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§0.1 Abstract

This report presents an in-depth exploration of homology theories in Algebraic Topology, focusing
on the use of the Acyclic Model theorem to establish the equivalence between singular and simplicial
homologies. The report begins with a comprehensive overview of homology theory, highlighting its
importance in discerning topological properties through the study of algebraic invariants.

One of the main focus of the report is the Acyclic Model theorem, which provides a crucial link
between singular and simplicial homology. The theorem demonstrates that these two models yield
equivalent results, thereby affirming the validity and applicability of homology theory. A rigorous
proof of the acyclic model theorem is presented, emphasizing the intricate connections between the
two homology theories and the insights gained through their equivalence.

Furthermore, the report introduces the powerful Mayer-Vietoris sequence as a valuable tool in
homology theory. This sequence allows computation of homology groups by breaking down spaces
into smaller, overlapping subspaces. By utilizing the Mayer-Vietoris sequence, the report explores
its application in proving important theorems, including the renowned Lefschetz fixed point
theorem and the Jordan-Brouwer separation theorem. Concrete examples and illustrations
are provided to elucidate the application of the sequence and demonstrate its utility in topology.

§0.2 Introduction

Why do we need Homology Theory? We know the fundamental group, π1 detects 1-dimensional
holes. In general, it counts the equivalence class of homotopic loops. Similarly, we can define πn for
n ∈ N. These are called Homotopy groups.

We know, π1 depends only on 2-skeleton of a polyhedron. It might seems like πn depends on (n+1)-
skeleton structure of the space. But it is not the case. Consider the space X = S2. We know that
the sphere do not have any 4-cell. So it might seems π3(S2) = 0 but in fact π3(S2) = Z.

So, higher homotpy group do not directly depends on cell structure of a polyhedron. Computing
them is not an easy task. This is why we define homology group Hn, which detects n-dimensional
holes. This group is directly related to cell structure of the polyhedron.

Homology theory involves a sequence of covariant functors Hn to the category of Abelian groups.
We will define homology on two catagories. Singular Homology is defined on category of topo-
logical spaces Top. Finally, Simplicial Homology defined on the category of Simpicial complex.
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Some Categorical definition

§1.1 Category of chain Complexes

Here, our main aim is to define Category of Chain Complexes Chain∗. Before doing that we
have to define some terminology such as differential group, graded groups etc. After defining chain
complex we will construct a functor from the category Chain∗ to Gradedgroups which will be our
Homology functor.

Definition 1.1.1 ▶ Differential group

C consist an Abelian group C and an endomorphism ∂ : C → C such that ∂2 = 0.
• Here, ∂ is called boundary operator.

Here, ker ∂ = Z(C) is called “cycles” and Im∂ = B(C) called “boundaries”. Since, ∂2 = 0 we must
have B(C) ⊆ Z(C). The homology group H(C) is the quotient,

H(C) = Z(C)/B(C)

If τ : C → C ′ is a homomorphism between two differential groups that commutes with differential
(∂) then it maps boundaries to boundary and cycles to cycles. It will induce a homomorphism
τ∗ : H(C) → H(C ′), which maps {z} 7→ {τ{z}}.

Definition 1.1.2 ▶ Graded group

graded group C = {Cq} is collection of Abelian groups indexed by integer. A homomor-
phism of degree d from one graded group to another τ : C → C is sequence of homomorphism

{τd : Cq → Cq+d}

Chain Complex C is a graded group in which groups are differential groups and homomorphism
∂q are of degree −1. i.e.

∂q : Cq → Cq−1

such that the composition ∂q∂q+1 = 0.

Cq+1
∂q+1−−−→ Cq

∂q−→ Cq−1

For most of the chain we consider Cq = 0 for q < 0. For a complex chain C the group of cycles
Z(C) is a graded group with the collection {Zq(C) = ker ∂q}. The group of boundaries are defined
by {Bq(C) = Im∂q+1}. A chain map between two chain complexes C and C ′ is a homomorphism
of degree 0 commuting with differentials. Which means the following diagram commutes,

Cq Cq−1

C ′
q C ′

q−1

∂q

τq τq−1

∂′
q
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We can create a category of chain complex whose objects are “Chain Complexes” and morphisms
are “Chain maps”. We call this category of chain complex and denote it as Chain∗. Whenever we
are given a chain complex C we will imagine it like a sequence of Abelian groups and homomorphism
like following With ∂q∂q+1 = 0,

· · · → Cq+1
∂q+1−−−→ Cq

∂q−→ Cq−1 −→ · · ·

If τ : C → C ′ is a chain map, it will induce a homomorphism τ∗ : H(C) → H(C ′) such that,

(τ∗)q({z}) = {τq(z)}

whenever, z ∈ Zq(C). With the above observations in our hand we can verify the following theorem.

Theorem 1.1.1

We can treat H as a covariant functor from Chain∗ to Gradedgroups, which assigns a
chain complex C to its homology group H(C) and a chain map τ to a homomorphism τ∗.
i.e. H(τ) = τ∗.

For example, we will define a category of chain complex on a Simplicial complex.

1.1.1 § Chain complex defined on a Simplicial complex

Simplicial Complex

A Simplicial Complex consist a set V = {v} of vertices and a set S = {s|s ⊆ V } of
simplexes such that,

1. Any set consisting of exactly one vertex is a simplex.

2. Any non-empty subset of simplex is a simplex.

We have a geometric realization (sometime it is called polyhedron) of the above definition as
following.

A simplicial complex K is collection of simplexes of different dimension such that,

1. Every face of a simplex is also a simplex in K but of different dimension.

2. Non-empty intersection of two simplex σ1 and σ2 is face of both the simplex.

For example S2 can be treated as a simplicial complex. We can show sphere is homeomorphic to a
tetrahedron. Which is nothing but union of four triangle or 2-simplexes. We can define a category
of simplicial complex whose elements are simplicial complex and morphisms are simplicial map.

Definition 1.1.3 ▶ Simplicial map

Simplicial map φ : K1 → K2 is a continuous map that maps every simplex of K1 to a simplex
of K2.

Suppose K be a simplicial complex. Let s be a q-simplex with vertices v0, · · · , vq then [v0, · · · , vq]
denotes the oriented q-simplex. If any simplex of K differs from [v0, · · · , vq] by an odd permutation
then we will say it has opposite orientation if the simplex differs by an even permutation then that
simplex has same orientation. If q < 0 there is no oriented simplex. q = 0 each vertex v ∈ K is a
0-simplex.

Let, Cq(K) denotes the free Abelian group generated by all oriented q-simplices of K with respect
to a relation σ1 + σ2 = 0 whenever σ1, σ2 represent same simplex but in opposite orientation.
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For example consider [v0, v1] and [v1, v0] represent the same simplex with opposite orientation. We
will take [v0, v1] + [v1, v0] = 0 in C2(K).

Now we will define a homomorphism (for q ≥ 1) ∂q : Cq(K) → Cq−1(K) on generators by,

∂q : [v0, · · · , vq] 7→
∑

0≤i≤q

(−1)i[v0, · · · , v̂i, · · · , vq]

Here, [v0, · · · , v̂i, · · · , vq] means the face of the simplex [v0, · · · , vq] opposite to vi. Define ∂q to be
trivial for q ≤ 0. We will calculate ∂q∂q+1 as following,

∂q+1([v0, · · · , vq+1]) =
∑
i

(−1)i[v0, · · · , v̂i, · · · , vq+1]

∂q∂q+1([v0, · · · , vq+1]) =
∑
i ̸=j

(−1)i+j [v0, · · · , v̂j , · · · , v̂i, · · · , vq+1]

=
∑
i<j

(−1)i+j [v0, · · · , v̂j , · · · , v̂i, · · · , vq+1]−∑
j<i

(−1)i+j [v0, · · · , v̂i, · · · , v̂j , · · · , vq+1]

= 0

We have ∂q∂q+1 = 0. Which means that we can treat

· · · → Cq+1(K)
∂q+1−−−→ Cq(K)

∂q−→ · · ·

as a chain complex. If K1 and K2 are two simplicial complex with a simplicial map φ we can
associate a chain map C(φ) : C(K1) → C(K2) defined by C(φ)([v0, · · · , vq]) = [φ(v0), · · · , φ(vq)].
All the φ(vi) may not be equal. If φ(vi) = φ(vj) for at-least one pair of {i, j} then we will treat,
[φ(v0), · · · , φ(vq)] as 0 in Cq(K2). C(φ) maps elements of Cq(K1) to elements of Cq(K2). From the
above observations we can conclude the following theorem.

Theorem 1.1.2

There is a covariant functor C from the category of Simplicial complex to Chain∗ which
assigns K to C(K).
• composition of the homology functor H with C will give us the simplicial homology
functor from the category of simplicial complexes to the Gradedgroups. It is composition
of two covariant functors. So it is also a covariant functor.

