






Post-midsem Notes
Functional Spaces

Trishan Mondal

§ Stone-Weierstrass Theorem

This theorem will help us to find a set of functions which
are dense on C(K) (continuous functions defined on K)with
respect to sup-norm metric. Our main goal is to develope
concrete theory of Fourier series, the above theorem is very
useful in the following context.

Let’s define F : L1[0, 1] → ℓ∞(Z) which sends a function f

to f̂ = {cn(f)}. It can be shown that,∥∥∥f̂∥∥∥ ≤ ∥f∥1
∥F (f)∥∞ ≤ ∥f∥1

Thus F is a bounded linear map. With the help of Stone
Weierstrass we can show this map is Isomorphism. During
the proof the following facts will be used

� convolution f ∗ g always takes the best property among
f and g.

Corollary. If f is a Lebesgue integrable function
on R and g ∈ Cc(R), then f ∗ g is continuous.

� If φε is a bump function then for f ∈ Cc(R),
∥f ∗ φε − f∥1 → 0 as ε → 0.

� The above result can be proved for a function in L1[0, 1].

One more thing was proved in the class

F (f ∗ g) = F (f)F (g)

� Definition.Let A ⊆ CE is said to be algebra if for all
f, g ∈ A , f + g, fg, cf also lie in A .

� Definition.A said to be seperates points of E if for
x1 ̸= x2 there is a function f ∈ A such that f(x1) ̸=
f(x2).

� Definition.For each x ∈ E, if there exist g ∈ A such
that g(x) ̸= 0, then we say A vansihes at no point of
E.

� Theorem(Stone - Weierstrass) Let A be an algebra of
C(K) (The set of complex valued continuous functions
defined on compact set K). Let A seperates points of
K and it vansihes at no point of K, then A is dense in
C(K).

� Theorem(Weierstrass approximation) Let f ∈ C[0, 1],
then for every ε > 0 there is a polynomial p such that
∥f − p∥∞ < ε.

§ Arzela-Ascoli Theorem

� Definition.(Equicontinuos) A family of functions A is
siad to be ‘equicontinuous’, for every ε > 0 there exist
and δ > 0 such that, |f(x)− f(y)| < ε for |x− y| < δ
and f ∈ A .

� Every Member of equi-continuous family is uniformly
continuous.

� If X is a compact metric space, F : X × X → Z
is a continuous function. Then the family A =
{fy(x) = F (x, y) : y ∈ X} is an equicontinuous family.

� Let X ⊆ Rn be an open convex set, A be the family of
differentiable functions X → Rn, such that ∥Df(x)∥ ≤
M . This family is equicontinuous.

� Theorem(Arzela Ascoli) Let X be a compact metric
space and C(X) be the set of continuous functions on
X, then B ⊆ C(X) is compact iff B is compact and
equicontinuous.

§ Fourier series

History. In order to solve the heat equation, ∂u
∂t = ∂2u

∂x2 he
made the substitution u(x, t) = g(x)h(t) and u(x, 0) = a0

2 +∑
an cosnx+

∑
bn sinnx. From here he thought if any com-

plex function f can be approximated with f ∼
∑

ane
−2πix.

▲! We know L2[0, 1] ⊆ L1[0, 1], but for any I ⊆ R it’s not
true. Neither L2(I) nor L1(I) is contained in each other. As

an example note the function f(x) = x− 1
2 on [0, 1] is in L1

but not in L2. Similarly, f(x) = 1
x for x ≥ 1 is in L2 but

not in L1.

� L2[0, 1] is a Hilbert space. With the inner product

⟨f, g⟩ =
∫ 1

0
fḡ dx. This inner-product will give us a

norm, with respect to which L2[0, 1] is complete (Riesz-
Fischer Theorem1).

� Definition.Let, S = {φ0, φ1, · · · } be the collection of
functions in L2[0, 1] such that ⟨φm, φn⟩ = 0 and if
∥φn∥ = 1 then the set S is ‘orthonormal’ set. Eg.{
e2πin

}
.

