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Fixed point theorems

§5.1 Brouwer Fixed point theorem

Theorem 5.1.1 (Brouwer fixed point theorem)

For n > 0 every continuous map from D™ (closed disk whose boundary is S"~!) to itself has
a fixed point.

Proof. Let, f : D™ — D™ be a continuous function. For
contradiction let’s assume f has no fixed point. For any point
p € D™ we will draw a ray from f(p) to p.

This ray will cut the boundary D™ = S"~! at a point g(p). If we
vary p € D™ we can create a continuous function ¢ : D™ — S*~ L.

Notice that, g|sn-1 = 1gn—1. Hence, g is a retraction of S"~! onto
D™. We will use the following lemma to finish the proof.

§ Lemma: For n > 0,S™ is not a retract of D"*1.

Proof.  We know D™+ is contractible the homology group
H,(D"™1)is 0. But H,(S") = Z. We know a retraction r induce
surjective homomorphism 7, in homology. But there is no surjective homomorphism from 0 to Z. B

The theorem can be generalised for a compact and convex set of an euclidian space. Every
continuous function from a nonempty convex compact subset K of a Euclidean space to K itself has
a fixed point.

§5.2 Lefschetz Fixed point theorem

There is an interesting generalization of Brouwer fixed-point theorem, which contains a criterion for
showing that a certain map from X to itself has a fixed point even if not every map of X to itself
has fixed points.

Definition 5.2.1 » Lefschetz point }

Let C be a finitely generated graded group and let h : C — C be an endomorphism of C' of
degree 0. The Lefschetz number A(h) is defined by the formula

A(h) = S(=1)7Tr (hy)

When ever we have a graded group C, we have some collection of Abelian groups. We can determine
the image of a homomorphism between Abelian group to itself just by looking what is the image of



generators. This is the reason we can consider a homomorphism as a matrix and can talk about the
trace.

Theorem 5.2.1

Let, 7 be a chain map and 7, is the induced homomorphism on the homology groups then,

A(T) = A7)

It can be proved in the same way we proved 2.3.1 along with Hopf Trace formula. | ]

Let f: X — X be a map, where X has finitely generated homology. The Lefschetz number of f,
denoted by A(f), is defined to be the Lefschetz number of the homomorphism f, : H(X) — H(X)
induced by f. It counts the algebraic number of fixed homology classes of f,.

Theorem 5.2.2 (Lefschetz fixed-point theorem)

Let X be a compact polyhedron and let f : X — X be a map. If A(f) # 0, then f has a
fixed point.

Proof. We can assume X = |L| for some simplicial complex L. And f do not have any fixed point.
Since X is compact metric space we assume d(f(a),a) > € for some € > 0 and for all « € X = |L|.
We can assume K be a subdivision of L such that mesh K < £. Let, K’ be a subdivision of K such
that there exists a simplicial map ¢ : K’ — K which is a simplicial approximation ! to f : |[K| — |K|.

Since |¢|(«) and f(a) belong to some simplex of K, d(|¢|(«), f(a)) < €/3 for a € |K|. If s is any
simplex of K, |s| is disjoint from |p|(|s]). If else, a € |s| is equal to |¢|(B) for 5 € |s|, then

d(B, £(B)) < d(B, ) +d(lel(8), f(B)) < 2¢/3

which is a contradiction! Let 7 : C(K) — C(K’) be a subdivision chain map ?, then C(p)T :
C(K) — C(K) is a chain map.

By the above computation we can conclude, if ¢ is an oriented g-simplex on a g-simplex s of K,
then C(p)7(0) is a ¢-chain on the largest sub-complex of K disjoint from s. Therefore, C(¢)7(0)
is a g-chain having coefficient 0 on ¢. Since this is so for every o, all the coefficients summed in
forming Tr(C(y)7)q are zero and Tr ((C(¢)7),) = 0 for all ¢. Which implies A(C(¢)7) = 0. By
theorem 5.2 X ((C(¢)7)*) = 0. Let ¢’ : K’ — K be a simplicial approximation® to the identity map
|K'| — |K]|.