♦ Example : Simplicial Homology of RP2 is computed below.
We have to decompose RP2 into simplexes and have to look at the simplicial structure of the space,
we can get RP2 by the following identification of sides of a square.

In the above figure we have seen how we decomposed K = RP2 into two triangle whose sides are
identified in a specific way. We have seen that there is 0-simplex which is vertices of the square after
identification there is only two class of points, call then x, y. There is 1-simplexes which is sides of
square after identification, there is three class of edges. And 2 two simplex namely L and U .

We can see that C0(K) = Z ⊕ Z , C1(K) = Z3 and C2(K) = Z ⊕ Z and Cq(K) = 0 for q ≥ 3. We
have the following chain complex,
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0
∂3−→ Z2 ∂2−→ Z3 ∂1−→ Z2 ∂0−→ 0

Notice that ∂2(U) = a+b+c and ∂2(L) = b+a−c. So, Im∂2 = ⟨a+ b+ c, a+ b− c⟩. We can see both
a+b+c and a+b−c are linearly independent so, Im∂2 = Z2, ker ∂2 = 0. We have ∂1(a) = x−y and
∂1(b) = y − x and ∂1(c) = 0 so, Im∂1 = Z. From here we can see ker ∂1 = ⟨a+ b, c⟩. So, H2(K) = 0
and H0(K) = Z and,

H1(K) = ker ∂1/Im∂2

= ⟨a+ b, c|a+ b+ c, a+ b− c⟩
∼= Z2

Hq(RP2) =


Z if q = 0

Z2 if q = 1

0 otherwise

1.1.2 § Chain complex defined on a topological space

Consider ∆q be a closed simplex which can be expressed as [p0, · · · , pq]. Also assume, [p0, · · · , pq+1]
be the closed ∆q+1 simplex. Now we will define i-th face map as,

εiq+1 : ∆q → ∆q+1

This maps ∆q to the face [p0, · · · , p̂i, · · · , pq+1] opposite of i-th vertex in ∆q+1. Notice that,

εiq+2ε
j
q+1 = εjq+2ε

i−1
q+1

Let, σ be a continuous map from ∆q to a topological space X. Let, ∆q(X) denote the free Abelian
group generated by the continuous maps σ : ∆q → X. Now we will define a homomorphism
∂q : ∆q(X) → ∆q−1(X) as

∂q(σ) =
∑

0≤i≤q

(−1)iσ ◦ εiq

We will again compute ∂q∂q+1 as following,

∂q∂q+1(σ) = ∂q(
∑
i

(−1)iσ ◦ εiq+1)

=
∑
i,j

(−1)i+jσ ◦ (εiq+1ε
j
q)

=
∑
i≤j

(−1)i+jσ ◦ (εiq+1ε
j
q) +

∑
j<i

(−1)i+jσ ◦ (εiq+1ε
j
q)

=
∑
i≤j

(−1)i+jσ ◦ (εiq+1ε
j
q) +

∑
j<i

(−1)i+jσ ◦ (εjq+1ε
i−1
q )

=
∑
i≤j

(−1)i+jσ ◦ (εiq+1ε
j
q)−

∑
j≤i−1

(−1)(i−1)+jσ ◦ (εjq+1ε
i−1
q )

= 0

We can again write ∆(X) as a chain complex,

· · · → ∆q+1
∂q+1−−−→ ∆q

∂q−→ ∆q−1 −→ · · ·

In the category Top the morphisms are the continuous maps. If X,Y ∈ Top and f ∈ hom(X,Y )
then ∆(f) : ∆(X) → ∆(Y ) is a chain defined by,

∆(f)(σ) = f ◦ σ

With the previous observations in our hand we can come up with the following theorem,
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Theorem 1.1.3

There is a covariant functor∆ : Top → Chain∗.The composition of ∆ with the homology
functor H gives us a covariant functor from Top → Gradedgroups. Which is known as
Singular Homology functor.

§1.2 Chain homotopy

Definition 1.2.1 ▶ Chain Homotopy

Consider C and C ′ are two chain complexes. Let, τ, τ ′ : C → C ′ are two chain map. A chain
Homotopy D : τ ≃ τ ′ is a homomorphism of degree 1 such that,

∂′D +D∂ = τ − τ ′

On other words, ∂q+1Dq +Dq−1∂q = τq − τ ′q for all q

Let, τ and τ ′ be two chain maps between two chain complexes. Now if there is a chain homotopy
from τ to τ ′ we will write τ ≃ τ ′. It can be verified that ≃ is an equivalence relation. The equivalence
class of chain maps from C to C ′ is denoted by [C,C ′].

§ Lemma: Composites of chain homotopic maps are chain homotopic.

Proof. Let, τ ≃ τ ′ are chain maps between C and C ′ and D : τ ≃ τ ′. Similarly, let, D̄ : τ̄ ≃ τ̄ ′ are
chain maps from C ′ → C ′′. From the given condition we already have,

∂′D +D∂ = τ − τ ′

∂′′D̄ + D̄∂′ = τ̄ − τ̄ ′

Multiply τ̄ from left in the first expression and Multiply τ ′ from right in the second expression and
add that two expression to get,

τ̄ τ − τ̄ ′τ ′ = ∂′′(τ̄D + D̄τ ′) + (τ̄D + D̄τ ′)∂

We can take τ̄D + D̄τ ′ as homotopy for τ̄ τ ≃ τ̄ ′τ ′. ■

Definition 1.2.2

A chain complex is said to be contractible if there is a homotopy between the identity chain
map and the zero chain map. i.e 1C ≃ 0C .

A chain complex C is said to be acyclic if H(C) = 0.

§ Lemma: If τ, τ ′ are chain homotopic, then induced homomorphisms between homology
groups are equal. i.e.

τ∗ = τ ′∗

Proof. If D : τ ≃ τ ′. For any z ∈ Zq(C), ∂q(z) = 0. So, ∂′
q+1Dq(z) = τq(z) − τ ′q(z) Which means

τq(z)− τ ′q(z) ∈ Im∂′
q+1. And hence, τ∗[z] = τ ′∗[z].

§ Lemma: A contractible chain complex is acyclic.

Proof. If C is a chain complex such that 1C ≃ 0C then they will induce a map (1C)∗ and (0C)∗.
They will be same by the above lemma. So identity and trivial homomorphism of homology groups
can be same when H(C) = 0. ■
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♦ Example : C is a chain complex which is acyclic may not be contractible.

Proof. Cq = 0 for q ̸= 0, 1, 2. Take C2 = Z, C1 = Z and C0 = Z2.

Z ∂2−→ Z ∂1−→ Z2

∂2 is the map x 7→ 2x and ∂1 is the map 2n 7→ 0 and 2n+1 7→ 1. We can see that ∂1∂2 = 0. In this
case H(C) = 0 but this chain is not contractible. If there was a homotopy D : 1C ≃ 0c that would
tell us ∂1D0 = 10 which means there is a right inverse of ∂1. But there is only trivial homomorphism
from Z2 → Z which is absurd.

Theorem 1.2.1

A free chain complex (i.e. a chain complex where all Abelian groups are free) is acyclic if
and only if it is contractible.

Proof. If the chain complex is acyclic we have Hq−1(C) = 0 which means Zq−1(C) = Bq−1(C). We
can say, ∂q : Cq → Zq−1(C) is surjective homomorphism. We can define (because chain complex is
free Abelian and subgroup of free Abelian group is free Abelian)

sq−1 : Zq−1(C) → Cq

such that ∂qsq−1 = 1Zq−1(C). Define Dq as sq(1Cq − sq−1∂q) which is map from Cq to Cq+1.

∂q+1Dq +Dq−1∂q = 1Cq

D = {Dq} is homotopy between 1C and 0C . ■

§1.3 Acyclic Model Theorem

In the previous theorem 1.2 we have constructed a chain homotopy between two chain maps. We can
generalize this idea for constructing chain maps and giving homotopy between them. This method
is known as method of acyclic models. For that we have to define category with models and explore
their properties.
A Category with models is a category C with a collection of objects M. This collection is called
“Models”.

Definition 1.3.1 ▶ Free functor on models

Let, C is a category with models M. Let, F : C → Chain∗ be a covariant functor. We
will say F is Free on the models M if, for every X ∈ C , Mα ∈ M there exist elements
mα ∈ F (Mα) such that {F (f)(mα)} for all α and f : Mα → X forms a basis for F (X). We
will say {gα ∈ F (Mα)} is basis of F .

Definition 1.3.2 ▶ Acyclic functor on models

The covariant functor F is said to be acyclic in positive dimensions if Hq(F (M)) = 0 for
all M ∈ M and q > 0.

