, let f : X; = X5 be a continuous
mapping. Let Gy = {(z, f(z))| z € X1} be the graph of f and denote by
i: Gy = X x X5 the inclusion of this closed subset. If we take now G°® =
ix(Ag,), Projection Formula 2.3.29 implies that

Dg (F°*) = Rf(F*)

for any sheaf complex F* € D*(X;).

2.4 The Adjunction Triangle

Let Z be a closed subset of a topological space X and let i : Z — X denote
the inclusion. Set U = X\Z and let j : U = X be the inclusion of the open
set U in X. When F* € D*(Ax) is a sheaf complex, the morphism

F* — Rj.j ' F*

in the derived category DT (Ax) corresponding to the identity map in the

group Homp+(a,)(J LFe, j71F*) via the adjunction isomorphism in Propo-
sition 2.3.10, (iv) is called the adjunction (or attachment) morphism.
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For a sheaf F € mod(Az), the sheaf iyF = i.F is exactly the extension by 0
on U in order to get a sheaf on X out of a sheaf on Z. Moreover, when Z is
closed in X, the sheaf I'z(F) introduced in 2.3.15 has the support contained
in Z and hence it can be regarded as a sheaf on Z. In other words, there is
a functor vz : mod(Ax) — mod(Az), given by vz = i~! o I'z. It is easy to
check the following adjunction formula

Hom(F,vz(G)) = Hom(itF,G),

valid for any sheaves F € mod(Az) and G € mod(Ax). For F* € DT (Ax),
we set

i'F® = Ryz F* =i 'RIz(F°).

It is easy to show that for any complex F* we have an exact sequence
0 iui'F* = F* = juj L F*

see [BBD], 1.4.1.1.

Definition 2.4.1. The (local) hypercohomology groups of the complex F°,
with supports in the closed subset Z C X, are defined by

Hy (X, F*) = H* (X, i F*) = H* (Z,i' F*).

If I'z(X,—) is the functor introduced in 2.3.16, then one has an isomor-
phism RI'z(X,—) = RI" o Ryz. In particular this gives the following,.

HZ (X, F*) = H™(RI[z(X,F*)).
Remark 2.4.2.

(i) For any complex F* € D*(X) we have I'z(X, F*) = Hom(i1Az, F*) which
implies RI'z(X,F*) = RHom(i1Az, F*). By taking the cohomology groups,
we get an isomorphism H% (X, F*) = Ext™(i1Az, F*) for any n € Z. See also
Remark 2.3.27, (i).

(ii) (Excision) If V is a subset in X such that Z C Int(V), it follows that
I'z(X,F*) = I'z(V,F*). Passing to the derived functors we get an isomor-
phism RI'z(X,F*) = RI'z(V,F*) and finally an excision isomorphism

H?(X,f‘) =IHI”Zn(‘-/a]:.)

for all integers m € Z. In other words, the (local) hypercohomology groups
of the complex F* with supports in the closed set Z depend only on what
happens in an arbitrarily small neighborhood of Z.

Let F* — I*® be an injective resolution of the complex F*. Then one has
an exact sequence

0 — iyyzI®* — I* — §, 571 I* — 0
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in C*(mod(Ax)), voir [B1], p. 50-51. Indeed iyyzI* = I'z(I*) = RI'z(F°®).
As we have seen, any short exact sequence

0>A*—>B*>C* =0

in C*(C) gives a distinguished triangle in D*(C)

SN

C.

(see Proposition 1.1.23). Applying this general fact to the above exact se-
quence, we get the following triangle, called the attachment (or adjunction)
distinguished triangle.

A.

B.

it F* F*

Rj.j ' F?

This triangle is also called the triangle of (local) cohomology with supports
in Z, see [MeNM], p. 85, since #i'F* = RI'z(F*). By taking the hypercoho-
mology groups we get from the distinguished triangle the following long exact
sequence

- — B (X, F*) — B (X, F*) — B (U, F*) — BHEVN(X, F*) — -
Corollary 2.4.3. For any sheaf F there is an ezact sequence in mod(Ax)
0= HYF) > F = *F > HL(F) =0

Proof. Apply the functor RI'z to the adjunction distinguished triangle in
which the complex F* is replaced by the single sheaf F. Then take the coho-
mology sheaves. Note that this exact sequence is very useful, see for instance
[L], p. 155 for some applications.

Corollary 2.4.4. One has i'Rj.G* = 0 for any complex G* € D*(Ay).

Proof. We set F* = Rj.G®* € D*(Ax). Then the obvious equality of functors
37t 0 ju = lpog(a,) implies j~' o Rj, = 1p+a,,. It follows that in the
associated attachment triangle, the attachment morphism F* — Rj,j 1F°*
is just the identity of F*. This implies that the third vertex in the triangle is
trivial in the corresponding derived category according to the property (T'r1)
in the definition of a triangulated category, see Definition 1.2.6.

O
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Remark 2.4.5.

(i) When the complex F* is just a single sheaf F, then there is a natural
isomorphism
HY(X,F) ~ H*(X,U; F)

involving the relative cohomology groups of the pair (X, U), see [Bd], p. 59,
Theorem 12.1. It follows that in this case the above long exact sequence co-
incides to the long exact sequence of cohomology of the pair (X,U) with
coefficients in the sheaf F, see [Bd], p. 58.

(if) One has the following exact sequence on X
0 —jij 'F* — F* — Fy — 0.

To see this, just look at what happens at stalk level.
The relative hypercohomology groups are defined in general as follows

H* (X, Z; F*) = BF (X, jij ' F*).
This gives rise to the following long exact sequence
o BNX,Z, F) - BN (X, F) 5 B (Z,F°) - BFYN(X, Z, F*) — - -

If we take hypercohomology with compact supports, then we get the following
long exact sequence

e HE (U F*) — HE(X, F*) — HE(Z,F°) — e (U; F*) — -
The last long exact sequence gives in particular
Xe(X, F*) = xc (U, F*) + xc(Z, F*)
as soon as these Euler characteristics are defined.

(iii) The natural transformation I'.(X, F*) — I'(X, F*) induces a morphism
of the first long exact sequence just above into the second one. In particular,
for any integer k, this yields a morphism

HI;(U7'7:.) - Hk(X7 Z; F°)
such that the following diagram of obvious morphisms

ng(Uw?:.) —>Hk(X7Z§'7:.)

| |

HF (U, F*) < HE(X, F*)

is commutative. When X is a compact space, it follows via the 5-lemma that
the above morphism HF (U, F*) — HF(X, Z; F*) is an isomorphism for any
integer k (in this case the space Z is compact as well).
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In algebraic topology the notion of homotopic continuous maps plays a
key role. In sheaf theory this idea comes in the following form.
Let S be a fixed topological space and consider the category of topological
spaces over S, i.e. the couples (X,px) where X is a topological space and
px : X — S is a continuous map, sometimes called a projection.
Let f : X — Y be a morphism over S: this means that f : X — Y is a
continuous map compatible with the two “projections”, i.e. py o f = px.
The adjunction morphism 1 — Rf. o f~! combined with the isomorphism

Rpx.opx' = Rpy«oRfioftopy!
induces a morphism
f# : Rpy. opy' — Rpx.opx'

When f,g: X — Y are two morphisms over S one defines in the obvious way
the notion of a homotopy over S between f and g and this gives in the usual
way the notion of a homotopy equivalence over S. With these definitions, one
has the following result, see [KS], Proposition 2.7.5 and Corollary 2.7.7.

Proposition 2.4.6.
(i) If the S-morphisms f and g are homotopic over S, then f# = g#.

(i) If f : X — Y is a homotopy equivalence over S, then f# is an isomor-
phism.

The situation considered in algebraic topology corresponds to the case
S = {pt}. Applications of the above proposition in the case S # {pt} will be
given later on, see Propositions 4.2.9 and 4.3.10.

2.5 Local Systems

An A-local system on the topological space X is a sheaf £ € mod(Ax) which
is locally constant, i.e. there is an open covering (U;) of X and a family of
A-modules (M;) such that £|U; ~ M;, the constant sheaf on U; associated to
the module M;. When X is connected, we can replace the family (M;) by a
single A-module M. Moreover, when M; are all free and of (finite) rank r we
say that the corresponding local system is of rank r. A constant local system,
i.e. one in which the covering can be chosen to be {X}, is also called a trivial
local system.

When the topological space X is paracompact, Hausdorff, path-connected
and locally 1-connected (e.g. X is a connected complex algebraic variety with
the strong topology), then there are several classical description of local sys-
tems, see [I1], p. 252 and [Sp], p. 58, section F and p. 360, section F. We
assume in the sequel that our topological spaces satisfy these assumptions, in
particular they are always connected.
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Proposition 2.5.1. The following categories are equivalent.
(i) A-local systems on X;

(ii) covariant functors L from the fundamental groupoid of X to the category
of A-modules;

(iit) representations p : (X, 20) — Aut(M), where m1(X,zo) is the funda-
mental group of X based at a given point xg and M is an A-module.

Sometimes we will denote the local system corresponding to the represen-
tation in (iii) by (M, p). It follows from this proposition that if £ and M are
local systems on X then the same is true for the sheaves L & M, L @ M,
Hom(L, M). Moreover, if v : £ — M is a morphism of local systems (in an
obvious sense), then Ker u, Im u and Coker u are again local systems on X.
In other words, the category of A-local systems is a full abelian subcategory
of the category of sheaves mod(Ax). See also [MeNM], p. 53.

Exercise 2.5.2. Let f : X — Y be a continuous map between topological
spaces.

(i) If £ is a local system on Y given by a representation (M, p), show that
the inverse image sheaf f~'L is a local system on X corresponding to the
representation (M, p - fi) with f, : (X, 20) = m(Y, %), vo = f(zo) the
homomorphism induced by f at the level of fundamental groups.

(ii) If £ is a local system on X, show by an example that the direct image sheaf
f+«L is not necessarily a local system on Y. Hint: take f to be the inclusion
C=C

(iii) If f is a finite covering and £ € mod(Ax), then show that £ is a local
system on X if and only if f.L is a local system on Y.

Remark 2.5.3. Let X be a smooth connected complex algebraic variety and j :
U — X be the inclusion of a Zariski open subset. The induced morphism j, :
w1 (U, z0) = m (X, 20), zo € U is an epimorphism. Indeed, the complement of
U is a finite union of smooth real submanifolds Y; in X of real codimension
at least 2. Any loop in 7 (X, zo) can be represented by a smooth loop, see
[BT], p. 213 which in turn by Thom’s Transversality Theorem may be chosen
transverse to these submanifolds Y;. Due to the fact that codimgY; > 2, this
means that any loop in X is homotopy equivalent to a loop in U. It follows from
the above exercise that if £ is a local system on X such that the restriction
L|U is trivial, then £ itself is trivial. In other words, one cannot define the
notion of a local system with respect to the Zariski topology in the same way
as above. More generally, if £; and L5 are two local systems on X such that
their restrictions to U are isomorphic, then £; and L5 are isomorphic.

Each of the descriptions in Proposition 2.5.1 leads to a definition of
(co)homology groups of a topological space with coefficients in a local sys-
tem. The definition associated to (i) is just a special case of the cohomology
groups with sheaf coefficients, see Definition 2.1.4.
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Let us recall briefly the other two deflnitions, since they are widely used in
algebraic topology books and papers. Let C,(X) be the complex of singu-
lar chains in X with A-coefficients. When X is a simplicial complex (resp. a
cellular complex) we can work with the much smaller complex given by the
simplicial (resp. cellular) complex of X. Then one can construct a twisted
homology complex C.(X, L) in which the groups are obtained (roughly) as
Crn(X, L) = Cp(X) @ F for all m € Z where F' = L(x) but the differential
is twisted using the functor L, see for details [Sp], pp. 281-282 and [Wh], pp.
265-269 and pp. 281-286.

One deflnes the homology groups of X with coefficients in the local system
L to be the homology groups of the complex C, (X, £). This description implies
the following,.

Proposition 2.5.4. Let L be an A-local system of rank r on the topological
space X. Assume that A is o field and that X is a finite CW-complex of
dimension n. Then the following statements hold.

(i) H, (X, L) are finite dimensional A-vector spaces for 0 < k < n and
Hiy(X,£) =0 for k < 0 and k > n. Moreover, for 0 < k < n, one has
dimg Hi (X, £) < cip(X)r where c,(X) is the number of k-dimensional cells in
a decomposition of X.

(ii) x(X; L) = rx(X) where x(X;L£) = 3, (—1)*dimaHx(X, L) is the Euler
characteristic of X with coefficients in L and x(X) is the usual Euler char-
acteristic of X, say with Q-coefficients.

Corollary 2.5.5. Let F — E — B be a locally trivial fibration such that the
base B and the fiber F' are homotopy equivalent to finite CW-complexes. Then
the three Euler characteristics x(B),x(F) and x(E) are defined and

X(E) = x(B)x(F).

Proof. Applying Leray spectral sequence 2.3.4 we get

X(B) =Y (~1)"bm(B) = Y (~1)P**dimH?(B, R*/.Qz).

m »,q

Since Rf,Qg is a Q-local system of rank b,(F') we get

X(E) =) (-1)?)_(-1)’dimH?(B, R*{.Qg) =
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One has a similar definition for the cohomology groups H*(X, £) using
a cohomology complex C*(X, L). Let LY = Hom(L,Ax) be the dual local
system of £ . Then it follows that

C*(X,LY) =~ Hom*(C«(X, L), A)
see [Sp], p- 283, J4. When A is a field this implies the following duality result
H™X,LY) ~ Hp(X, L)Y (2.1)

for any local system £ and any integer m € Z. In particular, the proposition
above is valid for cohomology as well.

The third definition of (co)homology groups with coefficients in a local
system goes like that. Let G = 1 (X, zo) be the fundamental group of X and
let p : G = Aut(M) be the representation associated to £. Let H be a normal
subgroup in G such that H C Ker p. Let Xg — X be the unramified covering
corresponding to H and note that G' = G/H is the covering transformation
group of this covering. Let p' : G' = Aut(M) be the induced representation.
As above consider the singular (resp. simplicial or cellular) chain complex
C.(Xg) of Xg with A-coefficients. Then one can consider the equivariant

tensor product
C(X, L) =Ci(XHa)®c: M

and the equivariant Hom
C*(X,L) = Hom&: (C o (Xa), M)

see for more details [CE], p. 355 and [Wh], pp. 278-280. In fact, to show
that these new definitions of the complexes Ci(X, £) and C*(X, £) concide
with the previous ones (and in particular are independent of the choice of
the subgroup H) is a simple but tedious verification once all the details are
clearly written down. To show that the corresponding cohomology groups are
isomorphic to the one constructed by general sheaf theory in the case when X
is in addition locally contractible (a condition valid for any complex analytic
space, see [BV]), one can follow the proof proposed in [Sp], p. 360, section F.

When G' = Z the above equivariant tensor product and Hom are easier
to describe, since instead of taking covariants (resp. invariants) with respect
to a group it is enough to take covariants (resp. invariants) with respect to a
single operator. This remark is a hint for the following.

Exercise 2.5.6. With the above notation, assume that G’ = Z and let T, :
Ci(Xm) = Cu(Xm) and T : C*(Xg) = C*(Xa) be the morphisms induced
by the covering transformation T' corresponding to 1 € Z. Let M = A and
a = p(1) € A* = Aut(A). Show that we have the following two exact sequences
of complexes

0 Cu(Xn) =5 Cu(XH) = Cu(X, L) » 0
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0= C*(X, L) = C*(Xa) T=%" C*(Xn) = 0.

Show that this result is compatible with the duality result for local systems
2.1, via Example 3.3.9.

Using this exercise (or the Cech definition of cohomology using acyclic
coverings, see [BT], [EV2], [KS], pp. 123-125 and also our Remark 2.3.9) one
can easily establish the following fact.

Ezample 2.5.7 (Cohomology of Local Systems on C* ). Let X = C*, A be afield
and let L7 be the A-local system on X corresponding to the representation
p:m(X,1) = GL,(A) sending the standard generator of 71 (X, 1) = Z to the
invertible linear operator T'. Then one has the following isomorphisms

H°(X,L7) =Ker (T — Id), HY(X,Lr) = Coker (T — Id)

and vanishings H™(X, Lr) = 0 for m > 1. The same result clearly holds if
we take X = S, the unit circle in C*. Moreover, assume that f : E — S is
a locally trivial fibration with fiber type F' and monodromy homeomorphism
h : F — F. Then the Leray spectral sequence 2.3.4, say with A-coefficients,
gives rise to short exact sequences

0— HY(S',R"'f.(Ag)) = HY(E, A) —» H°(S*,Rf.(Ag)) = 0

for all integers ¢. The local system RY f.(AE) is determined by the monodromy
action of h? on H1(F, A). It follows from our computation that the above exact
sequence can be rewritten as

0 — Coker (h?9! — Id) - HY(E, A) — Ker (h? — Id) — 0.

One can put all these short exact sequences together in the Wang long exact
sequence

.- o HY(E,A) » HY(F, 4) "Z3* H9(F, A) » HIYY(E, 4) > - --

Exercise 2.5.8. Assume that the topological space X is connected. Using the
third definition of a local system, show that H°(X,£) = M?*, the fixed part
of M under the representation p associated to £. In particular, when A is a
field, show that £ is a trivial local system if and only if dimsaH?(X,L) > r
where r is the rank of L.

When A = C and X is a complex analytic manifold, then there is an
equivalence of categories between the category of finite rank C-local systems
L on X and the category of holomorphic vector bundles ¥V on X with an
integrable (or fiat) connection V : V — V ® 2%. Under this equivalence,
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the vector bundle associated to a local system £ is V = £ ®¢, Ox and the
connection is the unique integrable connection such that the sheaf of (local)
horizontal sections Ker V is precisely £. For more details, see Deligne [De2]
and Sabbah [S4]. While less used, we have a similar equivalence between R-
local systems on a real smooth manifold and flat vector bundles V with an
integrable connection V, see Gauduchon [Gd], 1.4.5.

Ezample 2.5.9. Let X = C\{a1, ..., ap}, i.e. X is the complex line with p dis-
tinct points deleted. Then the rank one C-local systems on X are, in an obvious
way, parametrized by Hom(m1(X),C*) = (C*)P. For A = (Aq, ..., Ap) € (C*)?,
let £y be the corresponding rank one C-local system on X.

On the other hand, the rank one holomorphic vector bundle on X are
parametrized by H'(X,0%) =0, i.e. they are all trivial.

Let (ai,...,a,) € C? be a p-tuple such that exp(—2wia;) = A;, where
j=1,...,p. Then the flat connection

Vy:0x > 2%

associated to the rank one local system Ly, is given by the formula

Note that a; is uniquely determined only in the quotient C/Z ~ C*, which
explains why the correspondence

L= (0x,V))

is essentially a bijection. This remark allows us to choose the numbers a; such
that 0 < Re (a;) < 1.

This example shows, among other things, the key role played in this theory
by the poles of order one, the so-called logarithmic poles. The reader will find
out more on this in the flnal part of next chapter.

Remark 2.5.10. In the above example we see that the vector bundle V), asso-
ciated to the local system L, carries no information at all since it is trivial.
Therefore all the information on £ is carried on by the corresponding connec-
tion V.

This situation occurs in fact in many other cases. Let X be a smooth con-
nected Stein manifold of dimension n and such that H2(X,Z) is torsion-free.
For instance, X can be a hyperplane arrangement complement as studied in
section 6.4 in this book. Let V be a rank r vector bundle on X. In view of
the Oka-Grauert principle, see [Lt], Corollary 3.3, it is not necessary to dis-
tinguish between holomorphic and topological vector bundles on X. Such a
vector bundle is trivial in any of the following cases.

(i) one-dimensional base space X, i.e. n =1;
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(ii) the base space X is contractible;
(iii) the vector bundle V is flat, i.e. it comes from a local system, and either
r=1lor2<n<3.

Indeed, in case (i), the claim follows from [Lt], Theorem 3.5 and the claim (ii)
follows from the Oka-Grauert principle. In case (iii), we can use [Lt], Theorem
8.1 to reduce the other cases to the case r = 1. The assumption on H2(X,Z)
implies that the morphism

H*(X,Z)— H*(X,Q),

induced by the morphism m + 27im on the coeflicients, is injective. The claim
follows by comparing the long exact sequences in cohomology associated to
the usual exponential sequence

02Z—>0x 520%x =0
and to the “constant coefficients” exponential sequence
0+Z—->Cx »Cx =0

In fact, the flrst exact sequence shows that a line bundle V on a Stein space
is determined by its first Chern class ¢;(V) € H%(X,Z), and the comparison
of the two exact sequences shows that ¢; (V) = 0 for a flat line bundle V.

The above equivalence of categories is compatible with the usual construc-
tions. Namely, let (V,V) and (V', V') be two integrable connections and let
L = Ker V and resp. £’ = Ker V' be the corresponding local systems. Then
the vector bundles V& V', V @ V' and Hom(V, V') are endowed with natural
connections V@& V', V@ V' and resp. Hom(V,V'). They are given by the
following formulas, modulo natural identiflcations.

VeVi(sas)=V(s)o V()
VeaVi(ises)=V()es+se V()
Hom(V,V')(u)(s) = V'u(s) — u(V(s)).

Moreover, the local system corresponding to V @& V/, resp. V ® V', resp.
Hom(V,V') is L& L', resp. L& L', resp. Hom(L, L"), see [$4], p. 36, Exercise
12.11.

In the real smooth case and in the analytic complex case one can express
the cohomology groups with coefficients in a local system £ using the twisted
de Rham complex

(2°V),V): 05V L 2t(V) L . 5 0n (V) 50

where (V,V) is the integrable connection corresponding to the local system
£ and 2% (V) = 2% ® V. In the real case this provides a soft resolution of £,
while in the complex case we get the following result.
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Theorem 2.5.11 (Twisted Analytic de Rham Theorem).
The natural morphism L — (2°(V), V) is a resolution and hence in particular

Hk(Xa 'C) =H* (X7 ('Q.(V)7 V))
When X is a Stein manifold, then we also have

HE(X,C) = Ker {V : 25 (V)(X) = 0§+1(V)(X)}_
’ Im {V: 251 (V)(X) = 25 (V)(X)}

In particular, H*(X, L) = 0 for X Stein and k > n = dimX.

Remark 2.5.12. For A a commutative ring, M an A-module and X a topolog-
ical space we have on one hand the cohomology groups H*(X, M), H*(X, M)
defined in algebraic topology and, on the other hand, the groups H*(X, Mx),
HF(X, Mx) constructed using sheaf theory. For X a paracompact, locally
contractible space, it follows from Spanier [Sp], p. 334 and pp. 340-341
that one has the isomorphisms H*(X, M) = H¥(X, Mx) and H*¥(X,M) =
H¥(X, Mx). This applies to all complex analytic spaces in view of [BV].

Moreover, a continuous map f : X — Y induces morphisms f* :
H*(Y,M) — H*(X,M) which can be described in terms of sheaf theory
as follows. The equality f 'My = My yields by adjunction a morphism
My — f.f'My = f.Mx. Passing to global sections this morphism induces
amorphism I'(Y, My) — I'(X, Mx), which gives the morphisms f* by taking
the corresponding higher direct images. In a similar way, a proper mapping
f : X =Y induces morphisms f*¥ : H¥(Y, M) — H¥(X, M) which can be
described in terms of sheaf theory as above.

If f,g : X - Y are two homotopic (resp. proper homotopic) mappings
(resp. proper mappings), then the induced morphisms coincide, i.e. f* = g*:
H*(Y,M) - H*(X,M), resp f* =g¢g*: H}(Y,M) — H}(X, M).

A similar homotopy invariance result holds for the (co)homology with

local system coefficients. More precisely, let £ be a local system on Y and let
L' = f~1L be the pull-back local system. Then for any = € X we have an
isomorphism f, : £/, = £, coming from the definition of the inverse image
functor. This implies that f : X — Y induces a morphism f : (X, £) — (Y, £)
in the sense of [Sp|, p. 282, I2 and p. 283, J2 and also [Wh], pp. 268-269. It
follows that we get natural morphisms f, : H,(X, L) = H,(Y,£) and f* :
H*(Y,L) - H*(X,L'). In fact we get similar morphisms f* : H* (Y, F*) —
H* (X, f~F*) for any complex F* on Y.
When f,g : X — Y are two homotopic mappings, it follows that f~1L ~
g7 1L, see [MeNM], p. 61. Moreover, if we denote this isomorphism class of
local systems by £, then f, = g : Ho(X, L") = H (Y, L) and f* = g* :
H*(Y,L) —» H*(X,L'), see loc.cit for the second equality and [Sp], p. 282,
I6 for the first. In particular, if f : X — Y is a homotopy equivalence, then
Fx  Ho(X, L") = Ho(Y, L) and f*: H*(Y, L) —» H*(X, L) are isomorphisms.
Such a homotopy invariance is clearly false if we replace £ with an arbitrary
sheaf in mod(Ax), see Example 3.1.6.
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Ezample 2.5.18. Let f : E — B be a topologically locally trivial fibration
with fiber F. For any field A, the higher direct image R? f.(Ag) is an A-local
system of rank b,(F), the p-th Betti number of F' with A-coeflicients. Indeed,
it follows from the above homotopy invariance of the cohomology with local
coeflicients that for any b € B one has isomorphisms

RPfu(Ap)s = HP(fH(y), A) = HP(F, A).

The fibration f : E — B is called A-orientable if the corresponding local sys-
tems RP f.(Ag) are trivial for all integers p. In such a situation, the associated
Leray spectral sequence can be described in terms of the cohomology of the
base B with constant coefficients H?(F, A).

Note also, as an example, that a real smooth manifold X is Z-orientable in
the sense of Example 3.2.10 below if and only if the sphere bundle associated
to the tangent bundle TX — X is Q-orientable as a fibration in the sense of
this example.

Let f : X — S be a topologically locally trivial fibration with fiber F' as in
the above example. Assume moreover that X and S a complex manifolds and
that f is a holomorphic submersion. It is a natural question to try to describe
geometrically the fiat connection (V, V) associated to one of the direct image
local systems RP f,.(Cx ).
More generally, let £ be a C-local system on X. It follows exactly as in the
above example that the direct image sheaf R? f,(£) is a local system on S with
fiber H?(F, £). We assume in the sequel that dimH?(F, L) < o0, a condition
fulfilled for instance when f is in fact a morphism of algebraic varieties.
Associated to the morphism f : X — S, there is a relative de Rham complex
2% s> also denoted by .Q;, see [L], section 8.A, as well as a relative twisted
de Rham complex

2%/s(L) = %5 ®cx L

see Deligne [De2], p. 20. With this notation, we have the following result, see
for a proof [De2], Proposition I.2.8.

Theorem 2.5.14 (Relative Twisted de Rham Theorem). There is an
isomorphism

Os @ R?fu(£) = R f.(12%s(£))
of holomorphic vector bundles on S.

The unique fiat connection on RF f.(§2%,5(£)) having as horizontal sections
the sections of the local system RP? f.(£) is called the Gauss-Manin connection
associated to the map f and to the local system L. This connection has a
geometric description, due to Katz and Oda, in terms of Lie derivatives with
respect to liftings of tangent vector fields on S via f, see for details [L], section
8.B.

To illustrate all this, we briefiy describe the Gauss-Manin connection as-
sociated with an isolated hypersurface singularity f : (C**!,0) — (C,0). Let
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f : X = S be a good representative of the function germ f, and f : X* — §*
the corresponding Milnor fibration. Applying the above theorem to this fibra-
tion, we take p =n and £ = Cx~, and we get the vector bundle

V= R (2. s)

on the punctured disc S*. Since f is a Stein morphism, it follows that f, is
exact and hence

V=H"fu(%.)50) = F(H" (2% /50)-

Since 2%, ~ Og-+dt, where t is a coordinate on S, it follows that the Gauss-
Manin connection
VYV VRN

coming from the above theorem is completely determined by the associated
covariant derivative
D=V 8 V=V

This derivative D satisfies the following usual Leibnitz formula
D(u-s)=u'-s+u-D(s)

for any section s and any function u on S*.

Since f : X* — S* is a submersion, it follows that dfA : 2%, — Q%!
is an epimorphism. The space X* being Stein, we get a surjection dfA :
D(X*, 2%.) = [(X*, 2%) by passing to global sections.

Let w € I'(X*, 2%.) and choose n € I'(X*, 2%.) such that dw = df An. An
explicit computation using the Katz-Oda construction, or taking the deriva-
tives with respect to ¢ of fiber integrals involving w, yields the following result.

D[w] = [n]. (2.2)

Here [w] denotes the section of V = f.(H"(£2%. s.)) associated to the form
w (which induces a cocycle in 2%, /s+ by the above argument). See also for

more details the original paper by Brieskorn [Bs] as well as the recent book
[Ku] by Kulikov.

Ezample 2.5.15. Assume that f is a weighted homogeneous polynomial of type
(wo, ..., wn; N), i.e. there are strictly positive integers w; for j = 0,...,n and
N such that if f =}, ¢,@®, then for each monomial z* = zg° - - - 2% we have
> j—0,n@W; = N. In such a situation N = |f| is called the degree of the
weighted homogeneous polynomial f with respect to the weights (wo, ..., ws).
Set w =wo + ... + w,, and

w= Z (=1 wjz;dzo A ... Ada; A .. Adp,.
j=0,n
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Note that for any polynomial g, homogeneous with respect to the weights
(wo, ..., wn), we have

dg Aw = |g|lgdzo A ... Adz,.

It follows that for any monomial z® one has as explained above a section
s(b) = [z%w] of the vector bundle V and the action of the covariant derivative
is given in view of formula 2.2 by

D(s(o) = k) "2

b
where k(b) = w The above formula can be rewritten as

D(s) = k) *D)

making clear in this way that we work with sections over $* and emphasizing
once again the role of the logarithmic poles.

The horizontal sections are the solutions of the equation D(s) = 0. Let us
try to find a horizontal section s = w(b)s(b), which is a multiple of the above
section s(b). A direct computation gives the multi-valued solution

u(b)(t) =+,

When t makes a complete turn around the origin, i.e. when ¢ = exp(2mir) and
7 € [0,1], then for 7 = 1 we get a factor u(b)(1) = exp(—2nik(D)).

Being in a weighted homogeneous situation, we can globalize the Milnor fibra-
tion, i.e. take X* = C**1\ f~1(0) and S* = C\{0}. Then the global Milnor
fiber F = f71(1) has the n-cohomology group freely spanned by the dif-
ferential forms zPw|F, for z® a monomial basis of the corresponding Milnor
algebra Clzo,...,z,]/J¢, see for details [D], pp. 192-193. The transformation
[°w|F] — u(b)(1)[zbw]|F] gives exactly the monodromy operator

T : H*(F,C) » H"(F,C)

associated to the corresponding Milnor fibration.






3

Poincaré-Verdier Duality

The cohomological dimension for rings and topological spaces is introduced
in the first section. The second section contains the main results of Verdier
duality, including the properties of the dualizing sheaf wx. The very general
results of this section are specialized in the next section, yielding the usual
Poincaré duality and Alexander duality. Here the dual sheaf complex is also
introduced, and its compatibility with direct and inverse images is clearly
stated. The last section contains a number of basic vanishing results for the
cohomology of Stein spaces with local system coefficients.

3.1 Cohomological Dimension of Rings and Spaces

First we discuss the algebraic notion of global (homological) dimension for
commutative rings.

Definition 3.1.1. Let A be a commutative ring. We say that A has global
dimension n € N U {oo} and we write gld(A) = n if n € NU {oo} is the
smallest element such that the following equivalent properties hold.

(i) any A-module M has an injective resolution of length < n, i.e. there is
an ezact sequence 0 — M — I° — ... — I™ — 0 with all I’ injective
A-modules;

(ii) any A-module M has a projective resolution of length < n, i.e. there is
an exact sequence 0 = P, = Po_1 = ... = Py = M — 0 with all P;
projective A-modules;

(iii) same as (i) but only for M = A/I, with I any ideal in A.

For more on this algebraic dimension and a proof of the equivalence of (i),
(if) and (iii), see Weibel, [W], Chapter 4.
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Exzample 3.1.2.

(i) If A is a field, then gld(A) = 0.

(ii) If A = Z, then by (i47) above we see that gld(A) = 1. The same holds for
any principal ideal domain, see [W], p. 98.

(iii) Let m € Z be an integer which is divisible by p? for some prime p. Then
gld(Z,,) = 00, see [W], pp. 92-93.

We shall assume from now on that gld(A) < oco.

Definition 3.1.3. Let X be a locally compact topological space and let A be
a ring as above. We say that X has A-homological dimension n € NU {oo}
and we write hd4(X) = n if n € NU {oo} is the smallest element such that
the following equivalent properties hold.

(i) for any sheaf F € mod(Ax) and any m > n one has H™(X,F) = 0;
(ii) for any sheaf F € mod(Ax), any open set U in X and any m > n one
has H*(U,F) =0;
(iii) same as in (i) but only form=n+1 and F = Ax.

For more on the homological dimension of spaces and a proof of the equiv-
alence of (i), (ii) and (iii), see [I1], pp. 197-199 and [B1], pp. 55-56 as well as
Remark 3.1.9 below.

Exercise 3.1.4.

(i) Show that if X and Y are homeomorphic topological spaces, then hd4 (X) =
hda(Y).

(if) Show that if U is an open subset in X, then hda(U) < hda(X).
Moreover, if X is a disjoint union of open subsets (U;)icr, then show that
hds(X) = supicrhda(U;).

The following result is very useful in determining the homological dimension
of many spaces.

Proposition 3.1.5. Let X be a simplicial complex or a CW-complez of di-
mension n. Then hds(X) = n for any ring A.

Proof. Assume that X is a simplicial complex and denote by X7 the j-
th skeleton of X. Then X = X™ and Z = X" ! is a simplicial complex of
dimension n—1. The exact sequence of the cohomology with compact supports
in Remark 2.4.5 and induction on n show that hd4(X) = n if we know that
hda(X\Z) = n. Note that X\Z is a disjoint union of open subsets, each
homeomorphic to R". It is known that hd4(R") = n, see [I1], p. 197. The
result then follows using the previous exercise. The case of a CW-complex is
identical. O

Ezample 8.1.6. In this example we construct a sheaf F on Y = R” such that
H™(Y,F) = HX}Y,F) # 0. Since Y is contractible, this shows that the co-
homology with sheaf coefficients is not a homotopy invariant. Let X be the
n-dimensional sphere given in R**! by the equation
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lz|? =22 + ...+ 22 = 1.

Identify Y to the hyperplane zo = 0 in R®™*! and let f : X — Y be the
projection on the last n coordinates. Then f is a proper mapping and the
fibers of f are either empty or a finite set. It follows from Theorem 2.3.26
that R*f.(Ax) = R*fi(Ax) = 0 for k > 0. Let F = R°f.(Ax). Then the
Leray spectral sequences 2.3.4 and 2.3.24 imply that H*(Y,F) = H*(Y,F) =
H"(X,Ax) = A.

A similar example holds for X an irreducible affine complex variety. Indeed, by
Noether normalisation theorem, there is a finite morphism f : X — C", where
n = dimX, obtained via a generic projection. By taking X a variety with a
rich cohomology, for instance X = (C*)", we get H™(C",F) = H™(X,A) # 0
for any integer m with 0 < m < n and H*(C*,F) = H(X, A) # 0 for any
integer m with n < m < 2n.

Corollary 3.1.7.

(i) Let X be an n-dimensional real smooth manifold. Then one has hda(X) =
n, for any ring A.

(i) Let X be a complex algebraic or analytic variety of dimension n. Then
one has hda(X) = 2n, for any ring A.

Proof. In case (i), the variety X can be triangulated and the resulting
simplicial complex has dimension n. In case (ii), the same applies, see for
instance [Hi] in the algebraic case, and the resulting complex has dimension
2n.

O

From now on the topological spaces considered in this book are supposed
to be locally compact, countable at infinity (i.e. X = |J,,cy Xm with X, a
compact subset of X and X,, C In#(X,;n41) for any m € N) and such that
hd4(X) < oo. The two types of dimensions introduced above do both occur
in the following basic result.

Proposition 3.1.8. Let X be a topological space such that hds(X) = n. If
A is a ring with gld(A) = d, then any sheaf F € mod(Ax) has a flabby
(resp. injective) resolution F — I* which vanishes in degrees > n + 1 (resp.
> n+d+1). In particular, any complex F* € D?(X) has an injective resolution
I* € D*(X).

Moreover, when A is a noetherian ring or when gld(A) is finite, any sheaf
F € mod(Ax) has a bounded soft and flat resolution.

For the first part of this proposition, see [B1], p. 58. For the last claim in
the case A noetherian, see [I1], p. 292. Othewise the result can be proved as in
[KS], p. 143. The existence of fiat resolutions as in the last claim implies the
existence of fiat resolutions in D (X). These resolutions are the key point for
defining the derived tensor product and establishing the projection formula
in the bounded to the left derived category D*(X), as it is done in [KS].
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Remark 3.1.9. The A-homological dimension of a space X introduced above
is the same as the c-soft dimension defined in [KS], Exercise IL.9, i.e. the
maximum over F € mod(Ax) of the minimal length of a c-soft resolution of
F. One can define in a similar way the fiabby dimension Dim(X) of a space
X using fiabby resolutions. The above proposition implies that

hd(X) < Dim(X) < hda(X) + 1.

The following example show that these two dimensions may be different. Let
X = {0} U {Li;n € N*} be endowed with the topology coming from the
obvious inclusion X C [0,1]. Then any sheaf F € mod(Ax) is clearly soft,
hence hda(X) = 0. On the other hand, the constant sheaf Ax is obviously
not fiabby, hence Dim(X) = 1.

3.2 The Functor f'

Definition 3.2.1. Let f : X — Y be a continuous mapping. The functor
fi i Ab(X) — Ab(Y) is said to have finite cohomological dimension if there
is an integer r € N such that RFfiF = 0 for any sheaf F € Ab(X) and any
k > r. This property will be denoted by dim(f)) < oo.

We assume in the sequel that all the considered mappings satisfy this property.

Ezample 8.2.2. Let X and Y be two complex algebraic (resp. analytic) va-
rieties and let f : X — Y be a regular (resp. analytic) mapping. Then
(R* fiF)y = HE(f~1(y), F) = 0 for k > 2dim(X) by Corollary 3.1.7. It follows
that in this case dim(fi) < oo, hence the theory below applies to all mappings
coming from algebraic or analytic geometry.

Under the assumptions stated above on rings, spaces and mappings, we have
the following fundamental result.

Theorem 3.2.3 (Verdier Duality, Local Form). For a continuous map-
ping f : X — Y there is an additive functor of triangulated categories
f': DY(Y) = D*(X), called exceptional inverse image, such that there is
a functorial isomorphism

RHom*(RfiF*,G%) ~ Rf.RHom*(F*, f'G*)
in DY(Y) for any F* € D¥(X) and G* € DH(Y) .

Here RHom® : D*(Z)°xD*(Z) — D*(Z) for Z = X and for Z = Y is the
derived Hom?*-bifunctor discussed in Chapter 1, section 4. For a proof of this
result we refer to [B1], pp. 130-131, [KS], p. 146, [I1], pp. 324-326. Note also
that in [I1], the complex F* is allowed to be in D~ (X). A key feature of the
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exceptional inverse image functor is that it exists only at the level of derived
categories, i.e. it is not the derived functor of a functor say from C*(Y) to
C*(X). Hence the use of derived categories is a necessity.

Applying RI" and respectively H? as in Remark 2.1.16 we get the following.

Corollary 3.2.4 (Verdier Duality, Global Form). With the above nota-
tions, there is a functorial isomorphism

RHom*(RAF*,G*) ~ RHom*(F*, f'G*)
in DY (mod(A)). In particular, we have
Homp+y)(RAF®,G%) ~ Homp+(x)(F*, 'G*).
In other words, the functor f' is right adjoint to the functor Rfy.

Note that the last isomorphism above holds in slightly more general condi-
tions, i.e. for F*,G* € D*(X), see [KS], p. 144. This situation is completely
similar to the Adjunction Formula 2.3.10.

We describe now the construction of the functor f' in the very simple
case when f = ax : X — pt. This will be enough to show later on that the
Verdier duality contains as a special case the classical Poincaré duality. For
an A-module V, let VV denote the dual module, namely Hom 4(V, A).

Assume first that A is a field. If F € mod(Ax) then define the presheaf
FY on X by setting

fv(U) = Fc(U7'7:)V
and let the restriction morphisms pl‘f be given by the morphisms j’ where

j :V = U is the inclusion and j is defined as in Remark 2.3.25. We have the
following result, see [I1], pp. 254-258 for a proof.

Proposition 3.2.5. If F is a soft sheaf, then the following hold.
(i) the presheaf FV is a sheaf;
(ii) for any sheaf G € mod(Ax), the tensor product F @ G is a soft sheaf;

(iii) (F @ G)V(X) =~ Hom(G,FV) for any sheaf G € mod(Ax). In particular,
FV is an injective sheaf for any soft sheaf F.

For a complex of sheaves F* € D(X) we consider the dual complex G* =
F*V where for m € Z one puts g™ = (F~™)V and dF = (—1)™*1 (")
similar to the usual definition of a dual complex given in Chapter 1, section 4.
First we describe the complex wx = a'y(A4). Take Ax — S* be a bounded soft
resolution of the sheaf Ax, e.g. the one given in Proposition 3.1.8, and then
set wx = S&*V. It can be shown that the isomorphism class of the complex wx
in D®(X) is independent of the choice of the resolution S°.
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Note that for a complex C* € D%(pt) we have C* ~ @ H*(C*)[-kK], a

finite sum, as in Exercise 1.4.7. It follows that aC* = ®pwl¥[—k] with

by = dimH*(C*) and WY =wx ® ... wx, m times.

Let us see how this construction gets more complicated in the case of a
noetherian ring A. If F € mod(Ax) and G € mod(A) then we can define a
presheaf D(F,G) by setting

D(]:7G)(U) szA(Fc(U7]:)7G)

for U an open subset in X and letting the restriction morphisms p¥ be similar
to those considered above. We have the following result, see [I1], pp. 290-291.
Proposition 3.2.6. If F is a soft and flat sheaf, then one has the following.
(i) the presheaf D(F,G) introduced above is a sheaf;

(i) for any sheaf F' € mod(Ax), the tensor product F @ F' is a soft sheaf;
(iii) If G is an injective module, then D(F,G) is an injective sheaf.

For F* € D¥(X) and G* € D*(pt) one defines in a similar way the com-
plex D(F*,G*). Let now Ax — F* be a bounded soft and fiat resolution as
in Proposition 3.1.8. Represent an object G* in D™ (pt) by an injective com-
plex I*. Then the isomorphism class of the complex D(F*,I*) € D*(X) is
independent of the choice of F* and I* and is denoted by a'y (G*). As before

we set wx = a!X(A) and we get in this way a bounded complex of injective
sheaves.

Definition 3.2.7. The complez wx € Db(X) is called the dualizing complex
over A of the topological space X.

Exercise 3.2.8. Use the construction of the dualizing complex wx given
above to show that if j : U — X is the inclusion of an open subset, then
wy = j_l(wx) = wx|U.

The main properties of the dualizing complex are summarized in the fol-
lowing result, see [I1], pp. 262-265 and pp. 295-297 for a proof.

Theorem 3.2.9. For A a field, the following properties hold.

(i) For any integer m, the cohomology sheaf H™wx is the sheaf associated to
the presheaf U — H_™(U, A)V.

(i) The dualizing complex wx can be represented in D*(X) by an injective
complex vanishing in degrees m < —n or m > 0 where n = hds(X).

For any noetherian ring A, the following properties hold.
(iii) The presheaf in (i) is the sheaf H™wx for m = —hda(X).
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(iv) If X is a topological manifold of dimension n, then H™wx = 0 for m #
—n and H™"wx is an A-local system of rank one.

Ezample 8.2.10. Let X be a topological manifold of dimension n and A a
noetherian ring. It follows from Theorem 3.2.9, that £,, = H™"wx is an A-
local system of rank one, called the orientation sheaf of X over A. In other
words, in this case wx = L,[n], i.e. the dualizing complex is just a shifted
local system.

Moreover, X is said to be orientable over A if the orientation sheaf is trivial,
ie. Lo ~ Ax. It follows that any manifold is orientable over Zs and that a
simply-connected manifold is A-orientable for any ring A.

Any complex analytic manifold is orientable over Z, see [GH], and hence over
any ring A using [KS], Proposition 3.3.4, p. 153.

Apart from the situation of a constant map ax : X — pt, one has some
other cases when there is an explicit description of the functor f'. First con-
sider a locally closed immersion, see [KS], 3.1.12 and [I1], p. 336.

Proposition 3.2.11. Let j : Z — X be the inclusion of a locally closed subset
Z in X. Then
§'(F*) = j7'RIz(F*).

In particular, when X is an orientable manifold and Z is a locally closed
orientable submanifold of codimension d, then j'Ax ~ Az[—d]. Moreover, if
Z is in addition closed, the long exact sequence obtained from the adjunction
triangle of the constant sheaf Ax coincides with the Gysin exact sequence

o3 H™(X;A) - H™(X\Z;A) = H™"4(Z;A) - H™(X; A) —» - -

The last quasi-isomorphism holds in more general situations, see [GoM2],
section 1.13 (where m — n should be replaced by n — m) and Corollary 4.3.7
further on in this book. This result also shows that the definition for j' we have
given in section 2.4 is a special case of the general definition of the functor f*.

Corollary 3.2.12. Let j : U = X be the inclusion of an open subset U in X.
Then j'F* = j~1F* for any complez F* € D*(X).

Proof. The equality Iy = j, o j~! from Remark 2.3.16 yields by passing to
the derived functors RIy = Rj.«oj~!. Since 57! o Rj. = Id, the result follows
from the above proposition.
O
The main properties of the functor f' are listed in the following result, see
[KS] 3.1.8-3.1.11 for a proof. Note that the morphism in the last claim below
is in some special cases an isomorphism, see 3.2.17 and 4.3.6, yielding a new
way to explicitly describe the functor f' in terms of the simpler functor f~1.
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Theorem 3.2.13.

(i) Consider two continuous mappings X Ly & gz If dimfy < © and
dimg < oo, then dim(go f)1 < 0o and (go f)! = f o g

(i) (Base Change for f') Consider the following cartesian diagram

X! L)Y'

X —f> Y
Then dim(fi) < +oo implies dim(f/) < +oo and, if this is the case, then
f'oRg. = Rg. o f".

(ii) If the base ring A is noetherian, then there is a natural morphism between
the two functors DY (Y) x DH(Y) —» D¥(X) given by

FF) & UG - F(F %),

To restate an important special case of the last property in a simple way
we introduce the following.

Definition 3.2.14. For any continuous mapping f : X — Y, the complex
wx/y = f'(Ay) is called the relative dualizing complex of f over A.

With this notation at hand, we get, via the above theorem, a natural
morphism

L !
wxy ® f7HG*) = F1(G%).

In some cases, the relative dualizing complex can be described in terms of
simpler objects. Here is such a situation.

Definition 3.2.15. We say that f : X = Y is a topological submersion with
fiber (or, of relative) dimension d if any point x € X has an open neighborhood
U such that V = f(U) is open and the restriction f : U = V is topologically
equivalent to the projection V x R — V.

Ezample 3.2.16. If X and Y are C'-manifolds and f is a C'-submersion, then
f a topological submersion with fiber dimension d = dimX — dimY. Other
examples can be obtained by using Thom’s First Isotopy Lemma, on stratified
submersions, see for instance [D], [GWPL].

Note that the fibers of a topological submersion are topological manifolds of a
fixed dimension and hence dim(f;) < co exactly as in Example 3.2.2. The main
properties of the relative dualizing complex wx,y for a topological submersion
[ are given in the following result, see [KS], Propositions 3.3.2-3.3.4.
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Theorem 3.2.17. Assume that f : X = Y is a topological submersion with
fiber dimension d. Then the following hold.

(i) H™(wx,y) = 0 for m # —d and H~*(wx/y) is an A-local system of rank
one.

(i) The morphism of functors

L
wx/y @ FHF®) = FH(F?)
coming from Theorem 3.2.183 is an isomorphism.

(iii) If both X andY are orientable manifolds, then the relative dualizing com-
plez wx y is given by wx/y ~ Ax|d], with d = dimX — dimY". In particular,
in this case f'(F*) ~ f~Y(F*)[d] for any complez F* € D*(Y).

3.3 Poincaré and Alexander Duality

Poincaré duality is a fundamental result in algebraic topology. Let X an n-
dimensional topological manifold as in Example 3.2.10.

Theorem 3.3.1 (Poincaré Duality, Field Coefficients). Let A be a field.
Then for any integer m there is a natural isomorphism

H™X,L,r) ~ HM™(X, A).
In particular, if X is orientable over A, then H™(X, A) ~ H» ™(X, A)V.

Proof. The discussion in Example 3.2.10 implies that £, = wx[—n] is a
resolution. It follows that

Hm(X7 £or) = Hm(RF(Xan[_n])) = HO(RF(Xan[m - n])) =
H°(RHom®(Ax,wx[m —n])) ~ Hompyx)(Ax,wx[m —n])
according to Proposition 1.4.3.
Next we have Hom ps(x)(Ax,wx[m—n]) ~ Hompsx)(Ax[n—m],ax (4)) ~
Hompu () (RI:(X, Ax)[n —m], A) according to Corollary 3.2.4.
Finally we get Hom ps(py) (RIc(X, Ax)[n—m], A) ~ H?~™(X, A)" using Ex-
ercise 1.4.6 and Example 1.4.8.

O
In a similar way we can prove the following result.

Theorem 3.3.2 (Alexander Duality, Field Coefficients). Assume that
the n-dimensional topological manifold X is orientable over the field A. Then
there is a natural isomorphism

HZ (X, A) ~ H™™(Z, 4)"

for any closed subset Z in X and any m € Z.
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Proof. Corollary 3.2.4 implies, as in the proof above, that one has
Hompy(x)(Z*, wx[m — n]) = Hompe ) (RI(X,I%)[n — m], A).