HK) 2 H(K) —2 s B(K)

N

H(A(K)) +— H(A(K")) — H(A(K))

|

H(|K|)+—— H(|K|) — H(|K])
1= [/ lol = f.
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From the diagram we have,



From here we have A(f) # 0. |

L' A continuous map f : |Li| — |L2| said to have a simplicial approximation if there is a simplicial
map ¢ : Ly — Lo such that for all z € |Ly|, f(x) and |p|(x) belong to same closed simplex of
L. For every continuous map f : |L| — |K]| there exists a subdivision L’ of L and a simplicial
approximation ¢ : L' — K. Note that |L| = |L/|. | ]

2 If K’ is a subdivision of K then there exists subdivision chain maps 7 : C(K) — C(K’). If ¢’ is
simplicial approximation to identity map |K'| < |K|, then 7, = ¢/~1. | ]
A map f:S" — S” induce f. : H,(S") = H,(S™) which is a map from Z to Z. The map f, is
characterized by f.(1). We call this degree of f and denote it as, deg f. For any map f : S™ — S,

A(f) =1+ (=1)"deg f
For any antipodal map f : S™ — S" there is no fixed point. Hence, deg f = (—1)"*1.

Theorem 5.2.3 (Hairy ball theorem)

S™ has continuous non-vanishing tangent vector if and only if n is odd.

Proof. Suppose F be a non-vanishing tangent vector field. At a point z € S™ we have F(z) L z.
Since it is non-zero everywhere we can define ﬁ Let, f : S™ — S™ be a continuous function such

that f(x) = Hl;gii;” Clearly, f is a continuous function and (f(z),x) = 0. We can define

1—-t)x+tf(x)

@ = [t v (@)

f+ defines a homotopy between 1g» and f. Which means deg f = deg 1s». By 5.2 we have A(f) =0
as it has no fixed point. Which implies (—1)"*! = 1 and hence n is odd.

If n is odd then, consider the following map,
(x()? e vam) = (xla —Zo, ", T2m, _QOfl)

We can see this is a continuous function and tangent to the point (xq,- - , za,). [ |

§5.3 Fixed point for flow on a topological space

([ Definition 5.3.1 » Flow on a topological space }

flow on X is a continuous map
P RxX —X

such that,
(a) ¥ (t1 + to,x) = ¢ (t1,% (t2,x)) where t1,t € R.

(b) ¥(0,z) =z for x € X.
\_ J
We can consider ¢ (z) = ¥ (¢, z), which are homeomorphisms of X. We can see ¢; forms a group
under composition. We also have ¢ (x)~! = 1¢_4(x). Let, Homeo(X) denotes the group of all
homeomorphisms of X. The flow ¥, on the space X is basically image of the homomorphism
R — Homeo(X) defined by ¢ — 1.

Definition 5.3.2 » Fixed-point of a flow |
A fixed-point of a flow xg such that ¢ (¢, z¢) = z¢ for all ¢t € R. j




Theorem 5.3.1
If X is a compact polyhedron with x(X) # 0, then any flow on X has a fixed point.

Proof. Let 9(t,x) be a flow on x. Since ¥ is a homomorphism we must have ¢, ~ 1x ( we can get
this homotopy because of the flow (¢, z)). Then we can say that,

A(We) = A(1x) = x(X) #0

For n > 1let A, be the closed subset of X consisting of the fixed points of ¥ jon. Then A, 11 C Ap,
and {A,} is a decreasing sequence of nonempty closed subsets of the compact space X. Let F' = NA,,.
Then F' is nonempty, and any point of F' is fixed under ), for all ¢ of the form 1/2" for n > 1.

This implies that each point of F' is fixed under ¢, for all dyadic rationals ¢ = m/2"™. Since the
dyadic rationals are dense in R, each point of F' is fixed under v; for all ¢. |



Jordan-Brouwer Separation theorem

Theorem 6.0.2
If A C S™ is homeomorphic to I* for 0 < k < n, then H (S* — A) =0.

Proof. We will proceed by induction. For k = 0, 1Y is just a point S™ — p is homeomorphic to R™.
Which is contractible hence H(S™ — A) = 0.