For example if we consider the singular chain complex functor ∆, it is free on the models,

M = {∆q : q ∈ N ∪ {0}}

Where ∆q is q-simplex (geometric realization). Similarly, for simplicial chain complex C we have
the models,

M = {s̄ : s ∈ S}
Where, s̄ means the set of all faces of s which is a simplicial complex. C is free on the models M.
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Theorem 1.3.1 (Acyclic Model Theorem)

Let, C be a category with models M. Let, F,E be covariant functors from C to Chain∗.
Such that F is free and E is acyclic then,

1. For every natural transformation φ : H0(F ) → H0(E) there is a natural chain map
τ : F → E such that τ induce φ.

2. Two such natural chain maps τ, τ ′ : F → E are naturally chain homotopic.

The first part of the theorem says there is a natural chain map τ : F → E such that the following
diagram commutes,

· · · F1 F0 H0F 0

· · · E1 E0 H0E 0

d1 d′
0

∂1 ∂′
0

d2

∂2

φτ0τ1

Before proving the acyclic model theorem we have to see some results from category theory.

§ Lemma: C be a category with models M. Consider the commutative diagram of functors
C → Chain∗ and natural transformations,

F G G′′

E′ E E′′

τ σ

ρ π

β αγ

In which στ = 0 and Imρ = kerπ on M and F is free on M then there exists a natural
transformation γ : F → E′ making the first square commute.

Proof. For proof one can look at [Rot12] chapter 9, page-241.

Proof of Acyclic Model Theorem. (1). For every X ∈ M we can see H0(E(X)) is Im∂1. So,
∂′
0 is surjective whose kernel is E0(X)/H0(E(X)) and hence in the following diagram the lower row

is exact at E0 for each X ∈ C.

F0 H0F 0

E0 H0E 0

d′
0

∂′
0

φ 0

We can see that the second square is commuting. By the previous lemma we can say there is a
τ0 : F0 → E0 such that the above diagram commutes. Once we have shown existence of τ0 by
induction we can show that τq exists for all q > 0.

(2). Assume τ, τ ′ are two chain maps induced by φ. We will find a degree 1 natural homomorphism
S : F → E i.e, Sk : Fk → Ek+1 such that,

∂k+1Sk + Sk−1dK = τk − τ ′k

This will provide us a homotopy between two chain maps. Consider, S−1 = 0 and θk = τk = τk−1.
We can look at the following diagram,

F0 F0 0

E1 E0 0

1

∂1

θ0 0
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By the lemma we will get S0 : F0 → E1 such that the above diagram commutes. i.e. ∂1S0 = θ0.
For inductive step at k − 1. i.e. we already have constructed Sk−1.

Fk Fk 0

Ek+1 Ek Ek−1

1

∂k+1 ∂k

θk−Sk−1dk 0

If we can show that 2nd diagram commutes we can apply the previous Lemma to get Sk.

∂k(θk − Sk−1dk) = ∂kθk − (θk−1 − Sk−2dk−1)dk

= ∂kθk − θk−1dk

= 0 [because θ is a chain map]

■
While proving the theorem we have introduced a new chain map θk−Sk−1dk. Recall that for 1.2 we
used similar idea but here we just modified the same idea. This is one of the most useful techniques
in methods of acyclic models [Mat10].
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Homology of Simplicial Complexes

§2.1 Augmented Chain complex and Reduced Homology

In the category of nonempty simplicial complexes, any simplicial complex P consisting of a single
vertex is a terminal object. If K is a nonempty simplicial complex (Similarly for Top one-point space
is terminal object.), the simplicial map K → P has a right inverse.Therefore, the induced homology
map H(K) → H(P ) has a right inverse. Hence, Hq(P ) = 0 if q ̸= 0 and H0(P ) ∼= Z, it follows that
there is an epimorphism (surjective homomorphism) H0(K) → Z.

Since, H0(K) = C0(K)/∂1C1(K), there is an epimorphism ε : C0(K) → Z such that ε∂1 = 0. An
augmentation of a chain complex C is an epimorphism ε : C0 → Z such that ε∂1 = 0. We sometime
represent it as,

C
ε−→ Z

If any chain C has an augmentation then we will call that chain an augmented chain. We can
construct a chain complex in which every element is 0 except C0 which is Z. Call this chain complex
Z. For an augmented chain ε is actually an chain map to Z.

� We can see oriented chain complex of a simplicial complex K is augmented chain complex by
sending each vertex [v] to 1. Singular chain complex of a topological space is also augmented.
Sending each simplex σ : ∆q → f to 1.

If a chain map preserves augmentation of two augmented chain complex then we call that map
augmentation preserving chain map. We can form a category of Augmented chain complex where
objects are augmented chain complex and morphisms are augmentation preserving chain map.

Definition 2.1.1 ▶ Reduced Chain Complex

If C is augmented chain complex then reduced chain complex is the chain complex where
C̃q = Cq if q ̸= 0 and C̃0 = ker ε and ∂̃q = ∂q.

• Notice that ε∂1 = 0 which means ∂1(C̃1) ∈ C̃0.

The homology of the reduced chain C̃ is called reduced homology of C. We denote it by H̃(C).

§ Lemma: If C is an augmented chain then,

Hq(C) ∼=

{
H̃q(C) q ̸= 0

H̃0(C)⊕ Z q = 0

On other language we can say H(C) = H̃(C)⊕ Z.

Proof. Since Z is a free group and the following sequence is exact,

ker ε −→ C0
ε−→ Z

11



We can write C0
∼= C̃0 ⊕ Z and Zq(C) = Zq(C̃) for q ̸= 0 and Bq(C) = Bq(C̃). Homology functor

commutes with the sum in the category of chain complex. So, H0(C) ∼= H0(C̃)⊕ Z. ■

Corollary. An augmented chain complex cannot be acyclic.

§ Lemma : 1 Let, C be an augmented chain, then the reduced chain C̃ is contractible if and
only if ε is a chain equivalence of C with Z.

Before going to the proof of the lemma we will introduce mapping cone of chain map.

Mapping cone of a chain map

Let, τ : C → C ′ be a chain map between two chain complexes C and C ′. The cone of the
map τ is defined by a chain complex Cτ such that Cτ

q = Cq−1 ⊕ C ′
q and corresponding

boundary operator is represented as,

∂τ
q =

(
−∂q−1 0

τ ∂′
q

)

Theorem 2.1.1

A chain map τ is a chain equivalence if and only if the mapping cone Cτ is contractible.

Proof. Assume that τ : C → C ′ is a chain equivalence. There exist τ ′ : C ′ → C and D : C → C
and D′ : C ′ → C ′ such that D : τ ′τ ≃ 1C and D′ : ττ ′ ≃ 1C′ .

Now consider the operator

(
D τ ′

0 −D′

)
. We can check that,

(
−∂ 0
τ ∂′

)(
D τ ′

0 −D′

)
+

(
D τ ′

0 −D′

)(
−∂ 0
τ ∂′

)
=

(
1C 0
0 1C′

)
(
D τ ′

0 −D′

)
will work as homotopy between identity and 0 map in Cτ . So Cτ is contractible.

Conversely, assume that D̄ is a chain contraction of Cτ . Define τ ′ : C ′ → C and D : C → C and
D′ : C ′ → C ′ by the equations,

(τ ′ (c′) ,−D′ (c′)) = D̄ (0, c′)

(D(c), ·) = D̄(c, 0)

Direct verification shows τ ′ to be a chain map and D : τ ′τ ≃ 1C and D′ : ττ ′ ≃ 1C′ , so τ is a chain
equivalence. ■

Corollary. A chain map between two free chain complex is equivalence if and only if mapping
cone of the chain map is acyclic.

Proof of Lemma 1. Let Cτ be the mapping cone of the chain map ε : C → Z. Then Cτ
0 = Z

and Cτ
q = Cq−1 if q > 0, and ∂τ

1 = ε and ∂τ
q = −∂q−1 for q > 1. By above theorem ε is a chain

equivalence if and only if Cτ is chain contractible. We will show that Cτ is chain contractible if and
only if C̃ is chain contractible.

If Dτ is a chain contraction of Cτ we can say that, the restriction of this map at C̃q will give us a

contraction of C̃. If D̃ is a contraction of C̃ then define Dτ : Cτ → Cτ such that Dτ
0 : Z → C0 = Cτ

1

is right inverse of ε.

Now, Dτ
1 : Cτ

1 → Cτ
2 which is map between C0 → C1 we know, C0 = C̃0 ⊕ Z, so we can map

Dτ
1 to 0 on D̃0(Z) and −D̃0 on C̃0. Define, Dτ

q : Cq−1 → Cq is equal to −D̃q−1 to get the desired
homotopy between the chain maps 1C and 0C . ■
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Theorem 2.1.2

Let C be a category with models M or and let G and G′ be covariant functors from e to the
category of augmented chain complexes such that G is free and G′ is acyclic. There exist
natural chain maps preserving augmentation from G to G′, and any two are naturally chain
homotopic.

