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Abstract. We construct an action of the braid group on the bounded derived category
of coherent sheaves on hypertoric varieties arising from hyperplane arrangements. Using
wall-crossing equivalences associated to paths in the complexified complement of the
hyperplane arrangement, we show that these equivalences yield a functor from the Deligne
groupoid to the category of triangulated equivalences. This gives rise to a canonical
representation of the fundamental group, which under suitable assumptions recovers the
braid group, acting on Db(Mη).

1. Introduction

In this paper I shall describe the work I have done during my stay at ANU(Australian
National University) as a FRT scholar. The category of coherent sheafs over a variety (or
scheme) is a central topic in studying algebraic geometry. It has been observed that this
kind of triangulated category arises in representation theory. In symplectic topology one
can define Hyperkähler quotients. From a given hyperplane arrangement of k hyperplanes
in Rn one can define an action of (C∗)n on T ∗Ck, the hyperKähler quotient of this type
of action gives us hyper-toric varieties. As the name suggest the quotient has a variety
structure. If we define the hypertoric varieties by Mη, the category Db(Mη) makes sense.
Whenever we talk about the derived category of a variety we mean this.

The derived category of Mη is related to the derived category of modules over some
algebra B (as in [1]), arises from a combinatorial setting. Also, the category of B-modules
can be thought of as an analogue of Bernstein-Gelfand-Gelfand’s category O in a combina-
torial context. So, there is a natural connection of representation theory with this category.
Thus categoryfication of braid groups via Db(Mη) can help to study deeper representations
of the braid group.

Generally, if we have a braid group Bp acting on Db(X), we can construct some knot
invariants in the following way: suppose b ∈ Bp be a braid, if we take it’s closure in S3 we

get a knot b̂. If we denote Tb to the auto-equivalence related to b then for fixed object F
in Db(X) (such as OX), we can compute ExtDb(X)(F, Tb(F )) or catgorical traces. These
actually gives some knot-invariant cohomology theories. This is one of the motivations
behind braid group action on such categories.

To give braid group action on Db(Mη) one needs to define a group homomorphism

Φ : Bp → Auteq(Db(Mη))

here, Auteq(Db(Mη)) is the group of all derived auto-equivalences between Db(Mη). So,
we need to find some autoequivalences that satisfy the braid group relation. The work in
[2] suggests that if we have S1, · · · , Sp spherical objects in Db(X), the spherical twists
are auto-equivalences and if the satisfy

dimExtDb(X)(Si, Sj) = 1|i−j|=1
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for i ̸= j then the corresponding twists TSi satisfy the braid relation. There is a core of
Mη which is union of smooth, projective, lagrangian subvarieties of Mη, call it X . One
can expect that the structure sheaf of these smooth projective complement can satisfy the
braid relation. But it is not immediate from [2] as OPn are not spherical for higher n. But
this result can be used for some particular cases.

Recall the facts about Am-surfaces, their resolution are a hypertoric variety, the irreducible
lagrangian subvarieties of this are copies of P1. Here, OP1 can be thought of a spherical
object in the derived category of the Am-surface. By [2], we can get a braid group action.

In order to tackle this dificulty we go down to the hyperplane arrangement corresponding
to the hypertoric variety. When we define Mη, η comes from the character of the torus
action. Suppose η′ another such character differs from η by a discriminantal hper-plane
crossing, we can define a wall-crossing functor

Φη′
η : Db(Mη)→ Db(Mη′)

which is an equivalence of triangulated derived categories. It will turn out that this
wall-crossing functor is a Fourier-Mukai transform corresponding to the kernal OZ here
Z = Mη ×Mξ

Mη′ , Mξ comes from the stability of GIT or the hyperKähler quotient. Be-
fore proceeding towards the framework of the main theorem we would like to remark the
following.

Remark. For the case of Am-surfaces C2/Zm+1, the minimal resolution ˜C2/Zm+1 is a
hypertoric variety. It arises from a hyperplane arrangement with m points in R. Clearly,
there are (m+1) chambers, and let ηi denote the corresponding characters of the torus for
i = 1, · · · ,m+1. Moreover, there arem-spherical objects Si, where the index i = 1, · · · ,m.
There exists a map ψi : Mηi →Mηi+1 . There is an obvious relation

Φ
ηi+1
ηi = ψi∗TSi .

Thus, there is a way to use the wall-crossing functors to construct the braid group action
in this case. We attempted to generalize the observations obtained here, which leads to
the following discussion.

We now recall the construction of the Deligne groupoid associated to a real hyper-
plane arrangement and prove that our assignment of wall-crossing functors to paths is
well-defined. This will allow us to deduce a braid group action on derived categories of
hypertoric varieties.

The Deligne groupoid. Let A be a real hyperplane arrangement in Rd, and let C denote the
set of chambers, i.e. the connected components of Rd \

⋃
H∈AH. For chambers C,C ′ ∈ C

we define:

Definition 1.1. The Deligne groupoid G = Π1(A) is the groupoid whose

• objects are the chambers of A,
• morphisms are generated by elementary moves C → C ′ whenever C and C ′ share a
codimension-one wall, subject to the relations coming from minimal positive paths
in the Salvetti complex of A.