� Theorem(Theorem on best approximation). Let, S =
{φ0, · · · , φm, · · · } be an orthogonal set. Let, {sn} and
{tn} are sequence of functions defined as following,

sn(x) =

n∑
k=0

ckφk(x), tn(x) =

n∑
k=0

bkφk(x)
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where ck = ⟨f, φk⟩, then ∥f − sn∥ ≤ ∥f − tn∥ and
equality holds if bk = ck for k = 0, · · · , n.

� Definition.(Fourier Coefficient) Let {e0. · · · , en, · · · } be
a set of orthogonal set on Hilbert space H. If x ∈ H,
x =

∑
⟨x, en⟩ en where ⟨x, en⟩ is Fourier Coefficient.

� Theorem. Let S = {e0, · · · , en, · · · } be an orthonormal
set for L2[0, 1] (or any Hilbert space H). If f ∈ L2[0, 1]
such that, f(x) =

∑
cnφn(x). Then,

∑∞
n=1 |cn| con-

verges and satisfy,

|cn|2 ≤ ∥f∥2 (Bassel’s Inequality)

And equality holds if and only if we have

lim
n→∞

∥f − sn∥ = 0

where sn is defined in previous theorem(Parseval’s
formula)

� As a consequence of the above theorem we can say the
Fourier Coefficients converges to 0 as n → ∞.

Corollary. If f is any Lebesgue integrable func-
tion we must have

lim
n→∞

∫ 2π

0

f(x)e−nix = 0

� Theorem.

(Riesz-Fischer Theorem). Let, S = {φ0, · · · , φm, · · · }
be an orthonormal set of L2[0, 1]. Let, {ck} be a given

sequence of complex numbers such that
∑

|ck|2 con-
verges. Then there is a function f ∈ L2[0, 1] with (i)

ck = ⟨φk, f⟩ and (ii)
∑

|ck|2 = ∥f∥.

� Definition.Let S be an orthogonal set of the Hilbert
space H, then it will be called an orthogonal Basis if
Span(S) is a dense subset of H, i.e. Span(S) = H.

� Two basis of H must have same cardinality.

� Theorem. Let, f be a 1-periodic function in Ck(R),
then n-th Fourier coefficients satisfy

lim
n→∞

sup
∣∣nkcn(f)

∣∣ < ∞

� Smoothness of f implies f̂ = {cn(f)} decay.

� Let, f be a 1-periodic function satisfying Lipschitz or
order α then,

lim
n→∞

sup |nαcn(f)| < ∞

� For a differentiable function f , we have

cn(f
′) = 2πni cn(f)

� Dirichlet’s Kernel. DN (X) = 1
2 ·

∑N
k=−N e2πi kx

� Note that cn(f ∗ g) = cn(f)cn(g).

�

f ∗DN = sN =

N∑
k=−N

cn(f)e
2πi kx

� On the interval [0, 1), DN can be explicitly written as

DN (x) =

{
sin 2π(N+ 1

2 )x
2 sinπx if x ̸= 0(

N + 1
2

)
if x = 0

� It can be shown that the L1 norm of DN is bigger than
O(logN). DN satisfy every property for being a ‘bump
function’ except for the condition of being positive ev-
erywhere.

� Fejer Kernel. Cesaro sum of Dirichlet kernals,

Fn(x) =
1

n

n−1∑
k=0

Dk(x)

which is equal to sin2(πnx)
n sin2 πx

for x ̸= 0 and equal to n for
x = 0. It can be shown easily Fn(x) is bump function.