Proof. Let {gj ∈ G0 (Mj)}j∈J0
be a basis for G0. Since G

′ is acyclic. We can say, H0 (G
′ (Mj)) ∼= Z

and ε′ be the isomorphism. So, there is unique zj ∈ H0 (G
′ (Mj)) such that ε′ (zj) = ε (gj).

A natural transformation H0(G) → H0 (G
′) is defined by sending {ΣnijG0 (fij) (gj)} ∈ H0(G(X))

to
∑

nijG
′
0 (fij) zj ∈ H0 (G

′(X)) for j ∈ J0 and fij ∈ hom (Mj , X) where X is any object of C.
This chain map commutes with the augmentation. Hence, it is augmentation preserving chain map.
Now by acyclic models theorem any such augmentation preserving map will be homotopic. ■

Corollary. Let, C be a category with models M. G,G′ be covariant functors C → Chainag

both the functors are free and acyclic on model M. Then G and G′ are naturally chain equivalent
and any natural chain map preserving augmentation is a natural chain equivalence.

§2.2 Comparing Singular and Simplicial complexes

Now we are going to compare two chain complexes C and ∆ for a simplicial complex K. Geometric
realization of a simplicial complex can be treated as a topological space. So we can talk about Sin-
gular chain complex ∆(|K|). For this purpose we will introduce a chain complex ∆(K) intermediate
of them.

An ordered q-simplex of K is a sequence v0, v1, . . . , vq of q+1 vertices of K which belong to some
simplex of K. We use (v0, v1, . . . , vq) to denote the ordered q-simplex consisting of the sequence
v0, v1, . . . , vq of vertices. For q < 0 there are no ordered q-simplexes. An ordered 0 -simplex (v)
is the same as the oriented 0 -simplex [v]. An ordered 1-simplex (v, v′) is the same as an edge
of K. We define a free non-negative chain complex, called the ordered chain complex of K, by
∆(K) = {∆q(K), ∂q}, where ∆q(K) is the free Abelian group generated by the ordered q-simplexes
of K [and ∆q(K) = 0 if q < 0 ] and ∂q is defined by the equation,

∂q (v0, v1, . . . , vq) =
∑

0≤i≤q

(−1)i (v0, . . . , v̂i, . . . , vq)

Then ∆(K) is a chain complex, and if K is nonempty, ∆(K) is augmented by the augmentation
ε(v) = 1 for any vertex v of K. If φ : K1 → K2 is a simplicial map, there is an augmentation
preserving chain map (v0, · · · , vq) 7→ (φ(v0), · · · , φ(vq))

∆(φ) : ∆ (K1) → ∆(K2)

We can easily verify the following lemma.

§ Lemma: There is a covariant functor ∆ from the category of nonempty simplicial complexes
to the category of free augmented chain complexes which assigns to K the ordered chain
complex ∆(K).

If L is a sub-complex of K and i : L ↪→ K, then ∆(i) : ∆(L) → ∆(K) is an injective homomorphism
by means of which we identify ∆(L) with a sub-complex of ∆(K). If C(K) is the category defined by
the partially ordered set of sub-complexes of K and M(K) = {s̄ | s ∈ K}, then ∆ is a free functor
on C(K) with models M. For any simplicial complex K there is a surjective chain map (preserving
augmentation if K is nonempty)

µ : ∆(K) → C(K)
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such that µ (v0, v1, . . . , vq) = [v0, v1 . . . , vq]. µ is a natural transformation from ∆ to C on the
category of simplicial complexes. We shall show that it is a chain equivalence for every simplicial
complex.

Theorem 2.2.1

Let K be a simplicial complex and let w be the simplicial complex consisting of a single
vertex. Then ∆̃(K ∗ w) and C̃(K ∗ w) are chain contractible.

K∗w is a simplicial complex whose vertex set is V (K)⨿w. And for any simplex σ ∈ K, σ⨿w is also
a simplex in K ∗w. Geometrically joining each vertex of K to an external point w and constructing
corresponding faces of different dimension.

Proof. We will prove it for ∆, and it will follow similarly for C. It is enough to show ε : ∆(K∗w) → Z
is a chain equivalence. Since, ε : ∆0(K∗w) → Z is epimorphism we must have a τ0 : Z → ∆0(K∗w)
defined as τ0(1) = w. We can construct a chain map τ : Z → ∆(K ∗ w) by taking other morphisms
as 0. Notice that, ε ◦ τ = 1Z. Define D as (v0, · · · , vq) 7→ (w, v0, · · · , vq). Take D as homotopy
between 1∆(K∗w) and τ ◦ ε. ■

Corollary. For any simplex s ∈ K, ∆̃(s̄) and C̃(s̄) are acyclic.

Theorem 2.2.2

For any simplicial complex K the natural chain map µ : ∆(K) → C(K) is a chain equivalence.

Proof. If K is empty, ∆(K) = C(K) and µ is the identity, so the result is true in this case. If K is
nonempty, it follows from the above corollary that ∆ and C are free and acyclic functors on C(K)
(category of partially ordered sub-complex of K) with models M(K) = {s̄ | s ∈ K}.

▶ If a simplicial complex is disjoint union of components K =
∐

Kα then Ci(K) = ⊕Ci(Kα). We
know homology functor from chain complex to graded group commutes with direct sum. Hence,
H(C(K)) = ⊕H(C(Kα)).

Corollary. If K is a nonempty connected simplicial complex, then H̃0(K) = 0.

Proof. Let, v0 be a fixed vertex of K. For any vertex v there is an edge path e1e2 · · · er of K starting
at v0 and ends at v. Then it is a 1-chain cv ∈ ∆1(K) such that ∂cv = v−v0. Since ε(

∑
nvv) =

∑
nv,

we see that,
∑

nvv is any 0-chain of ∆̃0, then
∑

nv = 0.

∂(
∑

nvcv) =
∑

nvv −
∑

nvv0 =
∑

nvv

So, ker ε is equal to Im∂1. Hence H̃0(∆(K)) = 0. ■

§ Lemma: For any simplicial complex which is connected has homology groups equal to
Z. If the space has some connected components then the homology groups will be the free
Abelian group of rank = number of connected components of K.

§2.3 Betti number and Euler characterestic

If L is a sub-complex of K, there is a relative, oriented homology group

H(K,L) = {Hq(K,L) = Hq(C(K)/C(L))}

Similarly, there is a relative ordered homology group H(∆(K)/∆(L)). If Hq(K,L) is finitely gener-
ated (which will necessarily be true if K −L contains only finitely many simplexes), it follows from
the structure theorem (theorem 4.14 in the Introduction) that Hq(K,L) is the direct sum of a free
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group and a finite number of finite cyclic groups Zn1 ⊕ Zn2 ⊕ . . . ⊕ Znk
, where ni divides ni+1 for

i = 1, . . . , k − 1.

The rank ρ (Hq(K,L)) is called the q-th Betti number of (K,L), and the numbers n1, n2, . . . , nk

are called the q-th torsion coefficients of (K,L). A graded group C is said to be finitely generated
if Cq is finitely generated for all q and Cq = 0 except for a finite set of integers q. Given a finitely
generated graded group C, its Euler - Poincare characteristic denoted by χ(C), is defined by,

χ(C) = Σ(−1)qρ (Cq)

Theorem 2.3.1

Let C be a finitely generated chain complex. Then

χ(C) = χ(H(C))

Proof. By definition, Zq(C) ⊂ Cq and the quotient group Cq/Zq(C) ∼= Bq−1(C). So,

ρ (Cq) = ρ (Zq(C)) + ρ (Bq−1(C))

Similarly, Hq(C) = Zq(C)/Bq(C),

ρ (Zq(C)) = ρ (Hq(C)) + ρ (Bq(C))

Eliminating ρ (Zq(C)), we have

ρ (Cq) = ρ (Hq(C)) + ρ (Bq(C)) + ρ (Bq−1(C))

Multiplying this equation by (−1)q and summing the resulting equations over q yields the result. ■

Corollary. If K − L is finite and if αq equals the number of q-simplexes of K − L, then

χ(K,L) = Σ(−1)qαq

Importance of Euler characteristic

Homology is a topological invariant, and moreover a homotopy invariant: Two topological
spaces that are homotopy equivalent have isomorphic homology groups. It follows that the
Euler characteristic is also a homotopy invariant.

For example, any contractible space (that is, one homotopy equivalent to a point) has trivial
homology, meaning that the 0-th Betti number is 1 and the others 0. Therefore, its Euler
characteristic is 1. This case includes Euclidean space Rn of any dimension, as well as the
solid unit ball in any Euclidean space, the one-dimensional interval, the two-dimensional disk,
the three-dimensional ball, etc.