Take Az — J°* an injective resolution on Z. Then i1Az — 41 J* is an injective
resolution on X, where i : Z — X is the inclusion, by Corollary 2.3.11. Set
Z°* = 44y J°*. On one hand we have exactly as above

Hompy () (RLL(X,I%)[n — m], A) = H™(X,i14z)" = H™(Z, A)".

On the other hand, X being orientable over A, we have a quasi-isomorphism
Ax — wx[—n]. This gives the following isomorphisms

Homps(x)(Z°, wx[m — n]) ~ Ext™ (1%, Ax) ~ H7 (X, A)

using Proposition 1.4.3 and Remark 2.4.2.
O

What happens when A is not a field? We discuss only the Poincaré dual-
ity and leave the Alexander duality as an exercise for the interested reader.
Moreover, for simplicity, we consider only the case when A a principal ideal
domain. Then, exactly as in the proof of Poincaré duality Theorem above we
get

Hm(X7 'Cor) = HmnDb(pt) (RFC(X7 AX)[n - m]7 A)

To compute the last Hom we use Theorem 1.4.5 and in this way we get the
following result.

Theorem 3.3.3 (Poincaré Duality, PID Coefficients). Let A be o prin-
cipal ideal domain. Then for any m € Z there is a natural exact sequence

0 = Egt(HM™+ (X, A), A) » H™(X, Lor) = H™(X, A)¥ = 0.

Remark 3.8.4. Let X be a connected n-dimensional manifold. Then it follows
from the above theorem that X is A-oriented if and only if H?(X, A)Y = A.
Otherwise H?(X,A)Y = 0. Consider the case when A = Z and X = RP",
the real n-dimensional projective space. Then it is known that X is compact
and H"(X,Z) = Z for n odd and H"(X,Z) = Z/2Z for n even. It follows
that RP™ is Z-orientable if and only if n is odd. This example shows the role
played by taking the dual H?(X, A)V in the above statement.

To state duality results it is handy to introduce the dual complex DF* asso-
ciated to any bounded complex F*.

Definition 3.3.5 (Dual Complex). For a topological space X and for any
sheaf complex F* € D*(X), we define the dual complex DF* € D*(X) to be
the sheaf complex RHom*(F*,wx).
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Remark 3.3.6.

(i) For any complex F* € D?(X), one has an isomorphism D(F°*[n]) =
D(F*)[—n] for all integers n € Z.

(if) If A* — B* — C* 1L is a distinguished triangle in D*(X), then the
triangle obtained by applying the duality functor

DC* — DB* — DA* 5
is again distinguished. This comes from the fact that RHom is a bi-é-functor.
Moreover, this duality behaves well under direct and inverse images,

namely we have the following result, see [KS], Exercise VIIL3, p. 356 for
X,Y smooth manifolds and [B1], Theorem 10.11, p. 162 for the general case.

Proposition 3.3.7. Let f : X = Y be a continuous map. Then the following
hold.

(i) f/(DG*) = D(§~G*) for any complex G* € D¥(Y);
(i) Rf«(DF®) ~ D(RfiF*) for any complez F* € D*(X).
Ezample 8.3.8. Assume that X is an n-dimensional topological manifold.
Then wx ~ L,.[n] and hence DF* ~ RHom(F*, L,,)[n]. Using the explicit
construction of DF*® given in [B1],p. 125, it follows that when F* is replaced
by a single sheaf F, then the corresponding dual complex is again reduced to
a sheaf, namely DF ~ Hom(F, L,r)[n].

In the special case when F is a local system we have the following descrip-
tion for the dual complex

DF = FY ® Lor[n]

where F¥ = Hom(F, Ax) is the dual local system of F. In terms of 71 (X)-
representations, if M is an A-module and if F corresponds to a represen-
tation p : m(X) — Aut(M), then FV corresponds to the representation
p¥ i m(X) = Aut(M) given by p([v])(u)(e) = u(p([7])"'e) for all u € MY,
e € M and [y] € m(X).

Exercise 3.3.9.Let X = C*, A = E = C
m(X) = Z, a representation p : m(X) —
p(1) = a € C*. Show that pV(1) = a~ L.

Using the definition of the dual sheaf and taking ¥ = pt and G* = A in
Theorem 3.2.3 we get the following general duality result.

Choosing an identification
Aut(E) is determined by

Theorem 3.3.10 (Poincaré-Verdier Duality). For any bounded complex
F* € D¥(X) there is a natural isomorphism

RI'(X,DF*) ~ DRI.(X,F*).
In particular, for A a field, we have for any m € Z an isomorphism

H™(X,DF*) ~H,™(X,F*)".
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The following special case of this result is very useful. The last isomorphism
below should be compared to the Grothendieck-Serre duality for coherent
sheaves on projective varieties, see [H], Theorem IIL.7.6.

Proposition 3.3.11. Let X be a connected topological manifold of dimension
n. Then there is a natural isomorphism

RI'(X,RHom*(F*,L,r[n])) ~ RHom®*(RI.(X,F*),A).
Suppose in addition that A is a field. Then there is a natural isomorphism
Ext?(F*, Lor) =~ HZ P(X, F*)Y
for any integer p € Z and any sheaf complex F* in D*(X).

Corollary 3.3.12. Let £ be an A- local system on the n-dimensional manifold
X and suppose that A is a field. Then for any m € Z there is a natural
isomorphism

H™X, LY @ Lop) ~ HFM ™(X, L)V

In particular, if X is in addition orientable, then
H™(X,LY) ~ H ™(X,L)".
Proof. Using the previous Theorem and Example 3.3.8 we have
H™X,LY ® L) = HY(X,DL[—n]) = H" (X, DL) = H ™(X, L)".
O

Exercise 3.3.13. Let A be a field and X be an orientable n-dimensional
topological manifold. Then for any A-local system £ on X we have

XC(X7 'C) = (_l)nX(X7 'C)

Definition 3.3.14. The m-th homology module HS (X, A) of the space X with
A-coefficients and (arbitrary) closed supports is the A-module H ™ (X, wx).

These modules are also called the Borel-Moore homology groups of X with A-
coeflicients. When X is an irreducible n-dimensional complex analytic space,
Borel and Moore have constructed the fundamental homology class [X] of X
as an element in the group H§' (X, Z), see for instance [I1], p. 406. Moreover,
the Borel-Moore homology enters into a cap product

Hy (X, A) x H¥ (X, A) - Hy_ (X, 4)

which makes the Borel-Moore homology into a right module over the coho-
mology algebra of X, see for details and proofs [I1], p. 378.
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Corollary 3.3.15.

(i) For a topological space X and any integer m there is a natural isomorphism
H(X,A)~ H™(DRI.(X, Ax)).

In particular, for A a field, we have H3 (X, A) ~ H™(X, A)V.

(ii) If X is compact and locally contractible, then the Borel-Moore homology
groups of X are naturally isomorphic to the usual (singular) homology groups
of X and the cap product described above corresponds under this isomorphism
to the usual cap product.

Proof. For the claim (i), apply Theorem 3.3.10 to the complex F* = Ax
and use the fact that DAx ~ wx as follows from [B1], p. 126. For the second
claim we refer the reader to [Bd], Corollary 11.10, p. 224.
O
A proper continuous mapping f : X — Y induces a morphism of complexes
RI.(Y,Ay) = RI(X, Ax) and by duality morphisms

fo: HR(X, 4) » Hi(Y, A)

at the level of Borel-Moore homology.

If f,g: X =Y are two properly homotopic mappings, then it can be shown
that fi = g«, see [I1], p. 375. The same is true for the induced morphisms
f*=g*: H*Y,A) - H™(X, A) at cohomology level, see [I1], p. 180. We
have the following useful result.

Theorem 3.3.16 (Vietoris-Begle for Proper Maps).

Let f : X =Y be a proper continuous mapping with A-acyclic fibers. Then
f*: H*(Y,A) - H™(X,A) and f. : HX(X,A) - HZ(Y,A) are isomor-
phisms for all m € Z.

Proof. The fact that f has A-acyclic fibers implies that R"f.(Ax) = 0 for
n # 0 and R°f,(Ax) = Ay. The map f being proper we have f. = fi and
hence the above vanishings imply that RfiAx = Ay. Applying now ay we
get an isomorphism RI,(Y, Ay) = RI;(X, Ax). This yields the result.
0O
Another useful form of the Vietoris-Begle Theorem is the following. Let f :
X — Y be a continuous map and denote by mod(Ax /f) the full subcategory
of mod(Ax) consisting of sheaves F such that F|X, is a local system on all
the fibers X, = f~1(y) of f. Denote by D;{(X ) the full subcategory of D*(X)
consisting of complexes F* such that H™(F*) € mod(Ax/f) for all integers
m € Z.

We have then functors f=! : D¥(Y) — D;{(X) and Rf, : D;{(X) —
D*(Y) induced by the usual derived inverse and direct image functors. With
this notation we have the following result, see [KS], pp. 121-122.
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Theorem 3.3.17 (Vietoris-Begle for Non-proper Maps).

Assume there is a family (X,)nen of closed subsets in X such that X =
UnXn, Xn C Int(Xpy1) for oll n and the restriction f|X,, is proper with
contractible fibers for all n. Then the functors f~! and Rf, introduced above
are inverse to each other. In particular, for any complex G* € D (Y), the
naturally induced morphisms H™ (f) : H™ (Y, G°*) — H™ (X, f~1(G*)) are iso-
morphisms for all integers m € 7.

3.4 Vanishing Results

First let X be a locally compact space, countable at infinity and such that
hd4(X) = n < oo. Then using the definition of hd 4(X) and Proposition 3.1.8
we get the following result via Proposition 2.1.8. To see why in the second
claim n is replaced by n + 1, recall our Remark 3.1.9.

Proposition 3.4.1. For any sheaf F € mod(Ax), we have the following van-
ishings.

(i) H*(X,F) =0 for any m > n;
(ii) H™(X,F) =0 for any m > n +1;
(iti) HZ (X, F) = 0 for any m > n + 1 and any closed subset Z in X.

This general result becomes stronger when dealing with Stein or affine va-
rieties. The following is the simplest version of this general principle that we
will illustrate several times in this book. Combining the twisted analytic de
Rham Theorem 2.5.11 and the duality result for cohomology with local sys-
tem coeflicients given in Corollary 3.3.12 we get the following basic vanishing
result.

Proposition 3.4.2. Let X be a smooth complex Stein manifold of dimension
n. Let L be a local system of C-vector spaces on X. Then H™(X, L) =0 for
allm>n and H*(X,L) =0 for all m < n.

In the case when X is a connected, smooth, algebraic variety, one can
consider a good compactification ¥ of X, namely Y is a smooth proper variety
and D = Y\ X is anormal crossing divisor. We describe now following Esnault-
Viehweg [EV1] a stronger vanishing result for a local system £ on X satisfying
certain conditions at infinity, i.e. along the divisor D. Some of the results in
the sequel hold for X and Y complex manifolds and we place ourselves in this
more general setting,.

Let r be the rank of £ and let p : 1 (X) = Au#(C") be the representation
associated to £. Let D = Uj=1,,D; be the decomposition of D into irreducible
components. For simplicity assume that all D;’s are smooth. Choose a base



3.4 Vanishing Results 73

point z € X, points z; € D;\ U;»; D; and paths p; : [0,1] > Y fori=1,...,s
such that p;([0,1)) C X, p;(0) = z, p(1) = ;. Finally consider the loop ;
which consists in going along the path p; from p;(0) = z to p;(1 — €), then
turning around the divisor D; (in a transversal to D; at the point z; in a
sense compatible with the complex orientation) till we get back to p;(1 — €)
and finally following backwards the path p; from p;(1 — €) to p;(0) = z.

The conjugacy class of «; in 71(X, ) is independent of all the choices
involved. It follows that the conjugacy class of T; = p(7y;) is well-defined in
Aut(Cr). For any i = 1, ..., s, T; (or better, its class) is called the monodromy
operator of the local system £ about the divisor D;.

Exercise 3.4.3.

(i) Let X = P'\{a1, ..., as}. Show that the fundamental group 71(X) is gen-
erated by the loops <; (constructed as above) around the points a; and that
there is one relation between them, namely ~; - ... - v, = 1.

(if) Show that if in the above construction ¥ = P”, then all the loops ;
can be constructed on a generic line L in P™ and hence the corresponding
monodromy operators of £ satisfy T7 - ... - Ty, = 1. (In this case the loops ~;
generate the fundamental group m; (X), see for instance [D], pp. 115-116.)

With these preliminaries and this notation, we have the following vanishing
result.

Theorem 3.4.4. Let j : X = Y denote the inclusion of a smooth variety
X into another smooth variety Y such that D = Y\ X is a normal crossing
divisor with irreducible components D; for i = 1,...,s. Let L be a local system
on X such that for all i = 1,...,s the corresponding monodromy operator T;
has not 1 as an eigenvalue. Then the naturel morphism 3L — Rj. L is an
isomorphism in D*(Y).

In particular, for X affine and Y a good compactification of X, the above
assumption implies the vanishings H™(X, L) = H™(X, L) =0 for m # n and
an isomorphism H™(X, L) = H*(X, L).

Proof. Before actually starting the proof, recall that in this situation ji is
an exact functor, see Theorem 2.3.26. Hence, following the tradition, we have
written in the above Theorem j for the corresponding derived functor Rji.
The natural transformation j1£ — Rj.L induces morphisms at stalk level
H™(H1L)y = H™(RjxL)y for all y € Y. It is enough to show that these stalk
morphisms are isomorphisms for all y € Y.

When y € X the claim is obvious, since the corresponding morphism is the
identity as X isopenin Y.

When y € D then H™(jiL), = 0, e.g. by using the Theorem 2.3.26. To
show that H™(Rj.L), = 0 in this case as well, it is enough to show that
H™(B\D,L) = 0 for all m € Z and all small enough open balls B in Y
centered at y. Assume that there are k irreducible components of D that pass
through y. Then 1 < k < n and B\D is homeomorphic to (C*)¥ x C*~*.
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It follows that the corresponding fundamental group 71 (B\D) =~ 1 ((C*)* x
C**) is isomorphic to Z*. Choose this isomorphism and the loops «; such
that the first & of them correpond under the isomorphism to the canonical
basis ey, ..., e, of ZF.

STEP 1. (Reduction to the case r = rank £ =1)

If this is not the case, then there is a monodromy operator T; and an
eigenvalue ¢ of T; such that the eigenspace E = Ker (T; — cId) is a proper
vector subspace of C". Since 71 (B\D) is abelian, it follows that the operators
Tj for j =1, ...,k commute with each other. In particular F is invariant under
all these T}, i.e. it defines a subsystem L' of £|(B\D). There is also a quotient
local system L corresponding to the quotient representation on C"/E and
hence we get an exact sequence of local systems on B\D:

0L =L L"=0.

Using induction on r = rank £, we see in this way that we can suppose that
L is a rank one local system.

STEP 2. Assume that r = 1 and let £; be the local systems on C* cor-
responding to the monodromy operators T; for j = 1,...,k as in 2.5.7. Let
gj : ((C*)* x C*~*%) — C* be the projection on the j-th factor. Then it is easy
to see that

L=q"'L®..0q" L.

Using Kiinneth formula 2.3.31 and Corollary 3.3.12, or better Theorem 4.3.14,
it follows that all we need to show is that H*(C*, £;) = 0 for some j. But this
follows from Example 2.5.7 since Tj # Id for any j.

O

Remark 8.4.5. The final part of the proof above yields the following useful
property. Let B be the unit open ball in C* and D = {z € B|z;,- -z, =0} a
normal crossing divisor in B. Let £ be a rank one nontrivial local system on
B\D, i.e. with the above notation, there is a j € {1, ..., k} such that T; # Id.
Then H*(B\D, L) = 0.

The above theorem has some very useful analytic and algebraic versions
that we summarize now. To state them we have to introduce the logarithmic
de Rham complexes, see [EV1], [EV2] and [S4] for all the missing details or
proofs below. In fact, the reader has already seen the logarithmic differential
forms in the simplest situation in Examples 2.5.9 and 2.5.15.

Definition 3.4.6. The sheaf 27} (logD) of differential m-forms on Y with
logarithmic poles along the divisor D is the subsheaf of j. 2% given at stalk
level by

27 (logD), = {a € (. 2%)y|fo € 27, fd(a) € QP

where f = 0 is a reduced local equation of D at the point y € Y.
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This definition can be given in two contexts: for holomorphic differential forms
and for regular (algebraic) differential forms. When it is necessary to distin-
guish between these two situations, we will denote by 27 alg (logD) the sheaf
obtained in the latter case. The following result holds in both situations.

Proposition 3.4.7.
(i) The sheaves 125 (logD) are locally free sheaves of Oy-modules on'Y.
(i3) 2% (logD) = A™ 2L (logD).

(i) For y € Y assume thaty € D; for all j < k andy ¢ D; for oll j > k. Let
Ji = 0 be local equations at y for D; for j < k and assume that f1,..., fr is a
system of local parameters at y € Y. Then the 1-forms %, - %, Jrt1y o I
give an Oy, -basis of 23 (logD),,.

Using the last property above we get maps
rj : 2% (logD) = Op,
for j = 1,..., s which associate to a 1-form the restriction to D; of the coefli-

cient of %
7

Let now V be a vector bundle on Y endowed with a logarithmic connection
V, i.e. a C-linear map
V:V = 2 (logD) @ V

satisfying V(f - s) = df ® s+ f - Vs for any function f and any section s of
V. This connection gives rise in the usual way to C-linear maps

V: 2% (logD)® V — 25 (logD) @ V.

Definition 3.4.8. The connection (V, V) is called integrable (or flat) if V o
V = 0. If this is the case, the associated complex

DR(V,V) = (% (logD) @ V,V)

is called the logarithmic de Rham complex of the logarithmic connection
(V, V). The mappings r; introduced above induce the residue endomorphisms

I's = Resp,(V,V) : V; = V;
where V; =V ® Op; .
We have the following basic fact.

Lemma 3.4.9. Let B = }>._, . b;D; for some b; € Z be a divisor with the
support contained in D. Then to any logarithmic connection (V,V) as above
there is an associated logarithmic connection (VP ,V?) with V2 =V ® O(B)
and I'? = Resp;(VE,VB) = I; — b;1d.
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Ezample 8.4.10. Consider the local one-dimensional situation when Y is a
small open disc in C centered at the origin and D = {0}. For an integer b, let
B = bD. Then O(B), is the free rank one Op-module spanned by z =%, where
x is a local coordinate at the origin such that z(0) = 0. Then the obvious
equality
—pde

x

shows that the residue of I'P is given by I'® = —b.

d(z7%) = —bx

All the above definitions (resp. results) can be given (resp. proven) in the
two settings we have mentioned: algebraic and analytic. For the next theorem
we place ourselves first in the analytic case.

Let £ = Ker V|x be a local system on X with rank £ = rank V = r.
Moreover, the integrable logarithmic connection (V, V) induces integrable con-
nections (V;,V;) on D; for j = 1,...,s and hence integrable connections on
End(V;) by the general constructions explained in section 2.5.

It turns out that the residue endomorphisms I’; are horizontal with respect
to these connections. Hence they come from endomorphisms I JO € &nd(L;),
where L£; is the local system corresponding to the connection (V;,V;), see
[S4], p. 50, exercise 14.6. It follows that FJQ defines a unique conjugacy class
in End(C") (which we denote again by FJ‘?), and hence, in particular, one can
talk about the eigenvalues of 1"]9.

The relation between the residue endomorphism 1"]9 and the monodromy au-
tomorphism T; of the local system £ is that T; and exp(—2mil’ JQ) have the
same eigenvalues (including the multiplicities). A special case of this claim
was seen in Examples 2.5.9 and 2.5.15.

The main result, which can be regarded as a more precise form of Theorem
3.4.4 is the following (for a proof see [EV1], [EV2]).

Theorem 3.4.11. Let j : X — Y denote the inclusion of a smooth complex
analytic variety X into another such variety Y such that D = Y\X is a
normal crossing divisor with irreducible components D; for i = 1,...,s. Let
L be a local system on X associated to the integrable logarithmic connection
(V,V)onY.

(i) If all the residue endomorphisms FJO do not have eigenvalues in Z >, then
the natural morphism DR(V,V) — Rj.L is an isomorphism in D*(Y).

(i) If oll the residue endomorphisms FJ‘? do not have eigenvalues in Z<g, then
the natural morphism 1L — DR(V,V) is an isomorphism in D*(Y).

(iit) If oll the monodromy automorphisms T; do not have 1 as en eigenvalue,
then there are natural isomorphisms

#iL ~ DR(VB,VB) ~ Rj.L

in D¥(Y), for any divisor B with support contained in D.
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We would like to explain how the natural morphisms alluded to in the above
statement arise. The morphism DR(V,V) — Rj,.L corresponds via Adjunc-
tion Formula 2.3.10 to the identity morphism of £. Indeed, we have the fol-
lowing isomorphisms.

Hompyy)(DR(V, V), Rj.L) ~ Home(X)(j_lDR(V,V),ﬁ) ~

~ HO’ITLDb(X) (,C,ﬁ)

The morphism j £ — DR(V, V) corresponds again, via Verdier Duality 3.2.4,
to the identity morphism of £. In this case, we have the following isomorphisms
by Corollary 3.2.12.

Hompyy)(1L, DR(V,V) ~ Home(X)(ﬁ,j!DR(V,V) ~

~ HO’ITLDb(X)(,C,]_lDR(V,V) ~ Home(X) (;C,ﬁ)

Let us apply the above theorem to the simplest case, namely when V = Oy is
the trivial rank one vector bundle on Y with the trivial connection V f = df.
Then the residue endomorphisms are all zero, i. e. I'; = 0 for all j and hence
we get the following result. The last claim in it follows by taking Y to be
proper, i.e. by considering the special case Y = Y5.

Corollary 3.4.12 (Logarithmic de Rham Theorem). Letj: X =Y
denote the inclusion of a smooth complex analytic variety X into another such
variety Y such that D = Y\X is a normal crossing divisor. Then there is a
natural isomorphism (2% (logD),d) — Rj.Cx in the derived category D*(Y).
In particular, if X admits a good compactification Yy, then

H™(X,C) = H™ (Y, 2% (logD))
are finite dimensional C-vector spaces.

The case V = Oy and B = —D corresponds to taking V2 = Oy (—D) the
defining ideal of the divisor D in Y. The corresponding residues verify FJB =1
for all j and hence we get the following result.

Corollary 3.4.13. Let j : X — Y denote the inclusion of a smooth complex
analytic variety X into another such variety Y such that D = Y\X is a
normal crossing divisor. Then there is a natural isomorphism

(125 (logD)(=D), d) = j:Cx

in the derived category D*(Y). In particular, if X admits a good compactifi-
cation Yy, then
H?(X,C) = HZ (Y, 2% (logD)(—D))

are finite dimensional C-vector spaces.
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Let X be a smooth complex algebraic variety. To compare the analytic
and the algebraic connections on X we need one more definition. Assume
that j: X = Y is a good compactification with D = Y\ X a normal crossing
divisor having smooth irreducible components D; for j =1,...,s.

Definition 3.4.14. An algebraic connection
V:vosnk¥ey

on X is regular if there is an extension of the algebraic vector bundle V on X
to an algebraic vector bundle Vy on'Y and a logarithmic connection

Vy : Vy = Q8% (logD) ® Vy
such that Vy|X = V.
Remark 3.4.15.

(i) The definition of regularity is independent of the chosen good compactifi-
cation j: X =Y, see [De2], I1.4.4, I1.4.5 and I1.5.4.

(if) The extension (Vy, Vy) is unique if we ask that for any eigenvalue A of
any residue I'; of Vy along D; (j = 1,...,s), we have 0 < Re (A) < 1. This
special extension is called the canonical extension (or the Deligne extension)
of (V,V) and is denoted by (Vcan, Vean). Compare to Example 2.5.9.

(iii) It is enough to ask only for the existence of local extensions (in the strong
topology), i.e. existence of local basis of V|(U N X) with respect to which the
connection matrix of V has logarithmic poles, for U a small neighborhood of
any point y € D, see [De2], IL4.1. (iv).

With this notion at hand, we can state the following special case of the
Riemann-Hilbert correspondence, see [De2], I1.5.9. for the equivalence of the
claims (i) and (ii) and recall our discussion in section 2.5 for the equivalence
of (ii) and (iii). A special case was treated in Example 2.5.9.

Theorem 3.4.16. For X a smooth complezx algebraic variety, the functor
Y = V*" induces an equivalence between the following three categories

(i) the category of algebraic vector bundles on X endowed with a flat regular
connection;

(ii) the category of analytic vector bundles on X*" endowed with o flat con-
nection;

(iii) the category of finite rank C-local systems on X*".

When we pass to the corresponding de Rham hypercohomology groups, we
have the following very useful comparison theorems, see [De2], I11.3.14, I11.3.15
and I1.6.2, involving the various types of differential forms introduced above
(algebraic or analytic, with logarithmic poles or with meromorphic poles).
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Theorem 3.4.17. For any extension (Vy,Vy) as in Definition 8.4.14, such
that the residue morphisms I'; do not have any eigenvalue in Z >, the natural
morphism

25"9(logD) ® Vy = ju 2™ @ Vy

is a quasi-isomorphism (with respect to Zariski topology).

Theorem 3.4.18. Let X be a smooth complex algebraic variety and (V,V)
an algebraic regular flat connection on X. Then the natural morphism

B (X, 2% (V) = B (X", 2% (V™)
is an isomorphism.

Exzample 3.4.19. For X a smooth complex algebraic variety, the trivial connec-
tion (O%g ,d) is always regular. Indeed, to see this we can use Remark 3.4.15,
(iii) and note that in this case to the bases given by the constant function 1
corresponds to a zero connection matrix. Theorem 3.4.18 gives in this special
case a proof for Algebraic de Rham Theorem 2.1.15.






4

Constructible Sheaves, Vanishing Cycles and
Characteristic Varieties

Constructible sheaves and constructible functions, objects in which algebra
and topology are blended in subtle way, are introduced in the first section.
The study of the variation in the topology of the fibers of a function is encoded
in two functors, the nearby cycles and the vanishing cycles, whose definitions
and main properties are given in the second section. The characteristic variety
and the characteristic cycle, geometric ways to measure how far a constructible
sheaf is from a local system, are introduced in the third section.

4.1 Constructible Sheaves

We assume in the sequel that the base ring A is commutative and noetherian
and that the global dimension gld(A) is finite. Let X be a complex analytic
space and let P = (X;);cs be a locally finite partition of X into non-empty,
connected, locally closed subsets called the strata of P. The partition P is
called admissible if it satisfies the following conditions.

(i) The frontier condition, i.e. each frontier 8X; = X;\X; is a union of
strata in P;

(ii) Constructibility, i.e. for all j € J the spaces X; and 8X; are closed
complex analytic subspaces in X.

In the sequel our partitions are assumed to be admissible unless stated
otherwise.

Definition 4.1.1. (i) A sheaf F € mod(Ax) is weakly constructible if there
is a partition P = (X;);cs such that the restriction F|X; is an A-local system
for oll j € J. In this situation we also say that F is P-weakly constructible or
that F is weakly constructible with respect to the partition P, when we like to
mention the partition P.



82 4 Constructible Sheaves, Vanishing Cycles and Characteristic Varieties

A sheaf F € mod(Ax) is constructible if it is weakly constructible and all
its stalks F, for x € X are finite type A-modules.

(ii) A complex F* € DV (X) is called weakly constructible (resp. con-
structible) if all its cohomology sheaves are weakly constructible (resp. con-
structible).

Remark 4.1.2.

(i) Our definition above of a constructible sheaf corresponds to the notion of
C-constructible sheaves in [KS], see p. 347. It is a special case of the notion of
cohomologically constructible sheaves introduced in [KS], p. 158. When X is a
complex algebraic variety it is usual to work only with constructible partitions
in the algebraic sense, i.e. X; are locally closed in the Zariski topology. We
will follow this view-point, and hence the class of constructible sheaves on a
complex algebraic variety X is smaller than the class of constructible sheaves
on the associated analytic variety X *".

(ii) If P' = (Xj)j ey is a partition finer than P, i.e. any stratum in P is
a union of strata in P’, then it is clear that any P-(weakly) constructible
sheaf or complex is also P’-(weakly) constructible. In this way we can assume
whenever we need that our partition P is a stratification, i.e that all the
strata are smooth constructible subvarieties. Moreover, we can assume that
this stratification is Whitney regular, see Verdier [V1].

(iii) For X a real analytic manifold or a real semialgebraic set, it is usual to
consider R-(weakly) constructible sheaves and complexes with respect to sub-
analytic partitions, see [KS], pp. 338-339. Such partitions can be obtained for
instance using triangulations of X, case in which all strata are contractible.
This property plays an important role in proving some results in the real ana-
lytic case which are not true in the complex analytic or algebraic setting. For a
concrete example see Remark 4.1.30 below. One can also define constructible
sheaves on more general spaces, i.e. on a topological pseudo-manifold, see [B1],
p. 60. Most of the results described below hold in these wider settings, see
Chapter 4 in [Snl].

Exercise 4.1.3.

(i) If F and G are (weakly) constructible sheaveson X andif u: F + Gisa
morphism, then the sheaves F &G, F® G, Ker (u), Im (u) and Coker (u) are
(weakly) constructible.

(ii) Let 0 = F1 = F — F2 — 0 be an exact sequence in mod(Ax). Show that
if two of these sheaves are P-(weakly) constructible, then so is the third.

In case you need a hint for this exercise, you can find some help in [MeNM)],
pp. 63-64.

We denote by D% (X) (resp. D%(X)) the full triangulated subcategory of
the derived category D?(X) consisting of weakly constructible (resp. con-
structible) complexes. One can also consider the category C,(X) (resp.



4.1 Constructible Sheaves 83

C(X)) of weakly constructible (resp. constructible) sheaves of Ax-modules
on X. Both of these categories are abelian full subcategories in mod(Ax),
see [KS], p. 339 for the R-constructible case and [MeNM] pp. 63-64 in the
C-contructible case, and one has natural morphisms D*(C,, (X)) = D! (X)
and D*(C(X)) = D%(X). These morphisms are claimed not to be category
equivalences in general, see [KS], p. 347. However, we have the following result
in the algebraic setting, see [Be], [No].

Theorem 4.1.4. Let A be a field and X a complex algebraic variety. Then
the morphism
D*(C(X)) - DY(X)

is an equivalence of categories.

This result also holds for R-constructible sheaves on a real analytic manifold,
see [KS], Theorem 8.4.5, p. 339 and it is one of the main differences between
the algebraic and analytic cases considered in our book.

The following result says that constructibility is preserved under many
natural sheaf theoretic operations. Recall that this is not the case for local
systems, see Exercise 2.5.2, (ii). For a proof in the case X, Y smooth see [KS],
p. 347, Proposition 8.5.7. The singular case follows from [B1], see also Remark
4.1.7 below. The claim in (i) (b), the algebraic case, is in [No]. For a unified
treatment, see [Snl], Theorem 4.0.2, pp. 215-216.

Theorem 4.1.5.

(i) Let f : X = Y be a morphism of analytic spaces or of complex algebraic
varieties. Then the following holds.

(a) If G* € DX(Y), then f~1G* € D%(X) and f'G* € D4(X).

(b) If F* € D%(X) and f is an algebraic map, then Rf.(F*) and Rfi(F*)
are constructible. If F* € D%(X) and f is an analytic map such that the
restriction of f to supp(F*) is proper, then Rf.(F*) and Rfi(F*) are con-
structible.

(ii) If F*,G* € DA(X), then F* ® G* € D}(X) and RHom(F*,G*) € D¥(X).

One can briefiy restate the above result by saying that the category D%(X)
of “constructible coeflicients” is closed under Grothendieck’s six operations:

Rf, Bfi, 1, f', RHom and &.

Corollary 4.1.6. Assume that F* € D%(X) and that either
(i) X is an algebraic variety, or
(i) X is an analytic space and supp(F*) is compact.

Then H™ (X, F*) and HI* (X, F*) are finite type A-modules for all m € Z.
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Remark 4.1.7.

(i) Let f : X — Y be a morphism of analytic spaces or of algebraic va-
rieties. For any constructible sheaf F on Y the inverse image sheaf f~'F
is constructible. This claim follows from Theorem 4.1.5, by noting that the
functor f~! is exact, and hence it coincides with the corresponding derived
functor. In a simpler way, it follows from the fact that for any S C Y con-
structible, f71(S) is constructible in X, combined with the obvious isomor-
phism (f~'F); = Fy(y) for any z € X.

(ii) For any locally closed constructible subspace S in X, let ig : § =+ X
denote the inclusion. Then, when S is closed, for any constructible sheaf F on
S, the sheaf F¢ = ig1F = ig.JF is a constructible sheaf on X. This claim fol-
lows by noting that a partition for S with respect to which F is constructible
extends in a natural way to a partition of X with respect to which F¢ is
constructible.

When S is closed, then the sheaf F°¢ can be used in place of F, e.g. since
H™(S,F) = H™(X,F¢). In this way one can reduce the study of constructible
sheaves on a singular space (which admits local or global embeddings in a man-
ifold) to the study of constructible sheaves on a manifold. In this latter case
one can use the micro-local point of view involving the cotangent bundle 7* X,
see the last section in this Chapter. Similar remarks apply to constructible
complexes F* on singular spaces.

When S is a locally closed constructible subspace in X and F is a constructible
sheaf on S, the sheaf ig1(F) is not necessarily a constructible sheaf on X. A
simple example of this situation is when X = C, S = C* and F is the sheaf
on S with supp(F) = {z.|n € N}, where z,, = 17 and F,, = C".

On the other hand, when S is a locally closed constructible subspace in X
and £ is a local system (resp. a local system of finite rank) on S, then the
sheaf ig1(L) is a weakly constructible (resp. constructible) sheaf on X. Such
constructible sheaves are the building blocks of a general constructible sheaf
as it is shown in the next result.

Actually, the following couple of results apply to both weakly constructible
and constructible sheaves. To express this in a short way, we state them for
(weakly) constructible sheaves, a convention used already in Exercise 4.1.3
above.

Corollary 4.1.8. Let F be a P-(weakly) constructible sheaf on X. Then for
any point x € X there is an open neighborhood U of x in X such that the
restriction F|U has a finite filtration

0=FoCFC..CF.=FU

where the sheaves Fy, are all P|U-(weakly) constructible and the gquotients
Fr+1/Fr are of the form i with i : SNU — U the inclusion of the stratum
SNU in the induced partition P|U of U and £ a local system on SN U.
Moreover, in the case when X is an algebraic variety, one can take U = X.
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Proof. Since the question is local and all our partitions are locally finite, we
can assume that the partition P is finite. In this case we will show that one
may take U = X in the above statement.

Let’s do induction on the number of strata in P. If [P| = 1, then P =
{S = X} and there is nothing to prove. Suppose now that |P| = ¢ > 1 and
the claim holds for all partitions P’ with |P’| < ¢. Let U be the union of
the open strata in P, let j : U — X be the inclusion and let i : Z —+ X be
the inclusion of the complement Z = X\U. Since Z is a closed constructible
subset of X, it follows that Z is an analytic (or algebraic, depending on the
context) subvariety.

Then we have the following exact sequence

05 ' FaF =i i tF=0

see Theorem 2.3.26, (ii) and Remark 2.4.5. Now j~1F is a local system on U
and G = i~1F is a Po-(weakly) constructible sheaf on ¥ where Py is formed
by all the non-open strata in P and hence |Py| < ¢. It follows that there is a
filtration of (weakly) constructible sheaves on ¥V

0=FCHC..CFn=6

such that all the quotients Fp41/F have the required form. Let w : F —
i«i"'F be the surjective morphism in the above exact sequence. Then we
take F§ = 0 and Fj, = u 1 (i.Fg—1) for 1 < k < m + 1. Remark 4.1.7 implies
that the sheaves Fj, are all (weakly) constructible. The exact sequences

0 jij ' F = Fp = ixFp—1 >0

show that all the quotients F; , /F; have the required form. O

The following result has a certain analogy to the famous Cartan’s Theo-
rems A and B on coherent sheaves on Stein spaces, see for instance [KK].

Theorem 4.1.9. Let X be a complex analytic space and let F be o (weakly)
constructible sheaf on X with respect to a Whitney stratification S. Then, for
any stratum S € S and any point xo € S, there is an open neighborhood V' of
xo in X such that the following properties hold.

(i) The natural morphism I'(V,F) — F, induced by taking the germ of a
section is an isomorphism for allz € SNV.

(i) HI(V,F) =0 for all j > 0.

The proof of this theorem shows a common feature in working with con-
structible sheaves: sometimes it is easier to prove results about constructible
complexes in D?(X) than to treat individual sheaves. Indeed, in dealing with
complexes, we can use a lot of standard distinguished triangles and, in this
way, prove the result by induction. In the situation at hand we will establish
the following result which clearly implies Theorem 4.1.9.
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Theorem 4.1.10. Let X be a complex analytic space and let F* € Dg(X)
be a (weakly) constructible complex with respect to a Whitney stratification S.
Then, for any stratum S € S and any point xg € S, there is an open neighbor-
hood V of ¢ in X such that there is o natural isomorphism RI'(V, F*) — Fq
in the derived category D*(A) for allz € SNV.

Proof. It is clear that X' = supp(F*) is a closed analytic subset of X, which
is a union of strata in S. For SN X = @ the claim is obvious, so we consider
in the sequel only the case S C X.

The proof is by induction on dimX. If dimX¥ = 0, then the claim is
again obvious. Suppose now that the claim holds for all complexes F* with
dimsupp(F*) < d and let G* € D%(X) be a complex with dimsupp(G®) = d.
Using induction on the length of the complex G* (via the 5-lemma), we can
assume that its length is zero, i.e. G*® is in fact a single sheaf G, placed in
degree zero.

The claim we try to prove being a local one, we can use Corollary 4.1.8, the
5-lemma and take G = 1L where ¢ : T — X is the inclusion of a stratum
T € S such that S C T\T, dimT < d and L is a local system on 7. In the
obvious distinguished triangle

0wl = Ri.L —C* =

we have supp(C*) C T\T and hence dimsupp(C®) < d.

It follows, again by the 5-lemma, that the claim in the theorem holds for the
sheaf 4L if and only if it holds for the complex Ri,L. Indeed, the sheaf i1
is (weakly) constructible by Remark 4.1.7, Ri, £ is (weakly) constructible by
the topological discussion below, and hence C* is also (weakly) constructible
in view of 4.1.3. Therefore we can use the induction hypothesis.

Using now the topological triviality of a stratified space along a stratum,
it follows that xo has a fundamental system of neighborhoods V' which are
products V = N x Vp, with N a small transversal to S at the point z¢ and
Vb an open neighborhood of zg in S corresponding to an open ball centered
at the point z¢ in a local chart. Let Ty = N NT and note that we have the
following isomorphisms in D?(A)

(RixL)z, = lim RI(V, RixL)

BQEV
using Exercise 2.3.17. Then we have

li_r>n RI'(V,Ri.L) ~RI(VNT,L)~RI'Vp xTp, L) ~ RI'({zo} x T, L)

g EV

using the homotopy invariance of the cohomology with local coeflicients as
discussed in Remark 2.5.12. More precisely, the last isomorphism comes from
the fact that the inclusion {zo} x To = Vp x Ty is a homotopy equivalence.
The same argument applies to all the inclusions {z} xTp — Vo x T} for z € Vp,
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and this proves our claim. A “static” version of this result (i.e. one in which
we take x = x¢) can be found in Corollary 4.3.11 below, with a different proof.
0O

Definition 4.1.11. Let X be a complex analytic space and let F be a sheaf
of A-modules on X. The regular set of the sheaf F is the open set Reg(F) in
X, consisting of all points x € X having o neighborhood V such that F|V is
a local system on V. The singular set (or the singular support ) of the sheaf
F is the closed set Sing(F) = X \Reg(F).

Proposition 4.1.12. With the above notation, if F is a (weakly) constructible
sheaf with respect to a Whitney stratification S, then its singular set Sing(F) is
a closed analytic subset in X such that Int(Sing(F)) = 0. Moreover, Sing(F)
s a union of some non-open strata in S.

Proof. To prove that Sing(F) is a closed analytic subset in X it is enough
to show that for any stratum S € S one has either S N Sing(F) = @ or
S C Sing(F). If W is a maximal dimensional stratum, then W is open and
clearly W C Reg(F). Assume by decreasing induction that the above claim
on the stratum S holds for all strata of dimension > d.
Take now a stratum S with dimS = d and such that SNReg(F) # #. We have
to show that S C Reg(F). To do this it is enough to show that the intersection
S N Reg(F) is both open (clear) and closed in S. The result would follow by
the connectivity of S.
Let 2o € SN (SNReg(F)), S' = {T € S;zo € T} and let X' be the union
of all strata in &'. Then X' is an open neighborhood of zp in X and &' is a
Whitney stratification of X' such that S is the only closed strata. It follows
that for T € &', T # S one has dimT > d and T N Reg(F) # 0. Indeed, for
y € SNReg(F) we have y € T and Reg(F) is a neighborhood of y.
By our induction hypothesis it follows that X'\S C Reg(F). Theorem 4.1.9
implies the existence of an open neighborhood Xg of g in X’ such that the
restriction

E= F(Xo,]:) = Fs

is an isomorphism for all z € Sg = Xo N S. Let S be the stratification of Xo
(with connected strata!) induced by the stratification S. By taking X, small
enough, we can arrange that S defined above is connected, is the only closed
stratum in Sy and is contained in the closure of all the other strata.

Let Up = Reg(F) N Xo and Fy = F|Xo. Consider the natural morphism
u: Ex, = Fo and set X = Ker (u), C = Coker (u). Then both £ and C
are Sp-(weakly) constructible sheaves on Xy by Exercise 4.1.3. The above
isomorphism shows that K|So = C|Sp = 0. For any stratum Tp in So, To
different from Sy we set To = T'o N Uy. Note that Ty C Ty C T which implies
that Tp is itself connected. The restriction of the sheaves K and C to T} are
local systems (since Ty C Up) and their fibers at any point y € SoNTy = SoNUp
are trivial. Hence these restrictions are zero themselves. This implies that
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K = C = 0 and hence « is an isomorphism, showing that zo € Reg(F) and
completing the proof of our claim above. The fact that Int(Sing(F)) = 0 is
also clear from the above proof.
O
The above result is now used to establish a key property of constructible
sheaves, namely the property of a sheaf (resp. complex) to be constructible is
a local property in the following sense.

Proposition 4.1.13. Let F € mod(Ax) (resp. F* € D(X)) be a sheaf
(resp. a complex). Then F (resp. F*) is (weakly) constructible if and only if
there is an open covering (U;) of X such that all the restrictions F|U; (resp.
Fe|\U;) are (weakly) constructible.

Proof. It is clearly enough to treat only the case of a sheaf. Moreover, if F
is constructible then all the restrictions F|U; are constructible with respect
to the induced stratifications on U;.

To prove the converse, we use induction on dimX . If dimX = 0, then there
is nothing to prove. Let dimX = n and assume that the result holds for any
space of dimension < n.

For each i, let V; = Reg(F|U;) and set V = Reg(F). Since VNU; =V, it
follows by Proposition 4.1.12 that Sing(F) is a closed analytic subset in X
which is nowhere dense. (To see this look at the germ of the set Sing(F) at any
point z € X and show from the above discussion that this germ (Sing(F), z)
is analytic.
The result then follows applying the induction hypothesis to the restriction
F|Sing(F).

O

Remark 4.1.14. If X is a complex algebraic variety and F is constructible with
respect to the Zariski topology, it follows by Proposition 4.1.12 that Sing(F)
is a closed algebraic subvariety in X. Moreover Proposition 4.1.13 holds for
the Zariski topology as well.

Remark 4.1.15.

(i) For any algebraic variety X, the category Coh(X) of coherent sheaves of
Ox-modules on X is an abelian category, see [KS], subsection 11.1. As a re-
sult, the associated derived categories D*(Coh(X)) are defined in the usual
way. The interest in these categories was enhanced by the Homological Mir-
ror Symmetry Conjecture proposed by Kontsevich at the ICM in Ziirich in
1994, see [Kon]. Roughly speaking, this conjecture asserts that if X and Y are
two Calabi-Yau varieties which are mirror to each other, then the bounded
derived category D®(Coh(X)) is equivalent to the Fukaya category of Y, a
triangulated category constructed by applying the symplectic geometry to Y,
see [Kon], [Or2].

If a smooth irreducible projective variety X has ample canonical (resp. anti-
canonical) bundle, then D?(Coh(X)) determines uniquely the variety X, see
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[BO1]. Moreover, when X and Y are smooth projective varieties, then any
exact fully faithfull functor D*(Coh(X)) — D®(Coh(Y)) is obtained by using
an analytic version of the Fourier-Mukai transform introduced in Definition
2.3.32, see [Orl]. For very interesting applications to birational geometry, in
particular to the minimal model program, see [BO2] and [Bri].

(ii) For the reader coming from algebraic or analytic geometry, it is tempting to
compare the constructible sheaves to the coherent sheaves. To see the common
points as well as the differences, consider the case of the algebraic variety
X = C, the affine complex line.

According to Corollary 4.1.8, a constructible sheaf F on X is given by the
following data (here we take the base ring A to be C).

(a) A finite set of points Sing(F) = {a1,...,an} C C.

(b) A local system £ on Reg(F) = C\Sing(F). This local system is given
by a representation p : w1 (Reg(F)) =+ GL,,(C). The fundamental group in
question being free on n generators, this is the same as an n-tuple (77, ..., T,,) €
GL,,(C)™ of invertible linear operators.

(c) For each point ay, € Sing(F), a linear map ry : C™ — Ker (T}, — Id),
corresponding to the restriction

Fo, = I'(Dy, F) = L(Dy, L).

Here Dy, is a small open disc centered at ai and D} = Dp\{ay}.
If j : Reg(F) — X is the inclusion, then we have an exact sequence of con-
structible sheaves on X

0> 4L —>F—>F/pl —0.

The last sheaf has its support contained in Sing(F).
A coherent sheaf M corresponds to a C[t]-module M of finite type. Since C[¢]
is a PID, it follows that M can be decomposed as a sum

M= Mfree @ Miors

where Mgy, is a free C[t]-module, say of rank r, and M, is a torsion C[t]-
module. It follows that there is a finite set of points B = {b,, ...,b,} C C and
for each s = 1,...,p a sequence of integers

ksl 2 ks2 2 2 ksns >0

Clt
Miors = Ds=1,p (eaa:l’"“(t—%) :

This discussion shows that there is an exact sequence of coherent sheaves on
the algebraic variety X

such that

050% > M->M/O% -0
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where the quotient has the support contained in B. Comparing these two ex-
act sequences, and taking into account the fact that the local system £ is more
complicated than the trivial bundle O%, we see that the constructible sheaves
are, in some sense, more complicated objects than the coherent sheaves. This
claim is also supported by the following remark. For X = C as above, the
Grothendieck group K(Coh(X)) (whose definition is recalled below) is iso-
morphic to Z. Indeed, with the above notation, it follows that [M] = r[Ox].
On the other hand, for any integer n > 0, there is a surjective group homo-
morphism
K (X) = K(C(X)) = (C)"

constructed by choosing n points a1, ..., @, in C and defining
F = (det(Ty), ..., det(Ty).

Here T}, is the monodromy of F|Reg(F) along an elementary loop around the
point aj as in Remark 4.1.30 below. In case a; € Reg(F) we set Ty, = Id. In
fact, only the conjugacy class of the linear automorphism Tj is well-defined,
but this is enough to define the above homomorphism.

The following result contains the main properties relating duality and con-
structibility. For proofs we refer to [KS], Proposition 3.4.3, p. 158 and Propo-
sition 8.4.9, p. 342, to [B1], Corollary 8.7, p. 137 and Theorem 8.10, p. 139 as
well as to [Snl], Corollary 4.2.2, pp. 244-245.

Theorem 4.1.16.

(i) Let F* € D*(X) and assume that A is a Dedekind domain, e.g. A is a
field or A = Z. Then F* is constructible if and only if the dual DF*® is
constructible. In particular the dualizing sheaf wx = DAx is constructible.

(i5) Under the assumption that F* € D%(X) we have the following.
(a) the natural morphism F — D(DF*®) is an isomorphism;
(b) For any z € X one has (DF*), ~ RHom(RI(X,F*),A).
Corollary 4.1.17.

(i) If F* € D%(X) and f : X =Y is a morphism of algebraic varieties, then
Rfi(DF*) ~ D(Rf.(F*)).

(i) If G* € DY) and f : X = Y is a morphism of algebraic varieties or of
analytic spaces, then f~1(DG*) ~ D(f(G*)).

Proof. Use the above theorem and Proposition 3.3.7. For instance, it fol-
lows from the above theorem, claim (a), that Rfi(DF*) ~ D(Rf.(F*)) is
equivalent to DR fi(DF*) ~ Rf.(F*). Proposition 3.3.7 gives then

DRf(DF*) ~ Rf.(DDF*) = Rf.(F*).

The proof of the second claim is similar. O
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Corollary 4.1.18. When A is a field, then for any complex F* € D(X) one
has

Hm(Df.)a; ~ Ha:_m(.X, f.)v
for any integer m € Z. In particular supp(DF°®) = supp(F*).

Proof. Taking the m-th cohomology groups in the isomorphism in Theorem
4.1.16 (iii) we get

H™(DF*), ~ H*(DF;) ~ Ext™(RI[(X,F*),A).
Using Proposition 1.4.3 and Example 1.4.8, it follows that
Ezt™(RI(X,F*), A) =~ Hompe(moaca)) (RI%(X, F*), Alm])

~ Hom(H3(X,F*),Alm]) ~ H,™(X,F*)".

Using now the excision property from Remark 2.4.2 (ii), we get H; ™(X, F*) =
H_™(B,F*) for any open neighborhood B of z in X. If z ¢ supp(F*) it
follows that we can find a neighborhood B as above with B N supp(F*) = 0.
It follows that H,™(B,F*) = 0 for any y € B and hence & ¢ supp(DF*).
This shows that supp(DF*®) C supp(F*). Applying once again this argument
we get supp(F*) = supp(DDF*®) C supp(DF*) and hence the claim is proved.