Assume the result for k& < m, where m > 1, and let A be homeomorphic to I"™. Regard A as being
homeomorphic to B x I, where B is homeomorphic to I™~!, by a homeomorphism h : B x I — A.
Let A’ = h(B x[0,1/2]) and A” = h(B x [1/2,1]). Then A = A’UA” and A’N A” is homeomorphic
to B x {4}. By the inductive assumption, H(S® — (A’N A”)) = 0. Because S" — A" and S" — A”
are open sets, they are excisive and from the exactness of the corresponding reduced Mayer-Vietoris
sequence,

02 f, (S"— A) 1 H(S"— Ay e H, (S" — A”) 25 0

We can say that, H, (S" — A) ~ H, (S" — A") @ H, (S™ — A”). If z is a non-zero cycle in S" — A,
then either i’z # 0 in H, (S® — A’) or i"z # 0 in H, (S™ — A”) where,

i ST —A—>S"—A

Assume i #" z # 0. We repeat the argument for A’ (we will split the interval [0, 3] into two halves
and carry out the same argument we did for A) and thus obtain a sequence of sets

A DA DAy

such that, the inclusion S — A’ C S™ — A; maps z to a non-zero element of H,(S™ — Aj). Notice
that, NA; is homeomorphic to I™~!. We can see this S* — A; forms a direct system with limit
S™ — NA;. Since homology functor commutes with the direct limit we must have,

lim {ﬁq(s” - Aj)} = H,(S" — NA;) = 0
—
The element z determines a non-zero element of lim_, {fIq(S" — Aj)}. Which is not possible. So

there is no non-zero cycle z in S® — A. Thus, H,(S™ — A) is zero. |

COROLLARY. Let B be a subset of S™ which is homeomorphic to S* for 0 <k <n — 1. Then

0 g#n—k—-1

Hq(Sn_B);{Z sm k1



Proof. We use induction on k. If £ = 0, then B consists of two points and S — B has the same
homotopy type as S*~!. Therefore,

S an L]0 g¢g#n-1
Hq (S _B):{Z g=n-—1

If k> 1, set B = A; U A, where A; and A, are closed hemispheres of S¥ and assume the result
valid for K — 1. Then A; and A, are homeomorphic to I* and A; N Ay is homeomorphic to S¥~1.
Because S™ — A; and S™ — Ay are open, {S" — A;,S™ — A} is an excisive couple, and there is an
exact reduced Mayer-Vietoris sequence

oo Hyyy (S = A1) @ Hyyr (S™ — Ag) — Hypq (S — (A1 N Ag)) —
H,(S" —B) — H,(S" — A)) ® H, (S" — Ay) — ---

By theorem we have, ﬁq(S” — A;) = 0 for i = 1,2. From the above exact sequence we have,
H,(S™ — B) = H, 1 (S™ — Sk, |

Theorem 6.0.3 (Jordan-Brouwer separation theorem)

An (n—1)-sphere embedded in S™ separates S™ into two path-components of which it is their
common boundary.

Proof. If B C S™ is homeomorphic to S*~', then Hy (S™ — B) = Z. Therefore, S — B consists of
two path components. Since S* — B is an open subset of S”, it is locally path connected and its

path components U and V| say, are its components. Clearly, B contains the boundary of U and of
V.

To prove B C UNV, let z € B and let N be a neighborhood of 2 in §". Let A C BN N be a subset
such that B — A, is homeomorphic to I"~!. Then H (S" — (B — A)) = 0, by previous theorem, so
S™ — (B — A) is path connected.

If p € U and g € V, there is a path w, 4 between p, g. Since p, ¢ are in different component of S" — B,
wp,q must pass through A. Let, w, 4 : I — S™\ (B — A), where w,, 4(0) = p, wp 4(1) = ¢q. Consider,
to = inf {t € I(t)|wp(t) € A}

Let, J = [0,to). We can see wy, 4(J) is connected and contains p. Since,wy, 4(J) € S™\ B. Therefore,
wp,q(J) C U. Therefore, any neighborhood of wy, 4(to) in N meets U. Thus N N U # (. Which
means x € U.