Concretely, a path γ in Cd \ AC with endpoints in real chambers determines a morphism
in G, and two such paths are equivalent if they are homotopic through such paths. The
groupoid G is equivalent to the fundamental groupoid of the complexified complement:

G ≃ Π1

(
Cd \ AC, C

)
.
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For each chamber η ∈ C, we have the hypertoric varietyMη, and hence its bounded derived

category Db(Mη). If two chambers η, η′ are adjacent (separated by a single wall), we have
constructed an equivalence

Φη′
η : Db(Mη)

∼−−→ Db(Mη′).

These are called wall crossing functors. By composing such equivalences along a path
γ : η → η′ crossing successive walls, we obtain a functor

Φγ : D
b(Mη)

∼−−→ Db(Mη′).

The key issue is that a given pair of chambers η, η′ may be connected by many distinct
paths. We must show that the resulting functor Φγ depends only on the homotopy class
of γ, i.e. is well-defined in the Deligne groupoid under certain conditions.

Theorem 1.2 (Well-definedness of wall-crossing functors). Let γ1, γ2 be two paths in Cd \
AC connecting the same chambers η and η′. Then the associated wall-crossing functors

Φγ1 ,Φγ2 : D
b(Mη) → Db(Mη′)

are canonically isomorphic. Equivalently, the assignment

F : G −→ Cat, η 7→ Db(Mη), γ 7→ Φγ

is a well-defined(under certain conditions) functor from the Deligne groupoid G to the
2-category of triangulated categories and equivalences.

Consequences. It is a theorem of Deligne [3] that if A is a real simplicial arrangement, then
the fundamental group π1(Cd \AC) is isomorphic to an Artin braid group. Combining this
with the previous theorem, we obtain:

Theorem 1.3 (Braid group action on derived categories). Let A be a simplicial real hy-
perplane arrangement with chambers C. For each η ∈ C, let Mη be the corresponding
hypertoric variety. Then the braid group

B = π1(Cd \ AC)

acts by equivalences on the derived categories Db(Mη). Explicitly, a loop γ based at η
defines an autoequivalence

Φγ : D
b(Mη)

∼−−→ Db(Mη).
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2. Review of Hyperplane Arrangements

We begin by recalling basic terminology concerning real hyperplane arrangements, which
will later serve to describe hypertoric varieties. Let A = {Hi}i∈I be a finite collection
of affine hyperplanes in a real vector space V . Such a collection is called a hyperplane
arrangement. If every Hi passes through the origin, we call A a central arrangement. For
each index i, the complement V \Hi consists of two connected components, denoted H+

i

and H−
i . These can be described as

H+
i = {v ∈ V : φi(v) > 0}, H−

i = {v ∈ V : φi(v) < 0},

where φi : V → R is an affine functional such that Hi = φ−1
i (0).

Definition 2.1. A (relatively open) face of A is a nonempty subset of V of the form

F =
⋂
i∈I

Hσi
i ,

where each σi ∈ {−, 0,+} and H0
i := Hi. The tuple σ = (σi)i∈I is called the sign sequence

of F .

Definition 2.2. A chamber of A is a relatively open face for which σi ̸= 0 for all i ∈ I.
Equivalently, the chambers are the connected components of the complement V \

⋃
i∈I Hi.

The Hyperplane Arrangement Associated to a Hypertoric Variety. Just as projective
toric varieties correspond to rational polytopes, a hypertoric variety kη can be described
by an oriented real hyperplane arrangement.

Let T = (C×)n be an algebraic torus with Lie algebra t, and let K ⊂ T be a subtorus with
Lie algebra k ⊂ t. The quotient t/k has a dual (t/k)∗, and we let ai denote the image of the
i-th standard basis vector ei under the quotient map t→ t/k.

A multiplicative character η : K → C× corresponds to an integral weight η ∈ k∗Z. Choose
a lift (η1, . . . , ηn) of η to t∗Z = Zn. Define

(t/k)R = (tZ/kZ)⊗Z R, (t/k)∗R = HomR((t/k)R,R).

For 1 ≤ i ≤ n, define affine hyperplanes

Hη,i = {x ∈ (t/k)∗R : ⟨x, ai⟩+ ηi = 0}.

The collection Hη = {Hη,1, . . . ,Hη,n} is called the hyperplane arrangement associated to
η. Different lifts of η yield arrangements that differ only by a uniform translation.
Conversely, given affine hyperplanes

Hi = {x ∈ Rd : ⟨x, ai⟩+ ηi = 0}
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for integer vectors ai ∈ Zd and integers ηi ∈ Z, one recovers k as the kernel of the map Cn →
Cd sending ei 7→ ai, with K the corresponding subtorus and η the character (t1, . . . , tn) 7→
tη11 · · · t

ηn
n .

Remark 2.3. The affinization kη → k0 has fibre over the point [0] called the core, which is
a union of compact toric varieties. The quotient torus T/K acts Hamiltonianly on kη with
moment map

µR : kη → (t/k)∗R,

and the moment polytopes of the core components are precisely the closures of the bounded
chambers of Hη.

Example 2.4. Let K = {(t, . . . , t) ∈ (C×)n} as in Example A.1. Then

(t/k)∗ = {(x1, . . . , xn) ∈ Cn :
∑
i

xi = 0}.

