EXPLORING FIXED-POINT AND SEPARATION THEOREMS

WITH THE HELP OF HOMOLOGY THEORY

Trishan Mondal

Indian Statistical Institute, Bangalore

GUIDED BY: **Prof. S.K. Roushon** Tata Institute of Fundamental Research, Mumbai

Contents

Fixed	point theorems	2
5.1	Brouwer Fixed point theorem	2
5.2	Lefschetz Fixed point theorem	2
5.3	Fixed point for flow on a topological space	4
Jordan-Brouwer Separation theorem		
6.1	Applications of Jordan separation theorem	7
Biblio	graphy	10

Fixed point theorems

§5.1 Brouwer Fixed point theorem

Theorem 5.1.1 (Brouwer fixed point theorem)

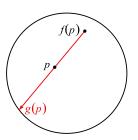
For $n \ge 0$ every continuous map from D^n (closed disk whose boundary is \mathbb{S}^{n-1}) to itself has a fixed point.

Proof. Let, $f : D^n \to D^n$ be a continuous function. For contradiction let's assume f has no fixed point. For any point $p \in D^n$ we will draw a ray from f(p) to p.

This ray will cut the boundary $\partial D^n = \mathbb{S}^{n-1}$ at a point g(p). If we vary $p \in D^n$ we can create a continuous function $g: D^n \to \mathbb{S}^{n-1}$.

Notice that, $g|_{\mathbb{S}^{n-1}} = 1_{\mathbb{S}^{n-1}}$. Hence, g is a retraction of \mathbb{S}^{n-1} onto D^n . We will use the following lemma to finish the proof.

§ Lemma: For $n \ge 0, \mathbb{S}^n$ is not a retract of D^{n+1} .



Proof. We know D^{n+1} is contractible the homology group $\tilde{H}_n(D^{n+1})$ is 0. But $H_n(\mathbb{S}^n) = \mathbb{Z}$. We know a retraction r induce surjective homomorphism r_* in homology. But there is no surjective homomorphism from 0 to \mathbb{Z} .

The theorem can be generalised for a compact and convex set of an euclidian space. Every continuous function from a nonempty convex compact subset K of a Euclidean space to K itself has a fixed point.

§5.2 Lefschetz Fixed point theorem

There is an interesting generalization of Brouwer fixed-point theorem, which contains a criterion for showing that a certain map from X to itself has a fixed point even if not every map of X to itself has fixed points.

Definition 5.2.1 **Lefschetz point**

Let C be a finitely generated graded group and let $h : C \to C$ be an endomorphism of C of degree 0. The **Lefschetz number** $\lambda(h)$ is defined by the formula

$$\lambda(h) = \Sigma(-1)^q \mathbf{T} \mathbf{r} \left(h_q \right)$$

When ever we have a graded group C, we have some collection of Abelian groups. We can determine the image of a homomorphism between Abelian group to itself just by looking what is the image of generators. This is the reason we can consider a homomorphism as a matrix and can talk about the trace.

Theorem 5.2.1

Let, τ be a chain map and τ_* is the induced homomorphism on the homology groups then,

$$\lambda(\tau) = \lambda(\tau_*)$$

It can be proved in the same way we proved 2.3.1 along with Hopf Trace formula. [Rot12]

Let $f: X \to X$ be a map, where X has finitely generated homology. The **Lefschetz number** of f, denoted by $\lambda(f)$, is defined to be the Lefschetz number of the homomorphism $f_*: H(X) \to H(X)$ induced by f. It counts the algebraic number of fixed homology classes of f_* .

Theorem 5.2.2 (Lefschetz fixed-point theorem)

Let X be a compact polyhedron and let $f: X \to X$ be a map. If $\lambda(f) \neq 0$, then f has a fixed point.

Proof. We can assume X = |L| for some simplicial complex L. And f do not have any fixed point. Since X is compact metric space we assume $d(f(a), a) \ge \epsilon$ for some $\epsilon > 0$ and for all $a \in X = |L|$. We can assume K be a subdivision of L such that mesh $K < \frac{\epsilon}{3}$. Let, K' be a subdivision of K such that there exists a simplicial map $\varphi : K' \to K$ which is a simplicial approximation ¹ to $f : |K| \to |K|$.