For another example, any convex polyhedron is homeomorphic to the three-dimensional ball,
so its surface is homeomorphic (hence homotopy equivalent) to the two-dimensional sphere,
which has Euler characteristic 2. This explains why convex polyhedra have Euler character-
istic 2.
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Singular Homology

We have seen in 1.1.2 how to construct a chain complex of a given topological space. We have
defined Singular Homology functor from Top to Gradedgroups. We will begin with computing
singular homology groups of some special topological spaces.

Definition 3.0.1 ▶ Star Shaped Space

A subspace X ⊂ Rn is said to be star-shaped if there is a point x0 ∈ X such that, for each
x ∈ X, the line segment from x0 to x lies in X.

§ Lemma: Let X be a star-shaped subset of some euclidean space. Then the reduced singular
complex of X is chain contractible.

Proof. Without loss of generality, X may be assumed to be star-shaped from the origin. We define
a homomorphism τ : Z → ∆0(X) with τ(1) equal to the singular simplex ∆0 → X which is the
constant map to 0. Then ε ◦ τ = 1z. We define a chain homotopy D : ∆(X) → ∆(X) from 1∆(X)

to τ◦ε.

If σ : ∆q → X is a singular q-simplex in X, let D(σ) : ∆q+1 → X be the singular (q + 1)-simplex in
X defined by the equation,

D(σ) (tp0 + (1− t)α) = (1− t)σ(α)

for α ∈ |p1, . . . , pq+1| and t ∈ I. If q > 0, then (D(σ))(0) = σ, and for 0 ≤ i ≤ q, (D(σ))(i+1) =
D

(
σ(i)

)
. If q = 0, then (D(σ))(0) = σ and (D(σ))(1) = τ(1). Therefore,

∂D +D∂ = 1∆(X) − τ◦ε

Corollary. Reduced Homology of a star shaped set X is 0. For a convex subset of a Euclidean
space the reduced homology group is trivial group.

If K is simplicial complex then there is a natural homomorphism between the ordered simplicial chain
complex and the singular chain complex. An ordered q-simplex (v0, · · · , vq) of K, there is a singular
simplex that is the linear map ∆q → (v0, · · · , vq). We can call this map ν : ∆(K) → ∆(|K|). Which
is an augmentation preserving chain map. We can treat ν as a natural transformation between the
functors ∆(•) and ∆(|•|).

Corollary. For any simplex s the chain map ν induces an isomorphism of the ordered
homology group of s̄ with the singular homology group of |s̄|.

Proof. Because ν preserves augmentation, ν induces a homomorphism ν̃∗ from H̃(∆(s̄)) to H̃(|s̄|).
We can write ν∗ = ν̄∗ ⊕ 1Z. We have H̃(∆(s̄)) = 0 = H̃(|s|). So, ν∗ is an isomorphism. ■

16



Theorem 3.0.2 (Homotopy Axiom)

If f0, f1 : X → Y are two continuous maps which are homotopic. Then,

∆ (f0) ≃ ∆(f1) : ∆(X) → ∆(Y )

Furthermore, the induced homomorphism, f0∗ and f1∗ between corresponding homology
groups are equal.

Proof. We will begin with a lemma which will immediately indicate the following theorem.

§ Lemma: Let, h0, h1 : X → X × I, where h0(x) = (x, 0) and h1(x) = (x, 1). The maps
h0, h1 : X → X × I induce naturally chain-homotopic chain maps,

∆ (h0) ≃ ∆(h1) : ∆(X) → ∆(X × I)

Proof. Let ∆′(X) = ∆(X × I). Then ∆ and ∆′ are covariant functors from the category of
topological spaces to the category of augmented chain complexes and ∆ (h0) and ∆ (h1) are natural
chain maps preserving augmentation from ∆ to ∆′. Since ∆ is free with models {∆q} and

∆̃′ (∆q) = ∆̃ (∆q × I)

is acyclic, by previous lemma. We can say that ∆ (h0) and ∆ (h1) are naturally chain homotopic
using the Corollary of 2.1. □

Let F : X × I → Y be a homotopy from f0 to f1. Then f0 = Fh0 and f1 = Fh1. Therefore, using
above lemma,

∆ (f0) = ∆(F )∆ (h0) ≃ ∆(F )∆ (h1) = ∆ (f1)

• Since ∆q is path connected for every q, any singular simplex σ : ∆q → X maps ∆q to some path
component of X. Hence, if {Xj} is the set of path components of X, then ∆(X) = ⊕∆(Xj). Since
homology functor over Chain∗ commutes with direct sum we can conclude the following result.

Corollary. The singular homology group of a space is the direct sum of the singular homology
groups of its path components.

Theorem 3.0.3

If X is a nonempty path-connected topological space, then H0(X) = Z.

Proof. Let x0 be a fixed point of X. For any point x ∈ X there is a path ωx from x0 to x. Because
∆1 is homeomorphic to I, ωx corresponds to a singular 1-simplex σx : ∆1 → X such that σx(0) = x
and σx(1) = x0. A singular 0-simplex in X is identified with a point of X. Therefore, a 0 -chain
(that is, a 0 -cycle) of X is a sum Σnxx, where nx = 0 except for a finite set of x. Since ε (Σnxx) =∑

nx, we see that if ε (
∑

nxx) = 0 [that is, if
∑

nxx ∈ ∆0(X) ], then

∂
(∑

nxσx

)
=

∑
nxx−

(∑
nx

)
x0 =

∑
nxx

Therefore, H̃0(X) = 0 and hence H0(X) = Z. ■

Corollary. OR, any topological space X,H0(X) is a free group whose rank equals the number
of nonempty components of X.

If A is a subspace of X, there is a relative singular homology group,

H(X,A) = {Hq(X,A) = Hq(∆(X)/∆(A))}
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of X modulo A. H(X, ∅) = H(X) is called the absolute singular homology group of X. The relative
homology group is a covariant functor from the category of topological pairs to the category of
graded groups.

Theorem 3.0.4

If f0, f1 : (X,A) → (Y,B) are homotopic, then

f0∗ = f1∗ : H(X,A) → H(Y,B)

Proof. Let, H be the homotopy between f1 and f2. Then f0 = Hh̄0 and f1 = Hh̄1, where
h̄0, h̄1 : (X,A) → (X × I, A× I) are defined by h̄0(x) = (x, 0) and h̄1(x) = (x, 1) there is a natural
chain homotopy D : ∆ (h0) ≃ ∆(h1), where h0, h1 : X → X × I are maps defined by h̄0 and h̄1.
Because, D is natural chain homotopy, D(∆(A)) ⊂ ∆(A× I). For i = 0 or 1 there is a commutative
diagram,

∆(A) ∆(X) ∆(X)/∆(A)

∆(A× I) ∆(X × I) ∆(X × I)/∆(A× I)

∆(hi) ∆(hi) ∆(h̄i)

Just by passing the quotient We can get a chain homotopy D̄ : ∆(h̄0) ≃ ∆(h̄1). So, We have
h̄0∗ = h1∗. Just by taking composition with H we will get the required result. ■

• If Hq(X,A) is finitely generated, its rank is called the q-th Betti number of (X,A) and the orders
of its finite cyclic sumands given by the structure theorem are called the qth torsion coefficients of
(X,A). If H(X,A) is finitely generated, its Euler characteristic is called the Euler characteristic
of (X,A), denoted by χ(X,A).

§3.1 Barycentric Subdivision

Definition 3.1.1 ▶ Linear simplex

A singular simplex σ : ∆q → ∆n is said to be linear if σ (Σtipi) = Σtiσ (pi) for ti ∈ I with∑
ti = 1.

A linear simplex σ in ∆n is completely determined by the points σ (pi). If x0, x1, . . . , xq ∈ ∆n, we
write (x0, x1, . . . , xq) to denote the linear simplex σ : ∆q → ∆n such that σ (pi) = xi. With this
notation, it is clear that,

∂ (x0, . . . , xq) = Σ(−1)i (x0, . . . , x̂i, . . . , xq)

Furthermore, the identity map ξn : ∆n → ∆n is the linear simplex ξn = (p0, p1, . . . , pn). The free
abelian group generated by the linear singular simplex will form a chain complex ∆′(∆n) ⊆ ∆(∆n).