O

Remark 4.1.19. In fact Theorems 4.1.5 and 4.1.16 are more precise by saying
something about the partitions P involved. For instance, in Theorem 4.1.16,
if F* is constructible with respect to a Whitney regular stratification P, then
DZF* is also P-constructible, see [B1], p. 136-137.

This remark can be used to give a proof of the following claim in [HL2],
Remark 2.2.1. For a more general result, see [Snl], Proposition 4.2.1, p. 235.

Proposition 4.1.20. Let P = (X;)jcs be a Whitney regular stratification
and F* a P -constructible complex. Then the cohomology sheaves of z'!j]-" are
local systems on X; for any stratum X;, where i; : X; — X denotes the
inclusion.

Proof. Using Corollary 4.1.17 and Theorem 4.1.16 it follows that
i5F* ~ D(i; ' (DF?)).

As remarked above, DF* is also P-constructible, hence z'j_l’H"‘(D]-") =
H™(G*) where G* = z'j_lD]-" are local systems on X; for any m € Z. In
other words, the complex G* is P;-constructible, with P; the trivial partition
of X; consisting of one stratum, namely X;. Applying once again the above
remark, we get that DG is again P;-constructible. O

Unless otherwise stated, we assume till the end of this section that the base
ring A is a field. The following result compares the two restrictions ig' F* and
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z'fg]-' * of a constructible complex F* to a smooth subvariety S contained in
X, with ig : S = X the inclusion. In case X is smooth and S is transverse
to the strata of a stratification & with respect to which F* is constructible,
it follows from Corollary 4.3.7 below that there is a natural isomorphism
ig' F*[—2codim S] — i'sF*, see also [GoM1], formula (15) in section 1.13. We
consider here the other extreme situation, namely when S is a stratum of the
Whitney stratification & considered above.

Theorem 4.1.21.

(i) Let F* be a bounded S-constructible complex on the complex algebraic
variety X and let S be a stratum in the Whitney stratification S. Then
X(8,ig" F*) = x(S,i5F*).

(ii) Assume in addition that S is closed in X and let K denote the link of S
in X. Then x(K,F*) =0.

Proof. Since S is locally closed in X we can assume without loss of generality
that S is closed (otherwise we replace X by an open subset containing S as a
closed subset). Let V' = X\S and let j : V' — X be the inclusion. To simplify
the notation, we write 4 for the inclusion ig.

The adjunction triangle

iwi'F* = F* = Rjuj ' F* =
gives by applying the functor i~! the following distinguished triangle
i F =i F iR
Applying the hypercohomology and taking the Euler characteristics, we get
x(S, ' F®) + x (K, F*) = x(S,i 1 F*)

where K = Lx(S) is the link of S in X, see Example 2.3.18. It follows that
our first claim is equivalent to the vanishing (K, F*) = 0, a result already
discussed in the case F* = Qx in Example 2.3.18. To prove the general
vanishing result, note that the link K has a filtration

P=K,=KnNnX°CK,u=KnX*cC..

where X™ is the union of all the strata in S of dimension at most m and
s = dimS. It follows that X™ is a closed subvariety in X and K,, is precisely
the link of S in X™. Let K' C K" be two consecutive terms in the above
stratification of the link K and X' C X" the corresponding pair of subvarieties
in X. The exact sequence

- HE (K"\K',F*) - HE (K", F*) - HE (K", F*) - HEH (K'\K', F*) -

implies that it is enough to show that x.(K"\K', F*) = 0.
Using the usual spectral sequence from cohomology to hypercohomology
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EpY = HP(K'\K', HI(F*)) = B+ (K"\K', F*)

as in Remark 2.1.6, it follows that it is enough to prove the vanishing for F* a
local system £ on K"\K'. When K"\ K' is connected, the result follows since
X(K"\K', L) = x(K"\K') - rank(L) as in Proposition 2.5.4 and in Exercise
3.3.13, plus the equality x(K'"\K") = x(K") — x(K') = 0 obtained using
the additivity of the Euler characteristics of complex varieties, see [F] (here
we look at links as complex analytic spaces) or [Sull] (if we look at links as
stratified spaces having only odd dimensional strata).
When K"\K' is not connected, the above arguments apply to each connected
component of K"\K'. In fact these components are in bijection with the
irreducible components of the analytic space germ of X" along X'.
The above argument shows that x.(K, F*) = 0. Now we use the fact that the
dual sheaf DF® is itself S-constructible and the Poincaré-Verdier duality in
Theorem 3.3.10 implies x(K, F*) = x.(K,DF*) = 0 (here again we look at
links as complex analytic spaces).

O

The above result is the key point in the proof of the following basic addi-
tivity property of the Euler characteristics.

Theorem 4.1.22. Let X be a complex algebraic variety and S o Whitney
regular stratification. Let F* be an S-constructible bounded complex on X.
Then

XX, F*) =D x(S,ig F*) = D x(S,isF*) = Y x(S) - x(H*(F*)as)
Ses Ses Ses

where ig : S — X denotes the inclusion and xg € S is an arbitrary point.

Proof. The second equality in the above theorem is proved in Theorem
4.1.21. To prove the first equality, we proceed by induction on dimX. For
dimX = 0 the result is clearly true. Let U be the union of the open strata in
S and let j : U = X be the inclusion of U and ¢ : Z — X be the inclusion of
the complement Z = X\U. The adjunction triangle implies that

X(Xaj:.) = X(Uaf.) +X(Z7i!]:.)'

Applying the induction hypothesis to the variety Z (this can be done as
dimZ <dimX) and to the constructible complex i'F* (with respect to the
induced stratification on Z) we get

X(Zai!]:.) = Z X(Sal,'S']:.)
Se8,dimS<dimX

On the other hand
X(Uaf.) = Z X(Sﬂ.glf.) = Z X(Sai,!S']:.)

Se8,dimS=dimX Se8,dimS=dimX
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since for an open embedding j one has j~! = j', as in Corollary 3.2.12. This
completes the proof for the first two equalities.
To get the third equality, use the spectral sequence in Remark 2.1.6, (i) to
compute H°(S,i5'F*) in conjunction with Proposition 2.5.4,(ii).
O

It is clear that the Euler characteristic with compact supports enjoys the
additivity property expressed by the first equality in the above theorem, see
Remark 2.4.5,(ii). Moreover, it is known that for constant coefficients, the
Euler characteristic with compact supports coincides with the Euler charac-
teristic, see Fulton, [F], pp. 141-142. The following result says that this is true
for any constructible coeflicients.

Corollary 4.1.23. With the above notation, x(X, F*) = x.(X, F*).

Proof. Via the additivity property enjoyed by the two Euler characteris-
tics, it is enough to prove the result for X = S, i.e. for a complex whose
cohomology sheaves are local systems. The result then follows by using again
the spectral sequence in Remark 2.1.6,(i), its analog for the hypercohomology
with compact supports (obtained for instance from Corollary 2.3.24 by taking
X =Y and f = Id) and Exercise 3.3.13.

O

Remark 4.1.24. Theorems 4.1.21 and 4.1.22 apply not only to complex al-
gebraic varieties but also to other analytic spaces, e.g. to compact analytic
spaces or to spaces that are obtained from complex algebraic varieties by real
algebraic constructions. For instance, if f : X — Y is a morphism of complex
algebraic varieties, y € Y is any point and B, is a small open ball in Y cen-
tered at y (constructed using a local embedding of (Y, y) in a smooth germ),
then T, = f~1(B,), the tube of the map f at the point y is such an analytic
space to which Theorems 4.1.21 and 4.1.22 apply.

This more general setting yields the following.

Corollary 4.1.25. With the above notation, let X, = f~(y) be the fiber of
the morphism f: X =Y aty € Y. For any constructible sheaf complex F*
on X we have

X(Tyaj:.) = X(Xw]:.)'

Proof. Using Corollary 4.1.23, we get x(Ty, F*) = x(T;, F*) + x(Xy, F*),
where Ty = T,\X,. The vanishing of x(T,F*) follows from the equality
x(Ty,F*) = x(B,, Rf«(F*)) via Theorem 4.1.21 (ii), with Bj = B,\{y} the
link of y in Y. Note that the size of the tube (i.e. of its base By) depends on
both the morphism f and the sheaf complex F°.

0O

Constructible sheaves enter into several vanishing results. As an example,
one has the following generalization of Proposition 3.4.2.
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Theorem 4.1.26 (Artin Vanishing Theorem, Constructible Version).
Let X be an affine complex algebraic variety and F be o weakly-constructible
sheaf on X. Then H™(X,F) =0 for any m > dimX.

For a proof of this result we refer to [SGA4], Exposé XIV, Corollary 3.2,
[HL1], [HL2], [No] and [Sn1], Corollary 6.1.2, p. 423. Here we just note that
it seems impossible to prove Artin Vanishing Theorem by induction on dimX
using only the adjunction triangle. Indeed, it is natural to take Z a closed
hypersurface in X such that U = X\Z is affine and F|U is a local system in
hope of using the vanishing result 3.4.2. However, if i : Z —+ X denotes the
inclusion, then i'F is in general a complex and not just a sheaf on Z. Hence we
cannot use the induction hypothesis to infer the vanishing of the cohomology
groups H™(Z,i'F).

Next we discuss the main properties of constructible functions on the com-
plex analytic space X.

Definition 4.1.27. A function f : X = Z is constructible if there is a parti-
tion P = (X;)jes of X such that the restriction f|X; is a constant function
forallj e J.

In this situation we also say that f is P-constructible, when we like to mention
the partition P. When X is a complex algebraic variety only algebraically
constructible partitions are to be used in this definition. We denote by CF'(X)
the ring of constructible functions on X, where the addition and multiplication
are the usual addition and multiplication of functions with values in a ring.

Exzample 4.1.28.

(i) For any constructible subset Y C X, its characteristic function 1y : X =+ Z
defined by 1y(z) = 1if z € Y and 1y(z) = 0if z ¢ Y is a constructible
function.

(ii) For any complex F* € D%(X), the associated Euler characteristic function
X(F*)(z) = x(F2) is a constructible function.

Let K.(X) be the Grothendieck group of the triangulated category D2(X),
namely the quotient of the free abelian group generated by the objects (or,
equivalently, by the isomorphism classes of objects) in the triangulated cate-
gory D%(X) modulo the subgroup generated by the relations F* = Fp + F3 if
there is a distinguished triangle 77 — F* — F5 —. If such a triangle exists,
then one clearly has the following equality of constructible functions

X(F*) = x(F7) + x(F3)-

In other words, we get a group homomorphism x : K.(X) - CF(X).

Note that for any abelian category .4 one can define in a similar way
the Grothendieck groups K(A) (using exact sequences 0 -+ X; - X —
X; — 0) and K(D%(A)) (using distinguished triangles as above). These
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two Grothendieck groups are isomorphic under the following natural mor-
phisms [X] — [X] for any X € A and [X°*] — 3, (-1)"[H™(X*)] for any
X* € D(A), see [KS], p. 77.

The general philosophy is that the Grothendieck group K (A) of a category
A is simpler than the original category .A. A good illustration of this principle
is the following.

Exzample 4.1.29.
(i) Let k be a field and Vect the abelian category of the finite dimensional
k-vector spaces. Then there is an obvious isomorphism

x:K(Vect) > Z

sending the finite sum 3" n;[V;] to Y n;dim;V;. Note that the composition
x : K(D¥(Vect)) ~ K(Vect) — Z is exactly the Euler characteristic of a
complex, i.e. x(V*) = x(H*(V*)).

(if) Let k be an algebraically closed field and let VectM be the category of
pairs (V,u) where V is a finite dimensional k-vector space and u is a linear
endomorphism of V. In most of the interesting special cases to be discussed
later in this book, u is related to some monodromy operator and this explains
to a certain extent the name chosen for this category.

A morphism (V,u) = (W,v) in VectM is a linear map f : V - W
such that vf = fu. Note that VectM is a full subcategory of the category
of A = k[T] modules, where we regard a pair (V,u) as coming from the A-
module V, in which we set Tz = u(z) for all z € V. It follows in this way
that VectM is an abelian category. Next, using the Jordan normal form of
an endomorphism, one can easily show that an element (V,u) is equivalent
in K(VectM) to an element (k",s) where n = dim;V and s is a diagonal
endomorphism having exactly the same eigenvalues as w. In other words, if
we consider the characteristic polynomial of an endomorphism u given by

Au)(t) = det(t - Id — u),
then A(u)(t) = A(s)(¢). This fact gives rise to an isomorphism
A:K(VectM) = k(t) oo
where k(t)s is the multiplicative subgroup in k(t)* consisting of all fractions
P(t)/Q(t) with P(t) and Q(¢) monic polynomials in k[t]. This isomorphism

sends a finite sum ), n;[(V;,u;)] to the product [] A(u;)" . There is an obvi-
ous commutative diagram

K(VectM) 22— k(t)oo

lfor ldey
Z

K(Vect) X
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where for is the morphism [(V,u)] — [V] obtained by forgetting the endo-
morphism u and deg is the degree of a rational function, i.e. deg(P(t)/Q(t)) =
degP(t) — degQ(t). When u is an automorphism, then it is sometimes conve-
nient to replace the characteristic polynomial A(u) by the polynomial

Z(u)(t) = det(Id —t - u).

The obvious equality
t"Z(w)(t™) = A(u)(t)

with n = dim;V = degZ(u) = degA(u) implies that the polynomials Z(u)
and A(u) determine each other. In this way, if VectM™* denotes the full sub-
category of VectM consisting of pairs (V, «) with « invertible, then we get an
isomorphism
Z: K(VectM*) = k(t)o

where k(t)o is the multiplicative subgroup in k(¢)* consisting of all fractions
P(t)/Q(t) with P(t) and Q(¢) polynomials in k[t] such that P(0) = Q(0) = 1.
This isomorphism sends a finite sum Y- n;[(Vj, u;)] to the product [ Z(u;)™.
It follows that the composition Z : D*(VectM*) ~ K(VectM*) — k(t)o
sends a complex (V*,u®) (which is nothing else but a complex V* € C?(Vect)
together with an automorphism «* : V* — V*) to the zeta-function of the
automorphism w, namely

Z(v*,u*) =[] 2(87 (u*)) Y’

where HY(u®) : H(V*) — H3(V'*) are the automorphisms induced by u® at
cohomology level. Moreover, we have an obvious commutative diagram

K(VectM*) Z—> k(t)o

lfor ldey

K(Vect) —= Z

where for and deg have the same meaning as above.

A deeper illustration of the same principle according to which the group
K(A) is simpler than the category A is discussed in the following remark.

Remark 4.1.30.

(i) When X is a real analytic manifold we can define the notion of a con-
structible function as above but using subanalytic partitions, see [KS], p.
398. Let CFr(X) be the ring of these constructible functions on X and let
K. r(X) be the Grothendieck group of the abelian category of constructible
sheaves with respect to subanalytic partitions. Then there is a well-defined
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homomorphism x : K. r(X) = CFgr(X) defined as above and which is an
isomorphism, see [KS], Theorem 9.7.1, p. 399. This result is no longer true in
the complex analytic or algebraic cases. We show this by the following simple
example in the algebraic case.

Let X = C*, A = C and note that for any constructible sheaf F on
X there is a finite singular set Sing(F) in X such that the restriction of
F to Reg(F) = X\Sing(F) is a local system. It follows that the loop
c(t) = a - exp(2xit) for ¢t € [0,1] and a small enough contains no points from
Sing(F) inside. Hence, if n(F) denotes the rank of the local system F|Reg(F),
then the conjugacy class in GI(n(F),C) of the monodromy of this local sys-
tem along the loop c is independent of the choice of a small a. We denote by
To(F) this conjugacy class. In particular det(To(F)) € C* is well-defined. If
we have an exact sequence 0 -+ F; = F — F; = 0 in C(X), then we clearly
have

det(To(]:)) = det(To(]:l)) . det(To(]:g)).

In view of Theorem 4.1.4, we get a group homomorphism
det(To(—)) : K (X) = C*.

Consider now the rank one local systems £, and £3 on X such that £, is the
trivial local system, but £y corresponds to a monodromy operator To(Ls2) =
b e C*,b+# 1. Then the difference D = L3 —L; in K(C(X)) ~ K.(X) satisfies
x(D) = 0 and det(To(D)) = b. It follows that D is not the zero element in
K (X) and hence yx is not injective in this case.

(if) When X is a real algebraic set, McCrory and Parusifiski have introduced
the class of algebraically constructible functions on X which captures a lot of
the topology of the variety X, see [MP].

One can perform on constructible functions many of the operations we
have introduced for sheaves. In particular, we have the following analog of the
direct image functor.

Proposition 4.1.31. There is a covariant functor CF from the category
of complex algebraic varieties and regular morphisms to the category Ab of
abelian groups such that for a variety X, CF(X) is the ring of constructible
functions on X. For a morphism f : X — Y, the associated push-forward
homomorphism CF(f) : CF(X) = CF(Y) is determined by the property

CF(f)(1z)(y) = x(f' () N 2)

for any closed subvariety Z in X and any point y € Y. Here 1z is the char-
acteristic function of Z, i.e. 1z(x) =1 forz € Z and 1z(z) =0 foraz ¢ Z.

Remark 4.1.82. For a complex algebraic variety X and for the constant map
ax : X — pt, the corresponding homomorphism CF(ax) : CF(X) —
CF(pt) = Z is called the Euler integral, and one writes sometimes
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x ¢)=/X¢dx

for any constructible function ¢ € CF(X), see [Vi], [GLM1]. With this nota-
tion, one has the obvious equality

CFNOW =[x

for any morphism f : X — Y and any constructible function ¢ € CF(X).
This formula shows that the ’push-forward’ corresponds to taking an ’'integral
along the fibers’.

The analogy between the functor CF and the functor Rf, is expressed by
the following result, see [KS], p. 401 and [Sch] in the real subanalytic proper
case.

Proposition 4.1.33. Let f : X — Y be a morphism of complex algebraic
varieties. Then the following diagram is commutative.

K(X) 215 K,(v)

o
crx) Y9 cry)
Proof. We have to show that
X(Rf«(F*)) = CF(£)(x(F*))
as functions on Y. For a point y € Y we have
XRI(F D) = x(Ty, F*) = x(Xy, F*)

where T, is the tube of the mapping f at y and X, is the fiber of the mapping
f at y, see Remark 4.1.24 and Corollary 4.1.25.

Let S be a Whitney stratification of X such that F* is S-constructible and X,
is a union of strata in S. Then x(F*) = > g5 esls where es = x(H*(F°)z)
for some z € S. We have

CF(f)(x(F*))( ZCSCF 15)(y ZesxX ns)=
Ses Ses
=Y x(X, NS, F*) = x(X,, F*)
Ses

in view of our additivity Theorem 4.1.22.
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The functor CF plays a key role in MacPherson’s construction of Chern
classes for singular varieties, see [Mac|, and also [Mer] for the relation to
Schwartz classes and polar varieties. The cap product in the following result
is the one discussed after Definition 3.3.14. Moreover, the morphisms have to
be restricted to proper ones, since only they behave well with respect to the
Borel-Moore homology.

Theorem 4.1.34. There is a natural additive transformation c. from the
functor CF to the Borel-Moore homology functor HS such that for a smooth
variety X one has ci(lx) = [X] N e(X), where ¢(X) € H*(X) is the total
Chern class of X and [X] is the fundamental homology class of X.

To state the remaining basic result on constructible functions and for latter
use, we introduce now some geometrically defined constructible functions.
Consider a closed analytic subset X in a neighborhood of the origin in C”
and let Y C X be a constructible subset. Let B be a small open ball of radius
€ in C™ centered at 0. For a generic point z € B, 0 < |z] << ¢, and a generic
linear (affine) subspace L¥ passing through z and having codimL = k, we
consider the integer
VEWO0) =x(BNY NLF)

where x denotes the Euler characteristic (say with Q-coeflicients), see [Db2] for
this and the following definitions and properties. Note however that Dubson
works with closed subsets Y, but using the fact that the Euler characteris-
tic of a constructible set coincides with the Euler characteristic with compact
supports (and hence enjoys additivity properties, see Corollary 4.1.23 and Re-
mark 4.1.24) one can easily recover our definitions and claims from Dubson’s.
When X is an analytic space and Y C X a constructible subset we can define
a function Vi : X — Z as above via local embeddings of X into smooth
germs. This function is constructible, more precisely it is constant along the
strata of any Whitney stratification of the pair (X,Y).

If we are given such a stratification, let Z be the unique stratum containing the
origin. We can always assume in doing computations that dimZ = 0. Indeed,
when dimZ > 0, we can choose a local transversal T' with dimT = n—dimZ
passing through 0 and replace the germ (X,0) by (7,0), (Y, 0) by (¥5,0) and
(Z,0) by (Zy,0) with Yo =Y NT and Zy = ZNT. Then we clearly have

VE(0) = Vg imZ(0).

In this case, if we let L denote a generic affine hyperplane in T, then BNXNL is
nothing else but the complex link of the stratum Z in X, denoted by CL(X, Z),
according to Goresky and MacPherson, see [GoM3], p. 15.

Exzample 4.1.35.

(i) Let X =Y =C". Then V¥#(0) = 1if k < n and VE(0) =0 if &k > n.

(if) Let (Y,0) be an m-dimensional isolated complete intersection singularity
at the origin of X = C". Then BNY N L* is exactly the Milnor fiber of
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the isolated complete intersection singularity at the origin (Z,0), where (Z, 0)
is a generic k-codimension linear section of (V,0), see [D], p.11. In particular
BNYNL* is homotopy equivalent to a bouquet of (m —k)-spheres, the number
of sphere being exactly u(Z,0) = p"~*(Y,0). It follows that for 0 < k < n we
have
VE(0) = 1+ (=)™ *u(Z,0) = 1+ (=)™ *u"*(¥, 0).

As an example, if n = 2, i.e. when (Y,0) is a reduced plane curve singularity,
then V3(0) = mult(Y,0), the multiplicity of the germ (¥, 0).

Let now X be a pure dimensional analytic space and & a Whitney strat-
ification of X. For a point z € X let S; be the stratum in & containing z.
Let F(z,S) be the set of all flags F = (51,5, ..., Sp) of strata in & such that
S; C 0841 fori=1,2,...,p—1 and dimS, =dimX. If S, S’ is a pair of strata
in & such that S’ C 8S then we set V¥(S,5') = V&(y) for any point y € S'.
For a flag F as above we set

VEE) = [ vEEmS(Siga, S)).

t=1,p—1

Definition 4.1.36. The k-th local Euler obstruction E% : X — Z is the

function defined by
Ex(@= ) V5.
FEF(x,S)

The 0-th local Euler obstruction EY is denoted simply by Eux and is called
the (local) Euler obstruction. When Z is a closed subvariety in X we may
regard the function EX as being defined not only on Z but on X by setting
Eki(z) =0 forz € X\Z.

One can show that these functions are independent of the choice of the Whit-
ney stratiflcation & and that they are constant along the strata of any Whitney
stratiflcation, [Db2]. In particular they are constructible functions. Some of
their properties are given in the following proposition, see [Db2], [BDK]. An
alternative deflnition is discussed in [Mer].

Proposition 4.1.37.

(i) If = is a smooth point of X, then E%(z) =1 for 0 < k < dimX — 1 or for
k=dimX =0.

(ii) If X = UX; is the decomposition of X into irreducible components, then
E%(z) = Y E% (z), where the sum is over all irreducible components X;
which pass through the point x;

(iii) Induction Formula: E% (x) = Y E% (x;)V*H1+dimS(G, ) where S is the
stratum in S containing x, (S;) is the family of the strata in S containing S
in their boundary and z; € S; are any fized points. In particular, when (X, )
is an isolated singularity, then Eux(z) = x(CL(X,z)), where CL(X,z) =
X NBNH is exactly the complex link of x in X as above.
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In the case when S = {z}, then the Induction Formula gives
Ek(z) = Y E% (2:)x(S: N B, N L**1)

where B, is a small ball centered at z and L¥! is a generic linear subspace
as above. For a different approach to this equality see [BLS] and [Sn2].

The Euler obstruction enters in the following fundamental result, see for de-
tails [Db2] as well as [Ke].

Theorem 4.1.38. Let X be an algebraic variety and let Z(X) denote the
group of algebraic cycles on X. Then the morphism Eu : Z(X) - CF(X)
defined by Eu(>" a;Z;) = > a;Eug, is a group isomorphism.

The proof of this theorem is based on the fact that the Euler obstruction
Eux is a constructible function on X such that Fux(z) =1 for z in an open
dense Zariski open set, in view of 4.1.37, (i).

4.2 Nearby and Vanishing Cycles

Let X be a complex algebraic or analytic variety, f : X — C a non-constant
regular or analytic function. For any t € C we will construct two functors

F* € DYX) s 5 _4(F*),07—4(F*) € DY(Xy),

where X; = f~1(t) is assumed to be a non-empty hypersurface. To simplify
notation we will assume that ¢ = 0. There is a diagram of spaces and maps

Xt x é)T(Xo)\Xo * g

.

D: univ.cov. ﬁ:
where the lower horizontal map is the universal covering of the punctured
disc D¥ centered at the origin in C, of radius € chosen small enough, and the
square at the right hand side of the diagram is cartesian.

In many cases the choice of € is done such that f: T(Xo)\Xo — D} is a
topologically locally trivial fibration. This is always possible in the algebraic
setting, while in the analytic case this holds under some extra conditions,
e.g. f is proper on the tube T(X,). However, even in the analytic case, such
fibrations exist locally on X: they are precisely the Milnor fibrations of the
corresponding function germs f : (X, z) — (C,0), see [Lel] and [Le3].
Moreover, T'(Xo) = f~1(D.) is the tube about the fiber X, and E is regarded
as the universal or canonical fiber of the fibration f : T'(X¢)\Xo — D¥. More
precisely, the map j o % is a canonical model (i.e. independent of the choice
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of a specific fiber) for the inclusion of a fiber X; in the tube T'(Xo)\ X, for
0 < |t| < e. Even if we have started with algebraic varieties, the new objects
T(Xo) and E are only analytic spaces. In this sense we can always replace X
by T'(X,).

Definition 4.2.1. Let F* € D*(X) be a complex. We define the nearby cycles
of the complex F* with respect to the function f and the value t = 0 to be the
sheaf complex given by

$rF* = i7LR(j 0 )u(j 0 ) LFC.

Moreover, there is an associated monodromy deck transformation h: £ — E
coming from the action of the natural generator of Z = 71 (D?) on the complex
half-plane 15;" which satisfies # o h = #. This homeomorphism A induces an
isomorphism of complexes

M: ’I,[Jf]:. — ’I,[Jf]:..

Note that F* € D?(X) implies G* = (j o #) "1 F* € DY(E). In spite of the
fact that the map j o 7 is not proper in general on suppG®, one can show
that ¢;F* € D%(Xo), both in the algebraic and analytic settings, see [KS],
p- 352, the remark just after Proposition 8.6.3 in the case X smooth. For
the general case, since the constructibility is a local property by Proposition
4.1.13 and since any singular space is locally embeddable in a smooth space,
one can proceed as in Remark 4.1.7 (ii). Another approach to the stability of
constructibility under the functor ¢y is given in [Sn1], Theorem 4.0.2, pp. 215-
216 and Lemma 4.2.1, p. 247. In conclusion, we get the nearby-cycle functor

¥s : DY(X) — D5(Xo)

with respect to the function f and the value ¢ = 0.

Let By (x) be an open ball of radius 6 in X, defined by using an embedding
of the germ (X, z) in an affine space C. Then F, = By (z)N X; for 0 < |t| <
€ < ¢ is exactly the (local) Milnor fiber of the function f at the point z, see [M]
for the case (X,z) smooth and [Lel], [Le3] in general. A direct computation
using the definition of the complex 1;F* yields the following result, which
explains to a certain extent the name of the above functor.

Proposition 4.2.2. For all points x € X, there is a natural isomorphism
HE (P F*)p = HE(F,, F*)

such that the monodromy morphism M, on the left hand side corresponds to
the morphism on the right hand side induced by the monodromy homeomor-
phism of the (local) Milnor-Lé fibration induced by f : (X, z) = (C,0).

To see how this right hand side monodromy operator, call it T, is
obtained, note that we can work with a proper Milnor-Lé fibration f :
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Bs(z) N f~Y(D?) — D?. It follows that R*f.(F*) is a local system on
D¢, for € small enough. This local system corresponds to a representation
p: 7 (D}) = Aut(E), where E = RFf (F*); = HF (F,, F*) = HF(F,, F*),
the last isomorphism coming from Theorem 4.3.9 below. With this notation,
the monodromy operator T' is just p([y]), where [v] is the standard generator
of 1 (D¥) = Z. See also Lemma 1.1.1 in [Snl], p. 27.

Example 4.2.3.
(i) Let f : X — C be a holomorphic function defined on the complex manifold
X. Then, for any z € X we have

H* (YrAx)s = HY(Fy, A)

If in addition z is an isolated singularity for f and dimX = n+ 1 > 1, then
H(F,,A) = A, H"(F,,A) is a free A-module of rank p(f,z) = p(Xs(), ),
the Milnor number of f at z, see [M], [D], p. 78, while the other cohomology
groups of F, vanish. Note that in this example all the Milnor fibers F, are
smooth.

(ii) Let f : C"*! — C be a complex polynomial with n > 0. Consider the
compactification of f obtained as follows. Let X C P**! x C be the closure
of the graph I' in C**! x C and let f : X — C be the map induced by the
projection on the factor C.

Then the fibers of f are the projective closures X; of the fibers of f. Assume
that the hypersurfaces X; have all at most isolated singularities. Fix a point
a € X;NHy,, where Ho, = P"\C" is the hyperplane at infinity. One can intro-
duce two Milnor numbers at the point a, namely p(a)gen = mingec p(Xs,a)
and p(a); = p(Xy,a)-

Then, using the topology of the singular fibers in the deformation of an iso-
lated hypersurface singula,rity, see [L] p 121 we get

d1m’H"(1,ZJ :Cx )a = p(a)i—p(a)gen, H Cx)a = = Cand H* (1,[1f Cx)a =
0if k # 0 n. In this example, the local lenor fiber at the point a is singular
in general, i.e. when p(a)gen > 0.

To have a specific example, take f : C> — C be the function given by
f(z,y) = z’y — z. In the projective plane with homogeneous coordinates
(z : y : 2) the line at infinity H., is given by the equation z = 0. Take
now ¢ = (0 :1:0) € Hy. Then the germ (X;,a) is given by the equation
gs(z,2) = 22 — 222 — 123 = 0 and the germ f : (X,a) — (C,0) corresponds
to (z, 2,t) — t. This implies that p(a)gen = 2 and p(a)o = 3, which corrects
an error in Example 1.4.2 in [D].

Note also that the fibration X* — D* induced by the restriction of the germ
f over the punctured disc D* has trivial geometric monodromy. Indeed, let
¢s = exp(2wis) for s € [0,1] and define h, : (X,a) = (X, a) by hs(z, 2 t)
(G, coz,c4t). Since f(hs(z,2,t)) = ¢t is just the rotation about the origin
when s moves from 0 to 1, it follows that Id = h; is the geometric monodromy
of the fibration X* — D*. In particular, this shows M, = Id, where M, is
the corresponding monodromy automorphism of ’H"(@bf(cx)a.
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Consider the adjunction morphism
F* — R(j o it)u(j o 1) H(F")
and apply the functor i ! to get the comparison morphism
ciiTIF — P

Definition 4.2.4. Let F* € D%(X) be a constructible complex. We define
the vanishing cycles ¢;(F*) € D% Xo) and the canonical morphism can :
Y(F*) — of(F*) by extending the comparison morphism c above to the
unique distinguished triangle

ITIF 5 g (F) 25 (70 B
in the triangulated category D%(Xo).

The obvious equality M o ¢ = ¢ implies that there is an induced monodromy
isomorphism M, : ¢#(F*) = @¢(F*) and an automorphism of the distin-
guished triangle

iTLF s gy (F0) 25 op(Fe) B it e 4]

given by (Id, M, M,). However, in view of Remark 1.2.7, this construction does
not define the monodromy morphism M, uniquely, so we have to proceed with
more care. The nearby cycle functor introduced above can in fact be regarded
as a functor

s : DY(X, A) - Db(Xo, Alt,t 7))

where ¢ acts on the complex ) ¢+ F*® = 1y F* via the monodromy automorphism
M. We have a forgetfull functor

for : D¥(X,, Alt,t71]) = D%(X,, A)

which just forgets the multiplication by ¢. One has for o ’I])f = 1y.

In a similar way we can consider i"'F* as an object in D%(X,, A[t,t7])
by endowing it with the trivial ¢-action, i.e. the multiplication by ¢ is the
identity automorphism. Let @¢;F* be the third vertex of the triangle built
on i"1F* -5 ¢;(F*) in the triangulated category D%(Xo, A[t,t™']). Then
it is clear that for o ;F*® = ¢;F* and the multiplication by ¢ on @;F*
(which is now well-defined up-to isomorphism) gives rise to the monodromy
automorphism M, see also [Snl], section (1.1), p. 26.

The nearby cycles 1y F* and the vanishing cycles ¢;F* have been intro-
duced by Deligne [De3]. His definitions are slightly different but equivalent to
the above definitions. Certain authors, for instance [KS] or [Ha3] use a differ-
ent shift for the vanishing cycles ¢ F* : their ¢ F* corresponds to ¢z F*[—1]
in our notation.

If we apply the d-functor H°( ), to the distinguished triangle in the defi-
nition of vanishing cycles, we get the following long exact sequence.
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.o« — H*(Bg(z) N Xo, F*) — HF (By(z) N X3, F*) —
HE(pp (F*))e — B (BR (2) N KXo, F*) —> -+
It follows from Corollary 4.3.11, see below, that
H* (B (2) N Xo, F*) = H*(F*|Xo)z = H*(F*), = B (B3 (2), F*).

Using the long exact sequence of relative cohomology of the pair X = Bg(z)
and Z = X; N Bj(z) and the 5-lemma, we get the following isomorphism

HH (07 (F*))e = B (B] (2), B3 (2) N Xy F*). (4.1)

Remark 4.2.5. When A = C, the monodromy automorphisms M : ¢y F* —
Yy F® and M, : o F* — @ F* give rise to locally finite eigenvalue decompo-
sitions

YpF® = OapsaF*
and

Qs F* = OrppaF*
where A € C and Y7 \F* = Ker {(M — X-Id)N : s F* = ¢;F*} € D¥(X,)
for N >> 0 and similarly for @7 F*. To define the above kernel, one has to
represent objects in the derived category DS(XO) by injective complexes, see
[Sa2], 3.4.12-3.4.14 for details or [Bj], 6.4.10 for a diflerent approach.
With this notation it is clear that the canonical morphism can induces mor-
phisms can : Y7y F°* = @ F* which are isomorphisms for A # 1. In addition
we have the following distinguished triangle

iTLF S g (F?) 25 s (Fh) Y

The monodromy automorphism M : ¢ F* — ¢ F* has a Jordan decompo-
sition M = MM, = M, M, with M, semisimple (and locally of finite order)
and M, unipotent such that

YraF® =Ker {M; —X-Id: 9 F* = s F*}.
Similar results hold for M, : p;F* — ¢;F*, see [Sa2], 3.4.12-3.4.14.

Ezample 4.2.6. Take F* = Ax and assume that X is smooth. Then, since
B3 (z) N X is contractible, see [M] and [BV], we get

H*(prAx)s = H*(F,, A)

where the right hand side denotes the reduced cohomology of local Milnor
fiber at x. More precisely, in the case of complex coeflicients we get

H¥ (s aCx ) = HF(Fy, O

where the right hand side denotes the A-(generalized) eigenspace of the mon-
odromy acting on H¥(F,, C).
In particular suppH*(¢;Cx) C Xo,sing, the singular locus of the fiber Xo.
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The above estimate of the support of the vanishing cycles admits the
following generalization. To state it, we introduce first a definition.

Definition 4.2.7. Let X be a complex analytic variety with a given Whitney
stratification S. For an analytic function f : X — C, one defines the set
of singular points of f (or the stratified singular set of f) with respect to the
stratification S by

Sings(f) = UsesSing(f|95).

A similar definition can be given in the real case, namely for X a stratified
space as in [GWPL] and f : X — R a function whose restrictions to the strata
are smooth. Then we have the following result, see alternative proofs and
related formulations in [GoM4], [KS], Proposition 8.4.1 and formula 8.6.12,
and [Sn1], Proposition 4.1.2, p. 222. For more results along this line, see [Ma4]
and Corollary 6.1.18.

Proposition 4.2.8. For any complex F* € D*(X) which is S-constructible
and any integer k, we have

suppH*(p; F*) C Xo N Singg(f).

Proof. Let z € X(\Singgs(f) and let S be the stratum in S containing z.
It follows that f : (S,z) = (C, f(z)) is a submersion germ. The Whitney
regularity of the stratification & implies that f induces a submersion on any
stratum if we restrict to a small neighborhood U of z. Applying Thom’s First
Isotopy Lemma to the restriction f|U, we see that U has a product structure
U =~ Uy x(C, f(z)) in such a way that f corresponds to the second projection.
It follows that #*(p;F*), = 0 for all k € Z,and hence the claim is established.

O

We give now another description of the vanishing cycles ¢ (F*) following
[KS], p. 357, exercise VIIL.13 and [Snl], Corollary 1.1.1 on p. 31 and Lemma
1.3.2, p. 69. We use the notation from the beginning of this section and we
assume that X = T'(X,) and that f : T(Xo)\Xo — D} is a topologically
locally trivial fibration. Consider the closed (real semi-analytic) subset Z =
{x € T(Xo) : Re f(z) > 0}. Let j; : T(Xo)\Z — T'(Xp) be the inclusion.
Then the corresponding adjunction triangle yields

RIZ(F*) — F* — Rjij; N(F*) 5

The space D = D \[0, €] being contractible, the restriction of f over Dis atriv-
ial fibration. This implies the existence of an open embedding g : T'(Xo)\Z —

E (determined by the choice of a section D —» D* of the universal covering).
We have the following commutative diagram of mappings and spaces
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(Xo)\Z ’ / E
T(Xo)

and one sees easily that g is a homotopy equivalence over T'(Xp). Using Propo-
sition 2.4.6 we get an isomorphism

g% : R(j o #)«(j 0 %) "1 (F*) — Rjruji '(F*)

T

that is compatible with the adjunction morphisms
F* — Rjiji (F*)
and
F® — R(io @), (i o 7)"L(F*).

Under this isomorphism g# the adjunction triangle becomes
RT7(F*) — F* —s R(jot)u(jo®) H(F*) 15

Taking restrictions to the fiber Xy and comparing with the defining triangle
for o ¢(F*) we get the following result.

Proposition 4.2.9. For any constructible sheaf complex F°*, there is a natu-
ral isomorphism

07(F*) =i ' RIZ(F*)[1]
where Z = {z € T(Fp) ; Re f(z) >0}

The following result explains the relation between the new functors 1y,
¢y and the duality. For a proof see [Br2], 1.4.

Proposition 4.2.10. The two functors 17,05 : DY(X) — D%(X,) are 4-
functors. When A is a field, the following non-canonical isomorphisms

D(yyF*[-1]) = ¢ (DF*)[-1]

and
D(psF°[—1]) = o (DF*)[-1]

hold in D%(X,), for any complex F* € D¥(X).

The above result has a simpler formulation if we introduce the shifted
functors Py = ef[—1] (perverse nearby cycles) and Py = @s[—1] (per-
verse vanishing cycles). With this notation, the above isomorphisms become
D Pypy = Py D and D Py = PyprD, ie. they can be regarded as a commu-
tativity property.

There is also the following very useful base change property for proper mor-
phisms. Several applications of this result to computing various zeta-functions
and to the topology of the fibers in a deformation are given in Chapter 6.



4.2 Nearby and Vanishing Cycles 109

Proposition 4.2.11. Let Y - X 24 C be two analytic morphisms such
that 7 is proper. Set g = f ow. Then for any complex F* € D4(Y), we have
the following natural isomorphisms.

Rty (g F*) = ¢ (R F*),
Ri(04F*) = oy (R F")
where 7 : g71(0) — f71(0) is induced by the mapping 7.

Proof. We have the following commutative diagram of spaces and maps

y;)c"_”> y <L>T(Y0)\Y0 <™ gy

R I

X > X <XOT(Xo)\Xo <= Ex

where the horizontal mappings are as in Definition 4.2.1 and all the vertical
mappings are induced by the proper map x. In follows that

Rﬁ’*(”,bgf.) = Rﬁ'*l;;lR(JY [ FY)*(JY OFY)_lf. —

= i}lR(ﬂ' o jy omy )« (Jy 07Ty)_1.7:..

Indeed, we have Rfr*z';,l = i}lRm in view of Theorem 2.3.26 and since 7 is
proper. Next we have

ix R(m o jy omy)u(jy omy) ' F* = ix R(jx o mx o ®)«(jy o my) ' F* =

=ix' R(jx o mx )« R(7)u (jy o my) "' F* = ¢y (Rm.F?),

1

since R(7)«(jy o 7y)~! = (jx o mx) L Rm. as above.

O

Remark 4.2.12. There is a natural transformation var : ¢z F* — 1y F* called
the wvariation morphism which is obtained heuristically by completing the
diagram

L —— Yy P

-

0 Yy F*

via the axiom (T'r3) to a morphism of distinguished triangles

_can_ o [1+1
iTlF —— P s P —— LI
‘/ M-—Id var

e T e

0
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For a formal definition, avoiding the problems signaled in Remark 1.2.7 and
in the definition of vanishing cycle functor above, we refer to [KS], pp. 351-
352. One has also can o var = M, — Id, where M, is as above the induced
monodromy of the complex ¢;F*. The distinguished triangle

iU g (F) BB op(F)
may be rewritten by using a simple shift as
PP (FT) S Ppp(FY) — i

There is a similar distinguished triangle associated to the variation, see [KS],

p. 352, namely

IF = Ppp(FT) S PP

Exercise 4.2.13.

(i) Let F be a constructible sheaf on the smooth complex curve S. Then F is
a local system if and only if ¢;_ (F) = 0 for any point s € S, ¢, being a local
coordinate at s such that ¢,(s) = 0.

(ii) Let F* € D%(S) be a constructible complex on the smooth complex curve

(a) Show that v, (H™(F*)) =~ H™ (i1, (F*)) and find examples showing
that @q, (H™(F*)) # H™ (1, (F*))-

(b) If ¢s, (F*) = 0 for any point s € S, then all the cohomology sheaves
H¥(F*) are local systems on S.

Hint. (i) The comparison morphism is in this case a morphism ¢ : F; — Fyr,
with s’ close to s and generic, obtained as follows. An element a, € F, can
be represented by a section a € F(D), D being a small disc centered at
s. We take s' € D* and then c(a;) = ay, the germ of the section a at the
point s'. This gives an element invariant under the monodromy transformation
Ts : Fs — Fs. We get in this way a commutative diagram

F(D) i F,
Fo

showing that p; is injective, and hence an isomorphism. It follows that
¢ isomorphism < py isomorphism < F is a local system.
(ii) From the long exact sequence associated with the triangle
Fy = (F?) — 00, (F) 5
we get H¥(F?) = H*(F*)s and H* (s, (F*)) = H*¥(F*)s . This proves (b).
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Exercise 4.2.14. Let X be an analytic variety endowed with a Whitney strat-
ification S and let f : X — C be a proper analytic function such that
Singg(f) = 0. Show that R* f,(Ax) is a local system on C for any k.

Hint. Use the previous exercise and the Propositions 4.2.8 et 4.2.11. A com-
pletely different proof can be obtained by using Thom’s First Isotopy Lemma,
which gives that f is in fact a topologically locally trivial fibration, see
[GWPL], p. 58 for a proof and [D], pp. 14-17 for a discussion on this fun-
damental result.

Exercise 4.2.15. Let A be a field and let F* € D%(S), where S is a smooth
algebraic curve. Then

X(8,F*) = x(S)x(F3) = D x{pe, (F*))

seS

where x(S) = bo(S) — b1(S) + b2(S) is the topological Euler characteristic of
the curve S, z € S is a generic point, t; is as in Exercise 4.2.13 and the sum
is finite by Exercise 4.2.13.

Hint. Use the adjunction triangle by taking Z C S the finite set of points
such that over U = S\Z all the groups H*(F*) are local systems. Then use
Remark 4.2.12 by taking i to be the inclusion {s} < S for any point s € Z.

4.3 Characteristic Varieties and Characteristic Cycles

Let X be a real smooth manifold and denote by T*X its cotangent bundle.
Let F* € D*(X) be a bounded complex. For a point p = (z0,&) € T*X we
consider the following condition.

(C) There is an open neighborhood U of the point p in T*X such that for
any point z; € X and any real smooth function f defined in a neighborhood
of z; and satisfying f(z1) = 0 and df (z1) € U we have

(RF{a:;f(a:)ZO}]:.)a:l =0

Definition 4.3.1. The characteristic variety (or the micro-support) of the
complex F* denoted by CV (F*) (or SS(F*), or Char(F*)) is the subset of
the cotangent bundle T*X consisting of all the points p = (zo,&0) such that
the above condition (C) fails.

When X is a complex manifold, then one has a similar notion by letting
T*X to be the complex cotangent bundle of X and working only with real
function of the form Re (f), for f an analytic function defined in a neigh-
borhood of z; and satisfying f(z;) = 0. The following result gives the first
properties of characteristic varieties, see [KS], p. 221.
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Proposition 4.3.2.

(i) The characteristic variety CV(F*) is a closed conic subset of T*X and
CV(F*)NTxX ~ supp(F*), where Tx X is the zero section of the cotangent
bundle of X ;

(ii) CV(F*) = CV(F*[1]);
(iii) Let Fy — F3 — F3 — be a distinguished triangle in D*(X). Then

(a) CV(F?) C CV(F;)UCV(F) and

(b) (CV(FPNCV(FF)) U (CV(FP\CV(F?)) C CV(Fy)

for any permutation (i,3j,k) of (1,2,3);
(iv) CV(F*) C U;CV (HI(F*));
(v) Let M be a closed submanifold in X and consider its conormal space in X
given by

TyX ={(z,8) e T"X;¢|T, M = 0}.

Then CV(i1L) = T3 X where i : M — X is the inclusion and L is any
non-zero local system on M.

Let X,Y be two (real or complex) manifolds and f : X — Y a (smooth
or analytic) mapping. We consider the pull-back X xy T*Y of the cotangent
bundle T*Y under the map f and the induced bundle map

T*f: X xy T*Y - T*X

given by T f(z,£) = (x,€ o df(z)), where df(z) : To X — Ty;)Y is the
differential of f at the point z. We consider also the projection on the second
factor

py: X xy T*Y - T*Y.

For a map f: X — Y as above, consider the following closed conic subset of
the pull-back cotangent bundle X xy T*Y
TxY = KerT"f = {(2,8);{ € Tj,) Y, §|df (z)(T X) = O}

For f a closed embedding, this is nothing else but the conormal space con-
sidered in Proposition 4.3.2, (v), while when f is a submersion we obviously
have T3Y ~ X, the zero section in T*X. These spaces and maps occur in
describing the relations between the characteristic varieties of a complex F*
and of its direct or inverse images. For instance we have the following result,
see [KS], pp. 231-232.

Proposition 4.3.3.
(i) If F* € D*(X) is such that f : X — Y is proper on supp(F*), then

CV(RfF®) C p((T* f)"HCV(F®))).

This inclusion is an equality for f : X = Y a closed embedding.
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(i) If G* € D*(Y) and f : X = Y is a submersion, then
CV(f7'G*) =T*f(p; " (CV ("))

Definition 4.3.4. With the previous notation, let A be a closed conic subset
of T*Y. We say that f: X = Y is non-characteristic for A if

Py (A NTY C X xy T3Y.

If G* € DY), then we say that f is non-characteristic for G* if f is non-
characteristic for CV(G®). When f is an embedding, we also say that X is
non-characteristic when f is so.

Exercise 4.3.5.

(i) Show that if f : X = Y is a submersion, then f is non-characteristic for
A with A any closed conic subset of T*Y.

(if) Let M be a closed submanifold in Y and let A = T3;Y. Then f is non-
characteristic for A if and only if f is transversal to the submanifold M.

(iii) Show that if f : X — Y is non-characteristic for A and A contains a closed
conic subset B, then f is non-characteristic for B. In particular, if S = {V}} is
a Whitney stratification of Y such that f is transversal to all submanifolds Y},
then f is non-characteristic for B, for any closed conic subset B in UjTg'}], X.
(iv) Using Theorem 4.3.15, (iv), below (which holds for constructible sheaves
on real manifolds as well), show that for an S-constructible complex F* on
Y, f is non-characteristic for F* as soon as f is transversal to all the strata
Y; of the Whitney stratification S.

For non-characteristic maps one has additional, more precise properties.
An example is the following result, see [KS], Proposition 5.4.13, p. 235.

Proposition 4.3.6. Let G* € D*(Y) and assume that f : X — Y is non-
characteristic for G*. Then

(i) CV(f71G*) C T* f(p; (CV(G*)));
(ii) the natural morphism f~1G* é) wx/y = f'G® is an isomorphism.

Note that the first claim above is a partial generalization of Proposition 4.3.3,
(ii), while the second claim is a generalization of Theorem 3.2.17, (ii).

Corollary 4.3.7. Let X be a complex (resp. real) manifold and F* an S-
constructible complex on X. Let i : Y — X be the inclusion of a locally
closed connected complex submanifold such that Y is transverse to the Whit-
ney stratification S. Then there is a natural isomorphism i~ F*[—2c] ~ i' F*
(resp. i F*[—c] ~ i*F*), where c is the codimension of Y in X.

Proof. In view of Exercise 4.3.5,(iv), the only point to be checked is that
wy/x = Ay[—2c] (resp. wy;x =~ Ay[—c]), and this follows from 3.2.11. O
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Exzample 4.3.8.

(i) Let X be a complex manifold and £ a local system on X. Let i : Y = X
be the inclusion of a locally closed connected complex submanifold. Then i'£
is the shifted local system i~'£[—2c] on Y, where ¢ is the codimension of ¥V’
in X.

