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Fixed point theorems

§5.1 Brouwer Fixed point theorem

Theorem 5.1.1 (Brouwer fixed point theorem)

For n ≥ 0 every continuous map from Dn (closed disk whose boundary is Sn−1) to itself has
a fixed point.

Proof. Let, f : Dn → Dn be a continuous function. For
contradiction let’s assume f has no fixed point. For any point
p ∈ Dn we will draw a ray from f(p) to p.

This ray will cut the boundary ∂Dn = Sn−1 at a point g(p). If we
vary p ∈ Dn we can create a continuous function g : Dn → Sn−1.

Notice that, g|Sn−1 = 1Sn−1 . Hence, g is a retraction of Sn−1 onto
Dn. We will use the following lemma to finish the proof.

§ Lemma: For n ≥ 0,Sn is not a retract of Dn+1.

Proof. We know Dn+1 is contractible the homology group
H̃n(D

n+1) is 0. But Hn(Sn) = Z. We know a retraction r induce
surjective homomorphism r∗ in homology. But there is no surjective homomorphism from 0 to Z. ■

The theorem can be generalised for a compact and convex set of an euclidian space. Every
continuous function from a nonempty convex compact subset K of a Euclidean space to K itself has
a fixed point.

§5.2 Lefschetz Fixed point theorem

There is an interesting generalization of Brouwer fixed-point theorem, which contains a criterion for
showing that a certain map from X to itself has a fixed point even if not every map of X to itself
has fixed points.

Definition 5.2.1 ▶ Lefschetz point

Let C be a finitely generated graded group and let h : C → C be an endomorphism of C of
degree 0. The Lefschetz number λ(h) is defined by the formula

λ(h) = Σ(−1)qTr (hq)

When ever we have a graded group C, we have some collection of Abelian groups. We can determine
the image of a homomorphism between Abelian group to itself just by looking what is the image of

2



generators. This is the reason we can consider a homomorphism as a matrix and can talk about the
trace.

Theorem 5.2.1

Let, τ be a chain map and τ∗ is the induced homomorphism on the homology groups then,

λ(τ) = λ(τ∗)

It can be proved in the same way we proved 2.3.1 along with Hopf Trace formula. [Rot12]

Let f : X → X be a map, where X has finitely generated homology. The Lefschetz number of f ,
denoted by λ(f), is defined to be the Lefschetz number of the homomorphism f∗ : H(X) → H(X)
induced by f . It counts the algebraic number of fixed homology classes of f∗.

Theorem 5.2.2 (Lefschetz fixed-point theorem)

Let X be a compact polyhedron and let f : X → X be a map. If λ(f) ̸= 0, then f has a
fixed point.

Proof. We can assume X = |L| for some simplicial complex L. And f do not have any fixed point.
Since X is compact metric space we assume d(f(a), a) ≥ ϵ for some ϵ > 0 and for all a ∈ X = |L|.
We can assume K be a subdivision of L such that meshK < ϵ

3 . Let, K
′ be a subdivision of K such

that there exists a simplicial mapφ : K ′ → K which is a simplicial approximation 1 to f : |K| → |K|.

Since |φ|(α) and f(α) belong to some simplex of K, d(|φ|(α), f(α)) < ϵ/3 for α ∈ |K|. If s is any
simplex of K, |s| is disjoint from |φ|(|s|). If else, α ∈ |s| is equal to |φ|(β) for β ∈ |s|, then

d(β, f(β)) ≤ d(β, α) + d(|φ|(β), f(β)) < 2ϵ/3

which is a contradiction! Let τ : C(K) → C (K ′) be a subdivision chain map 2, then C(φ)τ :
C(K) → C(K) is a chain map.

By the above computation we can conclude, if σ is an oriented q-simplex on a q-simplex s of K,
then C(φ)τ(σ) is a q-chain on the largest sub-complex of K disjoint from s. Therefore, C(φ)τ(σ)
is a q-chain having coefficient 0 on σ. Since this is so for every σ, all the coefficients summed in
forming Tr(C(φ)τ)q are zero and Tr ((C(φ)τ)q) = 0 for all q. Which implies λ(C(φ)τ) = 0. By
theorem 5.2 λ ((C(φ)τ)∗) = 0. Let φ′ : K ′ → K be a simplicial approximation1 to the identity map
|K ′| ↪→ |K|.

