tunctional Spaces

0 } Result from metric Spaces

- X is a metric Space TFAE
- i) X is Compact ii) FIP of closed Sets iii) (antor interSection prop iv) Sequentially Compactness V) X is Complete and totally bounded.
- C[0,1] is infinite dim. Complete VS.
 S€ method
 {x, x²,....} } L.I Set
- Example of linear functional on $C[0,1], P(f) = \int f dx, P(f) = \int f \delta_0(x) dx$ evaluation at o

- Internal Point: χ is an internal point, if $\forall v \in V \{ i \}, \exists e_v > 0$ s.t. $(x - e_v v, x + e_v v)$ is contained in K.
- V=IRⁿ and k is Convex the internal ⇔ interior (Top. Sence)
- Hahn-Banach Seperation: Y and Z are disjoint non-empty set of V, ① If Y and Z has an internal points they can be seperated by H with, YCH⁺, ZGH⁻
 ① If Y Consist entirely of internal points then, YCH⁺, ZGH⁻ (ii) If Y and Z consist entirely of internal point YCH⁺, ZCH⁻
- Minkiwoski's Theorem: K compact, Convex
 Conv (Ext(K)) = K

• Coro. Every closed convex set in IRⁿ Can be woutten as intersection of closed-half spaces.

- Sublinear Functional P:V → R satisfy P(x+y) ≤ P(x) + P(y) and P(ax) = lal P(x)
 Eq. Norm of Banach Space, Support function, h(x,u) := Sup{<x,u> : x ∈ K}
 { compact, convex K ⊆ IRⁿ} ← { Sublinear Func}
 - Hahn-Banach Extension: Let, \neq is a Sublinear functional GnV, fo is a linear functional on $Vo \subseteq V$ $fo(y) \in P(y) \neq y \in Vo$, We can extend fo to $P:V \rightarrow \mathbb{R}$ Such that, $P|_{V_0} = R$ and $P(x) \in P(x) \neq x \in V$.
 - Hahn-Jordan decomp. Every linear ρ Functional Canbe decomposed as $\rho = \rho^{+} - \rho^{-}$, where ρ^{+}, ρ^{-} are the linear functional.
 - Riesz Representation Theorem. Let P be a linear functional, P: C[0,1] \rightarrow IR then there exist a Unique right Continuous monotonic increasing func: $g_{p}: [0,1] \rightarrow IR$, $g_{p}(-\epsilon, 0) = 0$ Such that, $P(f) = \int f dg_{p}$ and $||P|| := \sup \{P(t): ||f||_{\infty} 1\}$ • $f \mapsto P(|f_{1}|) = \int |f_{1}| dx$ defines a norm On CLO,1], with this norm CLO,1] is not Complete (Eq. $f_{m} = x^{m}$). We Will show L'(CO,1], || $||_{p}$) is the Completion of (CLO,1], || $||_{p}$). Set of Lebesgue integrable function.
 - Ignored: Positive Sublinear functional.

2§ Lebesgue Integration

• Step function: takes finitely many values, defined on a Compat interval [aub]. Integration of Step function is defined as, $\int_{2}^{2} S(x) dx = \sum C_{K} (x_{K} - x_{K-1}).$

 Recall measure Zero Set. Any Countable Set has measure Zero.
 Thm (for decreasing step function): {Sns be decreasing sequence of step function, Sndo lim J Sn(x) dx = J lim Sn(x) dx = 0.