(if) Let X be an open neighborhood of the origin in C* and F* a constructible
sheaf complex with respect to a Whitney stratification & of X. For any € > 0
small enough, the sphere S, centered at the origin in C" and of radius e,
is transversal to all the strata of S. Therefore, if ¢ : S. — X denotes the
inclusion, we have

iFe =i VP -1).

The same result applies to the inclusion of the link of any point on a singular
space X, via the extension described in Remark 4.1.7, (ii).

The characteristic variety enters into the following micro-local Morse Lemma.
First some notation. For a real function f : X — R and for a € R we denote
by X< (resp. X <%) the subset f~!(—o00,a] (resp. f~}(—0o0,a)). For a proof
of the following result see [KS], Corollary 5.4.19, p. 239.

Theorem 4.3.9. Let f : X — R be real smooth function and F* € D¥(X) a
complex such that f is proper on supp(F*). Let a,b € R with a < b.

(i) If df (x) ¢ CV(F*) for any point x € X<P\X <%, then the natural mor-
phisms induced by restrictions

RI(X<*,F*) - R['(X<*,F*) - R[(X<*, F*)

are isomorphisms. The weaker condition df (z) ¢ CV(F*®) for any point = €
X<\ X< implies that the morphism

RI(X<*,F*) - R[(X=, F*)

is an isomorphism.

(i) If —df (x) ¢ CV(F*) for any point x € X<\ X< then the natural mor-
phism
RFXSG(Xaj:‘) - RFXS”(X7'7:.)

is an isomorphism.

(i) If —df(z) ¢ CV(F®) for any point x € X<P\X<°, then the natural
morphism induced by extension by zero

RI(X<% F*) = R[(X<*,F*)
is an isomorphism.

To apply this micro-local Morse Lemma, the following result is very useful.
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Proposition 4.3.10. Let X be a real or complex manifold, let S be a Whitney
stratification of X and let F* € D*(X) be a complex which is S-constructible.
Let f : X = R be a smooth function such that Sings(f) = 0. Then df(z) ¢
CV(F®) for any z € X.

Proof. Fix a point a € X. It is enough to show that, for any real func-
tion germ g : (X,a) — (R,0) such that dg(a) is close to df(a), one has
(RI(z;4(z)>0}F*)a = 0. The condition Singg(f) = @ and basic properties of
Whitney stratifications imply that there is an open neighborhood V of a in
X such that g is defined on V and Singg,(g) = @, where Sy is the strati-
fication of V induced by the stratification S. Applying locally at a Thom’s
First Isotopy Lemma, we can assume that V = R", a = 0, g(z) = z; is the
first projection and the stratification Sy is obtained by taking the product
of a stratification on Hy = {z € R";z; = 0} by a line R It follows that the
cohomology sheaves of the complex F* are constant along lines of the form
{b} x R for any b € Hy. This implies the claimed vanishing as follows.

Using the distinguished adjunction triangle, taking the stalks and then
homology we get the following long exact sequence.

- = HY(RT (400101 F*)o) = HY(F3) = H*((Rjuj ' F*)o) = -+

Let C. denote the open cube (—¢,e)™ in R™. Such cubes form a fundamental
system of neighborhoods of the origin in R” and hence

H(F3) = im B (C., 7*)

and
H*((Rjj ™" F*)o) = im H*(C, F*),

where C; = {z € C;z1 < 0}. Similarly let C? = {z € C¢; 2z, = 0} and let
p:C. = C? and q: C- — C? be the projections on the first factor.

Let F§ = F*|C? and note that due to the product structure of everything
one has F*|C. ~ p~lF¢ and F*|C. =~ ¢ 1F3. If these isomorphisms in
derived categories scare the reader, he can first use Remark 2.1.6 and replace
the complexes by their cohomology groups, which are clearly constant along
the fibers of p and ¢. See also [MeNM], p.60.

Apply now Vietoris-Begle Theorem 3.3.17 and get isomorphisms

HF (C,, F*) ~ HF (C?, F*) ~ HF (C, F*).

Alternatively, one may note that the inclusion j : C- — C. is a homotopy

equivalence over C? and use Proposition 2.4.6.

It follows that the morphisms H*(F3) — HF((Rj.j~1F*)¢) are isomor-

phisms, and hence we get the claimed result. O
We will often apply this proposition to the following special case. Let

a € X be as above an arbitrary fixed point and consider the square of the
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distance function, namely f : (X,a) = (R,0), f(z) = d?(z,a), where the
distance d comes, for instance, from a local chart at a. Then the Whitney
regularity of the stratification & implies that there is an € > 0 such that if
we take W to be the open ball B(a,¢) in X and Sy the stratification of W
induced by the stratification S, then f is defined on W and Singg,, (f) = {a}.
This Proposition combined with Theorem 4.3.9 yields the following result in
the special case when X is smooth. The case X singular can be handled using
a local embedding of the germ (X, z) into a smooth germ, see Remark 4.1.2.

Corollary 4.3.11. Let X be a complez analytic space or a real stratified space.

(i) If F* € Di(X), then for any point x € X the natural morphisms
RI'(B(z),F*) & RI'(B(z),F*) = F3

are quasi-isomorphisms, where B2(x) (resp. Bc(x)) is a small open (resp.
closed) ball in X centered at x. In particular, for any integer m, we have the
following natural isomorphisms

H™(F*)e = H™ (B (2), F*) = H" (Bc(x), F*).

(it) (Morse Lemma for Constructible Sheaves) Let S be a Whitney stratifica-
tion for X. Letr : X — [0,1) be a proper, R-analytic function such that for
any stratum S in S, r|S has no critical values in (0,1). Then the inclusion
r~1(0) = X induces an isomorphism

H™ (X, F*) = H™ (r~(0), F*)
for any complex F* which is S-constructible.

Proof. (i) We can treat the case of singular spaces by chosing a (local)
embedding i : (X, z) — (Y, y) into a smooth space germ (Y, y) and replacing
F* by i1 F°.

(ii) Notice that we have a natural isomorphism

H (7 (0), #%) = im H™ (r[0,6), #°)

€

as follows from Remark 2.3.16, (ii). Moreover r : 7—1(0,1) — (0,1) is a proper
stratified submersion and hence by Thom’s First Isotopy Lemma r is a locally
trivial fibration. It follows as in the proof of Proposition 4.3.10 above that we
have isomorphisms induced by inclusions H™ (r~1[0,€), F*) ~ H™ (X, F*) for
any € > 0. This clearly implies our claim. An alternative proof for the second
part follows from Lemma 8.4.7 in [KS]. O

Remark 4.3.12. The last isomorphisms in the claim (i) above can be restated
as
H™(i;'F*) = H" (B (z), F*)
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where i; : {x} — X is the obvious inclusion. The ‘dual’ isomorphism
H™ (@, F*) = By (B (z), F*)
also holds. Indeed, let S, = @B.(z). Then, for € small enough, we have
H™(i, F*) = Hjby (X, F*) = H (B(x), Be(2)\{z}, F*)

by excision, see Remark 2.4.2, (ii). Using now the second claim in the above
corollary, we get in an obvious way the following isomorphism

HE' (Be(2), Be(z)\{z}, F*) = H* (B (), S, F*)-

Finally, Remark 2.4.5, (iii) implies that the last cohomology group is isomor-
phic to H* (B2 (x), F*).
Ezample 4.8.13. Let f : (C**1,0) — (C,0) be a hypersurface singularity and
F* € D%(B2(0)). We set X; = f~1(t)N B°(0) for 1 >> € >> |t| > 0. Then
there is a proper retraction r; : X; = Xo, for ¢ # 0, such that ¢y F* = Rr, F*,
see [De3]. It follows that

H™ (Xe, F*) = H" (Xo, 95 F*) = (H™ ¢ F*)o
which is just Proposition 4.2.2 and
HY (X4, F*) = B (Xo, 95 F*) = Higy (Xo, s F*) = H™ (ig)s F*)

where i : {0} = X is the inclusion.

Using the above results we can prove the following version of Kiinneth formula
for constructible sheaves. This result, in a slightly different context, can be
found in [Snl], Corollary 2.0.4, p. 87.

Theorem 4.3.14. Let A be a field and X, Y two complex algebraic varieties.
For any complezes F* € D%(X) and G* € D%(Y) one has a natural isomor-
phism

H' (X x Y, F* K G*) ~ HF (X, F*) @ HF (Y, G*).

Proof. Since we work over a field, all sheaves are fiat and hence F!| ég = FXG,
see section (2.2). The proof is divided into three steps.

STEP 1. We assume here that X is compact and Y is affine. Then using
Remark 4.1.7 (ii), we can take Y = CV. Let Bg be the closed ball of radius
R centered at the origin of Y. For R >> 0, the restriction

H*(Y,G*) — H*(Bg,G*)

is an isomorphism. This follows by applying Theorem 4.3.9 to the function f
given by the square of the distance to the origin. Note that the restriction of
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f to any stratum S C Y has finitely many critical values as in [M].
In the same way one can show that the restriction

H*(X x Y,FRG) - H* (X x Bp, FRG) (4.2)

is an isomorphism (here we use the condition X compact in order to be able
to apply Theorem 4.3.9. Consider now the cartesian diagram

XXBR—>BR

|

X pt

and note that all the projections are proper (what we need in fact is just that
the vertical ones are proper!). Exactly the same proof as in Corollaries 2.3.30,
2.3.31 shows that the claim holds in this case, i.e.

H*(X xY,FRG) ~H* (X x Bg, FRG) ~ H* (X, F*) ® H* (Bg, G*) ~
~ H* (X, F*) ® H* (Y, G°).

STEP 2. In this step Y is still affine, but X is arbitrary. The proof above
works word for word if we are able to obtain the isomorphism 4.2. This follows
now by comparing the Leray spectral sequences of the two projections X x
Y - X and X x Bg = X. Step 1 and Corollary 4.3.11 can be used to show
that the Fs-terms of these two spectral sequences are isomorphic and hence
the same holds for their limits.

STEP 3. Here both X and Y are arbitrary. Let ¢/ = (U;); be a finite open
affine covering of Y and consider the corresponding Mayer-Vietoris spectral

sequence
BPY = (U, G%) = BPY(Y,6°)

see Remark 2.3.9. The open sets V; = X x U; form an open covering V of
X x Y. Hence there is a corresponding Mayer-Vietoris spectral sequence
EPY = (VP FP R G*) = BPHI (X x ¥, F* R G*).
If we apply step 2 to each of the spaces V[Pl = X x U[P], we get
H (VIPL, F* R G*) = (H* (X, F*) @ B® (UP], G*))".

In other words, the second Mayer-Vietoris spectral sequence is obtained from
the first by taking the product by the trivial spectral sequence Ef’q =
H¢(X,F*) and EP? = 0 for p # 0. In such a situation the limit is just
the tensor product of the two limits, and this yields the claimed result.

O

For the characteristic varieties of constructible complexes one has several
additional properties, summarized in the following result, see [KS], p. 247, p.
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338 (where the real version of the claim (iv) below is treated), p. 347 and p. 355
as well as [Snl], pp. 212-213 and p. 273, where an interesting relation between
characteristic varieties and normal Morse data is discussed. For simplicity, we
state this result only in the complex setting.

Theorem 4.3.15. Let X be a complex manifold. Then the following properties
hold.

(i) F* € D¥(X) is constructible if and only if CV(F*) is a closed, conic,
analytic Lagrangian subset in T*X.

(i) Let p = (z0,&) € T*X and F* € D%(X). Then p ¢ CV(F*) if and only
if there is an open neighborhood U of p such that for any x € X and any
complez analytic function germ f ot x with f(z) = 0 and df (z) € U we have
§(F*)z =0.

(iii) If F* € DE(X), then CV(DF*) = CV(F*).

(iv) If F* € D%(X), then for an admissible Whitney stratification S = (X;) of
X the following conditions are equivalent:

(a) CV(F*) CU;Tx, X;

(b) F* is S-constructible.

Remark 4.3.16.

(i) We recall that a closed Lagrangian analytic subset in T*X is by definition
a closed analytic subset whose smooth part B = A,y is both isotropic (i.e.
T,B C TyB* for all b € B) and involutive (i.e. T,B+ C TpB for all b € B)
with respect to the natural symplectic form on the complex cotangent bundle
T*X, see [KS], p. 331 for the real setting and [Ph], p. 90.

(if) We know by the claim (i) in the above Theorem that any irreducible com-
ponent C of CV(F*)has dimension n = dimX. Moreover each of the closures
T%, X corresponding to the stratification in (iv) above are also irreducible of

d1men31on n. It follows that C' = T* X for some (unique) j. Note also that for
a Whitney stratification of X the union U;T%,X is a closed subset in T*X,

in particular one has the equality U;Tx X = UJT*jX

(iii) The claim (iii) in the above theorem follows from the following real version
established in [KS], p. 247. Let X be a real manifold. If F* € D5(X) is an R-
constructible complex, then CV(DF*) = CV(F*)*, where a : T*X — T*X
is the anti-podal map (z,£) — (z,—¢) and A® denotes the image of a subset
A in T*X under the map a. See also [Snl], Proposition 5.0.1, p. 273 and
Equation 5.11 on p. 281.

(iv) For the constant sheaf F* = Cx, it follows from Proposition 4.3.2, (v) that
CV(Cx) = TxX. In view of A’Campo’s result in [AC1], see also Corollaries
6.1.16, 4.2.8, we see that the second claim in the above theorem has in this
case the following simpler version. The condition p = (z9,&) ¢ CV(Cx) is
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equivalent to asking that for any (or for some) function germ f(X,zo) — (C,0)
with df (zo) = pone has ¢¢(Cx )z, = 0. In other words, in this case it is enough
to consider only germs at the fixed point zo.

Definition 4.3.17. For any constructible irreducible subset M in X we define
its conormal space by setting

TyuX = T* WX Np t(M)
where p: T*X — X is the proyectwn.
We have the following basic result, see [KS], p. 346 and [Ph], pp. 92-93.

Proposition 4.3.18. For M a closed irreducible subvariety in the complex
manifold X, the conormal space ThyX is a closed, conic, irreducible La-
grangian subvariety in the cotangent bundle T*X. Conversely, if A is a closed,
conic, irreducible Lagrangian subvariety in the cotangent bundle T* X, then
B = p(A) is a closed irreducible subvariety in the complex manifold X and
A=TEX

If X; is a smooth connected constructible subset in X and Y; denotes its
closure in X, then Ty, X = Tk, X. To see this just note that X; is dense in
the smooth part Y ;.4 of ¥j.

Let in the sequel of this section assume that X is a complex manifold, the
base ring A is a field and F* € D5(X) is a constructible complex. We can
find a Whitney stratification S = (X;) for X such that the two equivalent
conditions in Theorem 4.3.15, (iv) hold. Let n = dimX and n; = dimXj;. To
simplify the treatment we assume that the stratification & has finitely many
strata.

Using the numerical invariants associated to a pair of strata at the end of
the first section in this chapter, we define some integers by the formula

m;(F*) = (=1)" (; (F*) = D VImKtH (X, X5)xu(F?)) (4.3)

where the sum is over all strata Xy in & which contain in their boundary the
stratum X; and x¢(F*) = > (—1)"dimsH™(F*), for some point z € X, see
the formula 8.2.1 in [Gin] (where some errors in the signs are unfortunately
present) as well as [Snl], subsection 5.0.3. Note that there is another choice
of these signs used by several authors, see the original paper by Kashiwara
[Ka], the “inversion formula” in [BMM], p. 545, or in Massey’s papers, and
which differs from our definition by a (—1)™ factor. Both choices have their
own advantages. Our choice is motivated by the desire to get rid of additional
signs in Proposition 4.3.20 below such that a perverse sheaf F* has positive
multiplicities m;(F*), see Corollary 5.2.24.

Consider the Lagrangian conic cycle (i.e. formal linear combination with Z-
coeflicients of irreducible analytic Lagrangian conic subvarieties in the cotan-
gent bundle T* X of the variety X) given by the following formula
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CCO(F*) =Y m;(F*) Tk, X.

It can be shown that this cycle is independent of the choice of the stratification
S with the above properties, see [BDK], [Db2] and [Snl], subsection 5.0.3.
Hence the following definition is correct.

Definition 4.3.19. With the above notation, the cycle CC(F*®) is called the
characteristic cycle of the constructible complex F* € D%(X).

An alternative description of the multiplicities m;(F*) using vanishing cycles
is the following, see [Db3] and [Snl], p. 294.

Proposition 4.3.20. Let x € X be a point and let g : (X,z) = (C,0) be an
analytic function germ at = such that dg(x) is a nondegenerate covector (i.e.
(z,dg(z)) € T%,X and dg(x) is not identically zero on any limit of tangent
spaces of a stratum X, with X; C 0Xy, see [GoM3]) and g|X; has a (complez)
Morse singularity at x. Then one has the equality

m;(F*) = =x((¢gF*)z) = x((Ppg F*)z)-

Example 4.3.21.
(i) Let £ be a local system on X. Then £ can be regarded as a constructible
complex with respect to the trivial stratification & = {X}. It follows that

CCO(L) = (—1)"rank (L) - TLX.

(ii) Let M be a closed m-dimensional submanifold in X and let i : M — X
denote the inclusion. Let £ be a local system on M and consider the sheaf

i1L. This sheaf is constructible with respect to the stratification § = {X; =
X\M, X, = M}. It follows that

CO®\L) = (—1)™rank (L) - Ty X.

Similarly, let X be an open ball in C* centered at the origin and V C X a
closed analytic subset of pure dimension m such that V* = V\{0} is smooth.
Let ¢ : V.= X be the corresponding closed inclusion. Then the sheaf F =
11(Qy ) is constructible with respect to the Whitney stratification § = {X, =
X\V,X; =V*, X, = {0}}. Using the definition of the multiplicities m;(F) in
equation 4.3, it follows that

CC(F)=(-1)" -Tg, X +(1—x(CL(V,0))) - Tx,X

where CL(V,0) denotes the complex link of the isolated singularity (V,0).
When (V,0) is in addition a complete intersection singularity, this can be
rewritten in view of Example 4.1.35 as

CC(F) = (-1)™Tx%, X + bm—1(CL(V,0)) - Tx, X).
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Intuitively, the stratum X5 should be at least as interesting as the stratum X,
in spite of the fact that dimX; = m > 0 = dimX5. At the level of the charac-
teristic cycle CC(F), this intuition is verified since dimTx, X = dimT%, X =n
and in addition the coefficient ms(F) carries much more topological informa-
tion on the isolated singularity (V,0) than the coefficient m, (F).

Let now j : Xo — X denote the corresponding open inclusion and set
G = Rj.Qx, . Then we get exactly as above the following formula

CC(9) = (-1)" - Tx, X + (=)™ - T, X — (1 - x(CL(V,0))) - T, X.

(iii) Let C be a smooth algebraic curve and let F* € D%(C). Then there is a
finite set B C C such that F* is constructible with respect to the stratification
S ={b;b € B} U(C\B). It follows that one has an equality

COF*) = —(xg - TEC + Y (xg —x0) - T;C)
beB

where xg = x(F3) for ¢ € C\B is the general Euler characteristic of the
complex F* and x; = x(Fy) is the special Euler characteristic of the complex
F* for b € B.

Using the description of the characteristic cycle in terms of vanishing cycles,
it is easy to get the following corollary. See also [KS], Proposition 9.4.5.

Corollary 4.3.22.

(i) If F* € D¥(X), then CC(F*[k]) = (=1)*CC(F*) for any integer k € Z.

(i) If F? — F* — F? — is a distinguished triangle in D%(X), then
CC(F*) =CC(F) +CC(F3).

Remark 4.8.23. One can define the support of the characteristic cycle

CO(F*) =) my(F*) T, X

by setting (as for any cycle)
|CC(F*)| = UpT%, X

where the union is over all ¥ with my(F*) # 0. For a complex F* € D}(X),
one has the following inclusion

|CC(F*)| C CV(F*®).

Indeed, it can be shown that a nondegenerate covector p € T*X satisfies
p € CV(F*®) (resp. p € |CC(F*)|) if and only if the sheaf complex F* has
a non-trivial normal Morse-data NM D(F*®,p) at p (resp. F* has a normal
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Morse-data NM D(F*®,p) at p with a non-trivial Euler characteristic), see
[Snl], Remark 5.2.1, p. 322. Note that for such a p, the normal Morse-data
NMD(F*,p) can be identified to (PyF*),, where g : (X,z) = (C,0) is a
function germ as in Proposition 4.3.20 above, see [Snl], p. 283.

Some authors call |CC(F*)| the singular support of the complex F*, compare
with Definition 4.1.11.

Remark 4.8.24. Let X be a complex manifold and f : X — C a non-constant
analytic function such that f~1(0) # 0. If F* € D?(X), then the characteristic
cycles of the complexes ¥y F* and ¢;F* can be expressed in terms of the
characteristic cycle of the complex F* and some geometric object (the relative
conormal space) associated to the function f, see [BMM] and [Gin]. Although
the main results in these papers can be stated without any reference to D-
modules, this is not actually the case. The interested reader, not familiar with
the theory of D-modules, might find useful our brief survey in section 5.3.
For a recent approach, with no reference to D-modules, see [Ma8§].

The characteristic cycle enters into the following two index formulas, see
[Ka], [BDK] and [Snl], subsection 5.0.3. One may regard the Global Index
Formula below as a Riemann-Roch type result for constructible sheaves.

Theorem 4.3.25. Let X be a smooth connected n-dimensional complex man-
ifold, F* an S-constructible complex with S = {X;} a Whitney stratification
as above. Then the following statements hold.

(i) (Local Index Formula) For any stratum X; in S and any point z € X,
one has the equality

X(F3) = Y (~1)™myBuy, ()

k

where n = dimX; and the sum is over all strata X;, such that their closures
Y. contain X;.

(i) (Global Index Formula) If in addition suppF is compact, then
x(X,F*)=CC(F*) - TxX

where x(X,F*) = x(H*(X,F*)) and the dot in the right hand side denotes
intersection of cycles in the complex manifold T*X .

Ezample 4.8.26. We will apply the global index formula to some of the situa-
tions considered in Example 4.3.21, assuming that X is compact. In case (i),
we get x(X, £) =rank (£) - x(X), i.e. exactly the formula (ii) in Proposition
2.5.4. Indeed, we have just to use the following standard properties of top
Chern classes

TxX TxX = co(T*X)N[X], cn(T*X) = (—1)"cn(TX) and cn(TX)N[X] =
x(X) (Hopf Theorem), see [BT], pp. 126-129.

In the first situation occuring in case (ii) we get the following
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x(X,4L) = (1) Mrank (L)Ti X - Tx X.

On the other hand we know that x(X,4L) = x(M, L) = rank (L)x(M). It
follows that
Ty X - Tx X = (=1)"x(M).

In case (iii) we get x(C,F*) = xgX(C) + > pc5(Xs — Xg) Which is the same
as what we have got in Exercise 4.2.15, (ii) if we note that

Xo — Xg = —x(p4, (F*)).

The Local Index Formula may be restated as follows. Let LCZ(T*X) be
the free abelian group spanned by the closed Lagrangian conic cycles in the
cotangent bundle total space T*X. Using Proposition 4.3.18, it follows that
any cycle in LCZ(T* X) has a decomposition ¢ = } a;T7 X for some a; € Z
and Z; closed irreducible subvarieties in X . Define a group isomorphism

T:LCZ(T*X) - Z(X), T(o)=) (-1)¥"%q;Z;

Moreover, in view of Corollary 4.3.22 (ii), there is a morphism CC : K (X) —
LCZ(T*X) induced by taking the characteristic cycles. With this notation,
we have the following commutative diagram.

K.(X) —*— CF(X)

|ee |

LCZ(T*X) — L Z(X)

Indeed, Eu(T(CC(F*))) = Eu(};(-1)"m;Y;) = > ;(—=1)"m;Euy, =
x(F*) (equality of constructible functions), the last equality being nothing
else but the Local Index Formula.

Remark 4.3.27. Using the above diagram, one can associate a characteristic
cycle

CC(¢) =T o Bu™'(¢)
to any constructible function ¢ € CF(X), in such a way that the equality

CC(F*) = CC(x(F*))

holds for any complex F* € D?(X). For details and several generalizations,
see [Sn1], Chapter 5.

In fact, the isomorphism Eu~! was used by MacPherson for the definition of
Chern classes in [Mac]. For a different approach see [S1], pp. 163-164.



5

Perverse Sheaves

For X a complex algebraic variety, the derived category D%(X) can be ob-
tained starting from two natural, but quite different, abelian categories,
namely the category C(X) of constructible sheaves on X and the category
Perv(X) of perverse sheaves on X. The optimal way to understand this real-
ity is the formalism of t-structures, to be introduced in the first section. The
second section is devoted to the main properties of perverse sheaves and to
a detailed description of germs of such sheaves in dimensions 0 and 1. The
third section is a trip into the realm of D-module theory, trying to describe
the dictionary behind the famous Riemann-Hilbert correspondence. Intersec-
tion cohomology, one of the sources of the perverse sheaves (maybe even their
birth-place), is briefiy discussed in the final section.

5.1 t-Structures and the Definition of Perverse Sheaves

We start this section by introducing the t-structures on triangulated cate-
gories.

Definition 5.1.1. A t-structure on o triangulated category D consists in two
strictly full subcategories D=° and DZ° of the category D such that by setting
D" = DX0[—n] and DZ™ = D2°[—n] one has the following properties.

(i) Hom(X,Y) =0 if X € D=0 and Y € D2!;
(i) DS0 ¢ DL gnd D' C D2°;
(ii) for any object X € D, there is a distinguished triangle
A— X — B A[+1]

with the object A in D=° and the object B in D21,
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In this situation one says that (D<=, D2°) is a t-structure on the category
D and that C = DS9N D2 is the heart (or core) of the t-structure. One also
says that D is a t-category. A t-structure is non-degenerated if

ND=" = ND2" = Null

where Null denotes the family of objects in D that are isomorphic to a zero
object in the category D.

The first result concerning the t-categories is the following, see [KS], Propo-
sition 10.1.11, p. 415 and [BBD], 1.3.6.

Proposition 5.1.2. The heart C of a t-structure is an abelian category, stable
by extensions.

In fact the latter reference above establishes some additional property for the
morphisms in C, see [BBD], 1.2.5. In many important situations, the trian-
gulated category D can be regarded as the derived category of its heart C.
Sufficient conditions for this to happen are given in [BBD], 3.1.16 and in [GM],
Exercise 1, p. 286. See also Remark 5.3.5 below.

Ezample 5.1.8. Let A be an abelian category. Then there is a natural t-
structure on the derived category D = D*(.A) given by setting

Ob(D=") = {K € Ob(D) ; H'(K*) = 0,Vi > n},
Ob(D2") = {K € Ob(D) ; H'(K*®) = 0,Vi < n}.
The exact sequence of complexes in C*(A)
0 — 7<oK* — K* — 71 K* —0

coming from Definition 1.1.14 gives rise to a distinguished triangle in D
reoK® — K* L5 151 K* - 1o K°[+1]

showing that the condition 5.1.1 (iii) is fulfilled.

Condition (ii) in this definition is obviously satisfied in our situation.

To get the first condition, let v : X — Y be a morphism in the derived
category D. Then there is a quasi-isomorphism X ~ Z and a morphism v :
Z =Y in K*(A) representing the morphism u. Using the quasi-isomorphisms
i :7<0Z =+ Z and p: Y = 7,7, it is enough to show that the composed
morphism povoi: 7<9Z — 7>1Y is trivial. This follows from the fact that
the O-differential in 7>,Y is injective.

The heart of this t-structure is an abelian category equivalent to the abelian
category A in view of Proposition 1.3.3,(iii). Moreover, it is clear by the same
proposition that this t-structure is non-degenerated.

More generally, let B be a full triangulated subcategory of D*(A) such that B
is stable under the truncation functors 7<¢ and 7>;. Then the above natural
t-structure on D*(.A) induces in a obvious way a t-structure on B, which is
also called natural and which is used below, for instance in Theorem 5.3.3.
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We have seen in the above example that the truncation functors 7<, and
T>rn are very useful when dealing with complexes. It turns out that in any
triangulated category with a t-structure one has abstract truncation functors
enjoying similar properties. For the following result see [BBD], 1.3.3 and 1.3.5.

Proposition 5.1.4. Let D be o triangulated category with a t-structure.

(i) The inclusion of the subcategory D<™ in D has a right adjoint functor T<n
and the inclusion of the subcategory DZ™ in D has a left adjoint functor Ton.

(i3) For any object X € D, there is a unique morphism d € Hom! (151X, 7<0X)
such that the triangle

T<oX — X 25 11X -5 ro X[+1]

is distinguished.

(iii) For a < b and any object X € D, there is a unique isomorphism
TZaTSbX L) TSbTZaX

such that the following diagram of obvious morphisms is commutative.

T<p X X T>aX
TZaTSbX i TSbTZaX

Remark 5.1.5. Let A be a triangulated category. A full subcategory B C A is
right admissible if the inclusion functor B — A has a right adjoint. For any
subcategory B C A we set

Bt ={Xe€A; Hmu(Y,X)=0forall Y € B}.

If B is a right admissible triangulated subcategory as in Definition 1.2.6, we
say that the category .4 has a semiorthogonal decomposition into the subcate-
gories (B, B). Admissible subcategories and orthogonal decompositions play
an increasing role in birational geometry, see [BO2] and [Bri]. They are also
closely related to t-structures, since a t-structure on A can be defined as a
right admissible subcategory A=<? C A which satisfies A<°[1] C .A=C. Indeed,
starting with such a subcategory A<°, we can recover A2° by setting

AZ0 = (ASO1])t.

For more details and interesting applications to birational algebraic geometry,
see [BBD], 1.3.4 and [Bri]. When A=? is in addition a triangulated subcategory
in 4, then the corresponding heart A< N 420 is trivial, see [Bri|.
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A key fact is that one can extend the notion of cohomology groups to any
t-category, by using the truncation functors introduced above. More precisely
we have the following result, see for a proof [BBD], 1.3.6 or [KS], Proposition
10.1.12, p. 416, generalizing our Exercise 1.1.16.

Proposition 5.1.6. The functor *H® = 1597<¢ : D — C is a cohomological
functor.

We define in the usual way the higher cohomology functors using the shift
automorphism of the triangulated category D, namely we set

PHY(X) := HO(X[i]).
For the following result see [BBD], 1.3.7.

Proposition 5.1.7. If the t-structure is non-degenerated, then the system of
functors *H* is conservative and X € D=0 (resp. X € D=°) if and only if
PHY(X) =0 fori>0 (resp. *H(X) =0 fori<0 ).

In the case when D = D*(A) with the ¢-structure from Example 5.1.3,
one clearly has tH! = H?, i.e. the usual cohomology groups of a complex, in
view of Exercise 1.1.16.

Definition 5.1.8. Let D;, for i = 1,2, be two triangulated categories endowed
with t-structures (D;O, DiZO) and let F : Dy — D5 be a functor of triangulated
categories. We say that F' is left (resp. right) t-ezact if F(D120) C D220 (resp.
F(D1§0) C D;O ). We say that F' is t-exact if F is both left and right ezact.
Let C; be the heart of the t-category D;, for i = 1,2 and denote by j; : C; = D;
the corresponding inclusion functors. We set PF = 'H o F o j, : C; — Cy
and call PF the perverse functor associated to F'.

In dealing with t-exact functors, the following general result is quite useful,
see for a proof [KS], Proposition 10.1.14 and Corollary 10.1.18, p. 418.

Proposition 5.1.9. Let D;, for i = 1,2, be two triangulated categories en-
dowed with t-structures, and F : Dy — D3 and G : Dy — Dy be two functors
of triangulated categories. The following hold.

(i) If F is a left (resp. right) t-ezact functor and X is an object in Dl20 (resp.
DZP), then *HO(F(X)) ~ PF(tHO(X)).
(ii) If F is left (resp. right) t-ezact, then PF is left (resp. right) ezact.

(iit) If F is t-exact, then F' sends the heart Cy into the heart C2 and the induced
functor F : C1 — Cy is naturally isomorphic to the functor PF. Moreover in
this case F('H™(X)) ~ 'H™(F(X)) for any integer n and any object X .

(iv) If the functor F' : D1 — D is left adjoint to the functor G : Dy — Dy,
then the functor F' is right t-exact if and only if the functor G is left t-exact.
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Remark 5.1.10. Let C be a triangulated category. Then the opposite category
C° is again a triangulated category in the following way, see [BBD], 1.1.1. The
shift functor 7° is the inverse of the shift functor for C, i.e. T°(X) = X[-1].
A triangle Z - Y — X — T°(Z) is distinguished in C° if and only if the cor-
responding triangle X — Y — Z — X[1] is distinguished in C. If (D=0, D20)
is a t-structure on a triangulated category D, then ((DZ°)° (D<°)%) is a
t-structure on the dual triangulated category D°, which is called the dual
t-structure on the opposite category D°, see [BBD], 1.3.2.

Here is an example of dual properties with respect to this duality, see [BBD],
1.3.3. Consider the first claim in Proposition 5.1.4 above. Assume that we
know that (Inclusion,7<¢) is a pair of adjoint functors in D. Now apply this
to the opposite category D° with the dual t-structure. It follows that the in-
clusion (DZ%)° — DO has a right adjoint, say 72,. But this is equivalent to
the fact that the inclusion D2° — D has a left adjoint, say m>0 = (7%,)°
using Exercise 1.1.7. Hence the second part of the claim in Proposition 5.1.4,
(i) follows from the first one.

Let p : 2N — Z be a decreasing function such that 0 < p(n)—p(m) < m—n
for all n < m. Such a function is called a perversity function. We denote by
p* : 2N — Z the dual perversity function given by p*(n) = —n — p(n) for all
n € 2N. It follows that p* is also a decreasing function and (p*)* = p.

Let X be an algebraic variety or a complex analytic space and let S be
a Whitney regular admissible stratification of X. For a stratum S € & we
set p(S) = p(2dimS), where dimS refers to the complex dimension of the
constructible set S.

Definition 5.1.11. Let A be a noetherian ring, p : 2N — Z a perversity
function and F* € D%(X) a constructible complex on X. We say that F* €
PDS0(X) (resp. F* € PD2%(X)) if one of the following equivalent conditions
hold.

(i) there exists a Whitney stratification S as above such that F* is S-
constructible and, for any stratum S € S, one has HI(ig'F*) = 0 for all
§ > p(S) (resp. Hi(i%F*) =0 for all j < p(S)), where is : S — X is the
inclusion;

(i) for any Whitney stratification S as above such that F* is S-constructible

and, for any stratum S € S, one has Hi(ig" F*) = 0 for all j > p(S) (resp.
HI(i'sF*) = 0 for all j < p(S)), where is : S — X is the inclusion.

The equivalence of (i) and (ii) in this definition follows from [BBD], 2.2.2. The

interest in this definition comes from the following result, see [BBD], 2.1.4 and
[KS], Theorem 10.3.4, p. 427. For the last claim see our Remark 5.1.19 below.

Proposition 5.1.12. The pair (PD<°(X), PD2°(X)) is a t-structure on the
triangulated category D%(X) for any perversity function p. Moreover, the t-
structure obtained in this way is non-degenerated.
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Definition 5.1.13. The above t-structure is called the t-structure of perversity
p on DE(X). The category of p-perverse sheaves on X with respect to the base
ring A is the heart of this t-structure on D%(X), namely

Perv(X,p) = PD<%(X)n PD2(X).

Perverse coherent sheaves have been defined in birational geometry, see [Bri],
but their analogy to the usual perverse sheaves seems to be rather formal.

Ezample 5.1.14. A sheaf complex F* € D!(X) is called p-semi-perverse if
F* € PDSO(X). Note that for perversities p such that p(S) > —dimS for any
stratum S € S, one gets a p-semi-perverse sheaf out of any constructible sheaf
F on X by setting F* = F[dimX].

Here is a characterization of the perverse sheaves in terms of support and
cosupport conditions. First we need some preliminaries.
Let z € X be a point in the topological space X and let i, : {} = X denote
the inclusion. Recall that one has defined for any sheaf complex F* € D?(X)
the supports

supp™ (F*) = suppH™(F*) = {z € X ; H™(iz ' (F*)) = H™(F*)s # 0},

see Definition 2.3.19. We can, in a dual way, define the corresponding cosup-
ports

cosupp™(F*) = {z € X ; H™(i},(F*)) # 0}.
These two notions are dual in the following sense.

Lemma 5.1.15. If the base ring A is a field and F* € D¥(X) is constructible,
then
cosupp™(F*) = supp " (DF*®)

Proof. We have F* = DG® where G®* = DF*® by Theorem 4.1.16. Moreover
we have H™ (i, DG*) = H™(D(i;'G*)) = H~™(i;'G*)V, by Corollary 4.1.17.
Therefore H™ (i}, F*) = H-™(i; 1 DF*)".
O
For a constructible complex F*, both sets supp™(F*) and cosupp™(F*)
are closed (algebraic or analytic) subvarieties of X and hence we can talk
about their dimensions. The support and the cosupport dimensions enter into
the following result, see for a proof [KS], Propositions 10.2.4-10.2.5.

Proposition 5.1.16. Let F* € D%(X) be a complex and p a perversity. Then
the following two conditions hold.

(i) (Support Condition) F* € PD<(X) if and only if dim(supp™F*) < k for
any integers m € Z and k € N such that m > p(2k);

(i3) (Cosupport Condition) F* € PD2°(X) if and only if dim(cosupp™F®) < k
for any integers m € Z and k € N such that —m > p*(2k).
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Among the perversities p, a key role is played by the middle or self-dual
perversity denoted by p; /2 and given by p;/2(2k) = —k, for all 2k € 2N. When
p = p1/2 we simply denote by Perv(X) the category of p-perverse sheaves and
call the corresponding constructible complexes ’perverse sheaves’.

To see why this perversity is called the middle one, just notice that the in-
equalities in the definition of a perversity function p imply that

p(m) > —m +p(0)

for any integer m € 2N. If we normalize the perversity functions by requiring
p(0) = 0, then we get —m < p(m) < 0.

Hence there is a minimal perversity pmin given by pmin(m) = —m, a
maximal perversity po = Pmaz given by Pmaz(m) = 0 and, half way between
these two, the middle perversity p,/,. Note also that p}.;,, = Pmazs Pinas =
Pmin and p} /2 =P1/2, the last equality explaining the other name, i.e. self-dual
perversity for p; /5.

Remark 5.1.17. We have seen above that a perverse sheaf is not a sheaf but
rather a complex of sheaves. One reason to stick to this strange terminology
is that the functor U — Perv(U,p), for U open subset in X, behaves like a
sheaf with respect to glueing local data into a global object. More precisely,
Perv(X,p) is a stack, i.e. given an open covering X = UU;, perverse sheaves
F; € Perv(U;,p) and isomorphisms f;; : F7|Us; — F7|Us; satisfying the
cocycle condition f;;|Usjk 0 fik|Uijk = fir|Uijk for any 4, j, k, there is a perverse
sheaf F* € Perv(X,p) and isomorphisms f; : F*|U; — F; such that f;; o
fleij = filUij- Here Uij = UiﬂUj, Uijk = UiﬂUj NUj, and the pair (.7:‘, (f,),)
is unique up-to isomorphism, see [KS], Proposition 10.2.9 and [BBD], 2.1.23.

Remark 5.1.18. When the base ring A is a field, Verdier duality implies that
the duality functor D : D3(X) — D?(X) interchanges ?D2° and ?" D<°, and
also PD<? and ?" D% see [BBD], 2.1.16. In particular D induces a functor
Perv(X,p) = Perv(X,p*) and hence an involution Perv(X) — Perv(X).

Remark 5.1.19. Assume that ¢ = p(2dimX) and b = p(0). Then clearly a < b
and the condition F* € PD<°(X) implies F* € D=<*(X), where the last
derived category is endowed with the natural t-structure of Example 5.1.3.
In the same way, F* € PD2°(X) implies F* € D2%(X), see [BBD], bottom
of page 56. It follows as in Example 5.1.3 that any p-perverse sheaf can be
represented by a complex F* satisfying F™ = 0 for m < a or m > b. In the
case of the middle perversity one has a = —dimX and b = 0.

For topology of complex spaces, the main example of a perverse sheaf is the
following, see [Le2], [Br2] and [Sn1], Example 6.0.11, p. 404.

Theorem 5.1.20. Let X be a complex analytic space of pure dimension n
which is locally a complete intersection. Then the shifted constant sheaf Ax|n]
is a perverse sheaf (with respect to the middle perversity function). More gen-
erally, L[n] is a perverse sheaf on X for any local system L on X.
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Proof. Take S € § be a stratum in a Whitney admissible stratification & of
X and note that the first condition in the definition of a perverse sheaf, i.e.

izt Aln]) = 0

for all integers m > —dimS is obviously satisfied. To check the remaining
condition

H™ (iL A[n]) = 0

for all integers m < —dimS, we proceed as follows. Take z € S be any point
and choose V' to be a product type open neighborhood of z in X, i.e. V is
homeomorphic to a product T'x B where T is a small transversal germ to S at
z (defined using a local embedding in a smooth germ) with dimT' = n— dim$
and B is a small open ball in S centered at x. Moreover we can assume that
SNV is a closed subset in V corresponding under the above homeomorphism
to the subspace {z} x B.

The adjunction triangle for the closed embedding i : SNV — V gives rise
to the following long exact sequence of cohomology groups

s HMN(V, i Ay [n]) » BNV, A) = H™(VAV NS, A) = -

Identifying this sequence to the long exact sequence of cohomology of the pair
(V, VAV N S) as in Remark 2.4.5 it follows that

H™(i5Ax[n])e = H™(i'Av[n]). = H™(V,i'Av[n]) = H™"(V,V\V N S; 4)

where the second isomorphism comes from Corollary 4.3.11. Using the product
structure of V we get

H™M(V,V\V N S; A) ~ H™(T x B,T* x B; A) ~ H™(T, T*; A) ~
~ HmAn1(T 4)

where T* = T\{z}. This space T* is homotopy equivalent to the link of the
singularity (T, z) which is an isolated complete intersection singularity and
the last isomorphism comes from the fact that T is contractible. It follows
that T* is (dimT — 2)-connected, see [Hal], and hence H™+"~1(T*; A) = 0
for all m < —dimS, completing our proof in the case Ax|[n]. The case of a
local system £ on X may be treated in exactly the same way, noting that a
c-connected CW -complex is homotopy equivalent to a CW -complex having
no cells in dimensions d, for 0 < d < c. O

Exercise 5.1.21. Let A be a field and X an n-dimensional algebraic variety.
Using the same approach as above, show that

(i) the shifted dualizing sheaf wx[—n] is not a perverse sheaf in general;

(ii) wx[—n] is a perverse sheaf when X is locally a complete intersection.
Note also that D(Ax[n]) = wx[—n] and compare to Remark 5.1.18.
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5.2 Properties of Perverse Sheaves

In this section X is a complex analytic space or a complex algebraic variety, p
is a perversity function, the triangulated category D%(X) is endowed with the
t-structure of perversity p and we denote by PH* : D8(X) — Perv(X,p) the
cohomology functors obtained from this t-structure as in Proposition 5.1.7.
Using Propositions 5.1.7 and 5.1.2, it follows that one has the following.

Proposition 5.2.1.

(i) For F* € D%(X), one has F* € PD=C if and only if PH*(F*) = 0 for all
k > 0. Similarly, F* € Perv(X,p) if and only if PH¥(F*) = 0 for all k # 0.

(i3) PHO(F*) = F* if and only if F* € Perv(X,p).
(iie) If F* — G* — H* 2 is o distinguished triangle in D%(X) and F*

and H® are p-perverse sheaves, then G® is p-perverse.

Consider the adjunction setting once again, namely U is an open con-
structible subset in X, Z = X\U is the complement which is itself a closed
analytic (or algebraic) subset in X and let j : U -+ X and i : Z — X be
the corresponding inclusions. The following result collects several important
properties related to the functors in this setting, see [BBD], 1.4.1.

Proposition 5.2.2. We have a diagram of functors of triangulated categories
i it
D% 2z) = D*(X) 1o DY)
such that the following hold.

(i) i« has i~' as a left adjoint and i as a right adjoint. Both i~' and i' are
functors of triangulated categories.

(ii) 7 has 51 as a left adjoint and Rj. as a right adjoint. Both ji and Rj,
are functors of triangulated categories.

(iii) 71 oi, =i lojy = i'oRj. = 0 and Hom(51B,i,A) = Hom(i, A, Rj.B) =
0 for any A € D*(Z) and any B € D*(U).

(iv) For any sheaf complex F* € D*(X), there exists a unique morphism d :
Rjj 7 F® = ii' FO[1] (resp. d:iui ' F* — 51j~ F*[1]) such that

i’ F* = F* 5 Rjj F S and jij T P 5 P bl D
are distinguished triangles.

(v) The adjunction morphisms i ‘i, — Id — i‘ix and j7'Rj. — Id — j 14y
are isomorphisms. Equivalently, the functors i.,j« and j are fully faithful.
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Note that in this situation we have j~! = j', see Corollary 3.2.12. We have

already seen the distinguished triangles in (iv) above in Section 2.4 on the
adjunction triangle. Also the equality i' o Rj, = 0 was proved in Corollary
2.4.4. The equivalence claimed in (v) follows from Exercise 1.1.7.

Remark 5.2.3. The above functors i,, 7', ' and i~ preserve constructibility
in both the algebraic and the analytic setting. The remaining functors j; and
Rj. preserve constructibility in the algebraic setting. The same holds in the
analytic setting if one works with a fixed Whitney stratification & of the pair
(X, Z) and constructibility is taken to mean S-constructibility. Indeed, when
S is a Whitney regular stratification of the pair (X, Z) then X, U and Z
inherit Whitney stratifications that will be used in the sequel without special
notice. Moreover, the same perversity function p will be used for these three
related spaces X, U and Z. See [Snl], Proposition 4.0.2, pp. 214-215. Similar
caution is necessary in a number of the following results, notably in Theorem
5.2.4, Definition 5.2.6, Propositions 5.2.8 and 5.2.9

A fundamental fact is that the t-structure of perversity p on D2(X) can be
obtained by glueing the corresponding p-perversity t-structures on D%(U) and
D?(Z) via the above functors. More precisely we have the following result, see
[BBD], 1.4.10, 1.4.12 and 2.1.8 as well as [Snl], Lemma 6.0.2, p. 384.

Theorem 5.2.4. With the above notation, for a complex F* € D!(X), the
following hold.

(i) F* € PDY(X) if and only if j~1F* € PD<°(U) and i"'F* € PD<0(Z).
(i) F* € PD2°(X) if and only if §*F* € PD2O(U) and i'F* € PD2°(Z).

(iii) The functors j1,i~' are right t-ezact.

1

(iv) The functors j' = j~1,i. are t-ezact.

(v) The functors Rj.,i' are left t-ezact.

Corollary 5.2.5. Let F* € Db(X) be a complex such that supp(F*) C Z.
Then F* € Perv(X,p) if and only if i F* € Perv(Z,p).

Proof. Since supp(F*) C Z it follows that we have a natural isomorphism
F® ~i,G* in D¥(X) with G* =i~1F*. Since j~! 0, = 0 as we have seen in
Proposition 5.2.2, (iii) it follows that 71 F® = 0. On the other hand we have
i~Loi, =i'oi, = Id by Proposition 5.2.2, (v) and hence i 1 F® ~ i'Fe~ Qe Tt
follows from Theorem 5.2.4 that F* € PD<%(X) if and only if G* € PD<0(Z2)
and F* € PD2°(X) if and only if G* € PD20(Z).
O
We say that a sheaf complex F* € D?(X) is an extension of a complex
G* € D(U) if there is an isomorphism j~'F*® ~ G*. Such an isomorphism
gives by adjunction morphisms 7#G* — F* — Rj.G*. In some sense jG*® is
the smallest extension and Rj.G* is the largest extension for the complex G°.



5.2 Properties of Perverse Sheaves 135

If G* € Perv(U,p) and if we look for extensions F* € Perv(X,p), then
applying the functor H° to the above morphisms and using the identification
PHO(F*) ~ F* from Proposition 5.2.1, (ii) we get the following diagram

PHG® - F* = P5.G°.

Definition 5.2.6. We call the intermediary extension of the perverse sheaf
G* € Perv(U,p), and denote it by P5.G®, the unigque extension F* €
Perv(X,p) of G* satisfying the following equivalent properties.

(i) F* is the image in the abelian category Perv(X,p) of the morphism PiG* —
?45,G* described above;

(i5) F* is the unique extension of the perverse sheaf G* in DE(X) such that
i"lF* € PDS"Y(Z) and i'F* € PD2'(2).

When the perversity used is clear from the context, we simply write ji.
instead of Pjy,. For the equivalence of the above two properties see [BBD],
1.4.22 and 1.4.24.

Remark 5.2.7.

(i) One can prove that ?5G® (resp. ?4,G*) is the unique extension A'® of G*
in D%(X) such that i 'X* € PD<72(Z) (resp. i 'X* € PD=%(Z)) and
i'tX* € PDS0(Z) (resp.i'X* € PD<2(Z)), see [BBD], 1.4.24 and the following
discussion there. In this sense we can say that the intermediary extension 5, G*
is more symmetric than the simpler to define extensions ?G® and ?5,.G®.

(ii) Let U and V' be two open subsets in X such that U C V. Let ji : U = X,
jv : V= X and j : U = V denote the corresponding inclusions. Then, using
the second characteristic property in the above definition, one can easily check
that
j;l(jU!*g.) = jG*

for any perverse sheaf G* € Perv(U,p). In this situation we work with a
regular Whitney stratification compatible with the triple (X,V,U) and we
use the same perversity function p for all the spaces involved.

Using the definition of the p-perverse t-structure on D%(X) it follows easily
that the Definition 5.2.6 can be restated as follows.

Proposition 5.2.8. If G* € Perv(U,p), the intermediary extension ji,G® is
the unique eztension F* of G* in D%(X) such that for any stratum S € S,
S C Z with inclusion ig : S — X, one has H"‘zgl]-“ = 0 for all integers
m > p(S) and H™i,F* =0 for all integers m < p(S).