Since $|\varphi|(\alpha)$ and $f(\alpha)$ belong to some simplex of K, $d(|\varphi|(\alpha), f(\alpha)) < \epsilon/3$ for $\alpha \in |K|$. If s is any simplex of K, |s| is disjoint from $|\varphi|(|s|)$. If else, $\alpha \in |s|$ is equal to $|\varphi|(\beta)$ for $\beta \in |s|$, then

$$d(\beta, f(\beta)) \le d(\beta, \alpha) + d(|\varphi|(\beta), f(\beta)) < 2\epsilon/3$$

which is a contradiction! Let $\tau : C(K) \to C(K')$ be a subdivision chain map², then $C(\varphi)\tau : C(K) \to C(K)$ is a chain map.

By the above computation we can conclude, if σ is an oriented q-simplex on a q-simplex s of K, then $C(\varphi)\tau(\sigma)$ is a q-chain on the largest sub-complex of K disjoint from s. Therefore, $C(\varphi)\tau(\sigma)$ is a q-chain having coefficient 0 on σ . Since this is so for every σ , all the coefficients summed in forming $\operatorname{Tr}(C(\varphi)\tau)q$ are zero and $\operatorname{Tr}((C(\varphi)\tau)_q) = 0$ for all q. Which implies $\lambda(C(\varphi)\tau) = 0$. By theorem 5.2 $\lambda((C(\varphi)\tau)*) = 0$. Let $\varphi': K' \to K$ be a simplicial approximation¹ to the identity map $|K'| \hookrightarrow |K|$.

$$H(K) \xleftarrow{\varphi'_{*}} H(K') \xrightarrow{\varphi_{*}} H(K)$$

$$\cong \uparrow \qquad \Rightarrow \uparrow \qquad \uparrow \cong$$

$$H(\Delta(K)) \xleftarrow{} H(\Delta(K')) \longrightarrow H(\Delta(K))$$

$$\cong \downarrow \qquad \cong \downarrow \qquad \downarrow \cong$$

$$H(|K|) \xleftarrow{}_{1 = |\varphi'|_{*}} H(|K|) \xrightarrow{}_{|\varphi|_{*} = f_{*}} H(|K|)$$

From the diagram we have,

$$\lambda(f_*) = \lambda(|\varphi|_*|\varphi'|_*^{-1})$$
$$= \lambda(\varphi_*\varphi'_*^{-1})$$
$$^2 = \lambda(\varphi_*\tau_*)$$
$$= \lambda([C(\varphi)\tau]_*)$$
$$= 0$$

From here we have $\lambda(f) \neq 0$.

¹ A continuous map $f: |L_1| \to |L_2|$ said to have a simplicial approximation if there is a simplicial map $\varphi: L_1 \to L_2$ such that for all $x \in |L_1|$, f(x) and $|\varphi|(x)$ belong to same closed simplex of L_2 . For every continuous map $f: |L| \to |K|$ there exists a subdivision L' of L and a simplicial approximation $\varphi: L' \to K$. Note that |L| = |L'|. [Spa95]

² If K' is a subdivision of K then there exists subdivision chain maps $\tau : C(K) \to C(K')$. If φ' is simplicial approximation to identity map $|K'| \hookrightarrow |K|$, then $\tau_* = \varphi'^{-1}_*$. [Spa95]

A map $f : \mathbb{S}^n \to \mathbb{S}^n$ induce $f_* : H_n(\mathbb{S}^n) = H_n(\mathbb{S}^n)$ which is a map from \mathbb{Z} to \mathbb{Z} . The map f_* is characterized by $f_*(1)$. We call this *degree* of f and denote it as, deg f. For any map $f : \mathbb{S}^n \to \mathbb{S}^n$,

 $\lambda(f) = 1 + (-1)^n \deg f$

For any antipodal map $f: \mathbb{S}^n \to \mathbb{S}^n$ there is no fixed point. Hence, deg $f = (-1)^{n+1}$.

Theorem 5.2.3 (Hairy ball theorem)

 \mathbb{S}^n has continuous non-vanishing tangent vector if and only if n is odd.