Thm (When tn Tf): {tn} be a sequence of increasing step function sit if There is a function f, tn Tf are
The sequence Sta Converges
Then, for any function t, t(x) ≤ f(x) are we have ftw dx ≤ lim ftm(x) dx

- Upper function: f:[0,1]→R is said to be an upper function, if there is an increasing sequence of Step function, such that i) sniff are ii) him fin <0
- Def^h of integration for upper function $\int f dx := \lim_{n \to \infty} \int Sn(x) dx$
- $S[0,1] \subseteq V[0,1] \rightarrow V[0,1]$ is not and $V.S \stackrel{?}{\longrightarrow}$ algebra $Examp: Ass 3^{(1)}$
- Properties of U.f: ① ∫fax ≤ ∫gdz, if f(x)≤g(x)
 ② if cf ∈ V[0,i] for f ∈ V[0,i] ⇒ c∫fdx = ∫(fdx)
- f:[01]→R be a a.e Continuous
 and bounded <u>Riemann integrable</u> then
 f is upper function and §fdx is
 Same as the Riemann integral.
 i 2.1 § Prop. Riemann Integral
 i) \$aftbg = a \$ftb \$g\$ ii) \$ft > \$g\$ if \$f(x) > \$g(x) ace
- Lebesgue integral is invariant under translation and multiplication by a constant and reflection.

- If f=g almost everywhere, g∈L[0,1]
 then f∈L [0,1] and ff= fg.
 2.2 § Levi's MCT
- Step function: Ssn S be a Seq of of Step function such that i) Ssn S increases on interval I ii) $\lim_{n \to \infty} Ssn dx$ exist, SnConverges to an upper function f with $Sf = \lim_{n \to \infty} Ssn dx$.

Lebesgue - integrable function:
 Let Sfns be a sequence of
 Lebesgue integrable function
 Such that, i) fn increases a.e
 ii) lim sfn exist then, sfns → f
 and sf = lim sf dx

Above MCT without $g_n \ge 1$ Let, $g_n \ge be a \quad seq \subseteq L^1[o,i]$ Such that, $\sum_{n=1}^{\infty} \int |g_n|$ is convergent. Then the Series $\sum_{n=1}^{\infty} g_n$ converges a.e to g and $\int \Sigma g_n = \Sigma \int g$ 2.3§ DCT

• Main Thm: $\{fn\}\ be a Sequence$ of Lebesgue-integrable function Oh I, assume that 1) $\{fn\} \rightarrow fae$ 1) $[fn(x)] \leq g(x)$ are on I. The kinit Function felton, $\int f = \lim_{n \to \infty} \int fn$.

Properties of L'[0,1]

- · For f ∈ L'[0,1], E>o We Can Write F= 1-2, 2>0 a.e and UE U[0,1] and $\int v < \varepsilon$.
- There is a step function s and gel [0,1], Such that, f=s+g 19128.

S Application of DCT

- · Let, igns be a seq of function in L'[0,1], i) gn>0 are ii) 2 gn Converges almost everyone on I to a function g which is bounded above a function in L'[0,1], Then $g \in L^{1}[0, \overline{I}], \sum_{n=1}^{\infty} \int g_n$ Converges, and We have, $\int \sum_{n=1}^{\infty} g_n = \sum_{n=1}^{\infty} \int g_n$
- · Assume there is a seq. If is I L'[0,1] $\lim_{n \to \infty} f_n(x) = f(x) \quad \text{and} \quad |f_n(x)| \leq M \quad a \in \mathbb{R}$ then, felloit, lim Stn = SF
- $\{f_n\} \subseteq \lfloor [o_n] \text{ and } f_n \rightarrow f \text{ a.e.},$ assume that there is a function. $g \in L^{1}[O_{1}]$ Such that, $|f(x)| \leq g(x)$ ae, then felton].
- 3 Lebesque integral on Unbounded Interval
- · Let, f defined on [a/m), assume f is Lesbeque integrable on [a/b] Vbra, and there is a tre Constant M Such That, 51F1 ≤ M, $\int_{\alpha} f = \lim_{b \to \infty} \int_{\alpha} f \, dz \, \cdot$
- § Improper Riemann Integral.