The behavior of the intermediary extension functor ?ji, with respect to duality
is described by the following result, see [BBD], 2.1.16-2.1.17.
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Proposition 5.2.9. Let A be a field. Then the following hold.

(i) The Verdzer duality D : D’(X) — D%(X) interchanges Pj; with ?" j,, 4"
with P L and Pjy, with P* e

(ii) For the self-dual perversity and under the assumption that the complex
G* is a self-dual perverse sheaf on U, the intermediary extension ji1.G*® is the
unique self-dual extension F* of G* in D%(X) such that for any stratum S € S,
S C Z with inclusion ig : S = X, one has H™ig' F* = 0 for m > —dim(S).

The intermediary extension can also be described using iterated trunca-
tions. For any m € Z let U,, denote the union of all the strata S € & such
that p(S) < m. Using the frontier condition and the fact that p is a decreasing
function, it follows that U, is an open constructible set, e.g. a Zariski open
set when we are in the algebraic setting. Let j,,, : Up—1 = U,y be the inclusion
and choose an integer N such that p(k) < N for all ¥ € 2N. It follows that
X = Un. With this notation we have the following result, see [BBD], 2.1.11.

Proposition 5.2.10. Let G* be a p-perverse sheaf on the open set U, in X
and let j : U,, = X be the inclusion. Then

G® = T<N_1RjNw- T<m Rim+1)+G°

where the truncation functors 7<, are with respect to the natural t-structures
on D%(U,,1) as in Ezample 5.1.3.

This description of the intermediary extension can be used sometimes to
identify the complex 5.G® completely, i.e. describe it in terms of simpler
complexes. Here is such a situation.

Exercise 5.2.11. Let X be an irreducible smooth algebraic curve and j :
U — X the inclusion of a Zariski open and dense subset. If £ is a local system
on U, then show that there is an isomorphism ji.(L[1]) = (j.£)[1].

In other words, in this case the intermediary extension coincides essentially
to the usual (underived) direct image.

The intermediary extension functor plays a key role in describing the simple
objects in the abelian category Perv(X). More precisely we have the following
result, see [BBD], 4.3.1 as well as [Brl].

Theorem 5.2.12. For X a complex algebraic variety, the following hold.

(i) Let A be o field. Then the category Perv(X) of perverse sheaves with respect
to the middle perversity is artinian and noetherian. In particular any object
has finite length.

(i) Let § : V. — V be the inclusion of a smooth irreducible locally closed
subvariety V in X into its closure V in X. Let i : V — X be the other
inclusion. For any finite rank, irreducible Q-local system L on V the complex
ix (Jix (L[dimV])) is a simple perverse sheaf. Conversely, any simple object in
the abelian category Perv(X,Q) can be obtained in this way.
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Now we consider to what extent the regular mappings between two an-
alytic spaces (resp. algebraic varieties) preserve the p-perverse sheaves. For
any perversity function p we define the shifted perversity function p[k] for
k € 2N by the formula p[k](m) = p(k + m). The following results are proved
for X,Y complex manifolds in [KS], Propositions 10.2.11 and 10.2.12 and in
the algebraic setting in [BBD], 2.2.5-2.2.6 in the case d = 0 and in 4.2.4 for
the middle perversity. The general case can be proved along the same lines.

Proposition 5.2.13. Let f : X = Y be an analytic map between the complex
analytic spaces X andY such that dimf~'(y) < d for anyy € Y. Then

(i) f~! sends PD<O(Y) to ?l-2dD=0(X);
(i) f* sends PD20(Y) to Pl-2dD=-24(X),

In particular, when d =0, i.e. when f is quasi-finite, f
f' is left t-ezact.

—1 is right t-ezact and

Corollary 5.2.14. Let f : X = Y be an analytic map between the complex
analytic spaces X andY such that dimf~'(y) < d for any y € Y. Then

(i) If F* € PD<%(X) and the direct image with compact supports RfiF* is
constructible, then RfiF* € P2 p<24(y);

(i) If F* € PD2°(X) and the direct image Rf.F* is constructible, then
Rf.F* € PRAD20(Y).

In particular, if d = 0 and we are in the algebraic setting, then Rf is right
t-exact and Rf, is left t-ezact.

Corollary 5.2.15.

(i) If f : X =Y is a finite morphism (i.e. f is proper with finite fibers), then
Rf. = Rf; is t-exact.

(i) If f : X = Y is a covering map then f' = f~1 is t-ezact.

Consider from now on the case of the middle perversity p = p;,; and as-
sume that A is a field. Then we have the following result, see [KS], Proposition
10.3.17 for the analytic smooth case and [BBD] 4.1.1 for the algebraic setting.
A unified treatment can be found in [Snl], p. 410 and in [HL1], [HL2].

Theorem 5.2.16. Let f : X — Y be a Stein morphism between the ana-
lytic spaces X and Y, respectively an affine morphism between the algebraic
varieties X and Y. Then we have the following.

(i) If F* € PD=%(X) and the direct image Rf.F*® is constructible, then
Rf.F* € PDO(Y).

(i) If F* € PDZ%(X) and the direct image with compact supports RfiF*® is
constructible, then RfiF* € PD2°(Y).
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Recall that a morphism f: X — Y is Stein (resp. affine) if any point y € Y
has an open neighborhood U in the analytic topology (resp. in the Zariski
topology) such that f~1(U) is a Stein space (resp. an affine variety).

Note that in the algebraic setting the above result can be restated by saying
that Rf. is right t-exact and Rf; is left t-exact. Combining this result with
Corollary 5.2.14 we get the following.

Corollary 5.2.17. Let f : X — Y be an affine morphism between the alge-
braic varieties X and Y. If f is quasi-finite, then the functors Rf, and Rf
are t-ezxact.

A similar property holds for f : X — Y a Stein morphism between analytic
spaces X and Y, but we have to restrict to complexes F* such that Rf,F*
and/or RfiF* are constructible. The condition on the morphism to be Stein
(or affine) is essential, as is seen for instance by looking at the characteristic
cycle CC(G) in Example 4.3.21, (ii), taking V to be a complete intersection
of codimension two in X and using Corollary 5.2.24 below.

Moreover, applying Theorem 5.2.16 to the constant morphism ax : X — pt
we get the following.

Corollary 5.2.18 (Artin Vanishing Theorem, Perverse Version). Let
X be an affine complex variety and let F* € PD<C(X) be a semi-perverse
sheaf on X. Then H™ (X, F*) =0 for all m > 0.

Using Example 5.1.14, it follows that this corollary is a generalization of our
previous Theorem 4.1.26. Using Theorem 3.3.10 and the fact that the dual
of a perverse sheaf is again perverse, see Remark 5.1.18, we get the following
generalization of Proposition 3.4.2. Alternatively, this result follows directly
from Theorem 5.2.16 (ii).

Corollary 5.2.19. Let X be an affine complex variety and F*® a perverse
sheaf on X. Then H™ (X, F*) =0 for m > 0 and H* (X, F*) =0 for m < 0.
In particular, if X is in addition a pure n-dimensional locally complete inter-
section and L is a local system on X, then H™(X,L) = 0 for m > n and
H™(X,L)=0 for m <mn.

Without the assumption that X is affine or Stein, we have the following
weaker but very useful result.

Proposition 5.2.20. Let X be a pure n-dimensional complex analytic space
and let F* be a perverse sheaf on X. Then H™ (X, F*) = H*(X,F*) =0 for
any m ¢ [—n,n|. Moreover, H™(X,F*) = H*(X,H "(F*)).

Proof. Consider the spectral sequence
EPY = HP (X, HY(F*))

converging to HPT9 (X, F*). Since F* is perverse, it follows from Proposition
5.1.16 that dim(suppH?(F*)) < —¢ and HI(F°*) = 0 for any ¢ ¢ [—n,0].
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Hence, using Corollary 3.1.7 and Proposition 3.4.1, we get HP(X,H1(F*)) =0
for p ¢ [0,—2q] or q ¢ [—n,0]. This implies EX'? = 0 for p + ¢ ¢ [-n,n], and
therefore our first claim is proved. The second one follows by duality and the
final isomorphism is a consequence of the above spectral sequence.

O

Finally we have the following fundamental result, see [GoM3], [Snl1], The-
orem 6.0.2, p. 403, [KS], Corollary 10.3.13 and [Br2] (the last one in the case
A is a field). Recall that Py = ¢f[—1] and Py = ¢[—1].

Theorem 5.2.21. The functors Py, Pp; : DY(X) — D(X,) are t-ezact
functors with respect to the middle perversity t-structures. In particular, there
are induced functors Pi¢,Ppy : Perv(X) — Perv(Xo).

Exercise 5.2.22.

(i) Let X be an algebraic variety having only isolated singularities, j : X,¢q —
X the inclusion of the smooth part of X into X. If G* is a self-dual perverse
sheaf on X4, show that ji.G* is the unique self-dual extension F* € D%(X)
of G* such that for any point ¢ € Sing(X) one has (H™F*), = 0 for all
integers m > 0.

(ii) Let f : C**1 — C be a polynomial function such that X = f~1(0) has only
isolated singularities. Let * = P4)z(Qgn+1[n+1]). Show that F* is a self-dual
perverse sheaf on X such that F*|X,, = Qx,., [r] but F* # ji.(Qx,., [n]) in
general. In fact 7* = ji.(Qx,., [7]) if and only if X is smooth, as it follows
from Corollary 6.1.18 below.

Ezample 5.2.23 (Perverse Sheaves in Dimensions 0 and 1).

(i) Perverse Sheaves in Dimension 0.

When X is a point and A is a field, then D%(X) = K?%(X), the homotopic
category of bounded complexes of finite dimensional A-vector spaces, see Ex-
ample 1.4.8. It follows from Proposition 5.1.16 that F* € PD<%(X) (resp.
F* € PD2%X)) if and only if H™(F*) = 0 for all m > 0 (resp. for all
m < 0). In other words, the middle perversity t-structure on D%(X) coincides
in this case to the natural t-structure from Example 5.1.3.

Therefore F* € Perv(X) if and only if H™(F*) = 0 for all m # 0. But such
a complex is quasi-isomorphic to the complex having in degree 0 the vector
space HO(F*).

(if) Perverse Sheaves in Dimension 1.

Let X be a complex analytic curve and F* € Perv(X, A) a perverse sheaf.
Then by Remark 5.1.19 we can assume from the beginning that F* = 0 for
i ¢ {—1,0}. Using Proposition 5.1.16, one can easily see that a constructible
2-term complex F* : 0 — F~! — F° — 0 is perverse if and only if
HO(F*) has a discrete support and I3 (H~1(F*)) = 0 for any s € S. The
last claim follows from the equality H (i, F*) = i,H ' (F*) which in turn
comes from the obvious vanishing F~2 = 0.
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The above description of the germs of perverse sheaves in dimension zero
has the following important consequence for characteristic cycles.

Corollary 5.2.24. Let X be a complexr manifold, F* € Perv(X) o perverse
sheaf with characteristic cycle

CC(F*) =) m;(F*) T, X.

Then mj(F*) > 0 for all integers j and CV(F*) = |CC(F*)|.

Proof. Let z € X; be a point and g : (X,z) = (C,0) a function germ as
in Proposition 4.3.20. It follows by this result that m;(F*) = x((PoyF*)z).
Since p = dg(z) is a nondegenerate covector, it follows that the stratified
singular set of g in a neighborhood of z is reduced to {z}. In view of Corollary
5.2.5, we can regard Py,F* as a perverse sheaf on the point {z}, i.e. in
view of the above discussion, as a vector space V in degree 0. It follows that
m;(F*) = dimV > 0. The last claim follows from Remark 4.3.23.
O
In the dimension one case one may ask under what conditions a perverse
sheaf F* can be represented by a single sheaf placed in degree (—1).

Proposition 5.2.25. Let X be a smooth complex analytic curve and F* €
Perv(X) be a perverse sheaf. Then there is an isomorphism F* = H™L(F*)[1]
in the derived category D%(X) if and only if the following equivalent conditions
hold.

(i) HO(F*) = 0;

(ii) for any point a € X the canonical morphism can : Yy_o(F*) — 0o (F*)
is surjective, t being a local coordinate at the point a.

Proof. Assuming as above that F* is a 2-term complex, it is clear that the
isomorphism F*® = H~1(F*)[1] is equivalent to the condition (7).
To show the equivalence (i) < (i7) note that ¥;_,(F*) and ¢;_,(F*) are both
concentrated in degree (—1) by Theorem 5.2.21 and use the defining triangle
of can to conclude.
O

Now we intend to describe in detail the germs of perverse sheaves on a
smooth complex curves which are constructible. For simplicity we assume
that A = C. These germs form an abelian category Perv(C,0) which can be
described by using just simple linear algebra, see also [GGM1] and [MV]. If
F* € Perv(C,0) is such a germ, then by definition there is a small open disc
D in C, 0 € D and a perverse sheaf F* € Perv(D,C) representing the germ
F*. Using Example 5.2.23 (ii), we may suppose that F = 0 for i # —1,0.
Moreover H(F*) is a sheaf supported at {0}, hence a finite dimensional C-
vector space. On the other hand H~!(F*) gives by restriction a local system
L on the punctured disc D* = D\{0} and we have (o} (H*(F*)) = 0.
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The following distinguished triangle, obtained by shifting the triangle in Def-
inition 4.2.4,

P F SR P F — Fy
gives the following exact sequence
0 — HHF)o — H Py F*) =B HO (P F*) — HO(F*)o — 0.

Here ¢ denotes a local coordinate on D vanishing at the origin.

Then the perverse sheaves Py F* and Py, F*® can be identified to finite di-
mensional vector spaces. More precisely, we set E = H°(Py; F*) and F =
HO (P F*). Each of these vector spaces comes with a monodromy automor-
phism, denoted here by Mg and respectively Mp. One has the following com-

mutative diagram

can F

E
m%?/wﬂ
E—=>F
see Remark 4.2.12. With this notation we have the following basic result.
Proposition 5.2.26. There is an equivalence between the category Perv(C,0)

of germs of perverse sheaves in dimension one and the category of diagrams
Diag whose objects are the diagrams

with E, F finite dimensional C-vector spaces and c, v are C-linear mappings
such that cov + 1p and voc+ 1g are isomorphisms.

Proof. First note that a morphism (e, f) in the category Diag is given by a
commutative diagram

c
—

v
|l
| )

v

Moreover (e, f) is an isomorphism if and only if e and f are both isomorphisms,
see Sabbah [S2], p. 41.
We have already described above a functor Perv(C,0) — Diag, namely

F* = (PY(F) =—=P0i(F*) ).

Conversely, to each diagram FE é F we associate the following germ F* in
v

Perv(D,C). Let £ be the local system on D* determined by the vector space
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E and the automorphism Mg = 1 +voc and let H~! be the constructible
sheaf on D given by H~|D* = £, Hy' = Ker (c).

These data define indeed a constructible sheaf on D since Ker (¢) C
Ker (Mg — 1), the last vector space being the space of horizontal sections
in the local system £ (which admit obvious extensions to the whole disc).
This definition also implies 1"{0}7-[_1 =0.

Let #° be the constructible sheaf on D supported at {0} and given by Coker c.
Then 0 — H~ 3 H® — 0 is a perverse sheaf on D, see Example 5.2.23 (ii).

The reader can easily check that these two functors establish the equivalence
of categories claimed above. O

Exercise 5.2.27. With the above notation, let F* € Perv(D,C).
(i) Show that suppF*® C {0} if and only if Py (F*) = 0.
(if) Using the above proof and Local Index Formula 4.3.25, (i), show that
CC(F*) = dimPy¢(F°*) - TpD + dimPis(F*) - Tfy D.
(iii) Let f : D — C be given by f(t) = t™ for some integer m. Identify the
graph of the differential df to the subset
Graph(df) = {(t,mt™ 1) € C* | t € C}.

Show that CC(F*) - Graph(f) = dim?p;(F*). Compare the claim (i) and (ii)
to [S2], 1.4 and the final one to [S1], 4.6 and [BMM].

Corollary 5.2.28. Let C be a smooth connected complex algebraic curve and
F* € Perv(C). Let U C C be a Zariski open subset such that H=(F*)|U is
a local system. Assume that for all bifurcation points b € B = C\U, the germ

of perverse sheaf (F°®,b) is determined by a diagram E é F, . Then
Vb

H°(C,H Y(F*)) C NpepKer ¢,
with equality when C is simply-connected, i. e. C = P! or C =C.
Proof. According to Proposition 5.2.26 the germ of perverse sheaf (F*,b)
is determined by a diagram FE, % F, . However, since U is connected we

can identify (non-canonically) all E; to a single vector space E. Next use the
fact that a global section of H~1(F*) gives local sections in H~1(F*), for all
b € B as well as a global section of H~1(F*)|U (which corresponds to a vector
in F invariant under the monodromy representation associated to the local
system H~L(F*)|U ).
When C is simply-connected, the fundamental group 71 (U) is spanned by the
elementary loops about the bifurcation points in B and the result follows.
O

For a similar study of germs of perverse sheaves whose singular support is
a normal crossing we refer to [GGM1] and [GGM2]. The case of germs whose
singular support is a plane curve is treated in [Mai.
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5.3 D-Modules and Perverse Sheaves

The theory of Dx-modules can be developped either in the analytic case, see
Bjork [Bj], Kashiwara-Schapira [KS] and Mebkhout [Mel], or in the algebraic
case, for which we refer to Borel [B2]. Technically the two cases are rather
different, but since the main results are very similar, we will survey below the
analytic case and point out the differences with the algebraic one.

Let X be a connected n-dimensional complex manifold and Ox be the
sheaf of holomorphic functions on X. We denote by Dx the sheaf of rings
of finite-order holomorphic linear differential operators. This is the (non-
commutative) subalgebra in the algebra Homc(Ox,Ox) generated by Ox
(acting via multiplication) and by the holomorphic vector fields on open sets
in X (acting as derivatives). The sheaf of rings Dx is right and left notherian.
Let M be a coherent, (left) Dx-module. Then one can define the characteristic
variety Char(M) which is a closed, involutive and conic analytic subvariety
in the complex cotangent bundle 7* X . This implies that dim(Char(M)) > n.
We say that a coherent Dx-module M is holonomic if dim(Char(M)) = n.
For such a Dx-module M one can define also its characteristic cycle Ch(M),
see [Bj], 1.8.5.

If X is now a complex algebraic variety, one has with self-explanatory
notation

Dxan = Oxan Qox Dx.

In this way, any algebraic (left) Dx-module M has an associated analytic
(left) Dxan-module
M = Oxan @0y M

called the analytic localization of M, see [Bj], p. 245. A similar remark applies
to complexes of Dx-modules.

Coming back to the analytic setting, the category mod(Dx) of all the Dx-
modules is an abelian category having enough injective objects. We denote by
Dt . (Dx) (resp. D%(Dx)) the full triangulated subcategory in D®(mod(Dx))
consisting of complexes with coherent (resp. holonomic) cohomology sheaves.
There is a duality functor

D: Dgah(DX) - Dgah(DX)

given by DM® = RHomp, (M*, Kx)[n] where Kx = Dx Qo wx',wx = 2%
being the invertible line bundle of top degree differential forms on X, see
[B2], 3.6 and [Bj], 2.1.11. This functor induces an equivalence of categories
Dt (Dx) — D%(Dx) whose square is the identity, see [Mel], Theorem 3.7.
One can define two functors D?(Dx) — D?(X) (the base ring for the second
derived category being C) as follows. For a complex M*® € D*(Dx) we define
the complex of solutions of M*® by the formula

Sol(M*) = RHomp, (M?*,Ox)[n]
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and the de Rham complex of M* by the following formula
DR(M®) = 2% & M*[n].

These functors are closely related as the following fundamental result shows,
see [B2], Proposition 13.3, [Bj], 2.11.2, [Mel], 4.3.1.

Theorem 5.3.1.
(i) For any complexes M*,N'* € D*(Dx) one has a natural isomorphism

RHompy (M*,N*)[n] ~ DR(DM"* ®c, N*).

In particular Sol(M®) ~ DR(DM?®).

(ii) (Constructibility Theorem) For any holonomic complex M* € D% (Dx) the
complezes Sol(M*) and DR(M?®) are constructible, i.e. they are objects of the
category DE(X).

(iit) (Local Duality Theorem) Sol(DM®) ~ DSol(M?*).

Note that in the algebraic setting, the claim (ii) is that the corresponding
complexes are constructible in the algebraic sense, see [Mel], 2.7.8, in spite of
the fact that the complex 2% used in the definition of the corresponding de
Rham complex is the complex of complex analytic differential forms on X.

1n case of a single holonomic Dx-module M we have the following result,
see [KS], Theorem 11.3.3.

Proposition 5.3.2.
(i) CV(Sol(M)) = CV(DR(M)) = Char(M).
(it) CC(Sol(M) = CC(DR(M)) = Ch(M).

We define now the regularity of a complex of analytic Dx-modules. Let
z € X be any point and denote by @X,m the completion of the local ring
Ox, at z with respect to the m-adic topology. Then @X,m is in a natural
way a Dx z-module containing Ox , as a submodule and hence the quotient
Ox ./Ox,; has a natural structure of Dx ;-module.
A complex M* € D?(Dx) of analytic holonomic Dx-modules is called regular
if for every € X one has

RHompy ,(M?,0x,./Ox,5) = 0.

1n the algebraic setting, the definition of regularity is more subtle, and different
from the above analytic one. 1t has a lot to do with the definition of a regular
fiat connection given in 3.4.14. Let X be a smooth algebraic variety and
j X =Y agood compactification of X. Then a complex M* € D?(Dx)
of algebraic holonomic Dx-modules is regular if the analytic localization of
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the algebraic direct image j, (M) is regular on Y*" in the sense of the above
definition. See for more details [Bj], p. 246.

The following discussion applies to both the analytic and the algebraic
settings. Let D?, (Dx) denote the full triangulated subcategory of regular
holonomic complexes in D% (Dx). This category D%, (Dx) of “regular holo-
nomic coefficients” is endowed with Grothendieck’s six operations, exactly as
the category D?(X) of “constructible coefficients”, see the remark after The-
orem 4.1.5.

The most fundamental result of the theory is the following Riemann-Hilbert
theorem, see [B2], 14.4 and [Bj], 5.5.1 and 5.5.4.

Theorem 5.3.3 (the Riemann-Hilbert Correspondence). Consider the
triangulated category D,’i,h(DX) endowed with the natural t-structure and the
triangulated category Dg(X ) endowed with the middle perversity t-structure.
Then the de Rham functor

DY, (Dx) 28 Di(X)

is t-exact and establishes an equivalence of categories which commutes with
direct images, inverse images and duality. In particular

(i) DR induces an equivalence of categories between the abelian category
RH(Dx) of regular holonomic Dx-modules on X and the abelian category
of middle perversity perverse sheaves Perv(X);

(ii) For any complex M* € D?, (Dx), one has an isomorphism
DR(H™(M?*)) =PH™(DR(M?®)).

Ezample 5.3.4. Let V be a holomorphic vector bundle on the complex manifold
X and V : V = V®{2% be an integrable connection as at the end of Chapter 2.
Then V can be regarded in an obvious way as a Dx-module: the multiplication
with functions in Ox is clear if we think at V as being the sheaf of sections
of the corresponding vector bundle, and the action of a vector field V on
such a section s is simply given by V - s = Vy/(s), where Vy is the covariant,
derivative associated to the connection V along the vector field V.
1n fact any Dx-module can be identified to a pair (M, V) where M is an Ox-
module and V is a generalized integrable connection, see [Bj], Theorem 1.2.12.
Moreover, a Dx-module M comes from a genuine integrable connection (V, V)
as above if and only if M is a finite type Ox-module, see [Bj], Theorem 1.3.8.
1n terms of characteristic varieties, a Dx-module M is a connection if and
only if Char(M) coincides to the zero section of the cotangent bundle, see
[Ph], Proposition 10.3 and compare this result to Proposition 4.3.2, (v) in this
book.

In particular, a fiat connection M = (V,V) gives rise to a holonomic
Dx-module. When X and M = (V,V) are algebraic, then M is regular
as a Dx-module exactly when (V, V) is a regular connection as in Definition
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3.4.14. Moreover, for M = (V, V) an integrable connection, the corresponding
de Rham complex DR(M) is just the twisted de Rham complex considered in
Section 2.5 shifted by n = dimX. More precisely, we have quasi-isomorphisms

DR(M) ~ (2°(V),V)[n] =~ L[n]

where £ is the local system of the horizontal sections in (V, V). This is the
simplest case of the Riemann-Hilbert correspondence discussed above and
already stated in Theorem 3.4.16.

Remark 5.3.5. One surprising consequence of the Riemann-Hilbert correspon-
dence is that one can regard, in the algebraic setting, the category D%(X)
as the derived category DP!(Perv(X)) of bounded complexes of perverse
sheaves. Indeed, applying the de Rham functor to the equivalence of cat-
egory D%, (Dx) = DY(RH(Dx)), see Beilinson [Be], yields the equivalence
D(X) ~ D¥(Perv(X)).

In the analytic case, D*(RH(Dx)) is a subcategory of D, (Dx) and hence
Db(Perv(X)) can be regarded as a subcategory of D%(X). A complex F* €
D%(X) corresponds under this inclusion to a complex of perverse sheaves P*
if F* is isomorphic to the total complex Tot(P*) associated to the obvious
double complex provided by the complex P*. Moreover, in such a situation,
one has

PH™(F*) ~Ker {P™ — P™1}/Im {P™! - P™}.

1n some cases it is possible to “represent” a constructible complex by a com-
plex of perverse sheaves as above without using the Riemann-Hilbert corre-
spondence and hence one has the above isomorphism for more general base
rings A and also in the analytic setting. Here is such a situation. Let A be a
field and X be a smooth complex analytic curve.
For any constructible sheaf G on X there is a discrete closed subset B C X
such that G|(X\B) is a local system. Let Go = I's(G) be the subsheaf of G
consisting of all sections with support in B, see Definition 2.3.15. Consider
the exact sequence

022G =2G—>G >0

where G; = G/Go. Note that I;G; = 0 for any point x € X. Moreover,
Ezt'(G1,Go) = 0 since the support of Gy is contained in B and for any b € B
one has Ext'(G;,i3V) = Ezt' (G, V) = 0, using Proposition 2.3.10 and
the fact that A is a field. 1t follows that the above exact sequence splits, i.e.
G ~ Gy @ Gy, see Remark 1.4.4.

Let now F* € DYX) be a sheaf complex such that each term F™ is a
constructible sheaf. 1n the algebraic setting this is no restriction at all in view
of Theorem 4.1.4. Another case of this situation is when X = D is a small open
disc centered at the origin of C and when we are interested in S-constructible
complexes F*, where & = {D*, {0}} (or, more precisely, in germs at the origin
of such complexes). Let h: C = D be a homeomorphism which is the identity
on a small open disc D' C D, centered at the origin of C. Then h—1(F*)
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is a constructible complex on C with respect to the algebraic stratification
{C*, {0}}. Hence, applying Theorem 4.1.4, we see that h=1(F*) ~ G*, where
each term G™ is constructible. 1t follows that 7*| D' can be replaced in D%(D’)
by the complex h=1(F*)|D' ~ G*|D’, which obviously has the same property.
Decompose each sheaf 7™ in this complex as a sum F™ = Fj* & F{" as
above. Each differential d™ : F™ — F™*! gives rise to 3 morphisms, namely
g Fr - Fg dp o Fro— FPand d 2 FP - Ft (The forth
morphism F§* — F*+! is always zero!).
Using the description of perverse sheaves on X given in Example 5.2.23 we
can introduce the following perverse sheaves

P00 F S F =0

where the morphism is d;”_l. These family of perverse sheaves is transformed
into a bounded complex using the differentials

D™ =(dt,dy) : P™ - P

By construction, it is clear that the total complex T'ot(P*, D*) is exactly the
original complex F*, hence the complex (P®, D*) is a representative of F* in
DY(Perv(X)) C D¥(X).

The Riemann-Hilbert correspondence allows one to pass freely from an-
alytic or algebraic objects (Dx-modules) to topological objects (perverse
sheaves) and this may be quite helpful. Here is an easy example of such an
application.

Proposition 5.3.6. Let A be a field and F* € DY(X) be a bounded con-
structible complex on the smooth complex analytic curve X . Then the following
sequence

0 — HO(PH*(F*)) — HY(F®) — HLPHY(F®) — 0

is exact and split for any k.
Moreover, let B C X be a discrete closed subset such that H*(F*)|(X\B) is
a local system. Then I'g(H*(F*)) = HO(PH*(F*)).

Proof. First we consider the case A = C and X is algebraic. By the above
Theorem we can assume that F* = DR(M*) where M* € D?, (Dx).

By definition, the complex DR(M?®) is the total complex associated to the
double complex having the complex DR(M¥*) on the k-th line.

The spectral sequence of a double complex gives

ESt = H(DR(H!(M*®))) = HIT*(DR(M®)).
Using the above Theorem, we can write

Ept = H(PHY(F®)) = HITS(F?).
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Since dimX = 1, we have ES* = E%! and this gives the claimed exact se-
quences. The splitting and the last claim follow as in Remark 5.3.5 via Ex-
ample 5.2.23.
In the case when A is an arbitrary field, we note that the result we want
to prove is actually local. Hence we can replace X by a small open disc D
and we can use the perverse complex (P®, D*) constructed in Remark 5.3.5.
Since F* = Tot(P*, D*), we can use the spectral sequence associated to a
double complex, see for instance [BT], p. 165. The E; *_term of this spectral
sequence is obtained by computing the cohomology in the vertical direction
and as a result has on the horizontal line ¢ = m the corresponding perverse
cohomology group PH™(F*) as we have explained in Remark 5.3.5. Next, the
E; *_term of this spectral sequence is obtained by taking the cohomology with
respect, to the horizontal differential, and hence the only non-zero terms are
Ey V™ = HY( PH™(F*)) and Ee™ = HO( PH™(F*)). Since the spectral
sequence obviously degenerates at Fs, this gives the exact sequence in the
general case. The rest of the proof is unchanged.
O

Now, in analogy with the final part of the previous section, we are going to
describe the category Mod,,(Dp) of germs of regular, holonomic Dy-modules
at the origin of C, where Dy = Dcpo. An excellant introduction to the local
theory of D-modules in dimension 1 can be found in Sabbah [S2], see also
Briangon-Maisonobe [BM] and Malgrange [Mal]. The following categories are
naturally equivalent, see [Mal], p. 19-22 :

(i) Mod,,(Dy), the category of regular, holonomic Dg-modules;

(ii) The category of holonomic Dp-modules M on the disc D of radius 1
centered at the origin in C such that M|D* is a connection and M is
regular in 0;

(iii) The category of holonomic modules M (either analytic or algebraic) over
the projective line P! which are regular at the origin and at infinity and
such that M|P'\{0, oo} is a connection;

(iv) The category of holonomic A;-modules M, regular at the origin and at
infinity and such that M|C\{0} is a connection.

Here A; = CJt] < 9; > is the Weyl algebra of polynomial linear differential
operators.

In the sequel we will use these equivalences and represent a germ M €
Mod, (Do) by a D-module M in one of the categories (ii)-(iv) above.
Let S = C. Any algebraic Dg-module M has an associated analytic Dg-
module
Man = OSan ®OS M
such that
DR(M) = Cone(d; : M** — J\./Ian)

where the point under an object means, as we have explained in the beginning
of Chapter 1, that this object is placed in degree 0.
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Such an algebraic Dg-module M is determined by (and hence can be identified
to) the A;-module M(S) = I'(S, M) of global sections. This is similar to
the well-known fact that a coherent sheaf on an affine algebraic variety is
determined by the module of global sections.

To simplify the presentation, we will assume in the sequel that the asso-
ciated perverse sheaf DR(M) has quasi-unipotent monodromy at the origin.
This is always the case for objects coming from geometrical situations, in view
of the Monodromy Theorem, see [De2], Theorem III1.2.3.

For o € QQ, we set

M(8)* = Ker (t0; — a)* for k> 0.
The following results are well-known, see for instance [DSI], [Mal], p. 27.

Lemma 5.3.7. For any a € Q one has the following.
(i) M(S)® is a finite dimensional C-vector space.

(4) M (S)* N M(S)? =0, for all a # B.

(ii) t. M(S)® C M(S)*tL, 8,.M(S)* c M(S)>~L.

(iv) for o # 0, the mappings t : M(S)*1 — M(S)*, §; : M(9)* —
M(S)*1 and td; : M(S)* — M(S)® are isomorphisms.

It follows that in order to know all the spaces M(S)?, a € Q, it is enough to
determine the spaces M (S)? for 8 € [-I,0].

Definition 5.3.8. The coherent Ds-module M is monodromical if M is
spanned by M(S)® (o € Q) over the ring Dg.

The following results gives the main properties of monodromical modules,
see [DSI].

Proposition 5.3.9. Let M be a coherent Ds-module.

(i) If M is monodromical, then M is regular holonomic and one has in addi-
tion
(a) M(S) = BacoM(5)*,
(b) dim(@qe[—1,00M(S)*) < +o0o and the functors M — M(S)® are
exzact for oll o € Q.

(ii) M is monodromical if and only if M is regular holonomic and M|S* is a
connection.

In particular, any germ in Mod,.;(Dy) has a representative M which is mon-
odromical. The key result on the structure of the category Mod,.,(Dy) is the
following description in terms of linear algebra, see [DSI].
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Proposition 5.8.10. Let A= (—1,0]NQ and A’ = [-1,0] N Q. Let C be the
category having as objects families of C-vector spaces (V*)qcar endowed with
linear mappings v : V> — V"1 v : V1 — V0 gnd N*: V¥ — V© for
a € A\{0} such that ®aca'V® is a finite dimensional vector space and uv,
vu and N® are nilpotent. The morphisms in the category C are linear maps
between the two families of vector spaces, compatible with the linear mappings
of type u,v, N®. Then the functor

M— (M(S)")aca, u=08;, v=1t, N* =td; — a)
is an equivalence between the category Mod,, (Do) and the category C.
Definition 5.3.11. For a monodromical Ds-module M we define

(i) the nearby cycles of M at the origin

Yo(M) =P M(S)*, with A=(-1,0]nQ,

acA

(ii) the vanishing cycles of M at the origin

(pO(M) = @ M(S)a_la

acA
(i) the canonical morphism
can = u =8 : Yo(M) — o (M)
and the variation morphism

var = @(t0;)t = tp(t0:) : po(M) — o (M)

where @(s) = w'

Note that we need a convergent power series in the above formula since t9;
and Ot are not nilpotent maps in general.
Let Ty =1+ varocan and T, =1+ cano var. A direct computation yields

Ty = exp(—2nitd;), T, = exp(—2midt).

In particular, the operators Ty et T, are invertible. The following result is
easy to prove, see [Mal], p. 31 or use Proposition 5.3.10 above.

Theorem 5.3.12. The functor M — ( 1o(M) (i% wo(M)) is an equiva-
Vi
lence of the category Mod,.,, (Do) with the category of diagrams Diag.
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The two category equivalences involving the diagram category Diag are
compatible, i.e. one has a commutative diagram

MOdrh(Dg) Dzag

e

Perv(C,0)

In other words, there are natural isomorphisms

Py (DRs(M)) = tho(M)
and
Poi(DRs(M)) = po(M)
compatible with the corresponding morphisms can, var and monodromy.

Remark 5.3.13.

(i) For a general construction of nearby and vanishing cycles for D-modules
see Mebkhout-Sabbah [MS].

(ii) Certain authors define the vanishing cycles by the formula

po(M) = @ M(9)“.

—1<a<0
Since the term M (S)~! occurs in both definitions and since for a # 0 there

is an isomorphism 9; ' : M(S)*~! — M(S)*, the two definitions give the
same C-vector space.

(iii) Some other authors (see [DS2]) prefer to use the subspaces
M(S)" =Ker (8t —a)*, with k> 0.
The formula 9t — a = t9; — (o — 1) shows that we have
M(S)" = M(S)* 1.

This produces a shift in the V-filtration defined below.
(iv) Still other authors, see Mebkhout and Sabbah [MS] use the subspaces

M(S)® = Ker (t0; +a)*, k>0,

yielding an increasing V-filtration V,, such that V,My = V2 M,.
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It is possible to work directly with a coherent Dy-module germ My and
forget about monodromical modules. To do this, we introduce the vector sub-
spaces

Mg =Ker (t8; —a)*, for k>0

as above, but instead of a direct sum decomposition M (S) = &M (S)*, we
get a completed direct sum

Mo = oMy
This means that My is spanned as an Ogg-module by the sum @M.

Definition 5.3.14. The V -filtration of Kashiwara and Malgrange is the de-
creasing Q-filtration on My given by

VoMo =Y OsoM) and V>*My= Y OsoMj.
B>a Bra

The graded pieces
(?r%ﬂﬂ)='V“A46[V>“Aﬂ)=:ﬁﬁf

obtained in this way give us exact functors My — Gr§} My for any o. There
are also two vector space isomorphisms for each « # 0, namely

t: Gr{",_lMg — Gry My
and
O : Gry My — Gr?,_lMg.
In this situation we define the nearby and the vanishing cycles as follows.

(i) the nearby cycles of My at the origin is the vector space

Yo(Mo) = P Grg Mo, with A= (-L0]NQ,
acA

(ii) the vanishing cycles of My at the origin is the vector space

o(Mo) = €D Gr{ ™ Mo,
aEA

Moreover, the canonical and the variation morphisms are defined by the same
formulas as above.

Ezample 5.3.15. Let M be a coherent D-module on the open unit disc D at
the origin of C. Suppose in addition that M|D* is a connection.

In case M is a meromorphic connection (i.e. t : My — Mp is a bijection), then
VM (resp. V>*M,) is the fiber at the origin of the (generalized) Deligne
extension of the connection M|D* such that the eigenvalues of the residue of
the extended connection are in the interval o, o+ I) (resp. (o, a+1]). Indeed,
all the spaces V*My and V> M, are free C{t}-modules of maximal (finite)
rank in My (i.e. lattices) which are stable under t9;. The special case of the
interval [0, T) was previously discussed in Remark 3.4.15, (ii).
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Ezample 5.3.16.

(i) Let M = Og with its natural structure of a Dg-module. Then M(S) =
C[t] = A1/A10;. One obviously has M(S)* = Ker (t0; — k) = C.t* for k> 0
and M(S)* = 0 for k¥ < 0. This implies ¥o(M) = C.1 and @o(M) = 0. The
associated perverse sheaf germ in Perv(C,0) is exactly Cg[l]. If one looks
now at the corresponding analytic D-module M?" = O% and if we denote its
fiber at 0 by My as above, then one has

My = C{t}, V>*My = C{t}.tF1 for k> -1

and V>*¥My = My for k < —1. Obviously, My is 5 3 meromorphic connection.
In terms of the shifted V-filtration denoted by V and corresponding to the
subspaces (S)a defined above, one has V>kM0 = C{t}.t*¥ for k > 0.

(ii) Let M = Ds/Ds(td;) and hence M(S) = A; /A;1(¢d;). In this case one
has M(S)* = C.t* for k > 0 and M(S)~* = C.8F for k > 1. This yields
Yo(M) = C.1 and go(M) = C.3;.

The associated germ of perverse sheaf in Perv(C,0) is F[1], where F is the
constructible sheaf on S = C given by F|C* = C¢» and Fy = 0 (use the fact
that can = d; is an isomorphism in this case).

Note that the sheaf F is exactly the topological sheaf R! f,Cx, for the poly-
nomial mapping f : X — S, with X = C?, S = C and given by f(z,y) = zy
or f(z,y) = 2%y + z.

(iii) Let S = C* be endowed with two global coordinates ¢ and s = 1. Then
one has
(S, Ds) =Clt,t7'] < 8 >=C[s,57] < 85 >,

with the obvious relation s9; = —t9;.

If M is a holonomic module on P!, such that M|P'\{0,1} is a connection and
such that M is regular at {0} and at {oo}, then let My be M regarded as
a Cft,t71] < 8; >-module and My, be M regarded as a C[s,s7!] < 8, >-
module. Then we have

M2 = Ker (89, — a)* = Ker (t0; + a)F = My .

Hence the two V-filtrations of M corresponding to the points {0} and {oo}
are opposite in the following sense. For any a € Q, one has

GriMy = M2 = My* = Gry* My = GrY M,
where the last graded piece is with respect to the increasing filtration V,.

Remark 5.3.17. The above V-filtration plays a key role in the definition and
the study of the spectrum of a hypersurface singularity, an invariant relating
the topology and the Hodge theory associated to such a singularity. For this
beautiful subject, see for instance [AGV], volume 2, [SS], [Sal], [Ku], [Her].
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5.4 Intersection Cohomology

Usual (co)homology satisfies the following basic properties.

(F) Functoriality: If f : X — Y is any continuous mapping, then there are
induced morphisms H.(f) : H.(X) = H.(Y) and H*(f) : H*(Y) —» H*(X).

(I) Homotopy Invariance: If f : X — Y is a homotopy equivalence, then the
induced morphisms H,(f) and H*(f) are isomorphisms.

(K) Kinneth Theorem: H*(X xY) = H*(X) @ H*(Y).

(PD) Poincaré Duality: If X is an n-dimensional compact connected topolog-
ical manifold which is oriented over the base ring A, then the natural pairing

Hy(X;A) x Hp_o(X;A) = Ho(X; A)
induced by intersection of cycles is a unimodular pairing for all ¢ = 0,1, ..., n.

If we restrict our attention to the class of complex algebraic varieties, then
the corresponding (co)homology groups satisfy in addition a number of deep
properties, the main ones being the following.

(MHS) Mized Hodge Structures: For any algebraic variety X, the cohomology
groups H*(X, Q) have canonical mixed Hodge structures which are functorial
with respect to morphisms f : X — Y of algebraic varieties, see Deligne [De4].
When X is smooth and proper, each cohomology group H™(X,Q) is a pure
Hodge structure of weight m, in accordance to classical Hodge theory, see
[GH].

(L) Lefschetz Theorems

(i) Lefschetz Hyperplane Section Theorem: if X C PV is an n-dimensional
closed subvariety, then for any hyperplane H in P¥ the inclusion XN H — X
induces morphisms H™(X) — H™(X N H) which are isomorphisms for 0 <
m < n—2 and a monomorphism for m = n—1I, see for instance Lamotke [La].

(ii) Hard Lefschetz Theorem, for which we refer the reader to Lamotke [La]
and Griffith and Harris [GH], has the following statement. Let X be a compact
Kéahler manifold, in particular X can be a smooth projective variety. Assume
that X is purely n-dimensional and let wx € HV!(X,C) be the associated
Kahler form. Then the iterated cup-product

Wk H¥(X,C) —» H" (X, C) (k)

is an isomorphism of Hodge structures of weight (n — k), for all & > 0. Here
(k) after the second cohomology group indicates the corresponding Tate twist,
see [Ded].

The last result has the following relative version. Let f : X — Y be a
proper submersion of K&hler manifolds of relative dimension n = dimX —
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dimY. Then the Kéhler form wx of X induces by restriction a Kahler form
wx, of the fiber X}, = f~!(y), for all y € Y. The corresponding isomorphisms

Wk, H™HX,,€) = H™(X,, O)(k)
can be put together into an isomorphism
Wk R *f,Cx — R"*£,Cx (k)

of the corresponding variations of Hodge structures on Y. For the definition
and basic properties of variations of Hodge structures we refer to [De4] and
[SZ]. If we are interested only in the local systems R™ f.Cx , then we get from
the above an isomorphism of local systems R**f,Cx — R"t*f,Cx as well
as the Fy-degeneration of the Leray spectral sequence

E®? = H?(Y,Rf.C) = H?"(X,C)
as follows from [Del] and [GH], pp. 466-468.

In 1980 Goresky and MacPherson introduced in [GoMT] a new (co)homology
theory (depending on a chosen perversity function whose definition is slightly
different, from ours), namely the intersection homology groups I H, (M) (with
Q-coefficients) for the class of pseudomanifolds M, a class of topological spaces
large enough to include all complex algebraic varieties. Their main motiva-
tion was to construct a homology theory for which the Poincaré Duality (PD)
above holds even for singular spaces.

A pseudomanifold of dimension n is a topological space M admitting a filtra-
tion

=M ,CcMycMC---CM, sCM, =M
by closed subsets M}, such that M,\M,_. is an oriented dense manifold of
dimension n and Ny = My \My_, is either empty, or a k-dimensional manifold
for 0 < k < n — 2. Moreover it is required that the normal structure of X
along each Ny, is locally trivial.
As the usual homology, this theory comes in two versions: the usual (i.e.
compactly supported) intersection homology IH,.(M) and the Borel-Moore
(i.e. with closed supports) intersection homology IHEBM (M). If we denote
by ICEM (M) the complex of chains with closed supports used to compute
THBM (M), then, following a suggestion by Deligne and Verdier, Goresky and
MacPherson have introduced in [GoM2] the sheaf complex TC%? on M, called
the topological intersection complex and defined by

(ICAP* (V) = ICEY (V)

for all V C M open and all k € Z.

When M is a complex algebraic variety X, and when we work just with the
middle perversity function (as we do in the sequel), it turns out that this
complex is strongly related to the perverse sheaves on X, namely we have the
following result, see [GoM2] (where the case of topological pseudomanifolds
is treated), as well as [BrI] and the Introduction of [BBD].
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Theorem 5.4.1. Let X be a pure n-dimensional complex algebraic variety
and let U be a Zariski open and dense subset in X such that U is nonsingular.
Then

1CP[-n] =~ juQuln]
where j : U — X 1is the inclusion.

Tt follows that the complex ICx = IC%?[—n], simply called the intersec-
tion (cohomology) complex of X, is a self-dual perverse sheaf on X. More
generally, if £ is a local system on U we call ICx (L) = jiL[n] the twisted
intersection complex of the local system L.

Remark 5.4.2. Tt follows from Definitions 5.2.6 and 5.1.I1 and the above the-
orem that the intersection complex ICx (L) satisfies stronger vanishing con-
ditions than an arbitrary perverse sheaf. Namely, with the above notation, if
S C X\U is a stratum of a Whitney regular stratification of the pair (X,U)
and if i5 : S — X denotes the inclusion, then HI(ig'ICx (L)) = 0 for all
3 > p(S) and HI(iLICx (L)) = 0 for all § < p(S).

The intersection (co)homology groups of a pseudomanifold M can be de-
fined in terms of the complex I Cﬁ;” . Several conventions are in use, depend-
ing whether we like duality results between H—* and H* or between H* and
H9mM—k The latter convention, usually used in topological questions, leads
to the following definitions.

Definition 5.4.8. Let M be an m-dimensional pseudomanifold. Then we set
LH*(M) = THEM, (M) = B (M, IC'?[~m))

and
LHE(M) = [Hy_ (M) = BE (M, IC%P[~m]).

In particular, let X be a pure n-dimensional complex algebraic variety. Then
we set

ITH*(X) = THEM (X) = HF (X, ICx[-n])
and

IHf(X) = IHyy (X) = H’g(X7ICX[_n])'

If L is a local system on a Zariski open and dense subset U of X, we define
the intersection cohomology of X with coefficients in L by

ITH*(X, L) = HF (X, ICx (L)[—n]).

This convention implies that TH*(M) = 0 for k ¢ [0,m], see Proposition
5.2.20 for the complex case, and hence one can compare the intersection
(co)homology groups to the usual (co)homology groups. In particular, for
a smooth variety M the two types of (co)homology groups coincides, i.e.
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TH*(M) = H*(M,Q) for all k¥ € Z and similarly for cohomology with com-
pact, supports, homology and Borel-Moore homology. However, even in the
case of a smooth algebraic variety X, the twisted intersection cohomology
of X with coefficients in a local system £ can be quite interesting, see for
instance Remark 6.3.12 below.

The case when X is an algebraic variety having only isolated singularities
is already more complicated, see [GoM1] for a different approach.

Proposition 5.4.4. Let X be a complex n-dimensional irreducible algebraic
variety with only isolated singularities. Let U be the smooth part of X. Then
IH*(X) = H*U) for k < n, IH*(X) = 1m {H™(X) — H"(U)} and
ITH*(X) = H*(X) for k > n.

Proof. First note that the partition

X=Uu UaESing(X) {a’}

is indeed a Whitney regular stratification, see [D], p. 5. Applying Proposition
5.2.10 to the inclusion j : U = U_1 = X = Uy, it follows that

1C%%[—n] = j1.Qu[n] = <1 (Rj.Qun]).
1n other words, we get the following distinguished triangle
ICx[—n] = Rj.Qu = m>nRj.Qu — .

The long exact sequences of hypercohomology associated to this distinguished
triangle yields the result for ¥ < n. Indeed, one has H?(7>,Rj«Qu) = 0 for
g < n and the result follows from the spectral sequence in Remark 2.1.6.

To treat the remaining cases, note that H°(ICx[—n]) = H°(Rj.Qu) = Qx.
Hence we get a natural morphism Qx — ICx[—n] whose composition by
the above morphism ICx[—n] — Rj.Qu is exactly the adjunction morphism
Qx — Rj.Qu in the shifted adjunction triangle

Qx — Rji.Qu = ii'Qx [1] = .

1t follows that the long exact sequences of hypercohomology associated to the
two distinguished triangles above give rise to a ladder of commutative squares
which yield the result for £ > n via the 5-lemma.
O
For further results of this type we refer to Durfee [Du2].

Remark 5.4.5. One can follow the same approach as in the proof above and
show the existence of a natural morphism Qx [n] — ICx for any n-dimensional
irreducible variety. Applying duality and using the isomorphisms D(ICx) ~
ICx and D(Qx [n]) = wx[—n], we get natural morphisms

Qx — ICx[—n] = wx[—2n].



158 5 Perverse Sheaves
Taking hypercohomology, we get induced morphisms
H*(X) - IH¥(X) = HS. _.(X).

which correspond to the cap-product by the fundamental class [X] € Hg (X),
see [GoM2].

If we go through the list of basic properties for (co)homology at the begin-
ning of this section, we can briefly say the following concerning the intersection
{(co)homology.

(F) Functoriality holds for very special classes of mappings, e.g. for the nor-
mally nonsingular maps, see [GoM?2].