Let bn be the bary-center of ∆n (that is, bn = Σ pi

n+1 ). For q ≥ 0 a homomorphism,

βn : ∆′
q (∆

n) → ∆′
q+1 (∆

n)

is defined by, (x0, . . . , xq) 7→ (bn, x0, . . . , xq). Let τ : Z → ∆′
0 (∆

n) be defined by τ(1) = (bn). It can
be shown that,

βn : 1∆′(∆n) ≃ τ◦ε

For every topological space X we define an augmentation-preserving chain map

sd : ∆(X) → ∆(X)
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Define, chain homotopy D : ∆(X) → ∆(X) between sd and 1∆(X). We have the commutative
diagram,

∆(X) ∆(X) ∆(X) ∆(X)

∆(Y ) ∆(Y ) ∆(Y ) ∆(Y )

sd

sd

∆(f) ∆(g)

D

D

∆(f) ∆(h)

sd and D are defined on q-chains. If c is a 0-chain we will define sd(c) = c and D(c) = 0. If we have
universal singular complex, ξn : ∆n → ∆n we will define,

sd (ξn) = βn (sd∂ (ξn))

D (ξn) = βn (sd (ξn)− ξn −D∂ (ξn))

For any singular n-simplex σ : ∆n → X we define,

sd(σ) = ∆(σ) (sd (ξn))

D(σ) = ∆(σ) (D (ξn))

If X is a metric space and c = Σnσσ is a singular q-chain of X, we define

mesh c = sup {diamσ (∆q) | nσ ̸= 0}

§ Lemma: Let ∆n have a linear metric and let c be a linear q-chain of ∆n. Then

mesh(sdc) ≤ q

q + 1
mesh c

Proof. It suffices to show that if σ = (x0, x1, . . . , xq) is a linear q-simplex of ∆n, then mesh

(sdσ) ≤ q

q + 1
mesh σ

If b = Σ 1
q+1xi distance from b to any convex combination of the points x0, x1, . . . , xq is less than or

at most equal to
q

q + 1
mesh (x0, . . . , xq)

We can conclude that, mesh sdσ ≤ sup
{
mesh(sd∂σ), q

q+1σ
}
. By Induction on q we have,

mesh(sd∂σ) ≤ q − 1

q
mesh ∂σ

≤ q

q + 1
meshσ

■

We next define augmentation-preserving chain maps sdm : ∆(X) → ∆(X), for m ≥ 0 by induction
sd0 = 1∆(X) and sdm = sd(sdm−1). using the above lemma we can conclude,

Corollary. Let ∆n have a linear metric and let c ∈ ∆′
q (∆

n). Then

mesh (sdmc) ≤
[

q

q + 1

]m
mesh c

Let, U = {A} be a collection of subsets of a topological space X and let ∆(U) be the subcomplex of
∆(X) generated by singular q-simplexes σ : ∆q → X such that σ (∆q) ⊂ A for some A ∈ U . Since,
sd and D are natural, sd(∆(U)) ⊂ ∆(U) and D(∆(U)) ⊂ ∆(U).
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§ Lemma: Let U = {A} be such that X = ∪{ int A | A ∈ U}. For any singular q-simplex σ
of X there is m ≥ 0 such that sdmσ ∈ ∆(U).

Proof. We can write,∆q = ∪
{
σ−1(intA) : A ∈ U

}
. We can give ∆q a metric (Linear metric). Since

this is a compact metric space we can assume, λ > 0 be Lebesgue number for the above covering.
We can choose m such that, ( q

q+1 )
m diam∆q ≤ λ. By the previous corollary we can say that,

mesh sdmξq ≤ λ. Therefore, every singular simplex of sdmξq maps into σ−1(int A) for some A ∈ U .
Then sdmσ is a chain in ∆(U). ■

Theorem 3.1.1

Let U = {A} be such that X = ∪{int A | A ∈ U}. Then the inclusion map ∆(U) ↪→ ∆(X) is
a chain equivalence.

Proof. For each singular simplex σ in X let m(σ) be the smallest nonnegative integer such
that sdm(σ)σ ∈ ∆(U). Now, m(σ(i)) ≤ m(σ) and m(σ) = 0 if and only if σ ∈ ∆(U). Define
D̄ : ∆(X) → ∆(X) by

D̄(σ) =

m(σ)−1∑
j=0

D ◦ sdj(σ)

Then, D̄(σ) = 0 if and only if σ ∈ ∆(U). Also,

∂D̄(σ) =
∑

sdj+1(σ)−
∑

sdj(σ)−
∑

Dsdj(∂σ)

= sdm(σ)(σ)− σ − Σ0≤j≤m(σ)−1

∑
i

(−1)iDsdj
(
σ(i)

)

D̄∂(σ) =
∑
i

(−1)i
m(σ(1))−1∑

j=0

Dsdj
(
σ(i)

)

=⇒ σ + ∂D̄(σ) + D̄∂(σ) =
∑
i

(−1)i
m(σ)−1∑
m(σ(i))

D sdj(σ(i)) + sdm(σ)(σ)

Now, we can define τ : ∆(X) → ∆(U) by τ : σ 7→ σ + ∂D̄(σ) + D̄∂(σ). If i : ∆(X) ↪→ ∆(U), then
τ ◦ i = 1∆(U) and D̄ : i ◦ τ ≃ 1∆(X). So, i is a chain equivalence. ■
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Mayer-Vietoris Sequence

If we are given any connected open covering of a topological space X, and the intersection of the
covers are connected (path-connected) then we use the “Van-Kampen Theorem” to find fundamental
group of X in terms of the fundamental groups of the open covering of X. (Actually we can do it
for more general case where we calculate ‘fundamental groupoid’[Die08])

Mayer-Vietoris Sequence gives us same kind of technology to calculate Homology groups. If we are
given a simplicial complexX which can be written asX = K1∪K2 then we can write homology group
of X in terms homology groups of K1 and K2. This can be derived from an exact Sequence which is
known as Mayer-Vietoris Sequence. Before going into that we will introduce some techniques widely
used in homological algebra. We might omit some proofs of elementary results from homological
algebra. These can be found in [Rot09] or [Wei94].

§4.1 Some Glimpse of Homological methods

We will form a category of short exact Sequence. We define a homomorphism of exact sequence T
such that the following diagram commutes,

0 C ′ C C ′′ 0

0 C̄ ′ C̄ C̄ ′′ 0

τ ′ τ τ ′′

We can notice that both rows of the above diagram are a chain complex. So, homomorphism of
exact sequence is kind of a chain map. With this homomorphism we can form a category of exact
sequence whose objects are exact sequence and morphisms are the homomorphism defined above.
We only need category of exact sequence on chain complex. Suppose, C,C ′, C ′′ are chain complex
with differential ∂, ∂′, ∂′′ respectively. By an exact Sequence of chain complex we mean, in the
following commutative diagram each column is exact.

0 0 0

C ′
q+1 C ′

q C ′
q−1

Cq+1 Cq Cq−1

C ′′
q+1 C ′′

q C ′′
q−1

0 0 0

∂′
q+1 ∂′

q

∂q+1 ∂q

∂′′
q+1 ∂′′

q

We already know that Homology is a covariant functor from the category of chain complex to category
of graded groups. For a chain complex we only have Im∂q+1 ⊂ ker ∂q this is weaker condition then
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the condition required for the chain to be exact at Cq. So homology group Hq measures how far
the sequence is from being exact. So there is a relation between exactness and homology of chain
complex. We will describe this relation by the following theorem.

Theorem 4.1.1

There is a covariant functor from the category of short exact sequence of chain complex to
exact sequence of groups.

If we are given an exact sequence of chain complex 0 → C ′ α−→ C
β−→ C ′′ → 0, the functor

will send it to an exact sequence,

· · · ∂∗−→ Hq(C
′)

α∗−−→ Hq(C)
β∗−→ Hq(C

′′)
∂∗−→ Hq−1(C

′) → · · ·

Consider, H,H ′, H ′′ are covariant functor defined from category of exact sequence of chain complex

category of graded groups. For an exact sequence of chains 0 → C ′ α−→ C
β−→ C ′′ → 0, H,H ′, H ′′ sends

it toH(C), H(C ′), H(C ′′) respectively. We will show there is a natural transformation ∂∗ : H ′′ → H ′.
This is kind of same work we do for proving snake lemma [Rot09]. This ∂∗ will be connecting
Hq+1(C

′′) with Hq(C
′), as we can see in the statement of the theorem.

§ Lemma: For a short exact sequence of chain complex there is a natural transformation
∂∗ : H ′′ → H, such that if {z′′} ∈ H(C ′′), then ∂∗{z′′} =

{
α−1∂β−1z′′

}
Proof. We will begin with diagram chasing of the following commutative diagram, (along green
line)

0 C ′
q+1 Cq+1 C ′′

q+1 0

0 C ′
q Cq C ′′

q 0

0 C ′
q−1 Cq−1 C ′′

q−1 0

α β

α β

α β

∂′

∂′

∂

∂

∂′′

∂′′

Let, z′′ is a q cycle of C ′′. Since β is surjective we have c ∈ Cq such that β(c) = z′′.