- Let, f defined on [a,a), assume F is Riemann integrable on [a/b] $\forall b \rceil a$, and there is a tre Constant M Such That, SIFI < M, ∫f = lim ∫fdz. Also if fis Lebesque integrable on [ain], Lebesque = Riemann Integral.
- § Measureable function
- Defn: A function defined on I is said to be measureable, if there exist a seq. of step function $\{s_n\} \rightarrow f(x)$ are on I.
- Thm: FEM(I) and Ifl≤g for Some $g \in L(I) \neq f \in L(I)$ Cor: $f \in M(I)$ and f is bounded on a bounded interval $I \Rightarrow f \in L(I).$
- Thm: Let, P be a real Valued Cts function on R2. F, 9 GM(I) define, has = y (for, for) then $\Psi \in L(I).$
- Thm: {fn} ⊆ M(I) and lim fn = f a.e on I, f is measureable function.
- 3 Continuity of Function defined by Lebesgue Integrals
- · Let, F: X×Y→IR be a function Such that, i) fy (x) = f(x,y) measurable on X ii) $|f(x,y)| \leq g(x)$ are on Xiii) $\lim_{x \to y} f(x,t) = f(x,y)$ are on X Then lebesque integral $\int f(x,y) dx$ exists, and $F(y) = \int_{x} f(x,y) dx$ is cts § Diff Under Integral fy(x) is measurable +y ii) fa× is Lebesque integrable 11 dy f(x,y) exist [v] ∂y f(x,y) | ≤ G(x), for all points of xxy then Lebeque integral Stary dx exis and, $F'(y) = \int_{x} \partial y f(x,y) dx$.

Post-midsem Notes

Functional Spaces

Trishan Mondal

§ Stone-Weierstrass Theorem

This theorem will help us to find a set of functions which are dense on C(K) (continuous functions defined on K)with respect to sup-norm metric. Our main goal is to develope concrete theory of Fourier series, the above theorem is very useful in the following context.

Let's define $\mathscr{F}: L^1[0,1] \to \ell^{\infty}(\mathbb{Z})$ which sends a function f to $\hat{f} = \{c_n(f)\}$. It can be shown that,

$$\left\| \hat{f} \right\| \le \|f\|_1$$
$$\|\mathscr{F}(f)\|_{\infty} \le \|f\|_1$$

Thus \mathscr{F} is a bounded linear map. With the help of **Stone Weierstrass** we can show this map is Isomorphism. During the proof the following facts will be used

• convolution f * g always takes the best property among f and g.

COROLLARY. If f is a Lebesgue integrable function on \mathbb{R} and $g \in C_c(\mathbb{R})$, then f * g is continuous.

- If φ_{ε} is a bump function then for $f \in C_c(\mathbb{R})$, $\|f * \varphi_{\varepsilon} - f\|_1 \to 0 \text{ as } \varepsilon \to 0.$
- The above result can be proved for a function in $L^1[0, 1]$.

One more thing was proved in the class

$$\mathscr{F}(f * g) = \mathscr{F}(f)\mathscr{F}(g)$$

- **Definition**.Let $\mathscr{A} \subseteq \mathbb{C}^E$ is said to be **algebra** if for all $f, g \in \mathscr{A}, f + g, fg, cf$ also lie in \mathscr{A} .
- **Definition** \mathscr{A} said to be **separates** points of E if for $x_1 \neq x_2$ there is a function $f \in \mathscr{A}$ such that $f(x_1) \neq f(x_2)$.
- Definition. For each x ∈ E, if there exist g ∈ A such that g(x) ≠ 0, then we say A vansihes at no point of E.
- Theorem(Stone Weierstrass) Let \mathscr{A} be an algebra of C(K) (The set of complex valued continuous functions defined on compact set K). Let \mathscr{A} separates points of K and it vansihes at no point of K, then \mathscr{A} is dense in C(K).
- Theorem(Weierstrass approximation) Let $f \in C[0, 1]$, then for every $\varepsilon > 0$ there is a polynomial p such that $\|f - p\|_{\infty} < \varepsilon$.