(I) Intersection cohomology is a topological invariant, i.e. if f : X — Y is
a homeomorphism, then IH*(X) ~ IH*(Y). This result was obtained in
[GoM2], using the sheaf theoretic approach to intersection cohomology. More
precisely, this property follows from a characterization of the intersection com-
plex ICx in terms of support and cosupport, conditions similar to Proposition
5.1.16.

(K) Kiinneth formula: TH*(X xY) = IH*(X) @ IH*(Y).

(PD) For any proper irreducible, n-dimensional algebraic variety X, the nat-
ural pairing
THY(X) x IH™ 1(X) - Q

is nondegenerated. Equivalently, the natural morphism
THY(X) - IH™ 1(X)Y

is an isomorphism. This result can be derived from the fact that the intersec-
tion sheaf ICx is self-dual as follows, see also [BrI]. By deflnition, we have

THY(X) = B (X, ICx[—n]) = S~ (X, ICx).

Using the isomorphism ICx = D(ICx) and the Poincaré-Verdier duality
3.3.10, we get

H " (X,ICx) ~ H"9(X,ICx)Y = H?"9(X, ICx[—n])V = TH* 1(X)V.

(MHS) The group IH*(X) for X an algebraic variety has a natural mixed
Hodge structure such that when X is proper, IH*(X) is a pure Hodge struc-
ture of weight k, see Morihiko Saito [Sa2], [Sa3].

(L) The intersection cohomology verifles Lefschetz Hyperplane Section Theo-
rem for a generic hyperplane, see [GoM2], [FK] and Theorem 5.4.6, and Hard
Lefschetz Theorem, see [Sa2], Theorem I and our discussion below.
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Theorem 5.4.6 (Lefschetz Hyperplane Section Theorem). Let X C
PN be a pure n-dimensional closed algebraic subvariety and let S be a Whit-
ney regular stratification for X. Then for any hyperplane H in PN which is
transversal to the stratification S there are natural morphisms

TH™(X) » IH™(X N H)

which are isomorphisms for 0 < m < n — 2 and a monomorphism for m =
n—1.

Proof. Let ICx denote the intersection cohomology complex on X. Let
Y =XNH,U =X\Y and denote by i; : Y = X and j; : X — PV the cor-
responding inclusions. The exact sequence of hypercohomology with compact
supports from Remark 2.4.5 gives in our situation the following sequence

<5 (U, ICx) - HF (X, ICx) — HF (Y,i ' ICx) —» HEFL (U, ICK) — - --

Since ICx is a perverse sheaf on the affine variety U we can apply Corollary
5.2.19 and get morphisms

HF (X, ICx) — HF(Y,i7 ' ICk)

which are isomorphisms for £k < —1 and a monomorphism for k¥ = —1. The
theorem would follow from this if we have an isomorphism

iy ICx ~ ICy (1] (5.1)

Here is a way to obtain this isomorphism. First apply Corollary 4.3.7 to
F* = j1.(ICx) and to the inclusion iy : H — PV. 1t is known that ICx
is S-constructible for any Whitney regular stratification & of X, so all the
requirements of Corollary 4.3.7 are satisfied.

1t follows that i5 ' F*[—2] ~ i, F*. Let jo : Y — H denote the inclusion. Since
i2 0 jo = j1 041 and both complexes i; LFe and i5F* have the supports in Y,
it follows that jy ' (i5 ' F*[-2]) = i7 j; ' F*[-2] = iT ' ICx[-2] is isomorphic
to jhibF® = ijjiF* =i ICx.

This last isomorphism can be rewritten as i; 'ICx[—1] ~ i{ICx[1]. Let
V = X,¢,\Y and note that we can write ICx = j,Qy [n] by Theorem 5.4.1.
Using now Definition 5.2.6 (ii) it follows that G* = i ' ICx[-1] = i} ICx][1]
is a perverse sheaf on Y. Moreover we have

Yreg = Xreg NH.

In fact, the inclusion X, NH C Y., is obvious, in view of the transversality
property imposed on the hyperplane H. To get the converse inclusion Y.y C
Xreg N H, we use the following basic fact in commutative algebra.

1f (R,m) is a local ring and z € m is a nonzerodivisor such that the quotient
R/zR is aregular ring, then R itself is a regular ring, see [W], Theorem 4.4.16
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and Corollary 4.4.13. Apply this result to the local ring R = Ox,,, for p € Y,
any point, and z a local equation for the hyperplane H at p.
The above equality implies that G*|Y;.., = Q[n — 1]. Since G* is clearly self-
dual by Remark 3.3.6 and Corollary 4.1.17,(ii), it follows that G* = ICy via
Proposition 5.2.9. This completes the proof of 5.1 and hence the proof of the
Theorem. An alternative proof of 5.1 can be found in [GoM2], 5.4.1.
O

Using the twisted intersection cohomology complexes IC'x (£) one can re-
state Theorem 5.2.12 as follows. For X an algebraic variety, the simple objects
in Perv(X) are exactly the twisted intersection complexes ICy- (L) (regarded
as complexes on X via i, where V runs through the family of smooth algebraic
subvarieties in X, £ is an irreducible local system on V and V is the closure
of V in X with i : V — X being the inclusion.

Definition 5.4.7. Let X be an algebraic variety.

(i) A simple perverse sheaf ICy-(L) is called a Deligne-Goresky-MacPherson
sheaf, for short a DGM-sheaf.

(ii) A constructible complex F* € D(X) is called completely reducible if F*
is a finite direct sum of shifted DGM-sheaves.

With these preliminaries we can state (informally and without mention-
nig the Hodge theoretic part which will resurface in Corollary 5.4.9 below!)
the relative Hard Lefschetz Theorem for intersection cohomology, see [Sa2],
Theorem 1 for a precise statement and a proof involving the theory of mixed
Hodge Modules.

Theorem 5.4.8. Let f : X — Y be a projective morphism of smooth algebraic
varieties and let w € H?(X) be the first Chern class of an f-ample line bundle.
Let IC;(L) be a DGM-sheaf on X, where the local system L comes from a
polarized variation of Hodge structures. Then the iterated cup-product by w
induces isomorphisms

wh . PHTRRE(ICH(L)) = PH*RE(ICH(L))
of perverse sheaves on'Y for any k > 0.

If we take Y to be a point, W a projective variety in X = PV, V the smooth
part of W, £ = Cy [n] where dimV = n, then we get the following.

Corollary 5.4.9. For any n-dimensional irreducible projective variety W,
there are natural isomorphisms of pure Hodge structures

TH" (W) = TH™ (W) (k),

for any integer k > 0, induced by the cup-product by w*.
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Another consequence of Theorem 5.4.8 is the Decomposition Theorem, a
deep result on the misterious interplay between perverse sheaves and proper
morphisms. This result was proved in [BBD], 6.2.5 using étale cohomology.
See also [Sa2], Corollary 3. The relation between Hard Lefschetz Theorem and
Decomposition Theorem comes from Deligne’s paper [Del] in which sufficient
conditions are given for a complex C* € D?(A) in the derived category of an
abelian category .A to be isomorphic in D?(A) to the complex @ H*(C*)[—k]
endowed with the trivial differential.

Theorem 5.4.10 (Decomposition Theorem). Let f : X — Y be a proper
morphism of complez algebraic varieties. Let IC(L) be a DGM-sheaf on X,
where the local system L comes from a polarized variation of Hodge structures.
Then we have the following.

(i) RfICH(L) = @ PH¥(RfICH(L))[—k] in the category DE(Y).

(ii) Each perverse sheaf PH*(Rf.ICy#(L)) is a finite sum of DGM-sheaves on
Y.

1n spite of the formal appearance, the Decomposition Theorem has many
geometrical consequences. Here is one of them.

Corollary 5.4.11. Let X be an irreducible algebraic variety and let f : X' —
X be a resolution of singularities for X. Then the cohomology H*(X',Q) of
X' contains the intersection cohomology TH*(X) of X as a direct summand.

Proof. Apply the Decomposition Theorem to the resolution f : X' — X and
to the shifted constant sheaf Q- [dimX’]. 1t follows that Rf.Qx: is a direct
sum of shifted DGM-sheaves on X . Since f is a resolution of singularities, there
is a Zariski open and dense subset U in X such that f is an isomorphism over
U. 1t follows that in the above direct sum, there is exactly one DGM-sheaf
whose support is the whole of X, the corresponding local system is trivial of
rank one and the corresponding shift is —n, where n is the dimension of X.
1n other words, we have a decomposition

Rf*QXI = ICX[—n] @ Ge.
Applying the hypercohomology to this decomposition we get
H*(X',Q) = IH*(X) @ H'(X, G*).

This establishes our claim.
O
We have seen above that, in order to extend the Poincaré Duality (or
the existence of a pure Hodge structure on the cohomology) from the class
of smooth proper algebraic varieties to the class of all proper algebraic vari-
eties, we have to replace the ordinary cohomology by the (middle intersection)
cohomology. Here is another instance of this phenomenon.
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Theorem 5.4.12. Let X be an irreducible n-dimensional algebraic variety
and Z C X a d-dimensional closed subvariety. Let j : X\Z — X denote the
inclusion.

(i) If X is smooth, then the inclusion j is a (2n—2d—1)-homotopy equivalence.
In particular, j™ : H™(X) - H™(X\Z) is an isomorphism for m < 2n —
2d — 1 and a monomorphism for m = 2n — 2d — 1.

(ii) For arbitrary X, the natural morphism j™ : IH™(X) - IH™(X\Z) is an
isomorphism for m < n —d and a monomorphism for m = n — d.

Proof. (i) Any element in a homotopy group 7;(X) can be represented by
a smooth map « : §¥ — X. Using Thom’s transversality theorem, see e.g.
[BT], we can assume that « is transversal to all the strata of a given Whitney
stratification of Z. If S is such a stratum, it follows that the real dimension
of S is bounded by 2d and hence a(S*¥*) NS = @ as soon as k < 2n — 2d.
Therefore

jk : Wk(X\Z) — Fk(X)

is an epimorphism in this range.

On the other hand, j,(8) = 0, for amap 3 : S* — X\ Z, means that there is an
extension # : B¥1 — X of our map § to the ball B¥+! bounded by S*. Again
by transversality, we can deform this extension such that S(B*t1)nZ = 0,
as soon as k < 2n — 2d — 1. Therefore

gk 2 m(X\Z) = mp(X)

is an monomorphism in this range. This completes the proof of the first claim.
(ii) Take U = X \(Sing(X) U Z) and define the intersection complex ICx
as in Theorem 5.4.1 using the inclusion j : U — X. Consider the adjunction
triangle
' ICx = ICx — Rj,j ' ICx —

associated to the inclusions j and i : Z — X. Then, using the obvious property
jUCx =1 Cx\z, which comes for instance from Remark 5.2.7, (ii), and
taking the hypercohomology, all we still have to show is that

HF (Z,i1Cx) =0

for ¥ < —d. We prove this claim by induction on d = dimZ. Using Remark
5.4.2, there is a Zariski open subset S C Z (the union of maximal dimensional
strata of a Whitney regular stratification of Z) such that Z; = Z\S has
dimZ; < dimZ and, if js : S — Z denotes the inclusion, then

H™(j5i' ICx) = H™(i5ICx) = 0

for m < —d. Here ig = i 0 js. To simplify the notation, set F = i'ICx and let
i1 : Z1 — Z be the inclusion. 1n the long exact sequence of hypercohomology
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s HE (21, F) - BN (Z,F) — HF (S, F) — - -

coming from an obvious adjunction triangle, the first group vanishes for & <
—(d—1) by the induction hypothesis since HF (Zy,4} F) = HF (Z1,:' ICx), with
¢t : Z3 — X the inclusion. The third group also vanishes for k¥ < —d, since
is = jgl and one can use the above vanishing and the usual spectral sequence
relating cohomology to hypercohomology.

O

Exzample 5.4.13. Let V be a projective hypersurface in P” for some n > 1 and
let X denote the corresponding affine cone in C**1. Let Z = {0} be the vertex
of this cone. Then X is contractible, hence H*(X) = @ On the other hand,
X\Z is homotopy equivalent to the link L of the origin in X. 1t follows from
Proposition 6.1.4 that L is (n—2)-homologically connected, in other words the
morphism H*(X) — H¥(X\Z) is an isomorphism for 0 < k < n—2. However,
we have in general H" (X \Z) # 0, e.g. for n = 2 we can take X to be the
surface singularity z° + y® + 2% = 0, see [D], p. 94. Since n — 1 < 2n — 2, it
follows that the claim (i) in the above theorem is false when X is singular. In
our situation at hand, the claim (ii) above as well as Proposition 5.4.4 yields

TH*(X) ~ TH*(X\Z)

for all ¥ < n. In particular we see that the intersection cohomology is not
a homotopy invariant, since the contractible space X can have non-trivial
intersection cohomology groups, e.g. TH"1(X) ~ H"Y(X\Z) # 0 as we
have seen above. For more on cones see [BFK].

We discuss now briefiy the intersection cohomology of a link. Let X be an
irreducible n-dimensional algebraic variety, ¢ : Z — X the inclusion of a closed
subvariety and L = Lx(Z) the link of Z in X as defined in Example 2.3.18.
Then L is obviously a pseudomanifold, having only even codimensional strata.
For such pseudomanifolds, the middle perversity intersection complex is well-
defined and self-dual, see [GoM2], subsection 5.3. 1In particular, it makes sense
to talk about the (middle perversity) intersection cohomology TH*(L) of the
link L. We have seen, in Example 2.3.18, that the usual rational cohomology
groups of the link are given by natural isomorphisms

H*(L) =H*(Z,i 'Rj.Qu)

where j : U — X is the inclusion of the complement U = X\Z and k € N.
Similarly, one has the following result, see [DuS], [Snl], Remark 6.0.9, p. 414.

Proposition 5.4.14. With the above notation, for any integer k € N, there
are naturel isomorphisms

TH*(L) = H* " (Z,i 'R}, ICy).

We illustrate this useful result by the following two examples.
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Ezxample 5.4.15. (i) Suppose that Sing(X) C Z. Then L is a smooth real man-
ifold and hence TH*(L) = H*(L) for any k € N. On the other hand, in this
situation U is a smooth algebraic variety and hence ICy = Qu[n]. In other
words, in this case the above two formulas give the same result in a trivial
way. In particular, the intersection cohomology of a link is interesting only for
spaces with non-isolated singularities.

(ii) Let f : C**! — C be a homogeneous polynomial and consider the asso-
ciated affine cone X = f~1(0). Let Z = {0} and U = X\ Z, with inclusions 4
and respectively j as above. The adjunction triangle

Wi'ICx — ICx — Rj, ICy —
gives, via applying the pull-back functor i~!, the triangle
i'ICx =i ' ICx —» i 'Rj ICy —

We choose a Whitney regular stratification of X such that the vertex Z is a
stratum. It follows that H™(i'ICx) = 0 for m < 0, see Remark 5.4.2. Hence
we get, for all k < n, an isomorphism

TH*(L) = H*™(ICx)o.

We consider now a special class of non-isolated hypersurface singularities,
namely products of an isolated hypersurface singularity by a smooth germ.
Let Y = g—1(0), where g : C™*! — C is a homogeneous polynomial having
an isolated singularity at the origin and I < m < n. Set d =n—m > 0 and
consider the product X =Y x C¢ C C**!. Then X is an affine cone as above
and it has the following obvious Whitney regular stratification: S = {51, Sa},
where Sl = {0} X Cd and 52 = X\Sl

In the notation from Proposition 5.2.10, we have X = U_g and Sy = U_4_1.
Applying this proposition, we see that

ICX = Tgm—n—le2*Q52 [n]
where js : So — X denotes the inclusion. It follows that TH™ (L) =
— Hm_l_n(ICX)o — Hm—l—n(Rj2*Q52 [n])O — Hm—l(Lll) — Hm—l(Ll)

where L" (resp. L') is the link of S; (resp. {0}) in X (resp. in Y). If we
take m = 2 and g = 2% + y? + 2® as in Example 5.4.13, we see that
IHY(L) = HY(L') # 0. Therefore the link of an n-dimensional hypersur-
face singularity is not homologically (n — 2)-connected with respect to the
intersection cohomology as it is with respect to the usual (co)homology, see
Proposition 6.I1.4 below. In other words, passing to intersection cohomology
does not always simplify the statements about the topological properties of
complex algebraic varieties and their links.

For some of the many applications of intersection cohomology and of perverse
sheaves to representation theory see [Lul], [Lu2] and [A]. For relations to toric
varieties and combinatorics, see [BBFK].
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Applications to the Geometry of Singular
Spaces

In the first section we study hypersurface singularities and their associated
objects such as Milnor fibers, links and monodromy zeta-functions. In the sec-
ond section we pass to a semi-global setting, that of deformations of complex
analytic varieties over a small disc. In the next section we glue this semi-
global information into a global picture in the study of a polynomial function
f : C**1 5 C. The final section is devoted to vanishing results for the local
system coefficient cohomology of hypersurface (or hyperplane) arrangement,
complements in a projective space P™.

6.1 Singularities, Milnor Fibers and Monodromy

We start with an easy result, which is quite popular as an illustration of the
use of perverse sheaves in Singularity Theory, see for instance [Ma7]. Later on
this result will be extended in several directions. In this chapter we use the
following convention concerning the dimension of the empty set: dim@) = —1I.

Proposition 6.1.1 (Connectivity of Milnor Fibers).

Let f : (C*™1,0) — (C,0) be a non-constant analytic function germ and let
Sing(f) = {z € C* : df(z) = 0} be the corresponding singular locus. If Fy
denotes the Milnor fiber of the germ f, then

f{k(Fg; A) =0
for any base ring A and for k ¢ [n — s,n], where s = dimSing(f).

Proof. Let f : X — D; be a good representative of the germ f as in [L]. Let
Xo = f7H0)NX, Fy = f~1(t)nX pour 0 < |t| < 4. Since Ax[n+I] € Perv(X)
by Theorem 5.1.20 we have Py¢(Ax([n + I]) € Perv(Xp) by Theorem 5.2.21.
On the other hand, using Corollary 5.2.5 we have more precisely that
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Pos(Ax[n + 1])|Sing(f) € Perv(Sing(f)).
Applying now Remark 5.1.19 we get
He(Pps(Axln+1])o = H* (Pp;(Ax[n + 1])[Sing(f))o = 0
for k < —s. This ends the proof, since
HE(Por(Axn+1]))o = H* (05 (Ax))o = H* ™ (Fo, A)

as in Example 4.2.6. O

The above proof is so 'functorial’ that in fact it can be applied word for
word to get the following more general version of Propositon 6.1.1. For a
related result see Proposition 6.1.23 below.

Proposition 6.1.2. Let (X,0) be an (n + 1)-dimensional complete intersec-
tion singularity and let S be a Whitney stratification of X. Consider an an-
alytic function germ f : (X,0) — (C,0) and let s = dimgSingg(f), the
dimension at the origin of the stratified singular locus of f. Then one has

ﬁk(Fg, A) =0
for any base ring A and for k ¢ [n — s,n], Fy being the Milnor fiber of f.

In the study of the topology of singular spaces a key role is played by the
complex link of a singularity, see [GoM4]. According to our discussion at
the end of section 4.1, this link can be defined as follows. Let (X,0) be any
singularity and choose an embedding of (X,0) into a smooth germ (CV,0).
Then the complex link CL(X,0) of the germ (X,0) is nothing else but the
Milnor fiber of the restriction £|X : (X,0) — (C,0) of a generic linear form
2on CN.1f S is a Whitney stratification of X, since £ is generic, we have
s = dimgSingg(¢|X) = 0. This implies the following.

Corollary 6.1.3 (Connectivity of a Complex Link). Let (X,0) be an
(n + 1)-dimensional complete intersection singularity and let CL(X,0) be its
complex link. Then H¥(CL(X,0),A) =0 for all k # n.

The usual link of a hypersurface singularity enjoys strong connectivity
properties as well, and this is shown in the next result.

Proposition 6.1.4 (Connectivity of a Link). Consider an analytic func-
tion germ f : (C**t1,0) — (C,0). Then the link L of the origin in X = f~1(0)
is homologically (n — 2)-connected, i.e. for any positive integer m < n — 2 we
have

Hn(L;Z) = 0.

Proof. Using classical universal coefficients formulas, see [Sp], Theorem
5.5.10, it is enough to prove the vanishing above for coefficients in any field
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A. Represent, L as the intersection X NS, where S is a small sphere centered
at the origin in C**!. By Alexander Duality in Theorem 3.3.2 we get

H™(L; A) ~ H;"'7™(S; A) ~ H?™17™(8,5\L; A).
By the conic structure of analytic sets, see [BV], we have
H*(S\L; A) ~ H*(B\X) =0

for K > n + 1. Here B is the open ball bounded by S and we use the fact
that B\ X is a Stein manifold and so the vanishing result in Proposition 3.4.2
applies. These two ingredients yield the result. O

Remark 6.1.5. 1n the setting of Proposition 6.1.1, Kato and Matsumoto [KM]
have shown the stronger result that the Milnor fiber Fy is actually (n—s—1)-
connected. In particular, for s < n—1 the Milnor fiber Fy is simply-connected
and hence any local system £ on Fj is trivial, i.e. isomorphic to some constant
local system Mg, for M an A-module. There are homotopical versions of
Propositions 6.1.2, 6.1.4 and of Corollary 6.1.3 as well, see for instance [Le3],
[BV], [M], [Ti2]. The vanishing of H*(F}) for k > n follows from Fp being a
Stein space of dimension n, see [Ha2)].

From now on in this section we assume that the coefficient ring A is C and
f:(X,0) = (C,0) is an analytic function germ defined on a pure (n + 1)-
dimensional singularity (X,0). Recall that the cohomology groups H™(F;)
of the Milnor fiber of a function f at a point x € X are endowed with mon-
odromy operators M : H™(F,) — H™(F,) as explained in Proposition
4.2.2. Note that there is a perfect analog of this result for vanishing cycles,
i.e. an isomorphism as in Example 4.2.6

H™(pC)e I:Im(anC)

which is compatible with the existing monodromies. Let S* be the semisimple
part of M* and set

H™(F,)» = Ker (S™ — X - Id)

for any eigenvalue A of the monodromy operator M.*. If we are interested
in getting geometric conditions implying the vanishing of these eigenspaces
H™(F,), we can imitate the approach in the proof of Proposition 6.1.2 above.

More precisely, let f : (X,0) = (C,0) be an analytic function germ defined
on the (n + 1)-dimensional complete intersection germ (X,0) and let F =
Cx [n + 1] be the perverse sheaf on X obtained by shifting the constant sheaf
Cx . Then the perverse vanishing cycle functor preserves the perverse sheaves,
namely P (F) € Perv(Y) where Y = f~1(0). There is a natural monodromy
automorphism M, : Pps(F) > Pys(F) and for any A € C one can consider
the eigenspace Fy = Ker((M,—\-Id)N), for N >> 0, which is a well-defined
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perverse sheaf on Y, the category Perv(Y) being abelian. With the notation
introduced in Remark 4.2.5 we have F) = ¢y 1 (F)[—1].

Let S) be the support of the sheaf F) and let s, = dimS,. 1t follows that
Fx € Perv(Sy) and hence the support condition in the definition of perverse
sheaves gives H™(F)); = 0 for any m < —s). Using Example 4.2.6, this
implies that

H" 73 (F)y =0

for all j > 0. This vanishing proves the following result.

Proposition 6.1.6. Let f : (X,0) — (C,0) be a non-constant analytic func-
tion germ defined on the complete intersection (X,0) and let S denote the
germ at the origin of the set of points x € X such that A is an eigenvalue of
M™ for some m. Then H™(Fy)x =0 for 0 <m < n—1— dimS,.

The following consequence of the above result tells us about the continuous
propagation of the monodromy eigenspaces. A similar result on the continuous
propagation of the Jordan blocks obtained by using the Mixed Hodge Module
theory can be found in [DS4].

Corollary 6.1.7. Let f : (X,0) — (C,0) be a non-constant analytic func-
tion germ defined on the complete intersection (X,0). If A is an eigenvalue of
ME® for some m < n, then the germ Sy is not reduced to the origin. In other
words, for any neighborhood U of the origin 0 in X there are points z € U,
z # 0 such that X is an eigenvalue of MF for some k.

In the case dimSing(f) = 1 and X = C**', more detailed information is
available by the work of D. Siersma, see [Si2] and the references therein.

Ezample 6.1.8. (i) Assume that the germ f : (C**1,0) — (C,0) is such that
Y = f71(0) is a normal crossing divisor germ. Then we can choose local
coordinates at the origin of C**! such that f(z) = z; - ... - z for some k
with 1 < k < n + 1. 1t follows that the corresponding Milnor fiber Fj is
homeomorphic to the affine hypersurface

Vi={zeC" o ..oz, =1}

which is homotopic to the (k — 1)-dimensional real torus 75—1 = (S*)* 1.
Moreover the monodromy homeomorphism h : Fy — Fy corresponds to the
mapping H : Y1 = Yy, H(z) = (Az1, ..., \Tpy1) with A = exp(2ni/k). Let
Tn+1 = (S1)™! be the (n + 1)-dimensional torus and consider the subtorus

Z={t=(t1,-tnt1) € Tny1; t1-...-tx =1}

1t is easy to see that Z is connected. By choosing a path ¢* = (¢{,...,#5 ) in
Z such that t° = (},...,A) and ¢! = (1, ..., 1) we see that H is homotopy equiv-
alent to the identity via the family of mappings H,(z) = (t{z1,...,t5 1 Tnt1).
1t follows that for such a normal crossing germ we have MJ* = Id for all m.
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(i) Consider now a function germ f : (C**1,0) — (C,0) such that ¥ =
f71(0) is a normal crossing divisor except possibly at the origin. Combining
the point (i) above and Corollary 6.1.7, we get the following vanishing result:
H™(Fp)x =0for all m < n and all X # 1.

Note that the situation described in (i) shows that in general H™(Fp); # 0
under the above assumptions.

The information encoded in the dimensions of the eigenspaces H™(Fp)a
can be recorded in a slightly different way as follows, compare to Example
4.1.29.

Definition 6.1.9. (i) The m-th Alezander polynomial of the singularity
f:(X,0) — (C,0) is the characteristic polynomial

A (f)(t) = det(t - Id — Mg")

of the corresponding m-th monodromy operator M§* : H™(Fy) — H™(Fp).
(ii) The zeta-function of the singularity f : (X,0) — (C,0) is the alter-
nated product
Z(f)t)= ] det(td—t- Mg)—o".

m=0,n

One should think of the m-th Alexander polynomial A,,(f) as a refine-

ment of the usual m-th Betti number b,,(Fy) = deg(A,(f)) of the Milnor
fiber Fy. In a similar vein, the zeta-function Z(f) is a refinement of the usual
Euler characteristic x(Fo) = deg(Z(f)).
When X = C*™!, both the Alexander polynomial A,,(f) and the zeta-
function Z(f) depend only on the hypersurface singularity (Y,0) = (f~(0),0)
defined by f and for this reason they are also denoted by A,,, (Y, 0) and Z(Y,0),
see [D], p. 71.

Recall that the monodromy homeomorphism h : Fy — Fp has a Lefschetz
number A(h) defined by the formula

A(h) = z (=) Trace(M§*)
m=0,n
since M{® = H™(h) : H™(Fy) - H™(Fp).
Similarly one has the Lefschetz numbers A(h*) of the iterates h* of the mon-
odromy homeomorphism. These Lefschetz numbers are related to the zeta-
function Z(f) by the following well-known formula

Z(f)(t) = exp (— > A(hk)tk/k) (6.1)
k>1

see for instance [D], p. 108. In many situations, the zeta-function Z(f) is easier
to determine than, say, even the Betti numbers b,,(Fp).
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Ezample 6.1.10. Let f : (C*1,0) — (C,0) be a singularity given by a ho-
mogeneous polynomial of degree d and assume that n > 1. Then we have the
following equality

Z(£)(t) = (1 — Ao/

see for instance [D], p. 108. Assume now in addition that the corresponding
hypersurface V(f) in P™ has only isolated singularities, say at the points
p1, -, Ps- Then

X(Fo) =1+ (=1)"[(d— D)™ —d > w(V(f),pi)]

i=1,s

see for instance [D], p. 163. The two equalities above determine the zeta-
function Z(f), but it is known that, the Betti numbers b,,(Fp) are very difficult
to determine in this situation, as they depend not only on the (local) properties
of the singularities (V (f), p;) but also on their (global) position in P*, see [D],
pp. 207-213.

Our next aim is to state and prove a basic result by A’Campo showing how
to compute the zeta-function Z(f) using resolutions of singularities, [AC2].
For this we need some preliminaries. Fix a positive integer N > 0. Consider the
category Vect My of pairs (V,u), where V is a C-vector spaceand u: V =V
is an automorphism such that u?Y = Id. Using the group ring A = Clun] of
the multiplicative group un of all the N-th roots of unity, one can see that
VectMpy can be identified to the category mod(A) and hence it is an abelian
category just as in Example 4.1.29, (ii). If E* = (E™,u™)men is a complex
in D?(pt, A) we define the corresponding zeta-function

Z(E*)(t) = [] detTd —t - H(u™))D"

where H(u™) : H™(E*) — H™(E*). Note that this product is finite since the
factors corresponding to H™(E*®) = 0 are equal to 1 by convention.

Let now X be a complex analytic space and note that we have a canonical
transformation D%(X, A) — D?(X). In fact an object of D%(X, A) corresponds
to a pair (F*,u) with F* € D%(X) and u : F* — F* an automorphism such
that u = Id. If (F*,u) is such a pair, then any stalk (F2,u,) gives rise to
an object of D?(pt, A) .
1n the sequel we will consider only complexes F* which are S-constructible
with respect to a finite stratification & of X. The following result is easy
to prove, see [Snl], Chapter 2. In fact the first claim follows from Theorem
4.1.5,(i)(b), while the second is an easy multiplicative analog of the additive
result in Theorem 4.1.22.

Proposition 6.1.11. Let X be an algebraic variety or a compact analytic
space. If F* is a sheaf complez in D%(X, A), then RI[,(X,F*) is a complez of
A-modules in Db(pt, A) and the following equality holds
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Z(RT(X, F*)) = [] 2(F2,)%9,
Ses

where S is a stratification of X with finitely many strata such that F* is
S-constructible in an equivariant way and xg € S is arbitrary.

The “equivariant” addition in the above statement means that not only the

cohomology sheaf restrictions 7™ (F*)|S are local systems, but also that the
corresponding automorphisms H™ (u), : H™(F*); — H™(F*), are conjugate
for all € S. Since these automorphisms are all semisimple with eigenvalues
in ppn, there are only finitely many conjugacy classes. Hence we can always
achieve the extra “equivariant” requirement by refining the initial stratifica-
tion. It is under this “equisingularity” condition that the zeta-function Z(F;.)
does not depend on the choice of the point z5 € S.

Note also that we can replace x.(S) by x(S) in view of our discussion before
Corollary 4.1.23.

Let G be the multiplicative group C(¢)*. We say that a function f : X - G
is constructible with finitely many values if the image f(X) is a finite subset
of G and for all g € f(X) the level set X, = f~!(g) is constructible in X.
We denote by CF(X,G) the multiplicative group of all these functions. This
group is clearly generated by elementary functions g'® for g € G and Ip
the characteristic function of a closed constructible subset B C X. Then the
zeta-function

Z : D¥(X,A) - CF(X,G)
given by Z(F*,u)(z) = Z(F?,u,) is well-defined and induces a homomor-
phism K(D%(X, A)) - CF(X,G) as in Example 4.1.29.
If f: X — Y is a analytic mapping between complex analytic spaces such
that for any closed constructible subset B C X the restriction f|B has a finite
number of topologically distinct fibers, we can define a homomorphism

CF.(f): CF(X,G) = CF(Y,G)

by asking that CF,(f)(g'#)(y) = gX<(BNF™*(®), This holds for instance when
f is an algebraic morphism or a proper analytic map. We have, exactly as in
Proposition 4.1.33, the following result, see also [SnI], Chapter 2.

Proposition 6.1.12.

(i) For any morphism f : X — Y as above, the following diagram is commu-

tative.
Rf
DY(X, 4) —L> Di(v, 4)

| |
crx,0) =Y cry,q)
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(i) With the above notation we have the following equality

CFAf)Z(F*)() = Z(RL(f1(y), F*))
for any sheaf complex F* € D%(X, A) and any pointy € Y.

Proof. We prove only the second claim and leave the first one for the reader
as an exercise.

Fix a point ¥y € Y and a good stratification & for X as above such that in
addition f~!(y) is a union of strata in S. Then we can write

Z(F*) = [ @(F*)@s)'s.

Ses

Next note that CF,(f)((Z(F*)(zs))'*)(y) = (Z(F*)(zs))**D if S C 7 (y)
and is equal to 1 otherwise. Hence

CE.(NEZF) = ][I @F)(es)*®) = Z[RI(f (), F*))
SCf~y)

in view of Proposition 6.1.11.
O

Remark 6.1.13. One can show, using the same idea as in the proof of Theorem
4.1.22, that one has

Z(RI(X,F*)) = Z(R[(X, F*))

where the notation is as in Proposition 6.1.11 and X is a “good” analytic
space as in Remark 4.1.24. Moreover, if X and Y are two such spaces, then
Proposition 6.1.12 also holds with Rf, replaced by Rf., as in Proposition
4.1.33 above.

The above general formalism will be applied now to the following situation.
Let f : (C**1,0) = (C,0) be a non-constant analytic function germ which is
defined on a small open ball X centered at the origin of C*1. Let Xo = {z €
X; f(z) =0} and X' = X\ Xp. Assume that 7 : Y — X is a proper analytic
map such that 7 induces an isomorphism between X' and Y’ = Y'\Yp with
Yo=7m -1 (Xg) .

Let jx : X! - X and jy : Y' — Y be the two inclusions. Note that G®* =
¥;(Rjx«Cx') can be regarded as an object of the category D%(Xy, A), the
corresponding automorphism u : G* — G* being the semisimple part M, of
the monodromy automorphism M as in Remark 4.2.5.

The obvious relation 7 o jy = jx implies Rmy o Rjyv« = Rjx«, under the
identification X’ = Y. In particular Rr.oRjy«Cy' = Rjx.«Cx/.Set g = for
and apply Proposition 4.2.11 to the complex F* = Rjy.Cy . 1t follows that

RP*(@bg}-.) =g*
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with p : Yo — X the proper map induced by 7. Applying now Proposition
6.1.12 we get
CFp)(Z (% F*)) = Z(G°),

an equality of constructible functions in CF(Xy, G). Evaluating at the origin

z =0, we get
CFE(p)(Z (1 F*))(0) = Z(f)

in view of Proposition 4.2.2.

Let S be a finite stratification of the exceptional divisor Yoo = 7~1(0) of 7
such that ¢, F* is equivariantly S-constructible. Applying Propositions 6.1.11
and 6.1.12 yields

CF,(p)(Z(1hgF*))(0) = Z(RIo(Yoo, ¥ F*)) = [] Z(g,25)X%).
Ses

1n this way we have proved the following result.

Theorem 6.1.14. With the above notation

z(f) = [] 2(g,2s)<®

5es

where x5 is an arbitrary point in the stratum S and Z(g,xs) denotes the
zeta-function of the germ of g = forw at zg.

This result is one of the main results in [GLM1], see Corollary 1. The following
special case is particularly important and was obtained by A’Campo in [AC2].

Corollary 6.1.15. With the above notation, assume that 7 : Y — X is an
embedded resolution of singularities for Xy, i.e. Y is smooth and Yy is a
simple normal crossing divisor in' Y. Let Dy, ..., D4 be the smooth irreducible
components of Yy so numbered that D; C Yy for exactly 1 < j < p. Let m;
be the vanishing order of g = f ow along D;. Then

Z(f)(t) = ] @—#ms)x®a

j=Lp
where D = D;\ Uiz i=1,s Di.

Proof. We apply Theorem 6.1.14 to the stratification of Yy given by all
the various intersections of the components D; (with the lower dimensional
intersections deleted in order to get a partition). 1t is clear that the above D
are the open strata in this stratification. Moreover, for z; € Dj one clearly
has Z(g,z;)(t) = 1—¢™i. Indeed, at such a point z; there is a system of local
coordinates y1, ..., Yn+1 such that g(y) =y, .

1t remains to show that the other strata give no contribution at all to the
product in Theorem 6.1.14. If S is such a stratum, then S is an open subset
in some intersection D;, N...N D, for k > 1. At a point zg € S there is
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a system of local coordinates y1, ..., yn+1 such that g(y) = y; *..y, *. Let
d=m;, +..+m;, and e = g.cd.(m;,,...,m;, ). Then

Z(g,zs)(t) = (1 — X/

where F' is the Milnor fiber of g at zg, see Example 6.1.10. 1t is easy to see
that this Milnor fiber F" has e connected components, each of it homotopically
equivalent to a real (k¥ — 1)-dimensional torus as in Example 6.1.8. 1t follows
that x(F) = ex(Tx—1) = 0 which implies Z(g,zs)(t) = 1. O
The following result, as well as a more general version applying to con-
structible coefficients, was obtained by A’Campo in [AC1]. See also [Til].

Corollary 6.1.16. Let f : (C**1,0) — (C,0) be an analytic function germ
such that df (0) = 0, i.e. the origin is indeed a singularity of f. If h: Fo — Fy
denotes the corresponding monodromy homeomorphism, then

A(h) = 0.

Proof. 1t suffices to notice that in the formula for the zeta-function Z(f) in
Corollary 6.1.15 all the multiplicities m; are at least 2. Use then the relation
between Z(f) and the sequence of Lefschetz numbers A(h*). More precisely,
take the derivative with respect to t of the equality 6.1 and then set ¢t = 0.
0O

Remark 6.1.17. A different proof of the above corollary follows from the next
equivalent, formulation of Corollary 6.1.15. For any integer & > 0, one has

A(h*) =Y m;x(Dj)

where the sum is overall j € {1, ..., p} such that m; divides k. This formulation
gives the stronger result that A(h*) = 0 for all k¥ < mult(Xp, 0). For a proof of
this form of Corollary 6.1.15, see [AC2] or just note that there is an obvious
version of Theorem 6.1.14, where zeta-functions are replaced by Lefschetz
numbers. More precisely, we have

Ah) =" x(S)A(g, zs).

5es

For the study of related finer invariants called motivic zeta-functions we refer
to Denef and Loeser [DL1], [DL2]. See also [ACLM].

Corollary 6.1.18. Let X be a smooth complex connected manifold and f :
X — C a non-constant analytic function. Then supp(¢;(Cx)) = Sing(Xo),
with Xo = f~1(0).

Proof. The inclusion supp(ps(Cx)) C Sing(Xo) was established in Example
4.2.6.If z € Sing(X,) the corresponding Milnor fiber F, satisfies H*(F,,C) #
0. Indeed, otherwise we would get A(h;) = 1, a contradiction with the previous
corollary. In view of Example 4.2.6, this shows that z € supp(¢s(Cx)). DO
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Ezample 6.1.19 (Canonical and Variation Morphisms for a Hypersurface Sin-
gularity).

Let f : (C**1,0) — (C,0), n > 1 be an analytic function germ defin-
ing an isolated hypersurface singularity at the origin. Then according to our
discussion in Example 5.2.23, the shifted sheaf F* = R"f,(Cx )[1] gives rise
to a perverse sheaf on a small open disc S where f : X — S is a good
representative of the germ f as in [L], p. 25-26. More precisely, one has the
following.

() H7Y(F*)o = R"f.(Cx)o = H™(S, Rf.Cx) = 0 since X is contractible;

(i) HO (P F*) = HO (¢ (R" f.Cx)) = H™(Fy,C) where F is the Milnor fiber
of f at the origin;

(iii) HO(Pp; F*) = H™1(X, Fy;C) and HO(F*) = 0.

Hence applying Proposition 5.2.26 we get the following vector spaces £ =
H™(Fy,C), F = H""(X,Fy;C) and the canonical morphism corresponds
to the isomorphism & : H"(Fy,C) — H"1(X, Fy;C) from the long exact
sequence of cohomology of the pair (X, Fp).

To describe the variation morphism var : H* (X, Fy; C) — H"(Fp,C), it is
easier to look first at the corresponding morphism at homology level

var, : H,(Fy,C) — H, 1 (X, Fy; C).

The homological variation is given by extending a cycle ¢ along the elementary
loop w(t) = eexp(2wit), 0 < ¢ < 1. For more details on var, see Lamotke [La],
6.4. With the notation in this paper, one has

var, = (—1)"7y,

as well as
M; —1=var,00 and Jdovar,=M,—1

where Hy1(X, Fo;C) -2 H,(Fy,C) is the boundary morphism and M,, M7
are the absolute and relative monodromy operators associated with the loop
w, voir loc. cit.. Therefore we have a commutative diagram

H,(Fy,C) <2 Hoy1 (X, Fo; ©)

r__
M*—lf % TM* 1

Hn(Fy,C) <2 H,,1(X, Fo; 0
which implies by duality that
var = (vary)V.

One can also regard the morphism var, as being the composition
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Hy(Fy,C) = Hpy1 (T, Fo; ©) = Hpy1 (X, Fy;©)
where the first isomorphism corresponds to the isomorphism
Hn(F07 C) :) Hn(F07 C) ® H; (637 pt) :) Hn+1(T7 FU; C)

see Milnor [M]. Here we have set T = f~1(89).
Note that the Wang sequence in homology of the Milnor fibration Fo = T —
88 is obtained from the long exact sequence of the pair (T, Fy), namely

o= Hy1(T) > Ho 1 (T, Fy) » Hy(Fy) - H,(T) —

by replacing Hy+1 (T, Fo) with H, (Fp) using the above isomorphism var,.
Note that if we work on the space X instead of working on the base S, we have
isomorphisms E ~ H"(y;Cx )o and F ~ H"(p#Cx )o, which are compatible
with the corresponding monodromy operators. However, the discussion in Re-
mark 6.1.21 below implies that the two variations (one calculated on X, the
other on S) may be different.

Exercise 6.1.20. Let S* = S\{0} and let £ be the local system R f.(Cx )|S*.
Compare the constructible sheaf R"f.(Cx) to the extensions jiL, j.L and
JixL[1], where j : §* — § is the inclusion. Recall Exercise 5.2.11.

Remark 6.1.21. 1n the study of isolated hypersurface singularities it is usual
to consider a different variation morphism

V : Hy(Fo,0Fo) — Hy(Fo)

see [AGV], vol. 2, p. 11 or Némethi [Ne]. This variation is related to the
previous variation morphism var, by the following commutative diagram

H,(Fo,0F) H,(Fy
H / T
Hy 1 (X, Fy)

Here the morphism j, is induced by the natural inclusion and one has
Ker j, = H,(0F,), where 0F, can be identified to the link of the origin
in Xo = £71(0). Moreover, Ker j. is non zero in general. Therefore the two
morphisms V and var, may have different, ranks.

On the other hand Deligne has shown in [De3] that the variation morphism
V' can nevertheless be obtained using the vanishing cycle functor by replacing
the nearby cycle functor ¢ by the composition RIqy o 1.
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Indeed, since 0 is an isolated singularity for f, it follows that on a neighbor-
hood of the origin we have

05Cx = (p5Cx)o = R0y (psCx).

Take now the usual variation morphism var : ¢;Cx — ¢¥yCx introduced in
Remark 4.2.12 and apply the functor RI7g). In view of the above isomor-
phisms we get a morphism

V= RF{O} (var) : (pf(CX — RF{O}(’I,[)fCX).
When we take the n-th cohomology groups, we get a morphism
V i H"(Fp) ~ H"(Xo,¢5Cx) = Hyy (Xo,¥sCx ) =~ H (Fo) ~ H™(Fo,0F,)

which is dual to the above homological variation, see also [De3]. For the iso-
morphisms used here recall Corollary 4.3.11 and Example 4.3.13.

We end this section with a nice application of characteristic cycles and
intersection cohomology to the topology of isolated singularities. Let, (V,0) be
an isolated singularity of pure dimension m and set V* = V\{0}. Consider
the open inclusion j : V* — V and the intersection cohomology complex
F = juQy+[m]. Then F = 7<_1Rj.Qy+[m] as in the proof of Proposition
5.4.4. Let (V,0) = (C*,0) be the embedding of the singularity (V,0) into a
smooth germ and let X be a small open ball centered at the origin of C* and
such that V' N X is closed in X and V*N X is smooth. Then the sheaf F can
be extended by zero on X\V and becomes a perverse sheaf on X (in view
of Corollary 5.2.5), constructible with respect to the Whitney stratification
S = {Xo = X\V,X; = V* X, = {0}}. Using the defining equation for the
multiplicities 4.3, it follows that the characteristic cycle of F is given by

CO(F) =Tx, X + (-1)" (xs(L(V, 0)) — Euy (0)) - T, X
where L(V,0) = V N X is the (real) link of the origin in V and
Xs(L(V,0)) = bo(L(V,0)) — b1 (L(V,0)) + - - + (=1)™ b1 (L(V, 0))

is the corresponding Fuler semi-characteristic. Using Corollaries 5.2.24 and
6.1.3 as well as the connectivity of the link of a complete intersection estab-
lished by Hamm in [Hal], we get the following result.

Proposition 6.1.22. For a pure m-dimensional isolated singularity (V,0),
one has the following inequality

(=)™ (xs(L(V; 0)) — Buy (0)) = (=1)™ (xs(L(V;0)) — x(CL(V,0)) > 0.

In particular, when (V,0) is an isolated complete intersection singularity, one
has the following inequality between the Betti numbers of the (real) link L(V,0)
and of the complex link CL(V,0).

b —1(CL(V,0)) > by—1(L(V,0)).



178 6 Applications to the Geometry of Singular Spaces

When (V,0) is an isolated hypersurface singularity this result was obtained,
via the theory of D-modules, by Nang and Takeuchi in [NT].
A more precise and general version of Proposition 6.1.22 is the following, to
be compared to Theorem 5.14 in [L] and section 4.4 in [Ti2].

Proposition 6.1.28. Let (V,0) be a pure m-dimensional isolated singularity
and f: (V,0) = (C,0) an analytic function germ such that f|V* is a submer-
sion. If Fy denotes the Milnor fiber of f, then H*(Fy) = H*(L(V,0)) for any
k < m —1 and there is an exact sequence

0 = H™L(L(V,0)) = H™ (Fy) = H°(Pp; F)o — H™(L(V,0)) = 0

where F = j1.Qy «[m] is the intersection cohomology complex on V. Moreover,
the corresponding monodromy operator M§ : H*(Fy) — H*(Fy) is the identity
for k < m — 1, respectively it is the identity on the subspace H™1(L(V,0))
fork=m—1.

Proof. The condition that f|V* is a submersion is obviously equivalent to the
condition that f has an isolated singularity with respect to the stratification
{V*,{0}} of the germ V.

Since F is a perverse sheaf with suppF = {0} according to Proposition 4.2.8,
it follows that H*(Po;F)o = 0 for k # 0. 1n the exact long hypercohomology
sequence of the pair (V, Fp) with coefficients in F, we have the following
isomorphisms.

(i) H* (V, Fo; F) = H*(Pps F)o in view of equation 4.1;

(ii) B*(V,F) = IH*™(V) = H**™(V*), for k¥ < 0 in view of Proposition
5.4.4;

(iii) H* (Fy, F) = H¥™(F), since Fy C V*.

Since the link L(V,0) is homotopically equivalent to V*, the result follows.
O

Corollary 6.1.24. With the above notation, one has the following.
(i) H*(Fy) = H*(CL(V,0)) = H*(L(V,0)) for any k <m — 1.
(i) (=1)™(xs(L(V,0)) — x(Fo)) = bm—1(Fo) — bm-1(L(V,0)) > 0.

Note that Proposition 6.1.22 is a special case of this corollary, obtained for
f = £ a generic linear form with respect to the embedding V' — C" above.
For a homotopic relation between the Milnor fiber Fy and the complex link
CL(V,0), see Siersma [Sil] and Tibar [Ti2]. Note also that the link L(V,0) is
diffeomorphic to the boundary 8F of a compact Milnor fiber (which has the
same homotopy type as Fy) and the inclusion 8Fy — Fy can be shown to be
an (m — 1)-homotopy equivalence as in Proposition 3.2.4 in [D].
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6.2 Topology of Deformations

In this section we start to apply the machinary of constructible sheaves to the
study of a morphism f : X — S of complex analytic spaces with dimX = n+1
and dimS = I. For s € S we denote by X, the fiber f~1(s) of f at s. The
main question we treat is the variation of the cohomology of the fibers X as
s moves in S.

First we consider the following proper semi-global situation, i.e. global with
respect to the fibers, local with respect to the base. We assume that the
following conditions hold.

(P) f is proper;
(D) S is a small open disc centered at the origin of C;

(TT) The map f* : X* — S* induced by f is a topologically locally trivial
fibration, where $* = S\{0} and X* = f~1(S*); alternatively, we can replace
the condition (TT) by

(HT) The complex Rf,(Ax) is S-constructible with respect to the stratifica-
tion S = ({0},5*) of S.

It is usual to say in this situation that f : X — S is a deformation of
the special fiber Xo. Quite often the property (TT) or the property (HT)
comes from the fact that f is a stratified submersion via Thom’s First Isotopy
Lemma as in Exercise 4.2.14.

The change in topology of the fibers X, as s approaches (and becomes equal
to) 0 is described by the complex of vanishing cycles V; = p7(Ax) € D(Xo).
We denote by t the usual coordinate function on the disc S.

Proposition 6.2.1. With the above notation and assumptions, the following
hold.

(i) H"(Xo; A) = H™(X; A) for any m € Z;
(i) H™ (Xo,Vy) = H™(pe(Rfu(Ax))) for any m € Z;

(iii) When A is a field, we have the following relation involving Euler charac-
teristics

x(Xo, Vy) = x(Xs) — x(Xo)
for any s € S*.

Proof. (i) For any € > 0 let D, be the open disc of radius € centered at the
origin of C. For I >> ¢ > 0, we have D, C S and X is homotopy equivalent
to the tube T, in case (TT) (or it has the same cohomology as the tube T in
case (HT)), where T. = f~1(D,). Apply then Corollary 4.3.11 and Theorem
2.3.26 to the constructible complex Rf.(Ax) and use the equality Rf. = Rf
coming from assumption (P).