The central arrangement H0 consists of the hyperplanes xi = 0. For regular η, Hη is
in general position with one bounded chamber—a simplex corresponding to the moment
polytope of kη = T ∗P(Cn).

Example 2.5. Let K = {(t1, . . . , tm+1) ∈ (C×)m+1 :
∏

i ti = 1}. Then (t/k)∗ is one-
dimensional, and Hη consists of m+ 1 points, distinct when η is regular. The core of kη is
an Am-chain of several P1.

Example 2.6. Let

K = {(s, st−1, t, s−1) : s, t ∈ C×} ⊂ (C×)4.

Then

k = {(a, a−b, b,−a) : a, b ∈ C}, (t/k)∗R = {(x1, x2, x3, x4) ∈ R4 : x4 = x1+x2, x2 = x3} ∼= R2.

Choosing η = f1 + f2, which lifts to (1, 1, 0, 0), we obtain the arrangement

Hη,1 : x1 + 1 = 0,

Hη,2 : x2 + 1 = 0,

Hη,3 : x2 = 0,

Hη,4 : x1 + x2 = 0.

x1

x2

Hη,2

Hη,1

Hη,3

Hη,4

These four lines in R2 form the associated arrangement Hη.
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A Semistability Criterion in Terms of Half-Spaces. Each hyperplane Hη,i comes equipped
with a normal vector ai, defining half-spaces

H+
η,i = {x : ⟨x, ai⟩+ ηi ≥ 0}, H−

η,i = {x : ⟨x, ai⟩+ ηi ≤ 0}.

The semistable locus of the moment map µ−1(0)η can be described in terms of intersections
of these half-spaces.

Proposition 2.7. [1] Let (z, w) ∈ µ−1(0) and define

Rz,w =
⋂
zi=0

H−
η,i ∩

⋂
wi=0

H+
η,i.

Then (z, w) is η–semistable if and only if Rz,w ̸= ∅.

This provides a geometric criterion for semistability using intersections of half-spaces.

3. Circuits and the Discriminantal Arrangement

The discriminantal arrangement is a central arrangement in k∗R encoding how the semistable
locus depends on η. Its hyperplanes are indexed by special subsets of {1, . . . , n} called
circuits.

Definition 3.1. For C ⊂ {1, . . . , n}, let kC = k ∩ span(ei : i ∈ C). We call C a circuit if
kC ̸= 0 and minimal with this property (hence dim kC = 1).

For each circuit C, define the corresponding discriminantal hyperplane

PC = (kC)
⊥
R ⊂ k∗R.

A character η is regular if it does not lie on any PC . For η /∈ PC , we define an orientation
of C by partitioning it into subsets

C+
η = {i ∈ C : ⟨fi, βηC⟩ > 0}, C−

η = {i ∈ C : ⟨fi, βηC⟩ < 0},

where βηC =
∑

i∈C+
η
ei −

∑
i∈C−

η
ei generates (kC)Z with ⟨η, βηC⟩ > 0.

Proposition 3.2. For regular η, the moment map satisfies

µ−1(0) =

(z, w) ∈ T ∗Cn :
∑
i∈C+

η

ziwi =
∑
i∈C−

η

ziwi for all circuits C

 .

Subtori and Quotients Associated to a Circuit. For a given circuit C, define the one-
dimensional subtorus KC ⊂ K with Lie algebra kC , and let KC = K/KC with Lie algebra
kC = k/kC . Let EC = span(ei : i /∈ C) ⊂ Cn. Then KC acts on T ∗EC ⊂ T ∗Cn. The
hypertoric varieties obtained from this reduced action will play a role in understanding
wall-crossing phenomena.

Definition 3.3. A character η of K is called subregular if it lies on exactly one discrimi-
nantal hyperplane PC .

Lemma 3.4.

(1) The circuits of the action of KC on T ∗EC are precisely {S\C : S is a circuit of K, S ̸=
C}.

(2) For η ∈ PC \ PS, the orientations satisfy (S \ C)±η = S±
η \ C.

(3) If η ∈ PC is subregular for K, then it is regular for KC .
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A Semistability Criterion in Terms of Circuits. Konno’s theorem gives a combinatorial
criterion for semistability in terms of circuits.

Theorem 3.5 (Konno). [9] Let η ∈ k∗Z be regular. Then

µ−1(0)η = {(z, w) ∈ µ−1(0) : xηC(z, w) ̸= 0 for all circuits C},
where

xηC(z, w) = (zi : i ∈ C+
η ; wi : i ∈ C−

η )

collects the coordinates corresponding to each circuit.

More generally, for arbitrary η (possibly non-regular):

Theorem 3.6. [9] A point (z, w) ∈ T ∗Cn is η–semistable if and only if xηC(z, w) ̸= 0 for
every circuit C with η /∈ PC .

Corollary 3.7. The semistable locus µ−1(0)η depends only on the face of the discriminan-
tal arrangement containing η.

This concludes the geometric and combinatorial characterization of semistability for hy-
pertoric varieties kη.

4. Construction of the Wall Crossing Functors

In this chapter we study wall-crossing phenomena for hypertoric varieties. We fix two
regular characters η, η′ ∈ k∗Z separated by a single discriminantal hyperplane PC , and we
fix a subregular character θ ∈ k∗Z ∩ PC which lies in the closures of the two chambers
containing η and η′. Equivalently, PC is the unique discriminantal hyperplane containing
θ. The goal is to compare the corresponding hypertoric varieties and to show that the
change of chamber is realised geometrically by a Mukai flop.