From the diagram we have,

λ(f∗) = λ(|φ|∗|φ
′|−1
∗ )

= λ(φ∗φ
′−1
∗ )

2 = λ(φ∗τ∗)

= λ([C(φ)τ ]∗)

= 0
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From here we have λ(f) ̸= 0. ■

1 A continuous map f : |L1| → |L2| said to have a simplicial approximation if there is a simplicial
map φ : L1 → L2 such that for all x ∈ |L1|, f(x) and |φ|(x) belong to same closed simplex of
L2. For every continuous map f : |L| → |K| there exists a subdivision L′ of L and a simplicial
approximation φ : L′ → K. Note that |L| = |L′|. [Spa95]

2 If K ′ is a subdivision of K then there exists subdivision chain maps τ : C(K) → C(K ′). If φ′ is
simplicial approximation to identity map |K ′| ↪→ |K|, then τ∗ = φ′−1

∗ . [Spa95]

A map f : Sn → Sn induce f∗ : Hn(Sn) = Hn(Sn) which is a map from Z to Z. The map f∗ is
characterized by f∗(1). We call this degree of f and denote it as, deg f . For any map f : Sn → Sn,

λ(f) = 1 + (−1)n deg f

For any antipodal map f : Sn → Sn there is no fixed point. Hence, deg f = (−1)n+1.

Theorem 5.2.3 (Hairy ball theorem)

Sn has continuous non-vanishing tangent vector if and only if n is odd.

Proof. Suppose F be a non-vanishing tangent vector field. At a point x ∈ Sn we have F (x) ⊥ x.
Since it is non-zero everywhere we can define F

∥F∥ . Let, f : Sn → Sn be a continuous function such

that f(x) = F (x)
∥F (x)∥ . Clearly, f is a continuous function and ⟨f(x), x⟩ = 0. We can define

ft(x) =
(1− t)x+ tf(x)

∥(1− t)x+ tf(x)∥

ft defines a homotopy between 1Sn and f . Which means deg f = deg 1Sn . By 5.2 we have λ(f) = 0
as it has no fixed point. Which implies (−1)n+1 = 1 and hence n is odd.

If n is odd then, consider the following map,

(x0, · · · , x2m) 7→ (x1,−x0, · · · , x2m,−x2m−1)

We can see this is a continuous function and tangent to the point (x0, · · · , x2n). ■

§5.3 Fixed point for flow on a topological space

Definition 5.3.1 ▶ Flow on a topological space

flow on X is a continuous map
ψ : R×X → X

such that,
(a) ψ (t1 + t2, x) = ψ (t1, ψ (t2, x)) where t1, t2 ∈ R.

(b) ψ(0, x) = x for x ∈ X.

We can consider ψt(x) = ψ(t, x), which are homeomorphisms of X. We can see ψt forms a group
under composition. We also have ψt(x)

−1 = ψ−t(x). Let, Homeo(X) denotes the group of all
homeomorphisms of X. The flow ψ, on the space X is basically image of the homomorphism
R → Homeo(X) defined by t 7→ ψt.

Definition 5.3.2 ▶ Fixed-point of a flow

A fixed-point of a flow x0 such that ψ(t, x0) = x0 for all t ∈ R.
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Theorem 5.3.1

If X is a compact polyhedron with χ(X) ̸= 0, then any flow on X has a fixed point.

Proof. Let ψ(t, x) be a flow on x. Since ψt is a homomorphism we must have ψt ≃ 1X ( we can get
this homotopy because of the flow ψ(t, x)). Then we can say that,

λ(ψt) = λ(1X) = χ(X) ̸= 0

For n ≥ 1 let An be the closed subset of X consisting of the fixed points of ψ1/2n . Then An+1 ⊂ An,
and {An} is a decreasing sequence of nonempty closed subsets of the compact spaceX. Let F = ∩An.
Then F is nonempty, and any point of F is fixed under ψt for all t of the form 1/2n for n ≥ 1.

This implies that each point of F is fixed under ψt for all dyadic rationals t = m/2n. Since the
dyadic rationals are dense in R, each point of F is fixed under ψt for all t. ■
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Jordan-Brouwer Separation theorem

Theorem 6.0.2

If A ⊂ Sn is homeomorphic to Ik for 0 ≤ k ≤ n, then H̃ (Sn −A) = 0.

Proof. We will proceed by induction. For k = 0, I0 is just a point Sn − p is homeomorphic to Rn.
Which is contractible hence H̃(Sn −A) = 0.