§ Arzela-Ascoli Theorem

- **Definition**.(Equicontinuos) A family of functions \mathscr{A} is siad to be 'equicontinuous', for every $\varepsilon > 0$ there exist and $\delta > 0$ such that, $|f(x) f(y)| < \varepsilon$ for $|x y| < \delta$ and $f \in \mathscr{A}$.
- Every Member of equi-continuous family is uniformly continuous.
- If X is a compact metric space, $F : X \times X \to Z$ is a continuous function. Then the family $\mathscr{A} = \{f_y(x) = F(x, y) : y \in X\}$ is an equicontinuous family.
- Let X ⊆ ℝⁿ be an open convex set, A be the family of differentiable functions X → ℝⁿ, such that ||Df(x)|| ≤ M. This family is equicontinuous.
- **Theorem**(Arzela Ascoli) Let X be a compact metric space and C(X) be the set of continuous functions on X, then $\mathscr{B} \subseteq C(X)$ is compact iff \mathscr{B} is compact and equicontinuous.

§ Fourier series

History. In order to solve the heat equation, $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ he made the substitution u(x,t) = g(x)h(t) and $u(x,0) = \frac{a_0}{2} + \sum a_n \cos nx + \sum b_n \sin nx$. From here he thought if any complex function f can be approximated with $f \sim \sum a_n e^{-2\pi i x}$.

A We know $L^2[0,1] \subseteq L^1[0,1]$, but for any $I \subseteq \mathbb{R}$ it's not true. Neither $L^2(I)$ nor $L^1(I)$ is contained in each other. As an example note the function $f(x) = x^{-\frac{1}{2}}$ on [0,1] is in L^1 but not in L^2 . Similarly, $f(x) = \frac{1}{x}$ for $x \ge 1$ is in L^2 but not in L^1 .

- $L^2[0,1]$ is a **Hilbert space**. With the inner product $\langle f,g \rangle = \int_0^1 f\bar{g} \, dx$. This inner-product will give us a norm, with respect to which $L^2[0,1]$ is complete (**Riesz-Fischer Theorem**¹).
- **Definition**.Let, $S = \{\varphi_0, \varphi_1, \cdots\}$ be the collection of functions in $L^2[0,1]$ such that $\langle \varphi_m, \varphi_n \rangle = 0$ and if $\|\varphi_n\| = 1$ then the set S is 'orthonormal' set. **Eg**. $\{e^{2\pi i n}\}.$
- **Theorem**(Theorem on best approximation). Let, $S = \{\varphi_0, \dots, \varphi_m, \dots\}$ be an orthogonal set. Let, $\{s_n\}$ and $\{t_n\}$ are sequence of functions defined as following,

$$s_n(x) = \sum_{k=0}^n c_k \varphi_k(x), \ t_n(x) = \sum_{k=0}^n b_k \varphi_k(x)$$

where $c_k = \langle f, \varphi_k \rangle$, then $||f - s_n|| \leq ||f - t_n||$ and equality holds if $b_k = c_k$ for $k = 0, \dots, n$.

- **Definition**.(Fourier Coefficient) Let $\{e_0, \dots, e_n, \dots\}$ be a set of orthogonal set on Hilbert space H. If $x \in H$, $x = \sum \langle x, e_n \rangle e_n$ where $\langle x, e_n \rangle$ is **Fourier Coefficient**.
- **Theorem.** Let $S = \{e_0, \dots, e_n, \dots\}$ be an orthonormal set for $L^2[0, 1]$ (or any Hilbert space H). If $f \in L^2[0, 1]$ such that, $f(x) = \sum c_n \varphi_n(x)$. Then, $\sum_{n=1}^{\infty} |c_n|$ converges and satisfy,

$$|c_n|^2 \le ||f||^2$$
 (Bassel's Inequality)

And equality holds if and only if we have

$$\lim_{n \to \infty} \|f - s_n\| = 0$$

where s_n is defined in previous theorem (**Parseval's** formula)

• As a consequence of the above theorem we can say the Fourier Coefficients converges to 0 as $n \to \infty$.