Throughout we follow the notational conventions. Let C ⊂ {1, . . . , n} denote the unique
circuit corresponding to the wall PC . For any character α and any circuit S with α /∈ PS

we denote by
xSα(z, w) = (zi : i ∈ S+

α ; wi : i ∈ S−
α )

the corresponding coordinate function (as in the earlier chapters). Now we begin with a
description of the inclusion relations among the semistable loci for the three characters
θ, η, η′.

Lemma 4.1.
µ−1(0)η = {(z, w) ∈ µ−1(0)θ : x

C
η (z, w) ̸= 0}.

Proof. For every circuit S ̸= C the hyperplanes PS do not separate η and θ, hence the
associated semistability conditions coincide: xSη = xSθ . Thus the only possible difference
between the η- and θ-semistable loci is the constraint coming from the circuit C, and the
statement follows from the standard GIT description of semistability (3.6). □

Consequently we have inclusions

µ−1(0)η ⊂ µ−1(0)θ ⊃ µ−1(0)η′ ,

and these induce maps on the GIT quotients. We adopt the following notation.

Definition 4.2. Write

Mη
ν−−→Mθ

ν′←−−Mη′

for the morphisms of varieties induced by the inclusions of semistable loci. We call these
maps the partial affinizations.
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These are called partial affinizations because they are compatible with the natural affiniza-
tion morphisms Mη →M0 and Mθ →M0 that arise from the inclusions of semistable loci
into µ−1(0).

We will show that the morphism ν : Mη → Mθ contracts a closed subvariety Bη
θ ⊂ Mη

onto a subvariety Bθ ⊂ Mθ, and that the restriction ν : Bη
θ → Bθ is the projectivization

of a rank-|C| vector bundle. Recall that

EC = span(ei : i /∈ C) ⊂ Cn.

Define

Bθ := φθ

(
T ∗EC ∩ µ−1(0)θ

)
,

where φθ : µ
−1(0)θ →Mθ denotes the GIT quotient map.

Proposition 4.3. Bθ is a smooth hypertoric variety.

Proof. Recall from Section 2.6 that there is an action of the quotient torus KC on T ∗EC .
The θ-semistable locus for this action is precisely T ∗EC ∩µ−1(0)θ, and since θ is a regular
character of KC , all KC-orbits in this locus are closed. The resulting hypertoric variety
is the geometric quotient (T ∗EC ∩ µ−1(0)θ)/KC , which is smooth by regularity of θ. The
quotient map φθ also realizes Bθ as this geometric quotient, since the K-orbits and KC-
orbits coincide on T ∗EC ∩ µ−1(0)θ. □

Lemma 4.4. For every p ∈ µ−1(0)η ∩ µ−1(0)η′, the orbit K · p is closed in µ−1(0)θ.

Proof. Let p ∈ µ−1(0)η∩µ−1(0)η′ and q ∈ Kp∩µ−1(0)θ. By the Hilbert–Mumford criterion
for tori (Richardson [3]), there exists a one-parameter subgroup λ ∈ kZ such that

lim
t→∞

λ(t) · p ∈ Kq.

It suffices to show that λ = 0. Assume otherwise, and write λ = (λ1, . . . , λn). Define

I+ = { i : λi > 0 }, I− = { i : λi < 0 }.

Choose a circuit S such that, oriented by η, either S+ ⊂ I+, S− ⊂ I− or S− ⊂ I+, S+ ⊂ I−.
In the first case, or in the second with S = C, we obtain a contradiction because

lim
t→∞

xSη (λ(t)p) =∞.

If S− ⊂ I+ and S+ ⊂ I− with S ̸= C, then instead

lim
t→∞

xSθ (λ(t)p) = 0,

which contradicts q ∈ µ−1(0)θ. Thus λ = 0, and hence Kp = Kq. □

Lemma 4.5. The complement Bc
θ := Mθ \Bθ is equal to φθ

(
µ−1(0)η ∩ µ−1(0)η′

)
, and the

map ν is an isomorphism over Bc
θ.

Proof. The second claim follows from the first by the previous lemma, since both Bc
θ and

ν−1(Bc
θ) are geometric quotients (µ−1(0)η ∩ µ−1(0)η′)/K. If (z, w) ∈ µ−1(0)θ \ (µ−1(0)η ∩

µ−1(0)η′), then either xCη (z, w) = 0 or xCη′(z, w) = 0. Orienting C according to η in the

first case, or to η′ in the second, we have

lim
t→∞

βC(t) · (z, w) ∈ T ∗EC ∩ µ−1(0)θ,

hence φθ(z, w) ∈ Bθ. Therefore B
c
θ ⊂ φθ(µ

−1(0)η ∩ µ−1(0)η′).
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Conversely, let p ∈ µ−1(0)η ∩ µ−1(0)η′ and q ∈ T ∗EC ∩ µ−1(0)θ. The K-orbits of both p
and q are closed in µ−1(0)θ (by the previous lemma and subregularity of θ, respectively).
Since Kp ∩ T ∗EC = ∅, we have φθ(p) /∈ Bθ. □

We now introduce certain linear subspaces that will play a role in describing the con-
traction. Let

VC = span(ei : i ∈ C),
and define;

V η
C = span(ei : i ∈ Cη+)⊕span(e∨i : i ∈ Cη−), V η′

C = span(ei : i ∈ Cη′+)⊕span(e∨i : i ∈ Cη′−).