(ii) Apply Proposition 4.2.I1, noting that to f = f as analytic functions.
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(iii) Use Exercise 4.2.15 in the case of the constructible complex Rf.(Ax).
Note that x(S) =1 and x(S, Rf.(Ax)) = x(X) = x(Xe) by (i) above.
O

Corollary 6.2.2. Suppose in addition thet X is an (n + 1)-dimensional con-
nected complez menifold and let o = dim(Sing(Xy)). Then the constructible
sheaves R™ f,(Ax) are constant local systems on S for allm ¢ [n—o,n+o+1].
In particular, the following hold.

(i) H™(Xo; A) = H™(X;; A) for allm ¢ [n —o,n + 0 + 1] and s € S*.
(i) The naturel morphism H™(Xo; A) ~ H™(X; A) - H™(X,; A) is injec-

tive for m = n — o (resp. surjective for m = n + o + 1) and the dimension of
the cokernel (resp. kernel) is bounded by

dimH" 7 (Xo, V) = dimH"t? (Xo, V) = dimH°(Xo, H" 7 V}).

Proof. 1t follows as in the proof of Proposition 6.1.1 and using Proposition
5.2.20 that HF (Xo,V;) = 0 for k ¢ [n—0,n+ 0] and that dimH*~? (X, V}) =
dimH® (X, H"°V}). Using duality, it also follows that dimH*~7 (X,,V;) =
HmE+e (X, Vy).

In order to show that R™f.(Ax) is a local system on S, it is enough, in
view of Exercise 4.2.13, to show that ;(R™f.(Ax)) = 0. Indeed, since f
satisfies (T'T) or (HT), we know already that the restrictions R™ f.(Ax)|S*
are local systems. To prove the vanishing ¢;(R™ f.(Ax)) = 0, the trouble is
that ¢; does not commute with R™ = H™ o Rf,, as we have mentionned in
Exercise 4.2.13. To circumvent this difficulty we proceed as follows. Note that
the vanishing ¢:(R™ f.(Ax)) = 0 is equivalent to an isomorphism

i3 (B™ f.(Ax)) = (B fu(Ax))

where ig : {0} — S is the inclusion. Using again Exercise 4.2.13, this isomor-
phism can be rewritten as

H™(ig" (Rf«(Ax))) = H™ (e (fu(Ax)))-
The distinguished triangle
i (Rf(Ax)) = Ye(Rf(Ax)) = 0e(Rf(Ax)) =

shows that it is enough to prove H™(p;(Rf«(Ax))) = 0 for any integer m ¢
[n — o,n + o]. Now use the fact that the vanishing cycle functor ¢; does
commute with Rf, and hence

H™(pt(Rf«(Ax))) = H" (Xo,Vy) =0

by the vanishing claimed at the beginning of this proof. O
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Ezample 6.2.3. In the situation of Corollary 6.2.2 we have the following ex-
plicit bounds.

(i) If dimSing(X,) = 0, then dimH(Xo,H"V}) = po(f), the total Milnor
number of the deformation f given by

po(f)= >  wXo,p).

pESing(Xo)

(ii) If Sing(Xo) is a smooth curve, then an upper bound for dimH° (X, H"~1V})
follows from Corollary 5.2.28.

Exercise 6.2.4. State and prove the corresponding result to Corollary 6.2.2
when X is an (n + I)-dimensional locally complete intersection space.
Hint: recall Proposition 6.1.2.

The following is a generalization of Iversen’s Formula in [I2] and/or of
Riemann-Hurwitz formula in [KII].

Corollary 6.2.5. Let f : X — C be a proper analytic morphism of an (n+1)-
dimensional complex analytic space X onto a curve C. Let B C C be the
finite bifurcation set of f, i.e. f is a topologically locally trivial fibration over
C* =C\B. For b€ B let V§(b) = p5_4(Qx). Then, for any c € C*, we have
the following equality.

X(X) = x(O)x(Xo) = D~ x(X, V5 (8))
beB

Proof. By the additivity of Euler characteristics we have

X(X) = x(X*) + ) x(Xs)
bEB
where X* = f~1(C*). Since f : X* — C* is a fibration with fiber X,, we get
via Corollary 2.5.5
x(X™) = x(C*)x(Xe)-

Applying Proposition 6.2.1 (iii) to each bifurcation point b € B, we get

X(Xp) = x(Xe) — x(Xo, V(b))

Adding up these equalities yields the result.
O

Ezample 6.2.6. (i) In the setting of Proposition 6.2.1, assume in addition that
X is smooth and that f has only isolated singularities. Using Example 4.2.6
it follows that
X(Xo, V) =(=D"* > u(Xo,p).
pESing(Xo)
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The resulting equality coming from Proposition 6.2.1, namely

X(Xo) = x(Xs) + (D)™ >~ u(Xo,p)
pESing(Xo)

is well known in many situations, see for instance [D], p. 162.
(ii) Under the same assuption as in (i) above, lversen’s Formula becomes

X(X) =x(O)x(Xe) + (=)™ > ulf.p)

pESing(f)

which is exactly the result in [12].

(iii) Let w : X3 — Sy be the universal family of projective hypersurfaces of
degree d in the projective space P*!. More explicitly, Sy is the set of non-zero
homogeneous polynomials f in &y, ..., Zp+1 of degree d modulo the obvious C*-
action and the fiber 7=1(f) is exactly the hypersurface given by V(f) : f =0
in P**1. Let D C S; be the discriminant hypersurface of this family, i.e. the
set, of all f such that V(f) is singular. Fix a polynomial f € D. For any curve
germ (S, fo) in Sq such that SND = {fo}, we get by pull-back a deformation
p: X — 8 of the hypersurface Xo = V(fo).

Since the mapping 7 is a submersion at any smooth point of Xy and has
corank one at any singular point of X, it follows that for a generic curve
germ (S, fo) the total space X of the induced deformation p is smooth.
Applying Proposition 6.2.1 we see that

x(Xo,V,) = x(Xs) — x(Xo)

is independent of the choice of the deformation. This equality also implies
that x(Xo,V),) is, up-to a sign, the Milnor number of the hypersurface X in
P! as in [PP].

This example also shows that the bounds in Corollary 6.2.2 are strict. Indeed,
for ¢ = 0 there are projective hypersurface Xy in P*t! with only isolated
singularities such that b,(Xo) # bn(X,) and b, y1(Xo) # bpi1(Xs), see for
instance [D], Chapters 5 and 6. Taking the product of the total space X by a
projective space P shows that the bounds are strict for & > 0 as well.

To better understand x(Xo, V), let S be a stratification of X, such that
V¢ is S-constructible. Then by Theorem 4.1.22 we have

X(Xo, V) = Y x(S)X(H*(Vy)zs)
Ses

for some points zs € S. Note that x(H*(Vi)zs) = x(H*(Fzs)), the Euler
characteristic of the reduced cohomology of the Milnor fiber F;, of f at zs.
If we introduce the notation us = x(H*(F,,)), then the above formula can
be rewritten as follows, compare to Theorem 4 in [PP].
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Lemma 6.2.7.

x(Xo, Vy) = z x(S
ses

Ezample 6.2.8. The formula x(Xo,V,) = x(Xs) — x(Xo) above holds only
when we use the sheaf complex V,. Beyond the case of deformations f, when
X is smooth and Xj is any hypersurface in X, then we can define the integers
us as above (i.e. the topology of the local Milnor fibers does not depend on
the choice of local equations for Xy, see [D], p. 71). However, if we proceed
and define x(Xo, Vy) by the equality in Lemma 6.2.7 and take X, a smooth
small deformation of X (if it exists), the equality x(Xo, Vy) = x(Xs) — x(Xo)
is not true.

1t is easy to construct counter-examples: just take Xp to be the union of two
distinct planes in IP3. This explains the care in the choice of definitions in
[PP].

Consider now the equivariant situation, namely (Vz, M,) € D%(X,, A)
with A = Clun] as in the previous section, where M, is the semisimple part
of the monodromy automorphism V; — V. Indeed, since X is compact, it
follows that M, has a finite order denoted by N. We can consider the zeta-
function Z(f) of f, i.e. the zeta-function corresponding to the monodromy
homeomorphism h of the fibration X* — S* in the case (TT) (we leave
the interested reader to restate the results below in the case (HT)). Hence
by definition we have Z(f) = Z(y:(Rf«Cx)) and then Z(¢;(Rf.Cx)) =
Z(RI'(Xo,Vy)) as in the proof of Proposition 6.2.1 (ii). The key point is that
Proposition 4.2.11 gives an isomorphism compatible with the monodromy
actions. Applying now Proposition 6.1.11, we get

H Z(Vi g XS
ses

where S is a stratification of X, such that V; is equivariantly S-constructible.
In this way we have proved the following,.

Proposition 6.2.9. With the notation and assumptions introduced above, the
zeta-function of the fibration X* — S* is given by the formula

H Z(hgs )X

S5es

where S is a stratification of Xy such that Vy is equivariantly S-constructible
and hg, is the monodromy of the Milnor fiber F,, of f at the point zs € S.

This is essentially Theorem 1 in [GLM1]. Note also that in the global setting
Corollary 6.1.16 is no longer true. An example with A(h) # 0 can be found in
[ACD], Exemple 5. 1n fact the computation for Z(h) in loc.cit. was done using
6.2.9, which is already present in the normal-crossing situation in [AC2].
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Remark 6.2.10. The Wang sequence of the fibration X* — §* shows that we
have an exact sequence

oo HY(X",Q) = HY(X,,Q "= HY(X,,Q) » H (X", Q) » -
see Example 2.5.7. In addition, the inclusion j of X* in X gives rise to a
morphism j? : HY(X,Q) — HY(X*,Q) for all ¢ € N, such that Im (§9) C
Ker (h?—1Id). One says that the deformation f : X — S satisfies the invariant
cycle theorem if the above inclusion is an equality for all ¢ € N. For important
cases when this holds, see Clemens [Cl], Deligne [De4] and Guillen, Navarro
Aznar, Pascual-Gainza and Puerta [GNPP].

Now we look at what happens in the semi-global non-proper case. Let
f : X — S be a proper morphism onto the disc S satisfying the conditions
(TT) or (HT) stated at the beginning of this section. Let U C X be an open
subset such that

(S) U is a smooth (n + I)-dimensional complex manifold;
(I) Xoo = X\U is an analytic subspace in X;

(TTR) The restrictions f, : U — S and fo : Xoo — S satisfy both the
condition (TT) or the condition (HT). The map f, should be regarded as the
“affine part” of the map f.

For s € S we set U, = X, NU = f,;1(s). The fact that f, is no longer
proper makes a lot more difficult the study of the variation of the topology of
the fibers U for s approaching 0. For instance, we have the following.

Remark 6.2.11. With the above notation, it, follows from Corollary 4.1.25 that
we have x(Up) = x(U), but we no longer have H*(Uy; A) = H*(U;A) as
in Proposition 6.2.I. Consider the case of the simple polynomial function
fo : @ = C, (z,y) = 2%y — z. A compactification f : X — C of this
polynomial was described in Example 4.2.3 (ii). By restricting f over a disc
S centered at the origin and taking U = £, !(S), we see that U is homotopy
equivalent to C? (since f, satisfies condition (TT) over C*). In particular
H°(U; A) = A. On the other hand Uy has two connected components and
hence H(Up; A) = A2.

Note also that the fiber Uy is smooth, so the complex of vanishing cycles Vg,
is trivial. Since x(Up) = I and x(Us) = 0 for s € S*, it follows that the third
claim in Proposition 6.2.1 also fails in this non-proper situation.

Let j: U = X and i : Xoo — X be the two inclusions. Let F, = Rj.Qu
and F, = Rj1Qu be the two natural extensions of the constant sheaf Qp to X.
Then F, and F; are constructible complexes on X and we set Vi = @(F.),
Vi = pg(F) and V,, = ¢y, (Qu). Using Propositions 4.2.10 and 3.3.7 it follows
that up-to a shift the two complexes V, and V; are dual to each other. In
particular, supp(Vi) = supp(Vi) as in Corollary 4.1.18. This shows that the
following definition is self-dual in an obvious sense.
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Definition 6.2.12. We say that the map f, : U — S has (Q-cohomologically)
no singularities ot infinity, or that f,, is (Q-cohomologically) tame, with respect
to the compactification f: X = S if Xoo = supp(Va) N Xoo = 0.

We say that the map f, : U — S has (Q-cohomologically) isolated singularities
at infinity with respect to the compactification f : X — S if Xy = supp(Vi) N
X i8 a finite set.

The above notions have been introduced formally in [S4] and [DS2], but there
are several other related conditions in the literature. In this definition and in
the following results we may replace Q by any field A.

Ezample 6.2.13. With the above notation, assume that X has a Whitney reg-
ular stratification S such that

(i) U is a stratum in S;

(ii) For any stratum X; € S, X; # U, the restriction f|X; : X; - Sis a
submersion.

Then f, has no singularities at infinity, since we obviously have
% = supp(Vi) C Singg(f) N Xo C Up.

This situation was considered by Siersma and Tibar in [STI], where several
homotopical statements similar to the homological statements below can be
found.

If we replace the condition (ii) above by the following weaker condition

(ii’) For any stratum X; € S, X; # U, the restriction f|X; : X; — S has at
most isolated singularities

then f, has isolated singularities at infinity, maybe after shrinking the disc
S to a smaller one. Note that the polynomial f,(z,y) = 2%y — = considered
in Remark 6.2.11 has exactly one singularity at infinity with respect to the
compactification described in Example 4.2.3 (ii).

Our aim now is to show that a (cohomologically) tame mapping f, behaves
as well as the proper mapping f studied in the first part of this section. Qur
presentation here follows closely Sabbah’s presentation in [S4].

Let i : Xo = X, jo : Up = Xo, t00o : Xo N Xeo = Xo and ieep : Xo N Xeo —
X be the corresponding inclusions.

Lemma 6.2.14. With the above notation and assumptions, let f, : U — S be
a cohomologically tame map with respect to the compactification f : X — S.
Then we have the following isomorphisms.

(i) Vi 2 Vi and iV, =i~V =~ 0;
(it) Y5(F) = Rjou(¥5.Qu) and ¢5(F) =~ Rjor(¥1. Qu);
(3) i ' Fu =~ RjoxQu, -
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Proof. (i) It is clear that Vi ~ V; on Uy. Moreover both sheaf complexes
have the same support and this support is contained in Uy by the tameness
assumption. It follows that Vi, ~ V; and i "'V, ~i71V] ~ 0.

(ii) The two isomorphisms here are dual up-to a shift. From the proof of (i)
above, we get Vi ~ Rjoi(vy, Qu). It follows that the second isomorphism in (ii)
is equivalent to 4y L7 ~ RjnQu, . Indeed, consider the following distinguished
triangles.

QUO — ’l,[)faQU — (pfaQU — (6.2)

and
gt i YA > Vi (6.3)

Apply to the triangle 6.2 the functor Rjo and get the distinguished triangle
RjoQu, = Rjobs.Qu — Rjorps. Qu — . (6.4)

Then note that there is a natural triangle morphism (u, v, w) from the triangle
6.4 to the triangle 6.3: indeed the restrictions of both triangles to Uy coincides
and 6.4 is just the extension by 0 of this restriction. Now w is an isomorphism
by (i), hence by the 5-lemma v and v are isomorphisms in the same time.
To show that u is an isomorphism, it is enough to show that iy -ig 7 = 0.
Now igligt =i i ™! and clearly i~1J; = 0, so we are done.

(iii) Consider the following distinguished triangle coming from Definition 4.2.4.

i Fu 2 05 Fu = Ve > . (6.5)
Then apply to 6.2 the functor Rjo. and get the distinguished triangle

Rjo«Qu, = Rjost05.Qu = Rjoxps. Qu — . (6.6)

Note that there is a natural triangle morphism («',v',w') from 6.6 to 6.5
obtained as follows. The isomorphism v’ comes from the first isomorphism in
(ii) above, while the isomorphism w’ follows as in (i) above from the tameness
assumption. Again via the 5-lemma we get that «’ is an isomorphism and this
ends the proof of the Lemma. O

Theorem 6.2.15. With the above notation and assumptions, let fo, : U — S
be a cohomologically tame mapping with respect to the compactification f :
X — S. Then the functors Rfq. and Rfq commute with the functors iy, ,
Pfar i;ol and i'y on the sheaf Qu, where iq : Uy = U is the inclusion. In
particular, we have the following.

(i) H™ (U, Q) = H™(U,Q) for any m € Z;
(it) H™ (U, V,) = H™ (e (RfaxQu)) for any m € Z;
(iii) x(Uo, V) = x(Us) — x(Uo) for any point s € S*.
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Proof. We prove below only two commutation relations among those claimed
above. The remaining ones can be treated similarly. We have the following
isomorphisms

Rfoxps.Qu =~ RfRjup;. Qu =~ Rf.Vi

using the isomorphism w’ at the end of the proof above. Next Rf, commutes
with ¢y in view of Proposition 4.2.11. Hence we have

RfwpsFu = o RA R Qu = e Rf0iQu .

Putting all this together we get

RF(U07V*) = Rfa*(PfaQU ~ o RfoxQu

in other words Rf,. commutes with ¢, .
Consider now the commutation of Rf,. with i,y . We have

Rfa*i;()l@lf ~ Rf*RjO*i;()lQU =~ Rf*i(?le*QU

by Lemma 6.2.14 (iii). Apply next Theorem 2.3.26 to the diagram given by
foip =igo(f|Xo) with ig : {0} — S the inclusion and use the fact that
f is proper. 1t follows that Rf.ig " = ig R(f|Xo)« and finally Rfu.i g Qu ~
z'glR fo+Qu . This ends the proof of the first part of the theorem.

To prove (i), we note that we have the following isomorphisms

Hm(UaQ) = Hm(sa Rfa*QU) i~ (Rmfa*QU)O =
~ H™(ig' RfaxQu) = H™(Rf2xQu;,) = H™ (U, Q).
To prove (ii) we use the isomorphisms

IHlm(Uﬂava) = Hm(Rfa*(PfaQU) = Hm(‘PtRfa*QU)'

To prove (iii) we repeat the same argument as in the proof of Proposition
6.2.1 (iii) above. O

Corollary 6.2.16. With the assumptions above, let ¢ = dim(Sing(Up)). Then
the following hold.

(i) The sheaves R™ f,.Qu are constant local systems on S for all integers m ¢
[n—o,n + o+ 1]. In particular
(a) H™(Up,Q) = H™(U,,Q) for allm ¢ [n —o,n + o +1] and s € S*;
(b) the natural morphism H™(Up; Q) ~ H™(U;Q) — H™(U,; Q) is injective
for m =n — o (resp. surjective for m = n + o + 1) and the dimension of
the cokernel (resp. kernel) is bounded by

dimH"~7 (Up, Va) = dimBI"™7 (Uo, Va) = dimH® (Uo, H" ™" Vo).



188 6 Applications to the Geometry of Singular Spaces

(i) The sheaves R™ fuQu are constant local systems on S for all integers
m ¢ [n—o,n+ o+ 1]. In particular H™(Uy,Q) = H™(U,,Q) for all integers
mé[n—o,n+0+1] and s € S*.

(iii) If in addition Uy is Stein, then o = 0, H™(Uy,V,) = 0 for m # n and
dimH"™ (Uy, V) = po(fa), where the total Milnor number uo(f,) is given by
the sum ZPESing(UO) M(faap)'

Proof. Exactly as the proof of Corollary 6.2.2. The claim ¢ = 0 in the Stein
case follows from the fact that the only compact analytic subspaces of a Stein
space are the finite sets of points. O

Corollary 6.2.17. With the assumptions in the above theorem, the zeta-
function Z(f,) of the fibration f, : U* — S* induced by f, over the punctured
disc S* is given by the formula

Z(fa) = [ Z2(hes)¥®

Ses

where S is a stratification of Uy such that V, is equivariantly S-constructible
and h,, is the monodromy of the Milnor fiber F, . of f, at the point zg € S.

Proof. We have Z(f,) = Z(1(Rf.«Cy)) by definition and then we easily
get Z(Yi(RfoxCu)) = Z(RI'(Uy, ¢, Cyr)) by Theorem 6.2.15. Using Remark
6.1.13 yields the claimed result. O

Exercise 6.2.18. State and prove the analog of 1versen’s Formula in the case
of a non-proper mapping which is tame with respect to some compactification.

Finally we treat the same semi-global non-proper case f, : U — S, but

we assume now that f, has finitely many isolated singularities on U and at
infinity with respect to a given compactification f : X — S as in Definition
6.2.12. Remark 6.2.11 clearly shows that in this case the direct image functor
Rf,« commutes neither with the vanishing cycle functor ¢y, nor with the
pull-back functor z';ol, i.e. Theorem 6.2.15 is definitely false in this case.
We set again F, = Rj,Qu and note that Vi, = ¢;F, has a finite support X
which can be decomposed as £ = X, U X, where X, = ¥ NU = Sing(f,)
and Y, = XN X. From f, = foj we deduce Rf,.Qu = Rf.F. which
combined to Proposition 4.2.11 yields

Pt(RfaxQu) = RI'(Xo, Vi) = RI'(Z, V).
This isomorphism is the key point, in proving the following result.

Proposition 6.2.19. Let the inclusion j : U — X be a Stein mapping, e.g.
U is the complement of a hypersurface in X. Then the following hold.
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(i) H™ (pt(RfaxQu)) = 0 for m # n and dimH"(py(RfaxQu)) = po(fa) +

vo(fa), where
po(fa) = ) dimH"(Viy)

pEX,

is the total Milnor number of f, on U and

v(fa) = Y dimH™(Vip)

PE€EX
is the total Milnor number of f, at infinity.

(ii) The sheaves R™ f,.Qu are constant local systems on S for all integersm ¢
[n,n+1]. In particular H™(U; Q) = H™(U,; Q) for all integers m ¢ [n,n+1]
and s € S*.

(iii) x(Uo) = x(Us) + (=1)"+ (o (fa) + vo(fe))-

Proof. (i) If j : U —» X is a Stein mapping, then we can apply Theorem
5.2.16 and deduce that Fi[n + 1] € Perv(X). Then it follows from Theorem
5.2.21 that PpsFi[n + 1] = Vi[n] € Perv(X). 1t follows that the integers
wo(fa) and vo(f,) are well-defined and that the claim (i) holds.

(ii) Exactly as the proof of Corollary 6.2.2.
(iii) Exactly as the proof of claim (iii) in Proposition 6.2.1 via Remark 6.2.11.
0O

Ezxzample 6.2.20. Consider the compactification f : X — C of a polynomial
function f, : C**! — C described in Example 4.2.3 (ii) and take the restriction
over a small disc D centered at the origin (in order to be in the setting of
deformations descussed in this section). Then X, C XN Hy, and for a point
z € Y, we have
w(fa) = n()o — () gen

i.e. the new invariant vy(f,) coincides to the jump of the Milnor number of
the family of hypersurface singularities (X, ) at £ = 0. See also Broughton
[Bt]. To show the above equality we have to show that

dim(H" s Qx )o = dim(H" ¢ RjsQu )s-
To do this, consider the adjunction triangle
#i'Qx = Qx — Rji.Qu =

and apply the functor ¢y. To show that the sheaf ¢ fz'gz"(@x is trivial, we notice
that, up-to a shift, we have

D(psiri'Qx ) ~ pyivi 1Qx.
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Moreover we have an isomorphism ¢i,i 'Qx =~ i, (970iQx.. )-

In the case of the compactification described in Example 4.2.3 (ii), it is easy
to see that X, ~ V(fz) X D, where d is the degree of the polynomial f, f; is
the top degree form in f and V' (f;) is the hypersurface in P* defined by this
form, see for details [D], p. 20. Moreover the isomorphism X, ~ V(fz) x D
is such that that f o ¢ corresponds to the projection on the second factor.
It follows that ¢s;Qx,, = 0, which by the above considerations yields the
claimed equality.

Remark 6.2.21.

(i) The condition that j : U — X is a Stein mapping holds in many cases, e.g.
when U is a Stein manifold itself or when the part at infinity X is a Cartier
divisor on X.

(ii) When U is a Stein manifold, then U; is a Stein space for all s € S and
hence H™(U,; A) = 0 for all s € S and m > n. Note that one can still have
H™1(U; A) # 0 in such a case, e.g. consider the example U = C2\{(z,y) €
C%; 22 —y?> = 0} and f,(z,y) = =. In this example the sheaf R?f,.Qu is
supported at the origin.

(iii) With the above notation, the cohomologically tame case corresponds ex-
actly to the condition vo(f,) = 0. The equality (iii) in the above proposition
shows that, this number v4(f,) is independent of the choice of the compacti-
fication f: X — S.

If we come back to the proof of Proposition 6.2.19, we see that exactly the
same argument yields the following dual result.

Proposition 6.2.22. Let the inclusion j : U — X be a Stein mapping, e.g.
U is the complement of a hypersurface in X. Then the following hold.

(i)(f}”')‘(%(Rfasz)) = 0 for m # n and dimH"(¢:(RfaQu)) = po(fe) +
volJa)-

(ii) The sheaves R™ fo1Qu are constant local systems on S for all integers m ¢
[n,n+1]. In particular H™(Uy; Q) = H™(U,; Q) for all integers m ¢ [n,n+1]
and s € S*.

Consider now the exact sequence of cohomology with compact supports (with
coefficients in Q that are omitted to simplify the writting)

-« = HF1(Sing(Uy)) — H¥(Uo\Sing(Us)) — H¥(Uy) = H*(Sing(Up)) — - - -

see Remark 2.4.5. Since Sing(Up) is a finite set, it follows that, for all integers
k > I, we have an isomorphism

HY (Uo\Sing(Uo)) ~ HE (Uo).

Moreover in view of Poincaré duality Theorem 3.3.1, we see that
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H¥(Uo\Sing(Us))¥ ~ H*~*(U\Sing(Uo)).

Let Sing(Uy) = {p1,...,ps} and let B; for j = 1,...,s denote a small open
“ball” in Up centered at p;. Let B = U;B; and apply the Mayer-Vietoris
exact sequence to the covering Up = (Up\Sing(Up)) U B. We get the following
long exact sequence

-+ — H*(Uo) — H*(Uo\Sing(Uo)) & (&;H*(B;)) —» @;H*(B}) — - -

where B = B;\{p;} is nothing else but the link of p; in Uy. Using Corollary
6.1.4 and Proposition 6.2.22, (ii), we get a morphism

H*(Up) — H*(Uo\Sing(Up)) ~ HZ"*(U\Sing(Up))¥ ~

~ HPF(Uy)Y ~ HPHU,)Y ~ H¥U,)

forany k <n—2orn+2 <k < 2n—2. A short diagram chasing combined
with Proposition 6.2.19 (ii) yields the following result.

Proposition 6.2.23. With the above notation and assumptions, for any k <
n—2orn+2< k< 2n— 2, there are natural isomorphisms

H*(U,) ~ H*(U) ~ H*(Wy),

induced by the inclusions U; — U and Uy — U, as well as an epimorphism
H™ 1 (Uy) — H*1(U,).

The last result shows the difficulty in handling the cohomology of the special
fiber Uy. Here is a more systematic approach toward this goal. Note that

H™U) = (R™ foxQu)o = (R™ fu(Rj.Qu))o = H" (Xo,i5 ' RjQu),

where the last isomorphism comes from the proper base change in Theorem
2.3.26. On the other hand, since

do g ' R«Qu = iggi T RjQu = Qu,
we have the isomorphisms
H™(Uy) = H™ (Xo, RjoxQuy,) = H" (Xo, Rjoujg ‘i BjQu).
Let F =iy ' Rj.Qu and consider the adjunction triangle
i00otiney F = F — Rjosjo 1F — (6.7)

Setting G = dpootih,F and taking the hypercohomology long exact sequence,
we get the following sequence

ce > H™(X0,G) = H™(U) - H™(Up) » H™ 1 (X0,G) = --- .
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Here the morphism H™(U) — H™(Uy) is the one induced by the inclusion
iq0 : Ug = U and hence the above exact sequence measures the difference
between the cohomology H*(U) of the tube and the cohomology H*(Up) of
the special fiber.

Consider the distinguished triangle

ibRjQu — PosRi.Qu 25 PYsRj.Qu .
Applying the functor i}, to this triangle, we get an isomorphism
var : ige, P Rj.Qu = i P9s RiQu (6.8)

induced by the variation morphism var : Po;Rj.Qu — P9;Rj.Qu. This
follows from i} ih R« = i-y0i'Rj« = 0 via Corollary 2.4.4.

Assume now that the complex Rj.Qu[n + 1] is a perverse sheaf on X. Then
Po¢Rj«Qun + 1] € Perv(Y), where ¥ = X, U Sing(Up) is a finite set, and
hence it can be regarded as a collection of finitely dimensional Q-vector spaces
(E;)zcx, each E, being endowed with its monodromy automorphism M. 1t
follows that i}, Po;Rj.Qu can be identified to the subfamily (E;)zcx.. of
vector spaces placed in degree (n + 1). Consider now the triangle

. . . . 1
p¢fRJ*@U = p‘PfRJ*@U — % 1R.7*QU +—>

and apply the functor igw;z’{,w. This produces a triangle

. . . . . . 1
lOoo!lé]oop/’vbeJ*QU E) lUOO!lé]oop(prJ*QU —G +—) :

Replacing the first complex via the isomorphism 6.8 and using the known
relation can o var = M, — Id yields in an obvious way the following result.

Proposition 6.2.24. With the above notation and assumptions, the following
results hold.

(i) The long sequence of hypercohomology groups
= H™ (Xo,G) —» H™(U) —» H™(Up) — H"* (Xo,G) — -+

s exact.

(ii) Let M° = @zex, M;. Then the only possibly non-zero cohomology groups
of the sheaf complez G are H™(G) = Ker (M® — Id) and H™"1(G) =
Coker (M — Id).

This result shows that the difference between H*(U) and H*(Us) comes
from the singularities at infinity (i.e. from the points in X)) and allows a
precise estimate of this difference in terms of the monodromy at infinity, see
Theorem 6.3.23 below for more details.



6.3 Topology of Polynomial Functions 193

6.3 Topology of Polynomial Functions

In this section we study the topology of a polynomial function f : C**1 — C.
We assume in the sequel that, the polynomial f is non-constant and that n > 0.
In the first part of this section we consider any such polynomial function f,
and in the second part we impose some good behavior at infinity conditions
on f in order to get very precise information. The interested reader can treat
the more general case of a regular function f : U — C defined on an affine
smooth variety U using a similar technique, see Sabbah [S4], Hamm [Ha3] and
Brélivet [Bv].

To simplify the notation we set in this section U = C**! and § = C. The
theory of regular stratifications gives the following basic result, see Varchenko
[Val] and Verdier [V1].

Theorem 6.3.1. Let f : U — S be a polynomial function. Then there is a
minimal finite bifurcation set B C S such that if we set S* = S\B and U* =
FL(S*), then f induces a topologically locally trivial fibration f : U* — S*.

In fact, since in this book we discuss only homological results, one can avoid
the use of this fundamental theorem, by taking B the minimal finite subset
of S such that all the constructible sheaves R™ f,Qx are local systems on S*.
This is possible in view of Theorem 4.1.5.

Let F; = f~1(s) be the fiber of f over s € S. When s € §* we call F; the
general fiber of f and denote it usually simply by F', omitting the point s. For
s € B, the fiber Fj is called the special fiber of f at s. The bifurcation set B
contains the critical values of f (at least in most cases), but also some extra
points, coming from the change of topology of the fibers of f at infinity. The
complete description of the bifurcation set B is easy when n = 1, see Ha-Lé
[HL], but it is an open problem in general, see for instance Broughton [Bt],
Cassou-Dimca [CD], Némethi-Zaharia [NZ], Tibar [Ti3] and Zaharia [Z].
Our aim is to study the cohomology of the general fiber F' as well as that of the
special fibers Fy, for b € B, plus the monodromy of the fibration f : U* — §*
expressed by the monodromy representations

pY: i (S*) = Aut(HI(F)).

1n this section all the coefficients for cohomology are in Q if not mentionned
otherwise. All the homological information we are looking for is contained in
the constructible sheaf complex Rf.Qu and in other related complexes. 1n
fact we have Rf.Qu € D2(S) by Theorem 4.1.5 and hence we can consider
two types of associated cohomology sheaves, namely the usual cohomology
sheaves R1£.Qu = HI(Rf.Qu) € C(S) and the perverse cohomology sheaves
PRIf.Qu = PHI(Rf.Qu) € Perv(S), see beginning of section 5.2 and note
that in this section the perversity p is the middle perversity p; /o.

The first result says that these two choices lead essentially to the same answer.
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Proposition 6.3.2. Let f : U — S be a polynomial function. Then
PRIf.Qu ~ R £.Qull]

for all q € Z. In particular the following hold.

(i) The group H™ (S, PRIf.Qu) ~ H™ (S, R"1 f.Qu) is zero unlessm = —1
and g = 1.

(ii) The sheaf RYf.Qu has no sections with finite support.

Proof. The Leray spectral sequence of the mapping f : U — S degenerates
at Es. Indeed, EY'? = H?(S,R1f.Qu) = 0 for p ¢ [0,1] in view of Artin
Theorem 4.1.26. Since the limit of this spectral sequence is H?+4(U), which
is zero for p+ ¢ # 0, we get in particular H°(S, R7f.Qy) = 0 for all ¢ # 0.
This implies the claim (ii) for ¢ > 0. For ¢ = 0 one can consider the exact
sequence

0— Hy(S,R°f.Qu) — H°(S, R° . Qu) — H°($*, R°£.Qu)

and note that the final morphism corresponds to the isomorphism H°(U) —
H°(U*) induced by the inclusion.
Apply now the Q-version of Proposition 5.3.6 to the complex F* = Rf.Qu.
By claim (ii) above we have H°( PR?f,Qu) = 0 and the result is proved.

O

Corollary 6.3.3. The following vanishing conditions are equivalent for any
integer ¢ € N.

HY(F)=0 <= Rf,Qu =0 < PRT'f.Qu =0.

Proof. 1t is clear that the second condition implies the first since for any
s € S* we have H1(F) ~ (R?f.Qu)s. Conversely, if HY(F) = 0, the only
sections of R?f,Qy have supports in B, hence they are trivial by claim (ii) in
Proposition 6.3.2. The last equivalence is also clear by Proposition 6.3.2.

O

Remark 6.3.4. Since the fibers F of the polynomial f are affine hypersurfaces,
it follows from Corollary 5.2.19 that H™(F;) =0for allm >n and all s € S.
Similarly, we have H™(F;) =0forallm <nand all s € S.

By Corollary 6.3.3 this implies that R™f.Qu = 0 for all m > n. Since
(R™fiQu)s = HI(F,), see Theorem 2.3.26, we also have R™fiQuy = 0 for
all integers m < n.

However, notice that the sheaves R™ fiQu/, unlike the sheaves R™ f.Qy, may
have sections with finite support. A simple example of this is given by
n = 1, f(z,y) = zy. Then it is easy to see that dim(R?f,Qu)o = 2 while
dim(R?fiQu )s = 1 for s # 0. This implies that Ito}(S, R? fiQu) # 0.

1f we analyse the above proof for Proposition 6.3.2, we see that the correspond-
ing spectral sequence with compact supports does not necessarily degenerate
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at E,. This is due to the fact that we do not have the corresponding Artin
Theorem for compact supports. A closer look at this spectral sequence implies
nevertheless that HO(S, R*fiQy) = 0, and hence the sheaf R™fiQy has no
sections with finite support.

Note that in general dimH2"(F}) is equal to the number of irreducible compo-
nents of the fiber Fj. To see this, use the exact sequence of cohomology with
compact supports of the pair (Fp,Sing(F;)) and the fact that the number of
connected components of F\Sing(F}) coincides to the number of irreducible
components of the fiber Fj.

Hence, if F} has c irreducible components Y3, ..., Yy, it follows that H2"(F}) =
®i=1,cH2"(Y;) = Q°. There is a natural trace map Tr : H2*(Fy) — Q which
under the above decomposition is given by (ai,...,a:) = a1 + ... + a.. We
define the reduced cohomology with compact supports H™(F) of Fj to be
Ker T'r for m = 2n and the whole cohomology group H*(F;) for m # 2n.

Proposition 6.3.5. The following conditions are equivalent.

(i) H*(F) = Q, i.e. the general fiber F is connected.
(i) R°f.Qu = Qs.
(ii) The polynomial f : C**1 — C is primitive, i.e. there is no factorization

f=hoguwithh:C = C and g : C*! — C two polynomials such that the
degree of h satisfies deg(h) > 1.

In particular, if dim(Sing(f)) < n, then the general fiber F' is connected.

Proof. The equivalence between (i) and (ii) can be established as in the
proof of the above corollary.
To prove the equivalence of (i) and (iii) we note that a factorization as in (iii)
above with deg(h) > 1 produces a non-connected general fiber F'. Conversely,
to show that a non-connected general fiber F yields a factorization as above,
we can proceed as in [DP]. Namely, it is enough to show that any polynomial
f can be written as a composition f(z) = h(g(z)) where g : C**! — C has a
connected general fiber and h : C — C, both g and h being polynomials.
Let f : X — P! be a smooth compactification of f. Then the Stein Fac-
torization Theorem, see [H], p. 280, gives a smooth curve C' and morphisms
§:X > Candh:C — P! such that ho§ = f and such that all the fibers of
§ are connected. A generic line L in C*t! has the following properties:

(a) f is not constant when restricted to L;

(b) the closure L of L in X is a smooth rational curve which meets f~1(c0)
at exactly one point and this intersection is transverse.
Then _6|f/ is a non constant regular map and hence gives rise to a finite, sur-
jective morphism P! — C. By Liiroth’s Theorem, see [H], p. 303, this implies
that C' = PL. Moreover, we have h~1(co) = oo, otherwise the condition (b)
above is contradicted. This implies that the morphism A gives by restriction
to C=P!\ {co} amap h : C — C such that f = h o g where the polynomial
g = §|C**! has its general fiber connected.
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The final claim comes from the obvious fact that a non-primitive polynomial
has at least one multiple fiber.

O

We assume in the sequel of this section that the polynomial f is primitive.

Proposition 6.3.6. Let b € B be a bifurcation point, Ty = f~(Dj) the open
tube about the fiber Fy and F = F the general fiber of f where s # b is a
point in the small open disc Dy centered at b. Consider the morphism ¢j* :
H™(Ty) - H™(F) induced by the inclusion s, : F' — Ty. Then o} is injective
and

¢1-o(R™ £.Qu) = Coker (4f") = H™ (T, F)

where the last two vector spaces are placed in degree zero.
Proof. By definition, we have
or—s(R™ £.Qu) = Cone(H™(T;) - H™(F)).
On the other hand
o s(R™ £ Qu) = P s(R™ £ Qu[1]) = P s( PR™ £.Qu)

by Proposition 6.3.2. Hence ;3 (R™ f+Qu) is a perverse sheaf on a point, i.e.
a vector space placed in degree zero. The result follows from the long exact
sequence of the pair (T3, F).

O

Corollary 6.3.7. For all integers m > 0, one has the following equality

b (F) = ZbM+1(Tb7F)-

beB

Proof. Apply Exercise 4.2.15 to the sheaf F = R™ f.Qu. We have x(S,F) =
0 by Proposition 6.3.2. Then obviously x(S) =1, x(F.) = b (F) and hence
X{pt—s(R™ f.Qu)) = bmy1(Ts, F) by the above proposition.
O
For a perverse sheaf P on S we denote by Pp the maximal subobject of
P whose support is contained in the bifurcation set B. We can write Pg =
®Pg,p, where Pgp is the fiber of Pp at b and, of course, suppPr, C {b}. It
follows that

Ps, ~ Hom(Qpy,P) ~ Hom(Qs,i}P) = H(i}P)

where 45 : {b} — S is the inclusion and we have used the adjunction properties
in Proposition 2.3.10 as well as Remark 2.1.2. The distinguished triangle

BP — Py y(P) 25 Py (P) S .

implies that the only possibly nonzero cohomology groups of the complex i}, P
are H(i,P) = Ker (var) and H'(i}P) = Coker (var).
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Lemma 6.3.8. Let M, denote the monodromy automorphism of Py (P)
and let g, : S\{b} = S denote the inclusion. Then

iy "Rjpujy 'P =~ Cone(My — Id : Pp4_4(P) = Pohy_s(P)).

Proof. The complex F* = i; ' Rjs.j; ' P is an object in the category D4({b})
such that H™(F*) = H™(D;,P) for Dy a small open ball centered at b
and D} = D\{b}. Since P|D; ~ HL(P)|D;[1] is a (shifted) local sys-
tem with fiber P1;_3(P) and monodromy Mj, recall the proof of Proposition
5.2.26, we can apply Exercise 2.5.7 and get H~!(F*) = Ker (M; — Id) and
HO(F*) = Coker (M — Id). This gives the result, since a complex in D({b})
is determined by its cohomology, see Exercise 1.4.7.

O

Lemma 6.3.9. With the above notation, assume that H°(P,) = 0. Then
H(iP) = Coker (M, — Id) and there is an ezact sequence

0 = H™Y(Py) = Ker (M, — Id) — H°(i,P) — 0.
Proof. We have a distinguished triangle
P =iy P — iy ' Rjpudy *P =

obtained from an obvious adjunction triangle by applying the functor z'b_l.
The corresponding long exact sequence of cohomology groups in conjunction
with Lemma above yields the following exact sequence.

0 — HY(P3) = Ker (My — Id) — H°(iyP) - 0 =
— Coker (M — Id) — H(i,P) = 0.

This proves our claim.
O
Note that the isomorphism H'(3}P) = Coker (M; — Id) follows also from
the isomorphism H(i}P) = Coker (var) and the relation varocan = M; — Id
from Remark 4.2.12 since the canonical morphism is surjective in this case by
Proposition 5.2.25.

Remark 6.3.10. If we apply the exact sequence in Lemma 6.3.9 to the per-
verse sheaf P = PR™£,Qu = R™f.Qu[1], then we get the following exact
sequence

0 = H™(Ty) — Ker (M, — Id) = H(iyP) — 0.

Indeed, one has H™(Ty) = H°(Dy, R™f.Qu) using the Leray spectral se-
quence of the restriction f : T — Dj of the polynomial f to the tube T (which
degenerates at Fy exactly as in the proof of Proposition 6.3.2) plus the iso-
morphisms H! (D, R f.Qu) = H° (Dy, PR™ £,.Qu) = H°(PR™ f.Qu)s = 0
again by Proposition 6.3.2 and Corollary 4.3.11.

This shows that the group H°(i},P) is exactly the obstruction to having an
invariant cycle theorem in this situation, compare to Remark 6.2.10.
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The above Lemmas give us interesting information on the monodromy
representation of a polynomial f. Recall first that L' = R™ f«Qu|S* is a
local system with associated monodromy representation

P (S*) = Aut(H™(F)).

The fundamental group m1(S*) is a free group on generators [y] for b € B
where 7, is an elementary loop at a fixed base point sg € §* which turns once
around the point b (on the boundary of the small disc D, used above). The
corresponding monodromy operators T;™ = p™([s]) can be (non-canonically)
identified to the monodromy operators Mp, in particular dimKer (M, —Id) =
dimKer (T;" — Id) and similarly for the cokernels.

Moreover, as for any local system, we have an isomorphism

H°(8*,L}) = H™(F)"™ = MyepKer (Ty" — Id)

i.e. global sections correspond exactly to the invariant vectors under the mon-
odromy representation.

Theorem 6.3.11. For any integer m > 0 the following hold.
(i) dimH"(S*, LT) = 3y g dimCoker (T3" — Id);

(it) the family of vector subspaces (Ker (IT;™ — Id))scp is in general position
in the vector space H™(F), namely

codim (MpepKer (Tj" — Id)) = > _ codim (Ker (T;" — Id)).
beB

Proof. Leti: B — S and j: S* — S be the two inclusions. The long exact
sequence of hypercohomology groups associated to the adjunction triangle

isi'P 5P = Rj.j P =
where P = PR™! £,Qu looks like
0=H(S,P) = H°(S, Rj.j 1 P) = H'(S,i.i'P) » H' (S,P) = 0.
Moreover, we clearly have HC (S, Rj.j~'P) = H'(S*, L) and hence
H (S, i4i"P) = GoepH' (iyP) = ®pecpCoker (7™ — Id).

This gives the first claim. To prove the second one, we have to use the following
obvious equality

X(8*,LF) = x(5) - bm(F) = (1 — | B) - b (F).
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Remark 6.3.12. The above general position property can be interpreted as a
vanishing result for a certain twisted intersection cohomology group. Indeed,
using Exercise 5.2.I1, it follows that TH*(S,LF) = H*(S, j.LT). Moreover,
since ju L} = 7<oRj L], we have the following exact triangle
I LY = Rj LY = m>1RjLT —
In the corresponding long hypercohomology exact sequence, we obviously
have HF(S,7>1Rj.L}) = 0 for k # I. By Artin Theorem we also get
H?(S,j.LF) = 0 and this yields the following exact sequence (which, as a
matter of fact, holds for any local system £ on S*)
0 — IH'(S,LF) - H'(S*,L}) = @sesH" (D}, LT) — 0.

Here Dy is a small punctured disc centered at b € B. Computing the di-
mensions of the vector spaces in this exact sequence via Theorem 6.3.11, we
get that the family of subspaces (Ker (T;™ — Id))scp is in general position in
H™(F) if and only if TH*(S, L£7)=0.

Finally note that here we work with two distinct extensions of the perverse
sheaf LT'[T] on S* to a perverse sheaf on S, namely j.LF[I] and R™ f.(Qu )[I].

With the same notation as above, we describe now a different approach to the
computation of the groups H* (i}, PR™ ! f.Qu ). Set F = Qu [n+1] € Perv(U)
and recall that DF ~ F. This implies that

D(iyRf.F) ~ iy 'RAF = RIL(F;,Q[n + 1]

by Corollary 4.1.17 and Theorem 2.3.26. Applying once again the duality we
get it Rf.F ~ D(RI,(F},Q))[—n — I]. Taking the cohomology and using the
definition of the sheaf F, we get the following isomorphism

H™(i Rf.Qu) ~ H 2™ ().

On the other hand, applying Theorem I1.3.I9 to the composition of functors
iy, o Rf. we get a spectral sequence

E>t = H*(iLR* £,Qu) = H* T (iLRf.Qu).
In view of Proposition 6.3.2, we have
H*(iyR £,.Qu) ~ H*~ (i, R £,Qu).
This yields a spectral sequence
ES* = H*(i} PR f.Qu) = H***(i,Rf.Qu)

which degenerates at Es since E5* = 0 for s ¢ [0, I] as we have seen above,
just before Lemma, 6.3.8. This yields an exact sequence

0 — H(i, PR'f.Qu) —» H (iLRf.Qu) — H°(iy PR*"' £.Qu) — 0.

Using the above considerations involving cohomology with compact supports,
and setting t = n — k the above exact sequence can be rewritten as follows.
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Lemma 6.3.13.
0 — H(i} PR *£,Qu) —» H*1(FR)Y - HO@6) PRV %1 £,Qu) — 0.
This lemma, together with Corollary 6.3.3 imply the following.

Corollary 6.3.14. Let f : C**! — C be a polynomial function as above and
let 0 € N be an integer such that H™(F) = 0 for all m < n —o. Then
Hi(F,) = 0 for all integers q with n+0 +1 < ¢ < 2n and any b € B.
Moreover we have an exact sequence

0 — H"°(T3) — Ker (M — Id) — H+Y(F)Y — 0.

Proof. Let ¢ = n+ 1+ k and note that 0 < k < n — 1. Then we have
PRk fQy = PRV *t1f Qy = 0 in view of Proposition 6.3.5. When k = ¢
we have HI o+ (F,)V = HO(iL PR **1£,Qu) if n > 1 and the final claim
follows from Remark 6.3.10. For n = 1, the first term in the exact sequence
from Lemma 6.3.13 is Q and this explains the appearance of the reduced
cohomology introduced in Remark 6.3.4.
O
Using Lemmas 6.3.9 and 6.3.13, we get the following result, which might
be compared to some of the results in [NN].

Proposition 6.3.15. For a polynomial function f : C**' — C as above, we
have the following exact sequence

H"*(F) - H"Y *(F) - H'" "*(F)Y — H°(6 PR *£.Quy) = 0

where the first morphism is My —Id, b is any bifurcation point of f and k € N.

1n the following results we impose some good behavior at infinity con-
ditions for our polynomial f : U — S. If g : X — § is a proper mapping
between complex algebraic varieties X and S = C such that U is a Zariski
open and dense subset in X and g|U = f, then we call g a compactification of
the polynomial function f. Theorem 6.3.1 has a relative version which, when
applied to the mapping g : (X, X) = S, with X, = X\U, shows the exis-
tence of a minimal finite set B, C S such that g is a relative locally trivial
fibration of the pair (X*, X% ) over S*, where we set as before S* = S\B,,
X*=XnNg 1(S*) and X% = Xo Ng~1(S*). For any point b € B, consider
the small open disc D; centered at b. Then the restriction g of g to the tube
Ty = 9 '(Dp) is a compactification of the deformation f; induced by the
restriction of f to the tube T, = f~1(Ds).

Definition 6.3.16. We say that the polynomial function f : U — S has (Q-
cohomologically) no singularities ot infinity, or that f is (Q-cohomologically)
tame, with respect to the compactification g : X — S if this property holds
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for all the deformations f, with respect to the compactifications gy for any
be B,.

We define in the same way o polynomial function f : U — S having (Q-
cohomologically) isolated singularities at infinity with respect to the compact-
tfication g : X — S.

For b € B, we consider the vanishing cycle sheaves V(b). = @s_pFu
and V(b)1 = @;—pFt where F = Rju.Qu and Fi = RjQu, j : U - X
being the inclusion. When f has only isolated singularities on U (resp. at
infinity with respect to the compactification g) we define us(f) = po(fs)
(resp. vp(f) = vo(fs)), with o, v as in Proposition 6.2.19. We define in these
conditions the total Milnor number of f (resp. the total Milnor number of f
at infinity) to be the integer

p(f) =Y m(f)
b

€B,

and respectively

v(f) =Y w(f).

beB,

The following result collects the main properties of the tame functions.