COROLLARY. If f is any Lebesgue integrable function we must have

$$\lim_{n \to \infty} \int_0^{2\pi} f(x) e^{-nix} = 0$$

• Theorem.

(Riesz-Fischer Theorem). Let, $S = \{\varphi_0, \dots, \varphi_m, \dots\}$ be an orthonormal set of $L^2[0, 1]$. Let, $\{c_k\}$ be a given sequence of complex numbers such that $\sum |c_k|^2$ converges. Then there is a function $f \in L^2[0, 1]$ with (i) $c_k = \langle \varphi_k, f \rangle$ and (ii) $\sum |c_k|^2 = ||f||$.

- **Definition**.Let S be an orthogonal set of the Hilbert space H, then it will be called an orthogonal Basis if Span(S) is a dense subset of H, i.e. $\overline{\text{Span}(S)} = H$.
- Two basis of *H* must have same cardinality.
- **Theorem.** Let, f be a 1-periodic function in $C^k(\mathbb{R})$, then *n*-th Fourier coefficients satisfy

$$\lim_{n \to \infty} \sup \left| n^k c_n(f) \right| < \infty$$

- Smoothness of f implies $\hat{f} = \{c_n(f)\}$ decay.
- Let, f be a 1-periodic function satisfying Lipschitz or order α then,

$$\lim_{n \to \infty} \sup |n^{\alpha} c_n(f)| < \infty$$

• For a differentiable function f, we have

$$c_n(f') = 2\pi n i \, c_n(f)$$

- Dirichlet's Kernel. $D_N(X) = \frac{1}{2} \cdot \sum_{k=-N}^{N} e^{2\pi i \, kx}$
- Note that $c_n(f * g) = c_n(f)c_n(g)$.

$$f * D_N = s_N = \sum_{k=-N}^N c_n(f) e^{2\pi i \, kx}$$

• On the interval [0,1), D_N can be explicitly written as

$$D_N(x) = \begin{cases} \frac{\sin 2\pi \left(N + \frac{1}{2}\right)x}{2\sin \pi x} & \text{if } x \neq 0\\ \left(N + \frac{1}{2}\right) & \text{if } x = 0 \end{cases}$$

- It can be shown that the L^1 norm of D_N is bigger than $O(\log N)$. D_N satisfy every property for being a 'bump function' except for the condition of being positive everywhere.
- Fejer Kernel. Cesaro sum of Dirichlet kernals,

$$F_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} D_k(x)$$

which is equal to $\frac{\sin^2(\pi nx)}{n\sin^2\pi x}$ for $x \neq 0$ and equal to n for x = 0. It can be shown easily $F_n(x)$ is bump function.

• Theorem. If $f \in \mathcal{R}(\alpha)$ on [0, 1] then, $\alpha \in \mathcal{R}(f)$ on [0, 1] and

$$\int_{0}^{1} f \, d\alpha + \int_{0}^{1} \alpha \, df = f(1)\alpha(1) - \alpha(0)f(0)$$

• **Theorem.** (Bonnet) Let $g \in C[0,1]$, f is increasing on [0,1]. Then $\exists x_0 \in [0,1]$ such that,

$$\int f(x)g(x) \, dx = f(0^+) \int_0^{x_0} g(x) + f(1^-) \int_{x_0}^1 g(x) \, dx$$

§ If $f \ge 0$ there exist $x_0 \in [0, 1]$ such that,

$$\int_0^1 f(x)g(x)\,dx = f(1^-)\int_{x_0}^1 g(x)\,dx$$

• Riemann Lebesgue lemma. Assume $f \in L(I)$. Then, for each β we have

$$\lim_{\alpha \to \infty} \int_{I} f(t) \sin(\alpha t + \beta) \, dt = 0$$

• If $f \in L(-\infty, \infty)$, we have

$$\lim_{\alpha \to \infty} \int_{-\infty}^{\infty} f(t) \frac{1 - \cos \alpha t}{t} \, dt = \int_{0}^{\infty} \frac{f(t) - f(-t)}{t} \, dt$$