Each of these is a |C|-dimensional linear subspace of T ∗Cn, and we have

T ∗VC = V η
C ⊕ V

η′

C .

We equip T ∗VC with the standard symplectic form

ω(ei, ej) = ω(e∨i , e
∨
j ) = 0, ω(ei, e

∨
j ) = δij .

Then V η
C and V η′

C are complementary Lagrangian subspaces, hence ω identifies V η′

C as the
dual of V η

C .

Lemma 4.6.

(T ∗EC ⊕ V η
C ) ∩ µ

−1(0)η = { p+ v | p ∈ T ∗EC ∩ µ−1(0)θ, v ∈ V η
C \ {0} }.

Proof. If p ∈ T ∗EC ∩ µ−1(0)θ and v ∈ V η
C \ {0}, then xCη (p + v) = v ̸= 0, and for every

S ̸= C we have xSη (p+ v) = xSθ (p) ̸= 0, hence p+ v is η-semistable.

Conversely, suppose p ∈ T ∗EC , v ∈ V η
C , and p + v ∈ µ−1(0)η. Then v = xCη (p + v) is

nonzero, so it suffices to prove that p is θ-semistable. Assume not: then there exists a
sequence tn ∈ K such that limn→∞ θ(tn) =∞ and

q = lim
n→∞

tn · p

exists. Let fj be the restriction of the standard character e∨j to K. For each j ∈ C, define

cj =

{
fj , j ∈ Cη+,

−fj , j ∈ Cη−.

Choose i ∈ C such that limn→∞ ci(tn)
−1cj(tn) exists for every j ∈ C. Let un = βCη (ci(tn)

−1) ∈
KC , so that cj(un) = ci(tn)

−1 for all j ∈ C.
Since semistability conditions are constant along faces of the discriminantal arrangement
(corollary of 3.6), we may assume without loss that

η =

{
θ + fi, i ∈ Cη+,

θ − fi, i ∈ Cη−.

Then

η(tnun) = θ(tnun) ci(tn) = θ(tn) θ(un) ci(tn)ci(un) = θ(tn),

since θ is trivial on KC and ci(un) = ci(tn)
−1. Therefore limn→∞ η(tnun) =∞.

Because p is fixed by KC , we also have

lim
n→∞

tnun · p = q.
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Writing zi, wi for the coordinates of v, we obtain

tnun · v =
(
cj(tn)cj(un)zj : j ∈ Cη+; cj(tn)cj(un)wj : j ∈ Cη−)

=
(
cj(tn)ci(tn)

−1zj : j ∈ Cη+; cj(tn)ci(tn)
−1wj : j ∈ Cη−),

which converges as n → ∞ by our choice of i. Hence limn→∞ tnun · (p + v) exists, yet
limn→∞ η(tnun) =∞, contradicting the η-semistability of p+ v. □

Proof. By Lemma 4.6,

Bη
θ = (µ−1(0)η \ µ−1(0)η′)/K = ((T ∗EC ⊕ V η

C ) ∩ µ
−1(0)η)/K.

Let X = T ∗EC ∩ µ−1(0)θ, so that the quotient map X → Bθ is a principal KC-bundle.
The one-parameter subgroup KC ⊂ K acts trivially on X and by scaling on V η

C , so (V η
C \

{0})/KC = P(V η
C ). Then by previous lemma,

Bη
θ = (X × (V η

C \ {0}))/K = Bθ ×KC
P(V η

C ).

Choose a complement G to KC in K, so that K = KC × G and G ∼= KC . Then we can
write equivalently

Bη
θ = Bθ ×G P(V η

C ),

which identifies it as the projectivization of the vector bundle V := Bθ ×G V η
C of rank

|C|. □

Our aim in this section is to show that the diagram

Mη
ν−→Mθ

ν′←−Mη′

is a Mukai flop of Mη (and symmetrically of Mη′) along the subvarieties Bη
θ and Bη′

θ ,
respectively. That is, there exists a common blowup

M̃

Mη Mη′

whose exceptional locus restricts to the natural projections

P(V )←− P(V )× P(V ∗) −→ P(V ∗).

Recall that in any Mukai flop diagram

M −→M0 ←−M ′,

the common blowup M̃ is one of the two irreducible components of the fibre product
M ×M0 M

′, while the other component corresponds to the fibre product of the projective
bundles along which M and M ′ are blown up.

To complete the argument, we will analyze this fibre product in detail and demonstrate
that it indeed decomposes into two components: one being

Bη
θ ×Bθ

Bη′

θ = P(V )×Bθ
P(V ∗),

and the other realizing the blowup M̃.

Define the fibre product
Z := Mη ×Mθ

Mη′ ,

and let
Z0 := Bη

θ ×Bθ
Bη′

θ .
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Since Bη
θ = P(V ) and Bη′

θ = P(V ∗), we may equivalently write

Z0 = P(V )×Bθ
P(V ∗),

which is a bundle of type P|C|−1 × P|C|−1 over the base Bθ.