β(∂(c)) = ∂′′(β(c)) = ∂′′(z′′) = 0

Which means, ∂c ∈ kerβ = Imα. So, there is c′ ∈ C ′
q−1 such that α(c′) = c. Now, we will define a

homomorphism ∂∗ such that, ∂∗{z′′} = {c′}.

To prove ∂∗ is well-defined (chasing diagram opposite to the red path)we will take c1 ∈ Cq such that,
β(c1) ∼ z′′. We can see that, β(c)−β(c1) ∈ Im∂′′. There is d′′ ∈ C ′′

q+1 such that, ∂′′d′′ = β(c)−β(c1).
There is d ∈ cq+1 such that, d′′ = β(d). So we have

β(c1) = β(c) + β(∂d) = β(c+ ∂d)

Now, we can write c1 = c+ ∂d+ α(d′) for some d′ ∈ C ′
q−1. Now, ∂c1 = ∂(c+ α(d′)) = α(c′ + ∂′d′)

which gives us, α−1(∂c1) = c′ + ∂′d′ ∼ c′. Once we have proved it can be easily checked ∂∗ is
homomorphism from H(C ′′) → H(C ′). ■

Proof of theorem 4.1 From the consequence of the above lemma we can say there is a sequence of
homological groups with homomorphism as following,

· · · ∂∗−→ Hq(C
′)

α∗−−→ Hq(C)
β∗−→ Hq(C

′′)
∂∗−→ Hq−1(C

′) → · · ·
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We only have to check the above sequence is exact. We will prove exactness at Hq(C
′′) rest two

cases are easy to verify [Hat00].

If {z} ∈ Hq(C) then we have,

∂∗(β({z})) = ∂∗({β(z)}) =
{
α−1∂c

}
=

{
α−1(0)

}
= {0}

So we have Imβ∗ ⊆ ker ∂∗. For another direction let {z′′} ∈ ker ∂∗. As we have done previously, there
is c ∈ Cq such that β(c) = z′′ and α−1∂(c) = ∂′d′ for some d′ ∈ Cq. The difference {c− α(d′)} ∈
Hq(C) such that,

β∗{c− α(d′)} = {β(c)− βα(d′)} = {z′′}

Which means ker ∂∗ ⊆ Imβ∗. Hence, we have shown exactness at Hq(C
′′). ■

Corollary. Given a short exact sequence 0 → C ′ α−→ C
β−→ C ′′ → 0,

1. C ′ is acyclic iff β∗ : H(C) ∼= H(C ′′).

2. C is acyclic iff ∂∗ : H(C ′′) ∼= H(C ′).

3. C ′′ is acyclic iff α∗ : H(C ′) ∼= H(C).

Let, K be a simplicial complex and L1 ⊆ L2 ⊆ K be sub-complex of K. Let, i : L2 ↪→ K and
j : L1 ↪→ K. By Noether’s isomorphism theorem, we will have an exact sequence,

0 → C(L2)/C(L1)
i−→ C(K)/C(L1)

j−→ C(K)/C(L2) → 0

By theorem 4.1 we will have an exact sequence of relative homology groups,

· · · ∂∗−→ Hq(L2, L1)
i∗−→ Hq(K, L1)

j∗−→ Hq(K, L2)
∂∗−→ Hq−1(L2, L1) → · · ·

This is called homology sequence of the triple (K, L2, L1). If we have L1 = ∅ then the resulting
homology sequence is,

· · · ∂∗−→ Hq(L2)
i∗−→ Hq(K)

j∗−→ Hq(K, L2)
∂∗−→ Hq−1(L2) → · · ·

If L ⊂ K is a sub-complex of K, we have C̃(L) ⊂ C̃(K) we can also see that, C̃(K)/C̃(L) ∼=
C(K)/C(L). We know there is a short exact sequence of chain complexes,

0 → C̃(L)
i−→ C̃(K)

j−→ C(K)/C(L) → 0

This will give us an exact sequence of homology groups, which is called reduced homology sequence
of pair (K, L).

Some results from homological algebra

Five Lemma : Consider the following commutative diagram where each row is exact.

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

γ1 γ2 γ3 γ4 γ5

If γ1, γ2, γ4, γ5 are isomorphism then γ3 is also an isomorphism. [Rot09]

♦ Example :If s is an n-simplex, then

H̃q(ṡ) =

{
0 if q ̸= n− 1

Z if q = n− 1
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Proof. Here ṡ means the simplicial complex made by taking the proper faces of s. We define s̄ to
be the simplicial complex formed by taking all the faces of s. Since, s is a n-simplex the proper faces
of s must be at most n− 1-simplex. Which means Cq(ṡ) = Cq(s̄) for q ̸= n. In s̄ we count n-simplex
itself as a face which is not present in ṡ. We have, Cq(s̄)/Cq(ṡ) = 0 for q ̸= n and Cn(s̄)/Cn(ṡ) = Z.

Hq(s̄, ṡ) =

{
0 if q ̸= n

Z if q = n

Since we have H̃q(s̄) = 0 we have an exact sequence, 0 → Hq(s̄, ṡ)
∂∗−→ H̃q−1(ṡ) → 0. It means we

have Hq(s̄, ṡ) ∼= H̃q−1(ṡ). ■
We have proved 2.1 that µ is a chain equivalence between ordered chain complex to oriented chain
complex. So, µ∗ will induce isomorphism in corresponding homology groups. For any simplicial
pair (K, L) the natural transformation µ induce homomorphism between two exact Sequences as
following,

· · · Hq(∆(L)) Hq(∆(K)) Hq(∆(K)/∆(L)) · · ·

· · · Hq(L) Hq(K) Hq(K, L) · · ·

µ∗ µ∗ µ∗

Using ‘five lemma’ we can see that, µ∗ induce isomorphism from Hq(∆(K)/∆(L)) to Hq(K, L).

§4.2 Mayer-Vietoris Sequence

Suppose, we have two sub-complex K1,K2 of a simplicial complex K, now both K1∪K2 and K1∩K2

are simplicial complex. Let, i1, i2, j1, j2 are inclusion map shown as following,

K1

K1 ∩K2 K1 ∪K2

K2

i1

i2

j1

j2

Notice that, C(K1 ∩ K2) = C(K1) ∩ C(K2), C(K1 ∪ K2) = C(K1) + C(K2). If we define j :
C(K1) ⊕ C(K2) → C(K1 ∪ K2), as j(c1, c2) = C(j1)(c1) + C(j2)(c2). It is easy to see that it is a
homomorphism. Every element in C(K1 ∪ K2) = C(K1) + C(K2) can be written as C(ji)(c

′
1) +

C(j2)(c2)
′, we can take (c′1, c

′
2) as pre-image of c via j. So, j is surjective homomorphism. The

kernel of j is,

ker j = C(K1) + C(K2)/C(K1)⊕ C(K2) ∼= C(K1 ∩K2)

We will take the obvious inclusion i : C(K1 ∩K2) → C(K1)⊕ C(K2) defined by,

c 7→ (C(i1)(c),−C(i2)(c))

This will help us to give an short exact sequence of chain complexes,

0 → C(K1 ∩K2)
i−→ C(K1)⊕ C(K2)

j−→ C(K1 ∪K2) → 0

By theorem 4.1 there is an exact sequence of homology groups known as Mayer Vietoris Sequence.
This sequence is shown as following,

· · · ∂∗−→ Hq(K1 ∩K2)
i∗−→ Hq(K1)⊕Hq(K2)

j∗−→ Hq(K1 ∪K2)
∂∗−→ Hq−1(K1 ∩K2) → · · ·

Here, i∗ = (i1∗z,−i2∗z) and j∗(z1, z2) = j1∗z1 + j2∗z2 are the corresponding maps.
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We can similarly define reduced Mayer Vietoris sequence. If K1 ∩ K2 is non-empty then we can
create a commutative diagram as following,

0 C0(K1 ∩K2) C0(K1)⊕ C0(K2) C0(K1 ∪K2) 0

0 Z Z⊕ Z Z 0α β

ε ε⊕ε ε

Where α(n) = (n,−n) and β(m,n) = m + n. Since the rows are exact, there is an exact sequence
of kernels of ε, ε⊕ ε. So, there is an exact sequence of reduced chain complexes,

0 → C̃(K1 ∩K2)
i−→ C̃(K1)⊕ C̃(K2)

j−→ C̃(K1 ∪K2) → 0

The corresponding exact sequence of reduced homology groups is,

. . .
∂∗−→ H̃q(K1 ∩K2)

i∗−→ H̃q(K1)⊕ H̃q(K2)
j−→ H̃q(K1 ∪K2)

∂∗−→ . . .