Proof. Suppose F be a non-vanishing tangent vector field. At a point $x \in \mathbb{S}^n$ we have $F(x) \perp x$. Since it is non-zero everywhere we can define $\frac{F}{\|F\|}$. Let, $f : \mathbb{S}^n \to \mathbb{S}^n$ be a continuous function such that $f(x) = \frac{F(x)}{\|F(x)\|}$. Clearly, f is a continuous function and $\langle f(x), x \rangle = 0$. We can define

$$f_t(x) = \frac{(1-t)x + tf(x)}{\|(1-t)x + tf(x)\|}$$

 f_t defines a homotopy between $1_{\mathbb{S}^n}$ and f. Which means deg $f = \text{deg } 1_{\mathbb{S}^n}$. By 5.2 we have $\lambda(f) = 0$ as it has no fixed point. Which implies $(-1)^{n+1} = 1$ and hence n is odd.

If n is odd then, consider the following map,

$$(x_0, \cdots, x_{2m}) \mapsto (x_1, -x_0, \cdots, x_{2m}, -x_{2m-1})$$

We can see this is a continuous function and tangent to the point (x_0, \dots, x_{2n}) .

§5.3 Fixed point for flow on a topological space

Definition 5.3.1 \blacktriangleright Flow on a topological space flow on X is a continuous map $\psi : \mathbb{R} \times X \to X$ such that, (a) $\psi(t_1 + t_2, x) = \psi(t_1, \psi(t_2, x))$ where $t_1, t_2 \in \mathbb{R}$. (b) $\psi(0, x) = x$ for $x \in X$.

We can consider $\psi_t(x) = \psi(t, x)$, which are homeomorphisms of X. We can see ψ_t forms a group under composition. We also have $\psi_t(x)^{-1} = \psi_{-t}(x)$. Let, Homeo(X) denotes the group of all homeomorphisms of X. The *flow* ψ , on the space X is basically image of the homomorphism $\mathbb{R} \to \text{Homeo}(X)$ defined by $t \mapsto \psi_t$.

Definition 5.3.2 Fixed-point of a flow		
A fixed-point of a flow x_0 such that $\psi(t, x_0) = x_0$ for all $t \in \mathbb{R}$.		

Theorem 5.3.1

If X is a compact polyhedron with $\chi(X) \neq 0$, then any flow on X has a fixed point.

Proof. Let $\psi(t, x)$ be a flow on x. Since ψ_t is a homomorphism we must have $\psi_t \simeq 1_X$ (we can get this homotopy because of the flow $\psi(t, x)$). Then we can say that,

$$\lambda(\psi_t) = \lambda(1_X) = \chi(X) \neq 0$$

For $n \ge 1$ let A_n be the closed subset of X consisting of the fixed points of $\psi_{1/2^n}$. Then $A_{n+1} \subset A_n$, and $\{A_n\}$ is a decreasing sequence of nonempty closed subsets of the compact space X. Let $F = \cap A_n$. Then F is nonempty, and any point of F is fixed under ψ_t for all t of the form $1/2^n$ for $n \ge 1$.

This implies that each point of F is fixed under ψ_t for all dyadic rationals $t = m/2^n$. Since the dyadic rationals are dense in \mathbb{R} , each point of F is fixed under ψ_t for all t.

Jordan-Brouwer Separation theorem

Theorem 6.0.2

If $A \subset \mathbb{S}^n$ is homeomorphic to I^k for $0 \leq k \leq n$, then $\tilde{H}(\mathbb{S}^n - A) = 0$.

Proof. We will proceed by induction. For k = 0, I^0 is just a point $\mathbb{S}^n - p$ is homeomorphic to \mathbb{R}^n . Which is contractible hence $\tilde{H}(\mathbb{S}^n - A) = 0$.