Definition 4.7. Let Z◦
1 = Z \ Z0, and denote by Z1 the closure of Z◦

1 inside Z.

Definition 4.8. Let Z◦
1 = Z \ Z0, and denote by Z1 the closure of Z◦

1 inside Z.

Remark 4.9. The partial affinizations ν : Mη →Mθ and ν ′ : Mη′ →Mθ are isomorphisms
away from Bθ. Hence we have an isomorphism diagram

Z0
1 Mη′ \Bη′

θ

Mη \Bη′

θ Mθ \Bθ

ν′

and explicitly

Z◦
1 = { ([p+ u+ v]η, [p+ u+ v]η′) : p+ u+ v ∈ µ−1(0)η ∩ µ−1(0)η′ }.

Lemma 4.10. Let y = [p]θ ∈ Bθ, where p ∈ µ−1(0)θ ∩ T ∗EC , and let (Z0)y denote the
fibre of Z0 → Bθ above y. Then (Z0)y ∩ Z1 ̸= ∅.

Proof. We can assume that the coordinate vectors ei are independent, so |C| ≥ 2. Pick
distinct indices k, ℓ ∈ C, say k ∈ Cη+ and ℓ ∈ Cη−; the other cases are similar.

Given u ∈ V η
C and v ∈ V η′

C , the one-parameter subgroup βCη : C× → K acts on p+u+ v by

βCη (s) · (p+ u+ v) = p+ su+ s−1v, s ∈ C×.

If p+ u+ v ∈ µ−1(0)η ∩ µ−1(0)η′ , then

[p+ u+ v]η = [p+ su+ s−1v]η, [p+ u+ v]η′ = [p+ su+ s−1v]η′ .

Now, for t ∈ C×, define ut ∈ V η
C by setting zk = t and all other coordinates zero, and

define vt ∈ V η′

C by setting zℓ = 1 and others zero. We claim that p+ ut + vt ∈ µ−1(0) for
all t.

Indeed, by Proposition 2.24, membership in µ−1(0) means that for each circuit S,
∑

i∈Sη+ ziwi =∑
i∈Sη− ziwi. Since p ∈ µ−1(0) satisfies this for all S, and all ziwi = 0 for i ∈ C, the same

holds for p + ut + vt. Moreover, as p is θ-semistable and ut, vt ̸= 0, Theorem 2.32 gives
that p+ ut + vt ∈ µ−1(0)η ∩ µ−1(0)η′ . Hence

([p+ ut + vt]η, [p+ ut + vt]η′) ∈ Z◦
1 .

By the scaling relation above,

([p+ ut + vt]η, [p+ ut + vt]η′) = ([p+ u1 + vt2 ]η, [p+ ut2 + v1]η′).

Taking the limit t→ 0, this tends to

([p+ u1]η, [p+ v1]η′) ∈ (Z0)y.

Thus (Z0)y ∩ Z1 ̸= ∅. □

We will now show that Z1 gives the simultaneous blowup of Mη and Mη′ constructed
earlier.
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Proposition 4.11. Let

I = { (L,H) ∈ P(V )×Bθ
P(V ∗) : L ⊂ H },

the incidence divisor inside Z0. Then Z0 ∩ Z1 = I.

Proof. [10, proposition 4.16],[9, Lemma for theorem 6.3] □

Proposition 4.12. The projections

Mη
π←− Z1

π′
−−→Mη′

are the blowups of Mη and Mη′ along B
η
θ and Bη′

θ , respectively.

Proof. We show that π : Z1 → Mη is the blowup along Bη
θ ; the case for π′ is analogous.

The map π is an isomorphism outside Bη
θ by the remark we made. Let k = rank(K). Since

Mη is a symplectic quotient of T ∗Cn by K, dimMη = 2(n − k). The variety Bθ is the
symplectic quotient of T ∗EC by the rank-(k−1) torus KC , so dimBθ = 2(n−|C|−(k−1)) =
2(n− k)− 2|C|+ 2. Because Bη

θ is a P|C|−1-bundle over Bθ,

dimBη
θ = dimBθ + |C| − 1 = 2(n− k)− |C|+ 1.

Hence the expected fibre dimension of the blowup is |C| − 2.
For a point L ∈ Bη

θ = P(V ), let y = ν(L) ∈ Bθ, so L is a line in the fibre Vy. By Proposition
, the fibre π−1(L) is

π−1(L) = {H ∈ P(V ∗
y ) : L ⊂ H } ∼= P(Vy/L) ∼= P|C|−2.

Thus the exceptional fibres have the correct dimension, and π is the blowup of Mη along
Bη

θ . □

Theorem 4.13. The diagram

Mη
ν←−Mθ

ν′−−→Mη′

is a Mukai flop of Mη along Bη
θ .

Proof. The hypertoric variety Mη carries an algebraic symplectic form, and the codimen-
sion of Bη

θ in Mη is |C|−1, equal to the fibre dimension of Bη
θ → Bθ. Hence, by [14, Section

3], the normal bundle of Bη
θ in Mη restricts to the cotangent bundle of each projective fibre.

By previous Proposition, Z1 → Mη is the blowup of Mη along Bη
θ , and the exceptional

divisor Z0∩Z1 is, by second last Proposition 4.11, the incidence variety inside P(V )×P(V ∗).