Assume the result for k < m, where m ≥ 1, and let A be homeomorphic to Im. Regard A as being
homeomorphic to B × I, where B is homeomorphic to Im−1, by a homeomorphism h : B × I → A.
Let A′ = h(B× [0, 1/2]) and A′′ = h(B× [1/2, 1]). Then A = A′ ∪A′′ and A′ ∩A′′ is homeomorphic
to B ×

{
1
2

}
. By the inductive assumption, H̃ (Sn − (A′ ∩A′′)) = 0. Because Sn − A′ and Sn − A′′

are open sets, they are excisive and from the exactness of the corresponding reduced Mayer-Vietoris
sequence,

0
∂∗−→ H̃q (Sn −A)

i∗−→ H̃q (Sn −A′)⊕ H̃q (Sn −A′′)
j∗−→ 0

We can say that, H̃q (Sn −A) ≈ H̃q (S
n −A′) ⊕ H̃q (S

n −A′′). If z is a non-zero cycle in Sn − A,

then either i′∗z ̸= 0 in H̃q (Sn −A′) or i′′∗z ̸= 0 in H̃q (S
n −A′′) where,

i′ : Sn −A ↪→ Sn −A′

i′′ : Sn −A ⊂ Sn −A′′

Assume i ∗′ z ̸= 0. We repeat the argument for A′ (we will split the interval [0, 12 ] into two halves
and carry out the same argument we did for A) and thus obtain a sequence of sets

A′ ⊃ A1 ⊃ A2 · · ·

such that, the inclusion Sn − A′ ⊂ Sn − Aj maps z to a non-zero element of H̃q(Sn − Aj). Notice
that, ∩Ai is homeomorphic to Im−1. We can see this Sn − Aj forms a direct system with limit
Sn − ∩Ai. Since homology functor commutes with the direct limit we must have,

lim
→

{
H̃q(Sn −Aj)

}
= H̃q(Sn − ∩Ai) = 0

The element z determines a non-zero element of lim→

{
H̃q(Sn −Aj)

}
. Which is not possible. So

there is no non-zero cycle z in Sn −A. Thus, H̃q(Sn −A) is zero. ■

Corollary. Let B be a subset of Sn which is homeomorphic to Sk for 0 ≤ k ≤ n− 1. Then

H̃q (Sn −B) ∼=

{
0 q ̸= n− k − 1

Z q = n− k − 1
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Proof. We use induction on k. If k = 0, then B consists of two points and Sn − B has the same
homotopy type as Sn−1. Therefore,

H̃q (Sn −B) ∼=

{
0 q ̸= n− 1

Z q = n− 1

If k ≥ 1, set B = A1 ∪ A2, where A1 and A2 are closed hemispheres of Sk and assume the result
valid for k − 1. Then A1 and A2 are homeomorphic to Ik and A1 ∩ A2 is homeomorphic to Sk−1.
Because Sn − A1 and Sn − A2 are open, {Sn −A1,Sn −A2} is an excisive couple, and there is an
exact reduced Mayer-Vietoris sequence

· · · → H̃q+1 (Sn −A1)⊕ H̃q+1 (Sn −A2) → H̃q+1 (Sn − (A1 ∩A2)) →
H̃q (Sn −B) → H̃q (Sn −A1)⊕ H̃q (Sn −A2) → · · ·

By theorem we have, H̃q(Sn − Ai) = 0 for i = 1, 2. From the above exact sequence we have,

Hq(Sn −B) ∼= H̃q+1(Sn − Sk−1). ■

Theorem 6.0.3 (Jordan-Brouwer separation theorem)

An (n−1)-sphere embedded in Sn separates Sn into two path-components of which it is their
common boundary.

Proof. If B ⊂ Sn is homeomorphic to Sn−1, then H̃0 (Sn −B) ∼= Z. Therefore, Sn − B consists of
two path components. Since Sn − B is an open subset of Sn, it is locally path connected and its
path components U and V , say, are its components. Clearly, B contains the boundary of U and of
V .

To prove B ⊂ Ū ∩ V̄ , let x ∈ B and let N be a neighborhood of x in Sn. Let A ⊂ B ∩N be a subset
such that B − A, is homeomorphic to In−1. Then H̃ (Sn − (B −A)) = 0, by previous theorem, so
Sn − (B −A) is path connected.

If p ∈ U and q ∈ V , there is a path wp,q between p, q. Since p, q are in different component of Sn−B,
wp,q must pass through A. Let, wp,q : I → Sn \ (B −A), where wp,q(0) = p, wp,q(1) = q. Consider,

t0 = inf {t ∈ I(t)|wp,q(t) ∈ A}

Let, J = [0, t0). We can see wp,q(J) is connected and contains p. Since,wp,q(J) ∈ Sn \B. Therefore,
wp,q(J) ⊂ U . Therefore, any neighborhood of wp,q(t0) in N meets U . Thus N ∩ U ̸= ∅. Which
means x ∈ Ū .