Assume the result for k < m, where $m \ge 1$, and let A be homeomorphic to I^m . Regard A as being homeomorphic to $B \times I$, where B is homeomorphic to I^{m-1} , by a homeomorphism $h : B \times I \to A$. Let $A' = h(B \times [0, 1/2])$ and $A'' = h(B \times [1/2, 1])$. Then $A = A' \cup A''$ and $A' \cap A''$ is homeomorphic to $B \times \left\{\frac{1}{2}\right\}$. By the inductive assumption, $\tilde{H}(\mathbb{S}^n - (A' \cap A'')) = 0$. Because $\mathbb{S}^n - A'$ and $\mathbb{S}^n - A''$ are open sets, they are excisive and from the exactness of the corresponding reduced Mayer-Vietoris sequence,

$$0 \xrightarrow{\partial_*} \tilde{H}_q(\mathbb{S}^n - A) \xrightarrow{i_*} \tilde{H}_q(\mathbb{S}^n - A') \oplus \tilde{H}_q(\mathbb{S}^n - A'') \xrightarrow{j_*} 0$$

We can say that, $\tilde{H}_q(\mathbb{S}^n - A) \approx \tilde{H}_q(S^n - A') \oplus \tilde{H}_q(S^n - A'')$. If z is a non-zero cycle in $\mathbb{S}^n - A$, then either $i'_* z \neq 0$ in $\tilde{H}_q(\mathbb{S}^n - A')$ or $i''_* z \neq 0$ in $\tilde{H}_q(S^n - A'')$ where,

$$i': \mathbb{S}^n - A \hookrightarrow \mathbb{S}^n - A'$$
$$i'': \mathbb{S}^n - A \subset \mathbb{S}^n - A''$$

Assume $i *' z \neq 0$. We repeat the argument for A' (we will split the interval $[0, \frac{1}{2}]$ into two halves and carry out the same argument we did for A) and thus obtain a sequence of sets

$$A' \supset A_1 \supset A_2 \cdots$$

such that, the inclusion $\mathbb{S}^n - A' \subset \mathbb{S}^n - A_j$ maps z to a non-zero element of $\tilde{H}_q(\mathbb{S}^n - A_j)$. Notice that, $\cap A_i$ is homeomorphic to I^{m-1} . We can see this $\mathbb{S}^n - A_j$ forms a direct system with limit $\mathbb{S}^n - \cap A_i$. Since homology functor commutes with the direct limit we must have,

$$\lim_{\to} \left\{ \tilde{H}_q(\mathbb{S}^n - A_j) \right\} = \tilde{H}_q(\mathbb{S}^n - \cap A_i) = 0$$

The element z determines a non-zero element of $\lim_{\to} \left\{ \tilde{H}_q(\mathbb{S}^n - A_j) \right\}$. Which is not possible. So there is no non-zero cycle z in $\mathbb{S}^n - A$. Thus, $\tilde{H}_q(\mathbb{S}^n - A)$ is zero.

COROLLARY. Let B be a subset of \mathbb{S}^n which is homeomorphic to \mathbb{S}^k for $0 \le k \le n-1$. Then

$$\tilde{H}_{q}\left(\mathbb{S}^{n}-B\right) \cong \begin{cases} 0 & q \neq n-k-1 \\ \mathbb{Z} & q = n-k-1 \end{cases}$$

Proof. We use induction on k. If k = 0, then B consists of two points and $\mathbb{S}^n - B$ has the same homotopy type as \mathbb{S}^{n-1} . Therefore,

$$\tilde{H}_q\left(\mathbb{S}^n-B\right) \cong \begin{cases} 0 & q\neq n-1 \\ \mathbb{Z} & q=n-1 \end{cases}$$

If $k \geq 1$, set $B = A_1 \cup A_2$, where A_1 and A_2 are closed hemispheres of \mathbb{S}^k and assume the result valid for k - 1. Then A_1 and A_2 are homeomorphic to I^k and $A_1 \cap A_2$ is homeomorphic to \mathbb{S}^{k-1} . Because $\mathbb{S}^n - A_1$ and $\mathbb{S}^n - A_2$ are open, $\{\mathbb{S}^n - A_1, \mathbb{S}^n - A_2\}$ is an excisive couple, and there is an exact reduced Mayer-Vietoris sequence

$$\cdots \to H_{q+1}\left(\mathbb{S}^n - A_1\right) \oplus H_{q+1}\left(\mathbb{S}^n - A_2\right) \to H_{q+1}\left(\mathbb{S}^n - (A_1 \cap A_2)\right) \to \\ \tilde{H}_q\left(\mathbb{S}^n - B\right) \to \tilde{H}_q\left(\mathbb{S}^n - A_1\right) \oplus \tilde{H}_q\left(\mathbb{S}^n - A_2\right) \to \cdots$$

By theorem we have, $\tilde{H}_q(\mathbb{S}^n - A_i) = 0$ for i = 1, 2. From the above exact sequence we have, $H_q(\mathbb{S}^n - B) \cong \tilde{H}_{q+1}(\mathbb{S}^n - \mathbb{S}^{k-1})$.