The restrictions of the blowup maps Mη
π←− Z1

π′
−→Mη′ to this divisor are the projections

onto the two factors, realizing the Mukai flop. □

As a Consequence of this theorem, we can state the following theorem,

Theorem 4.14. Let Z = Mη ×Mθ
Mη′ . Then the Fourier–Mukai transform

Φη′
η : Db(Mη) −→ Db(Mη′) with kernel OZ

is an equivalence of triangulated categories.
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5. Braid group action on Db( ˜C2/Zm+1)

Since we have constructed the wall-crossing functor as outlined in the Introduction, we can
now obtain a braid group action on the Am-type surface. In Appendix A, we have shown
that the minimal resolution of this surface is a hypertoric variety.

The goal of this section is to show that the construction via the Deligne groupoid, to be
discussed in the next section, can be related to the Seidel–Thomas braid group action in
this specific case. In this sense, the present work can be viewed as a generalization of their
framework.

The type-Am Kleinian (or Du Val) singularity can be realized as the quotient C2/Zm+1,
where Zm+1 ⊂ SL2(C) acts linearly. Inside C3 this variety is described by

C2/Zm+1 = {(x, y, z) ∈ C3 | xm+1 + yz = 0}.
The origin is the unique singular point. As originally shown by Du Val [11], the minimal
resolution

˜C2/Zm+1 −→ C2/Zm+1

has exceptional fibre a chain
C1 ∪ C2 ∪ · · · ∪ Cm

of smooth rational curves Ci
∼= P1 with intersection pattern given by the Dynkin diagram

of type Am. Let Ei = OCi . Then by Theorem [2], the spherical twists TEi give a faithful

action of the braid group on Db( ˜C2/Zm+1). Reacll that, ˜C2/Zm+1 can be constructed as
a hypertoric variety Mη, where

K = {(t1, · · · , tm+1) : t1 · · · tm+1 = 1}
and η is any regular character.

We fix the regular character

η = f1 + 2f2 + · · ·+ (m+ 1)fm+1.

The chamber of parameters containing η is bounded by the hyperplanes Pi,i+1 for 1 ≤ i ≤
m. For each i, let θi ∈ Pi,i+1 be a subregular character lying on the boundary of that
chamber. The corresponding subvarieties are

Bη
θi
= {[z, w]η | wi = zi+1 = 0},

which are projective lines P1 with homogeneous coordinates [zi, wi+1]. These subvarieties
Bη

θi
coincide with the curves Ci in the exceptional fibre, and the partial affinization

Mη −→Mθi

contracts Ci to a point.

Fix k ∈ {1, . . . ,m} and let η′ be the reflection of η across the wall Pk,k+1. We then have

µ−1(0) = {(z, w) ∈ T ∗Cm+1 | z1w1 = · · · = zm+1wm+1},
and the open subsets

µ−1(0)η = {(z, w) ∈ µ−1(0) | (zi, wj) ̸= 0 for i < j},
µ−1(0)η′ = {(z, w) ∈ µ−1(0) | (zk+1, wk) ̸= 0, (zi, wj) ̸= 0 for i < j, (i, j) ̸= (k, k + 1)}.

Define

φ̃ : µ−1(0)η −→ µ−1(0)η′ by interchanging zk ↔ zk+1, wk ↔ wk+1.
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Although φ̃ is not K-invariant, it descends to a morphism

φ : Mη −→Mη′

because for t = (t1, . . . , tm+1) ∈ K we have

φ̃(t · (z, w)) = σk(t) φ̃(z, w),

where σk is the automorphism of K interchanging tk and tk+1. Hence φ̃ sends each K-
orbit to a K-orbit, so it descends to an isomorphism φ. An inverse is defined analogously,
yielding the commutative diagram

Mη Mη′

Mθk Mθk

φ

ν ν′

This transformation is a Mukai flop between hypertoric varieties. In this case, the relevant
circuit has two elements, making the flop simple (cf. [8, §6.6(2)]). The fibre product

Z = Mη ×Mθk
Mη′

has two irreducible components, Z0 and Z1. Under the identification Mη′
∼= Mη via φ, the

component Z1 becomes the diagonal copy of Mη, and Z0 becomes Bη
θk
×Bη

θk
.

Let

Φη′
η : Db(Mη) −→ Db(Mη′)

denote the Fourier–Mukai transform with kernel OZ , as defined in the last section. One
can observe that

Φη′
η
∼= φ∗ ◦ TEk

, where Ek = OBη
θk

.

Hence Φη′
η is an equivalence, giving another proof that the derived categories Db(Mη) and

Db(Mη′) are equivalent across this Mukai flop.

Remark 5.1. In the hypertoric description of ˜C2/Zm+1 the curves Ci are the projective lines
Bη

θi
. For a wall-crossing (a simple Mukai flop) across the wall Pk,k+1 the Fourier–Mukai

transform with kernel OZ associated to the corresponding fibre product can be identified
(up to the obvious isomorphism of varieties) with the composition of the spherical twist
TEk

and the geometric identification φ∗ (end of this section). Thus the wall-crossing
autoequivalences coming from these flops are exactly the braid-group generators realized
by the Seidel–Thomas spherical twists.