If (K1, L1) and (K2, L2) are two simplicial pairs in K. Then we will have the following commutative
diagram,

0 C(L1 ∩ L2) C(L1)⊕ C(L2) C(L1 ∪ L2) 0

0 C(K1 ∩K2) C(K1)⊕ C(K2) C(K1 ∪K2) 0

0 C(K1∩K2)
C(L1∩L2)

C(K1)⊕C(K2)
C(L1)⊕C(L2)

C(K1∪K2)
C(L1∪L2)

0

The bottom row gives us an exact sequence of chain complexes. The corresponding exact sequence
of homology groups is called relative Mayer Vietoris sequence.

. . .
∂∗−→ H̃q(K1 ∩K2, L1 ∩ L2)

i∗−→ H̃q(K1, L1)⊕ H̃q(K2, L2)
j−→ H̃q(K1 ∪K2, L1 ∪ L2)

∂∗−→ . . .

Definition 4.2.1 ▶ Excision Map

An inclusion map (K1, L1) ↪→ (K2, L2) is called an excision map if K1 − L1 = K2 − L2.

The exactness of Mayer Vietoris sequence is closely related (in fact, equivalent) to the following
excision property.

Corollary. Any excision map between simplicial pairs induces an isomorphism on homology.

Proof. If (K1, L1) ⊂ (K2, L2) is an excision map, then K2 = L2 ∪ K2 and L1 = K1 ∩ L2. By
Noether’s isomorphism theorem,

C(K1)/C(L1) ∼= C(K1) + C(L2)/C(L2) ∼= C(K2)/C(L2)

• For the ordered chain complex it is true that ∆(K1 ∩K2) = ∆(K1) + ∆(K2). Therefore all the
results for oriented simplicial complexes can be replaced by ordered simplicial complex.

For topological space scenario is different. An inclusion map (X1, A1) ↪→ (X2, A2) is called excision
map if X1 \ A1 = X2 \ A2. It is not true that every excision map induces isomorphism of singular
homology groups. It is not true that for any two topological space X1, X2 there is a Mayer Vietoris
sequence related to them.

♦ Example :Let, f : R → R is defined by,
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f(x) =

{
sin 1

x if x > 0

0 otherwise

Also let X1 =
{
(x, y) ∈ R2 : y ≥ f(x)

}
∪ {x = 0} and X2 =

{
(x, y) ∈ R2 : y ≤ f(x)

}
∪ {x = 0}. We

can see that, X1 ∪ X2 = R2 and X1 ∩ X2 consists two path-components. Therefore, there is no
homomorphism from H̃1(X1 ∪X2) → H̃0(X1 ∩X2) which will make the sequence

H̃1(X1 ∪X2) → H̃0(X1 ∩X2) → H̃0(X1)⊕ H̃0(X2)

exact at H̃0(X1 ∩X2). Because both ends are trivial but H̃0 ⊕ Z = Z⊕ Z.

We need some specialization of the pairs X1, X2 ∈ Top to get a Mayer-Vietoris sequence related to
them.

Definition 4.2.2 ▶ Excisive couple

The pair {X1, X2} said to be excisive couple if the chain map ∆(X1)+∆(X2) ↪→ ∆(X1∪X2)
induces an isomorphism of homology.

Corollary. If X1 ∪X2 = intX1 ∪ intX2 then {X1, X2} is an excisive couple. It follows from
theorem 3.1.

In particular we can say if A ⊂ X then {X,A} is always an excisive couple. The relation between
an excisive couple {X1, X2} and excision maps is expressed as follows.

Theorem 4.2.1

{X1, X2} is excisive couple if and only if the inclusion map (X1, X1 ∩X2) ↪→ (X1 ∪X2, X2)
induces isomorphism in homology groups.

Proof. Let, j : (X1, X1 ∩ X2) ↪→ (X1 ∪ X2, X2) be the excision map. We can have the following
commutative diagram induced by inclusions,

∆(X1)
∆(X1∩X2)

∆(X1∪X2)
∆(X2)

∆(X1)+∆(X2)
∆(X2)

∆(j)

i

i′

We can see i is isomorphism and thus j∗ = i′∗i∗ will be an isomorphism if and only if i′∗ is an
isomorphism. It can be shown from five lemma that,i′∗ is isomorphism if and only if ∆(X1) +
∆(X2) ↪→ ∆(X1∪X2) induce isomorphism of homology, which is equivalent to the condition {X1, X2}
are excisive couple. ■

Corollary. Let, U ⊆ A ⊆ X be such that Ū ⊂ intA. Then the excision map of (X−U,A−U)
in (X,A) induces an isomorphism of singular homology.

Proof. We have U ⊂ Ū ⊂ A, so we also have (intA)c ⊂ Ū c ⊂ intU c (here, all the complement taken
within X). By the previous corollary we have {X − U,A} is an excisive couple. By the previous
theorem we are done. This is often called excision property of singular theory. ■

For any subsets X1 and X2 of a space, ∆ (X1 ∩X2) = ∆ (X1) ∩∆(X2), and there is a short exact
sequence of singular chain complexes

0 → ∆(X1 ∩X2)
i→ ∆(X1)⊕∆(X2)

j→ ∆(X1) + ∆ (X2) → 0

This gives us an exact sequence of homology groups,

· · · ∂∗−→ Hq(X1 ∩X2)
i∗−→ Hq(X1)⊕Hq(X2)

j∗−→ Hq(∆(X1) + ∆(X2))
∂∗−→ Hq−1(X1 ∩X2) → · · ·
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If we have {X1, X2}, an excisive couple then we can replace Hq(∆(X1) + ∆(X2)) by Hq(X1 ∪X2).
We will call this sequence Mayer Vietoris sequence of singular theory of an excisive couple. If
X1 ∩X2 ̸= ∅ we will have a reduced Mayer-Vietoris sequence.

If (X1, A1) and (X2, A2) are pairs in a space X, we say that {(X1, A1) , (X2, A2)} is an excisive
couple of pairs if {X1, X2} and {A1, A2} are both excisive couples of subsets. In this case it follows
from the five lemma that the map induced by inclusion

[∆ (X1) + ∆ (X2)] / [∆ (A1) + ∆ (A2)] → [∆ (X1 ∪X2)] / [∆ (A1 ∪A2)]

induces an isomorphism of homology. Hence, if {(X1, A1) , (X2, A2)} is an excisive couple of pairs,
there is an exact sequence called relative Mayer-Vietoris sequence.

. . .
∂∗→ Hq (X1 ∩X2, A1 ∩A2)

i→ Hq (X1, A1)⊕Hq (X2, A2)
j∗→ Hq (X1 ∪X2, A1 ∪A2)

∂∗−→ . . .

♦ Example :For n ≥ 0

H̃q (Sn) ≈

{
0 q ̸= n

Z q = n

Proof. We will begin with S0. Which is nothing but two disconnected points. So, H0(S0) = Z⊕ Z
and Hq(S0) = 0 for q > 0. So, we can say, H̃0(S0) = Z and H̃q(S0) = 0 for q > 0.

Let p and p′ be distinct points of Sn. Because Sn − p and Sn − p′ are contractible (each being
homeomorphic to Rn), H̃ (Sn − p) = 0 = H̃ (Sn − p′). Since, Sn − p and Sn − p′ are open subsets of
Sn, it follows that {Sn − p,Sn − p′} is an excisive couple. From the exactness of the corresponding
Mayer-Vietoris sequence, it follows that,

∂∗ : H̃q (Sn) ∼= H̃q−1 (Sn − (p ∪ p′))

Now notice that Sn− (p∪p′) is homeomorphic to Rn−{0} which has deformation retract onto Sn−1.
Which means H̃q−1 (Sn − (p ∪ p′)) ∼= H̃q−1

(
Sn−1

)
. Finally, we have H̃q (Sn) ∼= H̃q−1

(
Sn−1

)
, now

induction on n will give us the required results. ■

Rn is locally compact and Hausdorff. If Rm,Rn are homeomorphic for distinct m,n, one-point
compactification of them will be homeomorphic by uniqueness of one-point compactification. But
that is not possible as their homology groups are different. We can conclude the follows corollary.

Corollary. For m ̸= n, Rn and Rm is not homoeomorphic

Theorem 4.2.2

Let (X,A) be a pair such that A is retract of X. Then,

H(X) ∼= H(A)⊕H(X,A)

Proof. Let, r be a retraction r : X → A and j : (X, ∅) ↪→ (X,A). We have r∗i∗ = 1H(A) where,
i : A ↪→ X. So, i∗ is injective and r∗ is surjective. We have the following exact sequence of chain
complex,

0 → ∆(A) → ∆(X) → ∆(X)/∆(A) → 0

We will have a exact sequence of homology groups, where ker i∗ = Im∂∗ = {0}. Also, there is a split
r∗ in the short exact sequence. We can write, H(X) ∼= H(A)⊕H(X,A).

Hq−1(A)

0 Hq−1(A) Hq−1(X) Hq−1(X,A)
∂∗−→ 0

∂∗ i∗

r∗

j∗

1H(A)
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