We can do the similar proof for V by taking the interval (t1, 1] where t1 = sup {t ∈ I : wp,q(t) ∈ A}.
We can say B ⊆ Ū ∩ V̄ . ■

§6.1 Applications of Jordan separation theorem

Since Sn is one point compactification of Rn we can restate the Jordan-Brouwer separation theorem
in the following way, If B is a subspace of Rn homeomorphic to Sn−1 then, Rn \B contains two path
component. B is boundary of both the path component. For n = 2 this is known as Jordan curve
theorem. One of the important application of Jordan Brouwer separation theorem is Invariance of
Domain theorem.

Theorem 6.1.1 (Invariance of Domain)

If U and V are homeomorphic subsets of Sn and U is open in Sn, then V is open in Sn.
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Proof. Let h : U → V be a homeomorphism and let h(x) = y. Let, A be a closed neighborhood of x
in U that is homeomorphic to In and with boundary B homeomorphic to Sn−1. Let, A′ = h(A) ⊂ V
and let B′ = h(B). Sn − A′ is connected and by Jordan-Brouwer separation theorem, Sn − B′ has
two connected component. We also have,

Sn −B′ = (Sn −A′) ∪ (A′ −B′)

Thus Sn −A′ and A′ −B′ are connected. They are the components of Sn −B′. So, A′ −B′ is open
in Sn −B′. A′ −B′ is open neighborhood of y which is contained in V . Hence, V is open. ■

The above theorem tells us, ‘for the subspaces of Rn the property of being open is a topological
invariance’. We can also restate the Invariance of Domain for Rn in the following way.

Corollary. Let U and V be two arbitrary subsets of Rn (or Sn) having a homeomorphism
f : U → V .Then, f maps interior points onto interior points and boundary points onto boundary-
points.

♦ Example :We can not embed Sn in Rn.

Proof. If else we can get an embedding h : Sn → Sn\{N} ( or Sn). Break Sn into two parts D+, D−

which are homeomorphic to n-dim closed disk (or, In). Their common boundary is homomorphic
to Sn−1. Consider, Mayer-Vietoris sequence on Sn − h(D+) and Sn − h(D−) to get

H̃0(Sn − h(D+ ∩D−)) = 0

♦ Example :Let, f, g : [0, 1] → D2 are paths in closed
disk D2 such that, g(0) = (1, 0), g(1) = (−1, 0) and f(0) =
(0, 1), f(1) = (0,−1). Assume f is injective path then, f in-
tersects with g.

Proof. Consider an injective path γ : [0, 1] → R2 \ intD2. Now
glue this path γ together with f to get a ‘simple closed curve’
γ ∗ f , which is homomorphic to S1.

Using Jordan curve theorem we can see that if f do not pass
through (1, 0), (−1, 0) then these points belongs to two different
path-component separated by γ ∗f . g path can exist in R2 if and
only if g intersects f .

♦ Example :Let, T be the torus and S2 be the sphere. Consider n ≥ 3 a natural number. If
we remove n-points from the sphere and (n − 2) points from T . We will get two space which are
homotopic but not homeomorphic.

Proof. S2 \n points is homeomorphic to R2 \(n−1)points, which is deformation retract onto ‘wedge
sum of’ (n− 1) circles.

Torus can be viewed as a quotient of a square whose sides are identified. Removing (n − 2) points
from torus is equivalent to removing (n− 2) points from the square. The following picture will give
us deformation retract onto ‘wedge sum of (n− 1) circles’.

(Removing some points from torus is homotopic to removing some open small disks around each
point which we can treat like a rectangle (2nd picture), which has deformation retract onto square
with some lines (3rd picture). After taking the quotient of the sides of square we will get wedge sum
of n− 1 circles)
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Both the spaces have deformation retract onto wedge sum of (n − 1) circles. So we cannot say
they are not homeomorphic by looking at their fundamental groups. For contradiction let h be the
homeomorphism between the points. Let C be a circle in T represented by ‘red line’. h(C) will also
be a closed simple curve in S2. Notice that complement of h(C) in S2 has two path components but
complement of C in torus do not have two different path component. ■

Corollary. If we remove any finite number of points from T and any finite number of points
in S2 we cannot have homomorphic spaces.

Corollary. If we remove n disjoint small open disks from S2 and (n− 2) small disjoint open
disks from T , the spaces will be homotopic, but they are not homeomorphic

Proof. Just apply 6.1, both the spaces have different number of boundary.
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