Theorem 6.0.3 (Jordan-Brouwer separation theorem)

An (n-1)-sphere embedded in \mathbb{S}^n separates \mathbb{S}^n into two path-components of which it is their common boundary.

Proof. If $B \subset \mathbb{S}^n$ is homeomorphic to \mathbb{S}^{n-1} , then $\tilde{H}_0(\mathbb{S}^n - B) \cong \mathbb{Z}$. Therefore, $\mathbb{S}^n - B$ consists of two path components. Since $\mathbb{S}^n - B$ is an open subset of \mathbb{S}^n , it is locally path connected and its path components U and V, say, are its components. Clearly, B contains the boundary of U and of V.

To prove $B \subset \overline{U} \cap \overline{V}$, let $x \in B$ and let N be a neighborhood of x in \mathbb{S}^n . Let $A \subset B \cap N$ be a subset such that B - A, is homeomorphic to I^{n-1} . Then $\tilde{H}(\mathbb{S}^n - (B - A)) = 0$, by previous theorem, so $\mathbb{S}^n - (B - A)$ is path connected.

If $p \in U$ and $q \in V$, there is a path $w_{p,q}$ between p, q. Since p, q are in different component of $\mathbb{S}^n - B$, $w_{p,q}$ must pass through A. Let, $w_{p,q} : I \to \mathbb{S}^n \setminus (B - A)$, where $w_{p,q}(0) = p, w_{p,q}(1) = q$. Consider,

$$t_0 = \inf \{ t \in I(t) | w_{p,q}(t) \in A \}$$

Let, $J = [0, t_0)$. We can see $w_{p,q}(J)$ is connected and contains p. Since, $w_{p,q}(J) \in \mathbb{S}^n \setminus B$. Therefore, $w_{p,q}(J) \subset U$. Therefore, any neighborhood of $w_{p,q}(t_0)$ in N meets U. Thus $N \cap U \neq \emptyset$. Which means $x \in \overline{U}$.

We can do the similar proof for V by taking the interval $(t_1, 1]$ where $t_1 = \sup \{t \in I : w_{p,q}(t) \in A\}$.

§6.1 Applications of Jordan separation theorem

Since \mathbb{S}^n is one point compactification of \mathbb{R}^n we can restate the Jordan-Brouwer separation theorem in the following way, If B is a subspace of \mathbb{R}^n homeomorphic to \mathbb{S}^{n-1} then, $\mathbb{R}^n \setminus B$ contains two path component. B is boundary of both the path component. For n = 2 this is known as Jordan curve theorem. One of the important application of Jordan Brouwer separation theorem is *Invariance of Domain theorem*.

```
Theorem 6.1.1 (Invariance of Domain)
```

If U and V are homeomorphic subsets of \mathbb{S}^n and U is open in \mathbb{S}^n , then V is open in \mathbb{S}^n .

Proof. Let $h: U \to V$ be a homeomorphism and let h(x) = y. Let, A be a closed neighborhood of x in U that is homeomorphic to I^n and with boundary B homeomorphic to \mathbb{S}^{n-1} . Let, $A' = h(A) \subset V$ and let B' = h(B). $\mathbb{S}^n - A'$ is connected and by Jordan-Brouwer separation theorem, $\mathbb{S}^n - B'$ has two connected component. We also have,

$$\mathbb{S}^n - B' = (\mathbb{S}^n - A') \cup (A' - B')$$

Thus $\mathbb{S}^n - A'$ and A' - B' are connected. They are the components of $\mathbb{S}^n - B'$. So, A' - B' is open in $\mathbb{S}^n - B'$. A' - B' is open neighborhood of y which is contained in V. Hence, V is open.