� Theorem. If f ∈ R(α) on [0, 1] then, α ∈ R(f) on [0, 1]
and ∫ 1

0

f dα+

∫ 1

0

αdf = f(1)α(1)− α(0)f(0)

� Theorem. (Bonnet) Let g ∈ C[0, 1], f is increasing on
[0, 1]. Then ∃x0 ∈ [0, 1] such that,∫

f(x)g(x) dx = f(0+)

∫ x0

0

g(x) + f(1−)

∫ 1

x0

g(x)

§ If f ≥ 0 there exist x0 ∈ [0, 1] such that,∫ 1

0

f(x)g(x) dx = f(1−)

∫ 1

x0

g(x) dx

� Riemann Lebesgue lemma. Assume f ∈ L(I). Then,
for each β we have

lim
α→∞

∫
I

f(t) sin(αt+ β) dt = 0

� If f ∈ L(−∞,∞), we have

lim
α→∞

∫ ∞

−∞
f(t)

1− cosαt

t
dt =

∫ ∞

0

f(t)− f(−t)

t
dt

� Theorem. Jordan. If g is of bounded variation on [0, δ],
then

lim
α→∞

2

π

∫ δ

0

g(t)
sinαt

t
dt = g(0+)

� Theorem. Dini. Assume g(0+) exists and suppose that
for δ > 0 the Lebesgue integral∫ δ

0

g(t)− g(0+)

t
dt

exists. Then we have,

lim
α→∞

2

π

∫ δ

0

g(t)
sinαt

t
dt = g(0+)
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� Integral representation. Assume that f ∈ L[π,−π], if
sn is the partial sum generated by f , say

sn(x) =
a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx)

Then we have the integral representation

sn(x) =
2

π

∫ π

0

f(x+ t) + f(x− t)

2
Dn(t) dt

� Theorem(Riemann Localization) Assume f ∈ L[0, 2π]
and suppose f hs period 2π. Then the fourier series
generated by f will converge if and only for some δ the
following limit exists:

lim
n→∞

2

π

∫ δ

0

f(x+ δ) + f(x− δ)

2

sin
(
n+ 1

2

)
t

t
dt

In which case the value of this limit is the sum of the
Fourier series.

� Conditions for convergence.

- Jordan test. If f is B.V on the compact interval
[x−δ, x+δ], then the limit s(x) exist and then the
Fourier series generated by f converges to s(x).
where s(x) is,

lim
t→0+

f(x+ t) + f(x− t)

2︸ ︷︷ ︸
=g(t)

- Dini’s test. If the limit s(x) exists and if the
Lebesgue integral exist for δ < π,∫ δ

0

g(t)− s(x)

t
dt

then the Fourier series generated by f converges
to s(x).

� Let f be a Lebesgue integrable function on [0, 2π] and
have period 2π. The following term has an Integral
representation

σn(x) =
s0(x) + · · ·+ sn−1(x)

n

Integral representation:

σn(x) =
1

nπ

∫ π

0

f(x+ t) + f(x− t)

2
Fn(t)

� Theorem (Fejer Theorem.) Assume that f ∈ L[0, 2π]
with period 2π and suppose the following limit exits

s(x) = lim
t→0+

f(x+ t) + f(x− t)

2

Then the fourier series generated by f is Cesaro
summable and we have

lim
n→∞

σn(x) = s(x)

� The above converge is uniform if f is continuous.

� Consequences of Fejer Theorem: f is a continuous
2π-periodic function. Let, {sn} denote the sequence of
partial sums, then we have

– lim sn = f on [0, 2π].

– 1
π

∫ 2π

0
|f(x)|2 dx =

a2
0

2 +
∑∞

n=1(a
2
n + b2n)

– The fourier series can be integrated term by term.

� Theorem(Lebesgue Differentiation theorem) If f is a
Lebesgue integrable function on R, then for all most all
x ∈ R,

f(x) = lim
r→0

∫ x+r

x−r

f(t) dt

� Definition.The point x ∈ R is Lebesgue point of f if,

lim
r→0

1

2r

∫ x+r

x−r

|f(t)− f(x)| dt = 0
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