• **Theorem. Jordan.** If g is of bounded variation on $[0, \delta]$, then

$$\lim_{\alpha \to \infty} \frac{2}{\pi} \int_0^\sigma g(t) \frac{\sin \alpha t}{t} \, dt = g(0^+)$$

 Theorem. Dini. Assume g(0⁺) exists and suppose that for δ > 0 the Lebesgue integral

$$\int_0^\delta \frac{g(t) - g(0^+)}{t} \, dt$$

exists. Then we have,

$$\lim_{\alpha \to \infty} \frac{2}{\pi} \int_0^{\delta} g(t) \frac{\sin \alpha t}{t} \, dt = g(0^+)$$

• Integral representation. Assume that $f \in L[\pi, -\pi]$, if s_n is the partial sum generated by f, say

$$s_n(x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx)$$

Then we have the integral representation

$$s_n(x) = \frac{2}{\pi} \int_0^{\pi} \frac{f(x+t) + f(x-t)}{2} D_n(t) dt$$

• Theorem (Riemann Localization) Assume $f \in L[0, 2\pi]$ and suppose f hs period 2π . Then the fourier series generated by f will converge if and only for some δ the following limit exists:

$$\lim_{n \to \infty} \frac{2}{\pi} \int_0^{\delta} \frac{f(x+\delta) + f(x-\delta)}{2} \frac{\sin\left(n + \frac{1}{2}\right)t}{t} dt$$

In which case the value of this limit is the sum of the Fourier series.

• Conditions for convergence.

- Jordan test. If f is B.V on the compact interval $[x-\delta, x+\delta]$, then the limit s(x) exist and then the Fourier series generated by f converges to s(x). where s(x) is,

$$\lim_{t \to 0^+} \underbrace{\frac{f(x+t) + f(x-t)}{2}}_{=g(t)}$$

- **Dini's test.** If the limit s(x) exists and if the Lebesgue integral exist for $\delta < \pi$,

$$\int_0^\delta \frac{g(t) - s(x)}{t} \, dt$$

then the Fourier series generated by f converges to s(x).

• Let f be a Lebesgue integrable function on $[0, 2\pi]$ and have period 2π . The following term has an Integral representation

$$\sigma_n(x) = \frac{s_0(x) + \dots + s_{n-1}(x)}{n}$$

Integral representation:

$$\sigma_n(x) = \frac{1}{n\pi} \int_0^{\pi} \frac{f(x+t) + f(x-t)}{2} F_n(t)$$

• Theorem (Fejer Theorem.) Assume that $f \in L[0, 2\pi]$ with period 2π and suppose the following limit exits

$$s(x) = \lim_{t \to 0^+} \frac{f(x+t) + f(x-t)}{2}$$

Then the fourier series generated by f is Cesaro summable and we have

$$\lim_{n \to \infty} \sigma_n(x) = s(x)$$

- The above converge is uniform if f is continuous.
- Consequences of Fejer Theorem: f is a continuous 2π -periodic function. Let, $\{s_n\}$ denote the sequence of partial sums, then we have

-
$$\lim s_n = f$$
 on $[0, 2\pi]$.

$$-\frac{1}{\pi}\int_0^{2\pi} |f(x)|^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^\infty (a_n^2 + b_n^2)$$

- The fourier series can be integrated term by term.
- Theorem (Lebesgue Differentiation theorem) If f is a Lebesgue integrable function on \mathbb{R} , then for all most all $x \in R$,

$$f(x) = \lim_{r \to 0} \int_{x-r}^{x+r} f(t) dt$$

• **Definition**. The point $x \in \mathbb{R}$ is Lebesgue point of f if,

$$\lim_{r \to 0} \frac{1}{2r} \int_{x-r}^{x+r} |f(t) - f(x)| \, dt = 0$$