Theorem 6.3.17. Let f : U — S be a polynomial function which is tame
with respect to a compactification g : X — S. Then the following hold.

(i) H™(Fy) = 0 for all positive integers m < n and any point s € S;

(ii) f has only isolated singularities on U and dimH™(F) = u(f);

(iii) for any bifurcation point b € B, and any integer m, one has natural
isomorphisms

H™(Fy) =~ H™(Ty) = (R™ £.Qu e
where Ty is the tube about the fiber Fy;

(iv) the natural morphism
H"(Fy) ~ H"(Ty) — H"(F)

induced by the inclusion Fs C Ty for s € Dy, is injective and dimH™(Fp) =
w(f) — o (f)-

Proof. All the above claims except (ii) follow from Corollary 6.2.16. The
remaining claim (ii) follows from Exercise 4.2.15 in view of Theorem 6.2.15.
0O

Remark 6.3.18. Note that all the commutation properties in Theorem 6.2.15
hold in the global situation of a tame polynomial function. Indeed, all of them
involve just the behavior of the function f along one of its special fibers F,
and hence we can replace U by the corresponding tube T}.
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If one is interested in the cohomology with compact supports of the fibers,
then the following result is the one to use.

Proposition 6.3.19. Let f : U — S be a polynomial function which is tame
with respect to a compactification g : X — S. Then the following hold.

(i) H*(Fy) = 0 for all integers m withn + 1 < m < 2n and any b € By;
(ii) the natural morphism HP(F,) — HPF(F) is injective;

(ii) dimH? 1 (F,) = dimKer (M — Id) — (u(f) — ps(f)) for n > I and any
beB,.

Proof. The claims (i) and (ii) follow from Corollary 6.2.16 while the
last one follows from Corollary 6.3.14. Finally, since x.(F;) = x(Fp) =
I+ (=D™(u(f) — ps(f)), it follows that one can compute the remaining inter-
esting Betti number dimH?(F;) as well. See also Remark 6.3.4.

O

Remark 6.3.20. The exact sequence alluded to in Remark 6.3.4 shows that
H™(Fy) ~ H>»™(F,\Sing(F})) for m > I. Note that Theorem 6.3.17 implies
that the Betti numbers of all the fibers Fj are determined by the Milnor
numbers u(f), us(f). On the other hand, Example 2. in [ACD] shows that
the dimensions dimH™(F}) = dimH?"* ™ (F;\Sing(F})) are not determined
by these Milnor numbers, but they depend on the position of the singularities
on the special fiber F;. In that example one has n + I = m = 3, and hence
the same remark applies to dimKer (M; — Id) according to 6.3.19 (iii).

For a tame polynomial f, it follows that the most interesting associated
constructible sheaves are R f,Qu and R™fiQu for m = n,n + I. We show
now that these three sheaves are closely related. With the above notation, the
natural morphism F; — F, can be extended to a distinguished triangle

F>F.oC—

in the triangulated category D%(X). Applying the functor Rg. = Rg: to this
triangle yields a distinguished triangle

RfiQu —» Rf.Qu — Rg.C — (6.9)

in the triangulated category D?(S). Taking the cohomology sheaves in this
triangle gives the following result, see also [S4].

Proposition 6.3.21. Let f : U — S be a tame polynomial and assume that
n > I. The following sequence of constructible sheaves on S is exact.

0— R"'4.C - R"fiQuy - R"f.Qu = R"9.C - R"" fiQuy = 0

Moreover, the sheaves R™g,C are constant local systems for m =n — I, n.
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Proof. The only claim still to justify is the last one. By Lemma 6.2.14 we
have ¢,_3J1 = p4_pF«. Hence, applying the functor ¢,_5 to the triangle 6.9
we get ¢,_C = 0. This implies that ¢;_3Rg.C = Rg.py—3C = 0 and hence
all the cohomology sheaves R™g,C are local systems on S by Exercise 4.2.13.
Since S is simply-connected, these local systems are constant.

O

Remark 6.3.22.

(i) The same proof as above yields in the case n = 1 the following exact
sequence

0 - Qs —» R%.C » R fiQu — R f.Qu — R'g.C - R2fiQy — 0.

where the sheaves R™g.C are constant local systems on S for m = 0,1. The
example f(z,y) = zy shows that the other sheaves, namely R' fiQu, R?fiQu
and R'f,Qu are not local systems.

(ii) We give now a geometric interpretation of the local systems R™g.C. Fix
first a fiber Fy of f and recall that, since f is tame, F; has at most isolated
singularities. Then it is known, see for instance [D], p.26 that for By a closed
ball of radius R >> 0 centered at the origin in U = C**!, the following hold.

(a) The intersection L (F;) = F,NOBRg is transverse and hence Ly, (F}) is
a compact, oriented (2n — 1)-dimensional manifold, independent of the choice
of R >> 0, and called the link at infinity of the affine hypersurface F;.

(b) The inclusions F<® — FSE — F, are homotopy equivalences, where
F<R = F,N1nt(Bg) and FS® = F, N Bg.
1t follows that the natural morphism H™(F;) — H™(F};) can be represented
by the morphism H™(F£R, Lo (Fs)) & H™(FEE) occuring in the long exact
cohomology sequence of the pair (FS® L (Fy)), see Remark 2.4.5. Forn > 1,
the connectivity of the fiber F; obtained in Theorem 6.3.17 (i) implies that
the link L, (Fs) is (homologically) (n — 2)-connected, exactly as the link of
an isolated singularity in Corollary 6.1.4. Moreover, applying Theorem 6.3.17
(iii), we have

(R™gxC)s > H™(Loo(F}))

for m = n — 1, n. The above morphism
H™M(FiR, Loo(Fy)) - HY(FSR)

can be regarded in many cases as the analog of the variation morphism V
described in Remark 6.1.21. See also the discussion in the final part of [DN]
on this subject.

We finally consider the case of a polynomial function f : U — S such
that f has only isolated singularities on U and at infinity with respect to
a compactification g : X — S as in Definition 6.3.16. The following result
describes the changes produced in the statement of Theorem 6.3.17 by the
presence of the isolated singularities at infinity of the function f.
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Theorem 6.3.23. Assume that f : U — S has only isolated singularities on
U and at infinity with respect to a compactification g : X — S. Then the
following hold.

(i) H™(F) = 0 for all m < n;
(1) diimH™(F) = p(f) + v(f);
(iii) for any bifurcation point b € B, we have H™(F) =0 for allm <n—1

and
X(Fy) = x(Tp) = x(F) + (=1)" (o (f) + v(£))-
Moreover H™(T3) = 0 for all m # n and dimH" (F;) < v}(f), where

vi(f) = z dimKer (M, — Id)
zEXNg~1(b)

with My, : (P, RjQun+1])e = (Ppg—pRjxQun+1]), is the correspond-
ing monodromy operator.

Proof. All these claims follow from Propositions 6.2.19 and 6.2.24. For in-
stance the very last claim follows from Proposition 6.2.19, (ii) applied to the
restriction f of f to the tube Ty. In particular, the claims (i) and (iii) above
show that in this situation the general fiber and all the tubes have the same
connectivity properties as for a tame polynomial. 1t is just the estimate on
the connectivity of the special fibers that is different.

O

Ezample 6.3.24. 1n the case of the polynomial f : C* = C, f(z,y) =2’y —=
discussed in Example 4.2.3 (ii) we have dimH°(Fp) = v§(f) = 1, the last
equality following from Examples 4.2.3 and 6.2.20.

Remark 6.3.25. If we are interested in the cohomology with compact supports
of the fibers of a polynomial f as above, it is surprising to notice that all the
results from Proposition 6.3.19 except (iii) (which is treated below) hold word
for word in this case (with the same proof!).

Moreover, for n > 1, we have the same exact sequence as in Proposition 6.3.21,
the only difference being that the sheaves R™g.C can fail to be local systems
at the bifurcation points b € B, with v4(f) > 0.

The last claim in Proposition 6.3.19 is replaced in the case of a polynomial
having only isolated singularities on U and at infinity by the following result.

Corollary 6.3.26. Let f : U — S be a polynomial function as above and
g : X — S the corresponding compactification. Then, at any bifurcation point
b € By, one has the following inequality

dim A" (F,) < dimKer (My,, — Id : ; 5(R" f.Qu) = ¢1_s(R" f.Qu))

where My, is the corresponding monodromy operator.
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Proof. We use Proposition 6.3.6 to get the following commutative diagram.

0—— H"(T}) — H"(F) —> ¢1—(R" feQu) — 0

ol Mb—Idl Mb,v—Idl

00— H"T}) — H™"(F) — ¢1—(R" fQu) —>0
Applying now the snake lemma, see [II],p. 4, we get an exact sequence
0 — H™(Ty) — Ker (My — Id) — Ker (M, — Id).

Using finally Corollary 6.3.14 for 0 = 0 we get the result.
O
If we like, we can rewrite the inequality in the above corollary in a form
similar to Theorem 6.3.23 (iii), namely

dmAP () < p(f) + v ()
where the integer v (f) has been introduced in Theorem 6.3.23 (iii) and

p(f)= ). dimKer (M, — Id).

zESing(Fy)

Concerning the changes in Proposition 6.3.21 due to the presence of sin-
gularities at infinity we have the folowing result. Recall the exact triangle

RjyQu = Rj.Qu = C—

used to define the complex C. By Proposition 5.2.2 (iv) it follows that C ~
~'Rj.Qu. Apply now the functor ig_ to the distinguished triangle 6.7 in
the proof of Proposition 6.2.24 (which precedes the statement!). This yields
the triangle
ioooF = o — g Riowdo - F = -

The long cohomology exact sequence associated to this triangle can be iden-
tified to the following exact sequence

-+ = H™(Xo,G) = H™(Xo,C) = H™(Loo(Fp)) = H"* (Xo,G) =
This proves the following result.

Corollary 6.3.27. Let f : U — S be a polynomial function having only iso-
lated singularities on U and at infinity and assume that 0 € B,. Then, with
the above notation, we have the following exact sequence

0= (R"1g.C)o = H" N(Loo(Fp)) = Ker (M — Id) —
= (R"9.C)o & H™(Loo(Fp)) — Coker (M° — Id) — 0.
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It is interesting to notice that the topological results above have some
useful algebraic consequences expressed in terms of various complexes of dif-
ferential forms associated naturally to the polynomial f.

To state them, let A* = (2*,d) denote the de Rham complez of global regular
differential forms on C**! with d the exterior differentiation acting on forms.
The first complex associated to f is the complex K} = (£2°,dfA) which can
be identified to the Koszul complez of the partial derivatives of f in the poly-
nomial ring Clzo, ...z5] = 2°.

The de Rham complex A*® has a natural subcomplex B} = (df A 2°,d) and
a natural quotient complex C'y = A* / Bj, called the complez of global relative
differential forms. This complex is closely related to the complex of relative
differential forms considered in Theorem 2.5.14.

Finally, one can consider as in Dimca and Saito [DSI], a complex whose dif-
ferential is a mixture of the de Rham and Koszul differentials, namely the
complex D} = ({2°,d — dfA). This complex enters into the following result,
see [DSI] for a proof and [S3] for a useful, far-reaching generalization.

Theorem 6.3.28. Let f : Crtl — C be any non-constant polynomial with
general fiber F. Then H™(F;C) ~ H"“H(D;) for anym € Z.

Corollary 6.3.29. Let f : C*t! — C be a polynomial as above and let ¢ =
dim(Sing(f)). Then H*(K}) = 0 for all 0 < i < n — o and the following
conditions are equivalent.

(i) H*(F) =0 for all0< k<n—1—0;

(ii) H'(B}) = C[f]df and H'(B}) =0 for all i #1,0<i<n—o;
(ii) H°(C3) = C[f] and H'(C}) =0 for all0<i<n—o—1I;
(iv) H(D}) =0 for all 0 < i<n—o.

Proof. The first claim can be regarded as a local property. Indeed, the
cohomology groups of the Koszul complex are finitely generated Clzo, ..., Z,]-
modules and to prove that one of them is trivial it is enough to show that all
its localizations at maximal ideals are trivial.

To check this local property we can replace algebraic localization by analytic
localization (using the fully faithfulness of this passage). At this local level the
result follows from a general result in Looijenga’s book [L], namely Corollary
8.16, p. I57 (take X a smooth germ and k = I in that statement).

To prove that (ii) and (iii) are equivalent, we consider the exact sequence
of complexes
0B} > A" —>C; =0

and note that the algebraic de Rham Theorem 2.1.I5 (in the simplest possible
setting where it coincides to the Poincaré Lemmal) gives

H*(A%) = H*(C) =C.
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To prove that (i) and (ii) are equivalent, we use the D-module approach, which
we have already seen to be a powerfull tool in relating topology and algebra.
The algebraic Gauss-Manin system of f : U — S is by definition the direct
image Gy = f1Oy[—n — 1] of the Dy-module Oy, see Borel [B2]. Actually,
we have shifted here this complex by (—n — 1) to get a complex in positive
degrees, as it is more usual in algebraic topology.

At the level of global sections on S, the algebraic Gauss-Manin system of f is
represented by the complex of A; = C[t] < 8; >-modules G} = (£2*[6;],dy)
where the C -linear differential dy is defined by

dj (WO™) = dwd™ — df Awd" T,

see [S4], [DS1] and [DS2] for more on this complex.
The cohomology sheaves G} = #*(Gy) are regular holonomic Dg-modules and
the Riemann-Hilbert, correspondence in Theorem 5.3.3 implies that

DRs(G;) = PR'f.Cy.

On the other hand, using Propositions 6.3.2 and 6.3.5, we see that the condi-
tion (i) is equivalent to the following vanishing conditions

PR'f,Cy = Cs and PR f,Cy =0 (6.10)

for i =0 and 2 < i < n — 0. Since the de Rham functor is an equivalence of
categories RH (Dy) — Perv(U), the above condition 6.10 is equivalent, to the
condition .

HY(G}) = C[f]df and H(G}) =0 (6.11)

fori=0and2<i<n-—o.
The complex G} comes equipped with a decreasing filtration given by

F*G} = 0™ (Bl <m-s

where the filtration on the right hand side is by the degree with respect to
0;. The general theory of spectral sequences, associates to this decreasing,
exhaustive and bounded below filtration a spectral sequence with Ef’t =
H***(GryG%) converging to H*T(G}).

For t > 0, we have EP* = H *+*(K$) and hence in particular in our case

we have EP' = 0 for all t > Oand s+t < n — ¢ by our first claim in
this corollary. Moreover, the terms E; 0 with the corresponding differential
di : E®® — EF™° coming from the spectral sequence can be identified for
8 < n — o (since we need again that first claim!) to the corresponding ini-
tial part in the complex B;. Since this part of the spectral sequence clearly

degenerates at the Fs-term, i.e. E§’0 = E?0 for s < n — o, we obtain the
equivalence of 6.11 to (ii). To end the proof of our corollary, we have just to
use Theorem 6.3.28. O
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6.4 Hyperplane and Hypersurface Arrangements

Let f : C**! — C be a homogeneous polynomial of degree d > 1. The associ-
ated global Milnor fibration f : M — C* with total space M = C**1\ f~1(0)
and fiber F = f~1(1) has as characteristic homeomorphism % : F — F the
mapping given by h(z) = 7 - & with 7 = exp(2xi/d). This formula shows that
h¢ = Id and hence the induced morphisms

he: HY(F) — HI(F)

at cohomology level are all diagonalisable, with eigenvalues among the d-th
roots of unity. 1n this section the coefficients for cohomology are in C if not
stated otherwise. 1t follows that we have a direct sum decomposition

HY(F) = @p=0,a-1HI(F)g

where HI(F);, = Ker (h? — 7%Id), compare to Example 4.2.6 for a similar,
but slightly different notation. We set by(F);r = dimH?(F), and note that
the knowledge of all these numbers by(F')y, for £ =0, ...,d — 1 is equivalent to
knowing the Alexander polynomial A,(f) introduced in Definition 6.1.9. In-
deed, any homogeneous polynomial f can be regarded as a germ (f,0) at the
origin and the above global Milnor fibration coincides to the corresponding
local Milnor fibration of the germ (f,0), see [D], p. 72.

1n fact, we have already discussed the zeta-function of a homogeneous poly-
nomial in Example 6.1.10.

Let V = V(f) be the projective hypersurface in P defined by the poly-
nomial f and set M* = P™\V. The group < h > spanned by the geometric
monodromy h is cyclic of order d and we clearly have

F/<h>~M".

In particular, this gives HY(M*) = HI(F), for all g € Z.

Assume that the polynomial f is square-free and let f = f;...fs be the decom-
position of f as a product of irreducible factors. Then V; = V(f;) are precisely
the irreducible components of the hypersurface V' and we refer to this situa-
tion by saying that we have a hypersurface arrangement A = (V;)i=1,, in P™.
Let d; = deg(V;) be the corresponding degrees. We say that A is a hyperplane
arrangement if d; = 1 for all 4.

The complements M and M* are both smooth affine varieties and their
topology was studied intensely over the years, see Orlik and Terao [OT1] for
the case of hyperplane arrangements and Damon [Da] in the case of hypersur-
face arrangements. The following result shows that the cohomology algebras
of the two complements M and M* are closely related.
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Proposition 6.4.1.

(i) If we have d; = 1 for some i, then there is an isomorphism of algebraic
varieties M ~ M* x C*.

(i) In general, we have an isomorphism of graded algebras
H*(M)~H*(M*)® H*(C").

Proof. The first claim is a direct consequence of the fact that the restriction
of the Hopf fibration C* — C**1\{0} — P" to any hyperplane complement
is a trivial bundle.

To prove the second claim, note that the relation between H* (M) and H*(M*)
is expressed by the following Gysin exact sequence

s H™YY(M) - H™(M*) - H™P2(M*) - H™P2(M) — - --

Here the middle morphism is the cup-product by anr = j*(a), where j : M* —
P™ is the inclusion and « is the standard generator of H2(P"). 1t follows from
[D], p. 146 that aar = 0. In fact Exercise 4.2.16 in loc.cit. shows that aas is
a torsion element in the integral cohomology of M*. This yields the result.
O
The restriction of the Hopf fibration to M* induces a fibration

p: M — M.

Fix a base point a € M and denote by o, the loop t — exp(2wit)a for
t € [0,1]. Choosing a generic line L passing through the point a, transversal
to X = f~1(0) and closed to the line Ca (which contains the loop &,), we see
that the element o, € 71(M,a) is given by the product (in a certain order)
of the elementary loops ¢; for j = 1,...,d, based at a and associated to the
intersection points in L N X.

1t is known that H;(M,Z) is torsion free, see [D], Corollary 4.1.4. Moreover
H(M*,Z) = Hi(M,Z)]/ < [61] + ... + [04] > and b1 (M) = by (M*) + 1, see
[D], Proposition 4.1.4. Moreover [o1] + ... + [64] = [0a]-

1t follows that, the morphism

m(C*,a) = m(M,a)

induced by the inclusion is injective and has as image the infinite cyclic group
spanned by ¢,. Moreover we have the following result.

Proposition 6.4.2.
(i) The element o, is in the center of the group w1 (M, a).

(ii) For any ring A, the local systems R'p.(An) are constant of rank one for
J = 0,1 and trivial otherwise. In particular, p is an orientable fibration.
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Proof. The case n = 1 is obvious since then M ~ M* x C* as explained
in Proposition 6.4.1. The case n > 1 follows from the case n = 1 by tak-
ing a projective line L in P™ transversal to the hypersurface V' and passing
through p(a) = [a]. Then, according to Zariski Theorem, see for instance [D],
Proposition 4.3.1, we have an epimorphism

T (I\V; [a]) = w1 (M™, [a])

induced by the inclusion and our result follows from the functoriality of the
homotopy exact sequence of a fibration.
O
Consider now an A-local system £ on M associated to a representation
p:m(M,a) - GL.(A), A being a field. We define the total turn monodromy
operator of the local system £ to be the invertible operator

T(L)=p(o,): A" = A".

This operator plays a key role in describing the local systems R(L) =
Rip.(L). Using Proposition 6.4.2, (i), it follows that there is a natural ac-
tion of w1 (M*,[a]) on the vector spaces E® = Ker (T'(£) — Id) and E' =
Coker (T'(£) — Id). Indeed, for v € E? and o € w1 (M*,[a]), we set

a-v=p(B)(v)
where § is any lifting of o under the epimorphism
D« 1 (M, a) = 1 (M*, [a]).
Hence this construction yields representations
p; : i (M*,[a]) = Aut(E?)
for j = 0, 1. This fact, combined with Example 2.5.7, gives the following result.

Proposition 6.4.3. With the above notation, the local system R’ (L) corre-
sponds to the representation pj, for j =0,1.

Assume now that M* is homotopy equivalent to a cellular complex having
ck(M*) cells of dimension k, for ¥ = 0,...,n. Using the Hopf fibration, it
follows that M is homotopy equivalent to a cellular complex having

cr(M) = i, (M™) + cp—1 (M)

cells of dimension k, for £ = 0,...,n + 1. (By convention we set ¢_; (M*) =
cnt1(M*) = 0). Using the obvious upper bounds

dimH®(M*, RH(L)) < ¢, (M*)rank RY(L)

coming from Proposition 2.5.4, we get the following upper bounds.
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Corollary 6.4.4. With the above notation, we have
dimH*(M, L) < cx(M)d(L,1)

where d(L,1) is the number of Jordan blocks having 1 as an eigenvalue in
the total turn monodromy operator T(L) and k = 0,...,n + 1. In particular,
dimH*(M, L) = 0 if 1 is not an eigenvalue of T(L).

Ezample 6.4.5. When A is a hyperplane arrangement, then the complement
M is a minimal CW-complez, in particular cx(M) = be(M), the k-th rational
Betti number of M, for all integers k € N, see [DPa] and [R]. 1t follows that

dimH* (M, £) < bp(M)d(L,1).

Choose as generators of H;(M*,Z) the meridian circles 7; about the irre-
ducible components V; for ¢ = 1, ..., s. Under the abelianization map

m(M*) > Hi(M*,Z) ~ Z*%/(di, ...,ds)

~y; is sent to the class of (0, ..,0,1,0, ..,0), where 1 is placed on the i-th position,
see [CS] or [D], p. 102. We call a representation p : 71 (M*) - GL.(C) (or
the corresponding local system L) abelian, if the image Im (p) is an abelian
group. Such an abelian representation p has an obvious factorization

m(M*) = Hy(M*,Z) 25 GL.(C)

and hence p’ determines completely the representation p. In this situation we
refer sometimes to p' as being the representation corresponding to the abelian
local system L.

Consider the natural projection p: F — F/ < h >= M* and let £ = p,Cp.
Then £ is a local system on M* such that £ = ®x—0,4—1Lx, where L, is a rank
one local system on M* (hence abelian!), whose associated representation pj,
is obtained by sending all the generators v; to 7% € C* = GL,(C), see [CS].
The unique relation among the +;’s in H1(M*,Z) is > d;y; = 0 and this is
transformed under p, to (7%)¢ = 1, i.e. the morphism p}, is indeed well-defined.
As a consequence of the above we get the following result, see also [CS].

Proposition 6.4.6.
HY(F) ~ HY(M", Ly).

Exercise 6.4.7.

(i) Show that for the rank one local systems L, introduced above one has
T(Ly) =1€C* = GL(C).

(ii) Show that any invertible matrix in GL,.(A) can occur as the total turn
monodromy operator T'(£) for some rank 7 local system L.
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All the above considerations can be repeated (essentially word for word) in the
case of the affine (central) complement M or, more generally, in the following
local situation. Let f : (X,0) — (C,0) be a reduced analytic function germ
defined on a pure (n + 1)-dimensional singularity (X,0). Let f = f...fs be
the decomposition of f into a product of distinct irreducible analytic function
germs. We set ¥ = f~1(0), ¥; = f;'(0) and note that ¥ = Y; U ..U Y, is
the decomposition of the germ Y into its irreducible components when X is
smooth. We assume always in this situation that f; = O defines Y; with its
reduced structure and that dimY; = n, for each i = 1,...,s5. Let M = X\Y,
where X is a good representative of the germ (X, 0) on which all the function
germs f; are defined. In many cases we will replace X by X; = X n f~1(D),
where D is a small open disc at the origin in C such that the Milnor fibration
of the germ f is defined on X;. Since X and X; have the same homotopy
type, as well as X\Y and X;\Y, this causes no problems.

When X is a smooth germ, the first homology group Hy(M,Z) ~ Z* is freely
spanned by the classes of the meridians -;, one for each irreducible component
X; of X. It follows that for any non-zero complex number a € C* we have
a rank one local system £, on M whose associated representation pl, just
sends all meridians v; to a. In the general case, the local system £, can be
defined just by taking the pull-back of the obvious local system on D* under
the mapping f : M — D*.

1f Fy denotes the Milnor fiber of the germ f, then the Milnor fibration

F - ML D
gives the following exact sequence of fundamental groups
0 = 7 (Fp) - m (M) L5 7 (D*) =Z — 0.

Since the representation p, associated to the local system L, factors through
f« (which sends any meridian ~; to 1), it follows that Im (,) C Ker p,. Using
now Exercise 2.5.6, we get the following well-known result, see for instance
[Lid4].

Proposition 6.4.8. With the above notation, there is a long exact sequence

coo o HY(M, Lo) — HY(Fp) 251 H9(Ry) = HY(M, Ly) — ---
where h? denotes the q-th monodromy operator of the function germ f.

Since h? is defined already over Z and since all the eigenvalues of h? are roots
of unity, it follows that dimKer (h? — a='Id) = dimKer (h? — ald) for any
a € C* and similarly for the cokernels (which in fact have the same dimension
as the kernels!). This remark implies the following,.

Corollary 6.4.9. With the above notation, for any q € Z, one has
dimH?(M, L,) = dimKer (h? — aId) + dimKer (h?™! — ald).
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Remark 6.4.10.

(i) Note that d(g,a) = dimKer (h? — ald) is equal to the number of Jordan
blocks in the monodromy operator h? corresponding to the eigenvalue a. This
is smaller than dimH?(Fp),, where the generalized eigenspace HY(Fp), was
introduced in Example 4.2.6. When the monodromy operator h? is semisimple,
e.g. when f is a weighted homogeneous singularity, then the above two dimen-
sions coincide. Otherwise, it is useful to introduce the reduced q-th Alexander
polynomial of the singularity f given by

A(H)) = ] ¢ —a)*ee

acC
exactly as in [D], p. 206.

(ii) When f is a homogeneous polynomial, the fundamental groups 71 (M) and
w1 (M*) are also generated by elementary loops (meridians) by van Kampen-
Zariski Theorem, see for instance [D], p. 121, but usually their number is
larger than s and, more importantly, the relations among them are not at
all easy to explicit. This leads to difficulties in constructing non-abelian local
systems on M or on M*.

Ezample 6.4.11. Let n = 1 and recall that a plane curve singularity Y : f =0
is an s-ordinary point if Y has exactly s branches at the origin, all of them
smooth and with distinct tangents. Using either the fact that such a germ
is in an obvious way a quasi-weighted homogeneous singularity or the fact
that a single blow-up of the origin is an embedded resolution of singularities
in this case (and using then Corollary 6.1.15) we get the following result via
Corollary 6.4.9.

(i) H°(M,L,) = 0 unless @ = 1 and then H°(M,L;) = H°(M,C) =C.

(i) HY(M,L,) = H*(M,L,) = 0 unless a® = 1 and then there are two
subcases. For a = 1 we have H*(M, L;) = H'(M,C) = C® and H%(M,L,) =
H?(M,C) = C*7! and, finally for a® = 1,a # 1, we have H*(M,L,) =
H2(M. L) = C-2.

Ezxample 6.4.12. Let f : (X,0) — (C,0) be an analytic function germ defined
on the (n + 1)-dimensional complete intersection X and consider the sheaf
¢ 2(Cx) introduced in Remark 4.2.5. Let Sy = supp(p;1(Cx)) and note
that Proposition 6.1.6 combined with Corollary 6.4.9 imply that

H™(M,Ly) =0

for any integer m satisfying 0 < m < n —1 — dimSy . As interesting special
cases we have the following.

(i) If X is smooth and Y = f~1(0) is a normal crossing divisor, then Example
6.1.8(i) implies that H™(M, L)) = 0 for any m and any A # 1.
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(ii) If X is an isolated complete intersection singularity and Y = f~1(0) is a
normal crossing divisor possibly except at the origin, then H™(M,L,) = 0
for any m # n and any A # I, as follows from Example 6.1.8(ii).

We present now an approach (which is a generalization of the proof of
Theorem 3.4.4) yielding global vanishing results for the cohomology with local
coefficients of the hypersurface arrangement complement M* based on the
above local vanishing results and on some basic properties of perverse sheaves.
In the case of hyperplane arrangements, to be discussed later on, this approach
will be refined and compared with previous results in this area.

Fix one hypersurface, say Vi in the arrangement V = U;=1 ;V; of hyper-
surfaces in P". Even the case s = I is interesting and will yield new results
(unlike the case of hyperplane arrangements of course!). Let U/ = P*\V; and
let i: M* — U and j : U — P" be the two inclusions. For any local system £
on M* the sheaf L[n] is perverse in view of Theorem 5.1.20, M* being smooth.
Moreover, ¢ being a quasi-finite affine morphism, it follows by Corollary 5.2.17
that F = Ri.(L[n]) € Perv(U). Since U is an affine variety as well, we can
apply Corollary 5.2.19 which yields

HF (U, F) = 0 for all k > 0, and H¥ (U, F) = 0 for all k < 0. (6.12)
Let a : P™® — pt be the constant map to a point and note that we can write
HF (U, F) = H*(Ra.Rj.F) = H*(Ra.Rj.Ri.L]n]) = H**"(M*, L)
and also, in a completely similar way,
HF (U, F) = H*(RayRji.F).

Since a is a proper map, we have Ra. = Ra;. Consider now the canonical
morphism RjF — Rj.JF and extend it to a distinguished triangle

RyF = RjF =G —

in the triangulated category D?(P"). Applying Ra. = Ra: to this triangle and
then taking the hypercohomology yields the following long exact sequence

.. = HU, F) - BYNU, F) - B* (P, G) - B (U, F) — ...

It follows that the vanising results in 6.12 gives vanishing results on H*(M*, £)
if we can control the cohomology groups H* (P%, G).
To do this, note first that supp(G) C V1 and, for z € V] we have

(Hkg)z = (HkRj*}-)z = Hk+n(Mz7[’z)

where M, is the (local) complement, of the hypersurface germ (V, z) in (P", z)
and £, denotes the restriction of the local system £ to M. Using the usual
spectral sequence allowing to pass from cohomology to hypercohomology
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EPY = HP(V1,H1G) = B (V1,0)

it follows that a vanishing of the form 29G = 0 for ¢ < —¢ implies H* (V1,G) =
HE(P*,G) = 0 for k < —o and also H?(V1,G) = H°(Vi,H7°G). These
considerations prove the following main result.

Theorem 6.4.13. Let V = U;=1,,V; be a hypersurface arrangement in P"
with complement M*. With the above notation, assume that L is a local system
on M* such that H™(M,,L;) =0 for oll x € V1 and all m < n— o, for some
integer o > 0.
Then H™(M*,L£) = 0 for oll m < n — o and, if o > 0, we have in addition
an inclusion

H" 7 (M*,L) - H°(V,H™°G).

Ezample 6.4.14. (i) Let V = U;=1 Vi be a hypersurface arrangement in P"
such that V' is a normal crossing divisor along one of its irreducible compo-
nents, say V. It follows from Example 6.4.12 (i) and the above Theorem that
H™(M*,L;) = 0 for any m # n if k # 0. In other words, the monodromy
action on the Milnor fiber cohomology H™(F') is trivial for m # n. In view
of Example 6.1.10 we see that the knowledge of the Betti numbers by, (M*)
for all m determines in this case all the Alexander polynomials A,,(f), since
X(F)/d = x(M*). This is the situation in the case of a normal crossing hy-
perplane arrangement, see for details [CS].

We weaken now our assumption, namely we require that V has only isolated
non-normal crossing singularities along V1, i.e. for any € V; the germ (V4, z)
is a normal crossing divisor possibly except at z. Then Example 6.4.12 (ii)
and the above theorem imply that H™(M* , £;) = 0 for any m < n — I if
k#0.

(ii) Let V = U;=1,5Vi be a hypersurface arrangement in P* such that all V;
are smooth and V is a normal crossing divisor. Let £ be a nontrivial rank
one local system on M*. Then there is a component, say Vi, such that the
corresponding monodromy operator 77 is not the identity. The above theo-
rem in conjunction with Remark 3.4.5 gives H™(M*, L) =0 for all m # n, a
generalization of claim (i) in Proposition 7.5 in [CI].

(iii) Let V = U;=1,V; be a curve arrangement in P? such that there is a com-
ponent, say Vi, along which V has only ordinary multiple points in the sense
of Example 6.4.11. Applying the above theorem to the local system L for
some k # 0 and taking ¢ = I, we get an inclusion

HY(M*, L) —» H'(Vi,H'G).

It is clear that suppG C Xy = Vi N Sing(V), in particular this support is a
finite set since our hypersurfaces are always assumed reduced. For a point
x € 31 let s, be its multiplicity. We have

dim(H1G), = dimHY (M, Ly z) = 55 — 2
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when d divides ks;, and zero otherwise, in view of Example 6.4.11.
This gives the following corollary, which generalizes Theorem 1.3 in [CDO],
itself an improvement of Massey’s result in [Ma2].

Corollary 6.4.15. Let V = U;=1 ;V; be a curve arrangement in P? such that
there is a component, say V1, along which V has only ordinary multiple points.
Then

dimH (M*,Lx) <) (55 —2)

where the sum is over all the points x € X1 = V1 NSing(V) such that d divides
ks,.

With the notation from (ii) above, let us drop the assumption that V' has
only ordinary multiple points along V. Then using the notation from Remark
6.4.10, we see that for k # 0 we get

dim(H1G), = dimHY (M, Ly, ;) = d(1,7%),

where the added subscript x indicates the point where the integer d(1,7*)
has to be computed. This fact is the main part of the proof of the following
divisibility result.

Corollary 6.4.16. Let V = U;=1,,V; : f = 0 be a curve arrangement in P2
and fiz an arbirary component, say V1. Then the (global) Alezander polynomial
AL(f) of the curve V divides the product P, = [[_ A1(V,z) of the reduced
(local) Alezander polynomials of the singularities (V,z) of the curve V, where
the singular point x runs through the finite set Xy = V1 N Sing(V).

Proof. The above considerations show that the exponent of the factor (t—7*)
is greater in the product P; than in the Alexander polynomial A, (f) for k # 0.
To complete the proof we have to consider the factor (t—1). This factor occurs
in A;(f) with multiplicity s — 1. Each irreducible component V; for j # 1
intersects V; in at least one point y; and creates there a factor (¢ — 1) in the
reduced Alexander polynomials of the singularity (V,y). Hence the exponent,
of the factor (¢ — 1) in the product P, is greater or equal to s — 1.
O
Similar results to this corollary have been obtained by Libgober [Li3] (for
non-reduced Alexander polynomials) and by the author [D], p. 207 (for re-
duced Alexander polynomials). These results apply to hypersurfaces V' of any
dimension having only isolated singularities (for dimV > 1 this implies that
V is irreducible), but the product was taken over all singular points on the
projective hypersurface V.

We conclude the part on local hypersurface complements with a result
which is closely related to our discussion above. Let (X,0) be a pure m-
dimensional singularity, embedded in a smooth germ (C*,0). Let f : (X,0) —
(C,0) be a non constant function germ and set Y = f71(0), M = X\Y as
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above. We assume as always that Y is reduced and equidimensional. Let B
be a good small open ball at the origin of C* for the pair (X,Y). For a € C*,
recall that we have a rank one local system £, on M and associated integers
d(g,a) = dimKer (h? —ald) as in Remark 6.4.10. With this notation we have
the following result, to be compared to Proposition 6.1.23 and [DL].

Proposition 6.4.17. Assume that M is smooth and that for any pointy € Y,
y # 0, a # 1 is not an eigenvalue of the corresponding local monodromy
operator Ty : H*(F,,C) — H*(F,,C). Then d(g,a) =0 forq <m —1 and

(=)™ (X(CL(X,0)) = x(CL(Y,0))) > d(m — 1,a).

In particular

(i) dimH™ 1((M, L,) = dimH™((M, L,) = d(m — 1,a) and H*(M,L,) =0
for k ¢ [m —1,m)].

(i) if (X,0) is an isolated complete intersection singularity and the above
assumption holds, then

bm—l(CL(X7 0)) + (_l)m_l(l - X(CL(Y7 0))) > d(m - 17 a);

(iii) if (X,0) and (Y,0) are both isolated complete intersection singularities
and a # 1, then

b1 (CL(X, 0)) + b—_2(CL(Y,0)) > d(m — 1,a).

The part (ii) of this result was proved in the special case when (X,0) is a
smooth germ by Nang and Takeuchi, see [NT]. They use the theory of D-
modules and express the assumption on the eigenvalue a above in terms of
bs-functions.

Proof. To prove the vanishing of the integers d(g, a) for ¢ < m — 1, we recall
that ¢s,Cx = ¢;,Cx since a # 1. Moreover, the nearby cycles ¢;,Cx
depend only on the restriction Cx |M = Cjps. Since M is smooth, it follows
that Cps[m] is a perverse sheaf and one can apply exactly the same argument
as in the proof of Proposition 6.1.6. Note that we can treat in this way the
case when M is locally a complete intersection.

Consider the open inclusions j' : X\Y — X*, j” : X* — X, where
X* = X\{0}and j : M = X\Y — X. The assumption on the eigenvalue a
implies, exactly as in the proof of Theorem 3.4.4, that one has the following

Rj Lo = jiLa.

1t follows that F = ji.(La[m]) = jii (RjL(La[m])) = 7<—1Rj«(La[m]). In order
to determine the characteristic cycle of the perverse sheaf F (regarded as a
perverse sheaf on the open ball B) via the equation 4.3, we have to compute
the Euler characteristics x(F;) for all z € X.
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It is clear that x(F,) = [forz € M = X\Y and x(F;) =0forz € Y,z # 0.
Moreover x(Fo) = —dimH™ (M, L,) = —d(m — I,a). Indeed, to see this, one
has to use the vanishing x(M,L,) = x(M) = x(X) —x(Y)=1—-1=0 as
well as the vanishing H*(M,L,) = 0 for k > m, M being Stein of dimension
m, combined with Corollary 6.4.9.

Choose now a Whitney stratification of the ball B with respect to which F
is a constructible complex and such that the largest stratum is Xop = B\X,
followed by X; = M, and in which the origin is itself a stratum, say Xo.
Then computing the corresponding multiplicities via the equation 4.3, we get
mg=0,m; =1 and

mg = —d(m — L, a) + (=)™ 1 (x(CL(X, 0)) — x(CL(Y, 0))).

The result follows from Corollary 5.2.24, the sheaf F being perverse.
O

Now let 4 be an arrangement of hyperplanes in the complex projective
space P, with complement M(A) = P"\ g4 H. Let £ be a complex
local system of coefficients on M (A). The need to calculate the local sys-
tem cohomology H*(M(A), L) arises in a variety of contexts, including the
Aomoto-Gelfand theory of multivariable hypergeometric integrals [Gell]; rep-
resentation theory of Lie algebras and quantum groups and solutions of the
Knizhnik-Zamolodchikov differential equation in conformal field theory [Va2];
and the determination of the cohomology groups of the Milnor fiber of the
non-isolated hypersurface singularity at the origin in C**! associated to the
arrangement 4 as we have seen above.

In light, of these applications, the cohomology H*(M(A), L) has been the

subject, of considerable recent, interest. Call the local system £ nonresonant if
this cohomology is concentrated in dimension n, that is, H*¥(M(A), £) = 0 for
k # n. Sufficient conditions for vanishing, or nonresonance, have been deter-
mined by a number of authors, including Esnault, Schectman, and Viehweg
[ESV], Kohno [Ko], and Schechtman, Terao, and Varchenko [STV]. Many of
these results make use of Deligne’s work [De2], and thus require the realiza-
tion of M(A) as the complement of a normal crossing divisor in a complex
projective manifold. In the theorem below we use a weaker version of such a
good compactification.
To describe these compactifications, we need some basic notions about hyper-
plane arrangements. An edge is a nonempty intersection of hyperplanes. An
edge is dense if the subarrangement, of hyperplanes containing it is irreducible:
the hyperplanes cannot be partitioned into two nonempty sets so that after
a change of coordinates hyperplanes in different sets are in different, disjoint
sets of coordinates. This is a combinatorially determined condition which can
be checked in a neighborhood of a given edge, see [STV]. Consequently, this
notion makes sense for both affine and projective arrangements. Let D(A)
denote the set of dense edges of the arrangement A.

Let N = [ Jgc 4 H be the union of the hyperplanes of .A. There is a canon-
ical way to obtain an embedded resolution of the divisor N in P". First, blow
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up the dense 0-dimensional edges of 4 to obtain a map p; : Z; — P”. Then,
blow up all the proper transforms under p; of projective lines correspond-
ing to dense 1-dimensional edges in D(A). Continuing in this way, we get a
map p = Pn_1 : Zn_1 — P™ which is an embedded resolution of the divisor
N in P". Let Z = Z,_;. Then, D = p~!(N) is a normal crossing divisor
in Z, with smooth irreducible components Dx corresponding to the edges
X € D(A). Furthermore, the map p induces an isomorphism Z \ D = M(A),
see [0T2, STV, Va2] for details.

Let £ be a local system of rank 7 on the complement M (A) associated to
a representation

p: w1 (M(A),a) - GL.(C).

To each irreducible component Dx of the normal crossing divisor D corre-
sponds a well-defined conjugacy class Tx in GL,(C), obtained as the mon-
odromy of the local system £ along a small loop turning once in the positive
direction about the hypersurface Dx (recall our discussion in section 3.4 just
before Theorem 3.4.4). The following vanishing result was obtained in [CDO].
1n the case when £ is one of the rank one local systems £, arising in the con-
text, of the Milnor fiber associated to A, this result was previously obtained
by Libgober [Li5].

Theorem 6.4.18. Assume that there is a hyperplane H € A such that for any
dense edge X € D(A) with X C H the corresponding monodromy operator
Tx does not admit 1 as an eigenvalue. Then H*(M(A), L) = 0 for any k # n.

Proof. 1In this proof, we use a partial resolution similar to the resolution
p: Z — P™ described above, but taking into account the special role played by
the hyperplane H. First, blow up all the dense 0-dimensional edges contained
in this hyperplane H. This yields a proper birational map ¢, : W7 — P". Then,
blow up all the proper transforms under ¢; of projective lines corresponding
to dense 1-dimensional edges in D(A) which are contained in H. Continuing
in this way, we get an embedded resolution of the divisor N in P" along H,
namely we get a proper birational map ¢ = ¢,—1 : W = W,_1 — P" such
that E = ¢~ 1(NN) is a normal crossing divisor at any point of H' = ¢~ (H).
Moreover, H' has smooth irreducible components Ex corresponding to the
edges X € D(A), X C H, and q induces an isomorphism W \ H' = P"\ H.
Note that the conjugacy classes of the corresponding monodromy operators
Tx for X € D(A), X C H constructed from the resolutions Z and W coincide.
Let U=W\H =P*\H,and let i : M(A) > U and j: U - W be
the corresponding inclusions. The same argument, as in the proof of Theorem
6.4.13 reduces the proof of our claim to establishing the following result.

Lemma 6.4.19. With the above notation, if for any dense edge X € D(A)
with X C H the corresponding monodromy operator T'x does not admit 1 as
an eigenvalue, then the canonical morphism RjyF — Rj.JF is an isomorphism
in the derived category D%(W).
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Proof. It is enough to consider the case z € H' and to show that
H*(Rj.F), = 0. To do this, we have to compute the cohomology groups
H¥(Rj.F), = H*"(M(A) N B,L), where B is a small open ball in W
centered at z. With the notation used above M(A4) N B = M,. Since E
is a normal crossing divisor at z, it follows that the fundamental group of
M(A)NnB = (W \ E) N B is abelian. Exactly as in the proof of Theorem
3.4.4 (Step I), we can decrease the rank of the local system L. Repeating
this process yields a rank one local system, where the result follows using the
Kiinneth formula in 4.3.14, since at least one of the irreducible components
of E passing through = corresponds to a dense edge X C H.

This completes the proof of Lemma 6.4.19, and hence that of Theorem
6.4.18 as well. O

Remark 6.4.20. Assume that there is a hyperplane H € A such that for
any dense edge X € D(A) with X C H and codim X < c the corre-
sponding monodromy operator Ty does not admit I as an eigenvalue. Then
H?(M(A),L) = 0 for any p with 0 < p < c¢. Indeed, by intersecting with a
generic affine subspace B with dimB = ¢, we obtain a c-homotopy equiva-
lence M(A) N B — M(A) induced by the inclusion, and hence isomorphisms
H?(M(A)NB,L) = H?(M(A), L) for 0 < p < c. The assertion follows by ap-
plying Theorem 6.4.18 to the arrangement in B induced by the arrangement

A.

Let us compare now our vanishing result above to other similar vanishing
results. Firstly, the result by Kohno in [Ko] can be reformulated as our The-
orem 6.4.I8, but he needs the stronger assumption that all the monodromy
operators Ty for Y an irreducible component of D do not admit I as an
eigenvalue.

To state the other type of results in this area, we have to consider the spe-
cial case of local systems which arise from flat connections on trivial vector
bundles. Write A = {H;,..., Hy} and for each j, let f; be a linear form with
zero locus Hj. Let w; = dlog(f;), and choose r x r matrices P; € End(C")
which satisfy Z;’;l P; = 0. For an edge X of A, set Px =} xc g, Pj- Con-
sider the connection on the trivial vector bundle of rank r over M (A) given
by

Vs=ds+wAs

where s € O} 4 is a section of the trivial bundle and the matrix of I-forms
w is given by

m
w= ij ®Pj.
Jj=1

This connection is flat if w A w = 0. This is the case if the endomorphisms P;
satisfy [P;, Px] = 0 for all j and edges X such that codim X =2 and X C Hj,
see [Ko]. Let £ be the rank r complex local system on M(A) corresponding to
the flat connection V on the trivial vector bundle over M (A), i.e. £L =Ker V
as in the end of section 2.5.
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Remark 6.4.21. An arbitrary local system £ on M(A) need not arise as the
sheaf of horizontal sections of a trivial vector bundle equipped with a flat
connection as described above. Even though the trivial vector bundles are
in good supply as we have seen in Remark 2.5.10, the existence of such a
connection is related to the Riemann-Hilbert problem for L, see Beauville
[Beau], Bolibrukh [Bo], and Kostov [Kos]. Even in the simplest case, when
n =1 and |A| > 3, there are local systems £ of any rank r > 3 on M (A) for
which the Riemann-Hilbert problem has no solution, see [Bo, Theorem 3].

For a local system which may be realized as the sheaf of horizontal sections
of a trivial vector bundle equipped with a flat connection, Theorem 6.4.18 has
the following consequence.

Corollary 6.4.22. Assume that there is o hyperplane H € A such that none
of the eigenvalues of Px lies in Z for every dense edge X C H. Then

H*(M(A),L) =0 for k # n.

Next, we recall the following well known nonresonance theorem of Schecht-
man, Terao and Varchenko [STV], improving previous results by Esnault,
Schectman and Viehweg [ESV] and based on a key result by Yuzvinski [Yuz].

Theorem 6.4.23. Assume that none of the eigenvalues of Px lies in Z>q for
every dense edge X € D(A). Also suppose that PiP; = P;P; for alli,j. Then

H¥(M(A),L) =0 for k #n.

The condition imposed above on the eigenvalues of Py is stronger than the
corresponding condition in Theorem 3.4.11 (i), which is one of the main points
in the proof. This is due to the need to use in addition the result by Yuzvinski
[Yuz].

Note that the above theorem pertains only to abelian local systems. This as-
sumption is not necessary as was shown in [CDO], where some other surprizing
relations between Theorems 6.4.23 and 6.4.18 are discussed.

Let A be a hyperplane arrangement in P?. The choice of a hyperplane
H € A gives rise to a triple of arrangements (A4, A', A"), where A' = A\{H}
is an arrangement in P" containing one less hyperplane than 4 and A" is
the arrangement induced by A’ on H = P*~!. Let M, M' and M" be the
respective projective complements of A, A’ and A". Denote by j : M — M’
and i : M" — M’ the corresponding inclusions. If £’ is a local system on M’,
weset £ =35"1L" and £" =i~ 1L'. In the associated adjunction triangle

Wil > L' Rj.L —

we have i'L' = £"[—2] in view of Corollary 4.3.7. Moreover, the inclusion i
being proper, we have iy = i, = Ri,. The corresponding hypercohomology
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long exact sequence combined with the Leray isomorphism from Corollary
2.3.4 yields the following.

- H72(M", L") - HY(M',L') - HY(M,L) - H7Y(M", L") > (6.13)

This exact sequence was obtained by D. Cohen in [C2], Remark 6. (i), where
the terms HY(M", L") were erroneously replaced by HY(M", L") @ C", with
r being the rank of the local system L.

Note that the above local system £ has trivial monodromy about the hyper-
plane H. Conversely, if we start with a local system £ on M having trivial
monodromy about the hyperplane H, then we can define the local system
L' = j.L on M' and the exact sequence 6.13 will hold, where L" is de-
fined exactly as above. 1t follows that we can study the cohomology groups
H™(M, L) for such a local system £ by studying the ‘simpler’ cohomology
groups H™(M',£') and H™(M",L").

For the intersection cohomology of hyperplane arrangements the reader is
refer to Cohen [C1]. Different fiavor recent results on local system coefficients
cohomology of hyperplane arrangement, complements can be found in Cohen-
Orlik [CO], Libgober-Yuzvinski [LY], Orlik-Terao [OT2] and Suciu [Su].
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