The above theorem tells us, 'for the subspaces of \mathbb{R}^n the property of being **open** is a topological invariance'. We can also restate the *Invariance of Domain* for \mathbb{R}^n in the following way.

COROLLARY. Let U and V be two arbitrary subsets of \mathbb{R}^n (or \mathbb{S}^n) having a homeomorphism $f: U \to V$. Then, f maps interior points onto interior points and boundary points onto boundary points.

• EXAMPLE : We can not embed \mathbb{S}^n in \mathbb{R}^n .

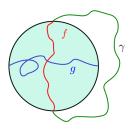
Proof. If else we can get an embedding $h : \mathbb{S}^n \to \mathbb{S}^n \setminus \{N\}$ (or \mathbb{S}^n). Break \mathbb{S}^n into two parts D^+ , D^- which are homeomorphic to *n*-dim closed disk (or, I^n). Their common boundary is homomorphic to \mathbb{S}^{n-1} . Consider, Mayer-Vietoris sequence on $\mathbb{S}^n - h(D^+)$ and $\mathbb{S}^n - h(D^-)$ to get

$$H_0(\mathbb{S}^n - h(D^+ \cap D^-)) = 0$$

• EXAMPLE :Let, $f,g : [0,1] \rightarrow D^2$ are paths in closed disk D^2 such that, g(0) = (1,0), g(1) = (-1,0) and f(0) = (0,1), f(1) = (0,-1). Assume f is injective path then, f intersects with g.

Proof. Consider an injective path $\gamma : [0, 1] \to \mathbb{R}^2 \setminus \operatorname{int} D^2$. Now glue this path γ together with f to get a 'simple closed curve' $\gamma * f$, which is homomorphic to \mathbb{S}^1 .

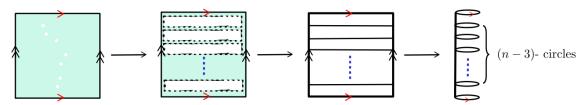
Using Jordan curve theorem we can see that if f do not pass through (1,0), (-1,0) then these points belongs to two different path-component separated by $\gamma * f$. g path can exist in \mathbb{R}^2 if and only if g intersects f.



• EXAMPLE :Let, T be the torus and S^2 be the sphere. Consider $n \ge 3$ a natural number. If we remove n-points from the sphere and (n-2) points from T. We will get two space which are homotopic but not homeomorphic.

Proof. $\mathbb{S}^2 \setminus n$ points is homeomorphic to $\mathbb{R}^2 \setminus (n-1)$ points, which is deformation retract onto 'wedge sum of' (n-1) circles.

Torus can be viewed as a quotient of a square whose sides are identified. Removing (n-2) points from torus is equivalent to removing (n-2) points from the square. The following picture will give us deformation retract onto 'wedge sum of (n-1) circles'.



(Removing some points from torus is homotopic to removing some open small disks around each point which we can treat like a rectangle (2nd picture), which has deformation retract onto square with some lines (3rd picture). After taking the quotient of the sides of square we will get wedge sum of n-1 circles)

Both the spaces have deformation retract onto wedge sum of (n-1) circles. So we cannot say they are not homeomorphic by looking at their fundamental groups. For contradiction let h be the homeomorphism between the points. Let C be a circle in T represented by 'red line'. h(C) will also be a closed simple curve in \mathbb{S}^2 . Notice that complement of h(C) in \mathbb{S}^2 has two path components but complement of C in torus do not have two different path component.

COROLLARY. If we remove any finite number of points from T and any finite number of points in \mathbb{S}^2 we cannot have homomorphic spaces.

COROLLARY. If we remove n disjoint small open disks from \mathbb{S}^2 and (n-2) small disjoint open disks from T, the spaces will be homotopic, but they are not homeomorphic

Proof. Just apply 6.1, both the spaces have different number of boundary.

Bibliography

- [Spa95] Edwin Henry Spanier. *Algebraic topology*. Springer, 1995. URL: http://gen.lib.rus.ec/ book/index.php?md5=328d2900ffda516087537233fea6ad62.
- [Rot12] Joseph J. Rotman. Introduction to algebraic topology. Springer, 2012.