We can do the similar proof for V' by taking the interval (¢, 1] where t; = sup {t € I : wy, 4(t) € A}.
Wecansay BCUNV. ]

§6.1 Applications of Jordan separation theorem

Since S™ is one point compactification of R™ we can restate the Jordan-Brouwer separation theorem
in the following way, If B is a subspace of R™ homeomorphic to S*~! then, R™\ B contains two path
component. B is boundary of both the path component. For n = 2 this is known as Jordan curve
theorem. One of the important application of Jordan Brouwer separation theorem is Invariance of
Domain theorem.

Theorem 6.1.1 (Invariance of Domain)

If U and V are homeomorphic subsets of S” and U is open in S™, then V is open in S™.



Proof. Let h:U — V be a homeomorphism and let h(z) = y. Let, A be a closed neighborhood of =
in U that is homeomorphic to I" and with boundary B homeomorphic to S"~!. Let, A’ = h(A) C V
and let B’ = h(B). S™ — A’ is connected and by Jordan-Brouwer separation theorem, S™ — B’ has
two connected component. We also have,

S"— B = (S"— A)U (A — B')

Thus S™ — A’ and A’ — B’ are connected. They are the components of S* — B’. So, A’ — B’ is open
in S® — B’. A’ — B’ is open neighborhood of y which is contained in V. Hence, V is open. |

The above theorem tells us, ‘for the subspaces of R™ the property of being open is a topological
invariance’. We can also restate the Invariance of Domain for R™ in the following way.

COROLLARY. Let U and V' be two arbitrary subsets of R™ (or S™) having a homeomorphism
f:U — V.Then, f maps interior points onto interior points and boundary points onto boundary-
points.

4 EXAMPLE :We can not embed S™ in R™.

Proof. 1f else we can get an embedding h : S — S"\{N} (or S"). Break S™ into two parts DT, D~
which are homeomorphic to n-dim closed disk (or, I™). Their common boundary is homomorphic
to S"~1. Consider, Mayer-Vietoris sequence on S” — h(DT) and S™ — h(D~) to get

Hy(S" —h(DY*ND7)) =0

¢ EXAMPLE :Let, f,g : [0,1] — D? are paths in closed
disk D? such that, g(0) = (1,0),g(1) = (=1,0) and f(0) =

(0,1), f(1) = (0,—1). Assume f is injective path then, f in-
tersects with g. y
&

Proof. Consider an injective path v : [0,1] — R? \ int D?. Now
glue this path v together with f to get a ‘simple closed curve’
v * f, which is homomorphic to S!.

Using Jordan curve theorem we can see that if f do not pass
through (1,0), (—=1,0) then these points belongs to two different
path-component separated by v f. g path can exist in R? if and
only if g intersects f.

¢ EXAMPLE :Let, T be the torus and S? be the sphere. Consider n > 3 a natural number. If
we remove n-points from the sphere and (n — 2) points from 7. We will get two space which are
homotopic but not homeomorphic.

Proof. S?\n points is homeomorphic to R?\ (n— 1)points, which is deformation retract onto ‘wedge
sum of’ (n — 1) circles.

Torus can be viewed as a quotient of a square whose sides are identified. Removing (n — 2) points
from torus is equivalent to removing (n — 2) points from the square. The following picture will give
us deformation retract onto ‘wedge sum of (n — 1) circles’.

s e e v ww s

h — > ; (n — 3)- circles

(Removing some points from torus is homotopic to removing some open small disks around each
point which we can treat like a rectangle (2nd picture), which has deformation retract onto square
with some lines (3rd picture). After taking the quotient of the sides of square we will get wedge sum
of n — 1 circles)



Both the spaces have deformation retract onto wedge sum of (n — 1) circles. So we cannot say
they are not homeomorphic by looking at their fundamental groups. For contradiction let h be the
homeomorphism between the points. Let C be a circle in T represented by ‘red line’. h(C) will also
be a closed simple curve in S2. Notice that complement of h(C) in S? has two path components but
complement of C' in torus do not have two different path component. |

COROLLARY. If we remove any finite number of points from T and any finite number of points
in S? we cannot have homomorphic spaces.

COROLLARY. If we remove n disjoint small open disks from S* and (n — 2) small disjoint open
disks from T, the spaces will be homotopic, but they are not homeomorphic

Proof. Just apply 6.1, both the spaces have different number of boundary.
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