6. The Representation of Deligne Groupoid G

Let Sm+1 denote the symmetric group on {1, . . . ,m+1}, generated by the simple transpo-
sitions si = (i i+ 1) for 1 ≤ i ≤ m. The Artin braid group Bm+1 is generated by elements
σi with the usual braid relations; the natural surjection Bm+1 → Sm+1 sends σi 7→ si. Its
kernel is the pure braid group PBm+1.

In the hypertoric picture, one considers the braid hyperplane arrangement in Cm+1:

A =
⋃

1≤i<j≤m+1

Hij , Hij = {(x1, . . . , xm+1) ∈ Cm+1 | xi = xj},
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and its complement Ac = Cm+1 \ AC. The pure braid group is naturally isomorphic to
π1(Ac). Write

k∗ = spanC(f1, . . . , fm+1)/ spanC(
∑
i

fi)

for the ambient parameter space of discriminantal hyperplanes, and let

Pij =
{m+1∑

r=1

λrfr ∈ k∗ : λi = λj

}
be the collection of complexified discriminantal hyperplanes. Denote by

ΥC := k∗ \
⋃
i ̸=j

Pij

the complement of these hyperplanes.

Lemma 6.1. The linear projection

π : Cm+1 −→ k∗, π(x1, . . . , xm+1) =
m+1∑
i=1

xifi,

restricts to a trivial C–bundle π : Ac → ΥC, and in particular π is a homotopy equivalence.
Hence π1(Ac) ∼= π1(ΥC) and PBm+1

∼= π1(ΥC).

Proof. The kernel of π is the 1–dimensional diagonal subspace {(t, . . . , t) | t ∈ C}. The
fibres are affine lines parallel to this diagonal. For y ∈ ΥC any two preimages differ by a
common diagonal translation, so π−1(y) ∼= C. Choosing a linear complement (for example,
the hyperplane

∑
i xi = 0) splits π, hence the map is a trivial line bundle. A trivial C–

bundle is homotopy equivalent to its base, so π induces an isomorphism on fundamental
groups. □

Consequently PBm+1 appears naturally as π1(ΥC) in the hypertoric setup. We will
observe that the Seidel–Thomas braid action (coming from spherical twists attached to an
Am chain) restricts to PBm+1, and one can view this as emerging from the topology just
described. IN this section we will show that the wall-crossing Fourier–Mukai transforms

Φη′
η (defined for arcs between adjacent chambers) should satisfy the relations coming from

the fundamental group of ΥC, giving an action of π1(ΥC) and more generally of the Deligne
groupoid on the collection of derived categories.

Fix a set Θ of integral characters by choosing, for every chamber Y of the real discrimi-
nantal arrangement, an integral character ηY ∈ Y ∩ k∗Z; write Mη for the hypertoric variety
attached to a character η. By variation of GIT the isomorphism class of Mη depends only
on the chamber.

Definition 6.2. The Deligne groupoid G := Π1(ΥC,Θ) is the full subcategory of the
fundamental groupoid of ΥC with objects the chosen basepoints Θ.

Salvetti [4] constructs a CW–complex X ⊂ ΥC which is a deformation retract. The 1–
skeleton X1 is a directed graph with vertices X0 = Θ and a pair of opposite directed edges
between η, η′ exactly when the chambers containing them are adjacent. The 2–cells of X
correspond to codimension–2 faces F of the real discriminantal arrangement: for a vertex
η adjacent to F there is an “opposite” vertex and two minimal directed paths Γ1,Γ2 from
η to that opposite vertex; the boundary of the corresponding 2–cell is Γ1 ∪ Γ2.
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For each directed edge (arc) η → η′ in X1 there is a Fourier–Mukai functor

Φη′
η : Db(Mη) −→ Db(Mη′),

constructed from the natural correspondence (the fibre product over the partial affiniza-
tion). These functors are equivalences in the simple Mukai flop cases and play the role of
generators attached to oriented edges of the Salvetti graph.

Lemma 6.3. For every arc η → η′ in X1 the functor Φη′
η is an equivalence and its inverse

is (up to natural isomorphism) the functor Φη
η′ obtained by reversing the arc.

Proof. This follows from the standard theory of derived equivalences for flops: the kernel
OZ on the fibre product Z induces an equivalence and reversing the correspondence gives
the inverse kernel. □

The Salvetti 2–cells provide the relations that the edge-functors must satisfy to extend to
a functor Π1(X,Θ) → C where C denotes the groupoid whose objects are the categories
Db(Mη) and whose morphisms are equivalences up to natural isomorphism.

Proposition 6.4 (Reduction to codimension–2 faces). To prove that the assignment send-

ing an arc η → η′ to Φη′
η extends to a functor Π1(X,Θ) → C it suffices to check, for each

codimension–2 face F of the discriminantal arrangement and for each vertex η adjacent to
F , that the two minimal directed paths Γ1,Γ2 from η to the opposite vertex give naturally
isomorphic compositions

ΦΓ1
∼= ΦΓ2 .

Proof. This follows from the combinatorial description of X and the fact that the 2–cells
generate the relations in the fundamental groupoid. If all 2–cell relations hold at the level
of functors, then all higher relations follow since X is a 2–dimensional deformation retract
of ΥC. □

Conjecture 6.5. There exists a (unique) functor

F : Π1(X,Θ) −→ Cat

sending each vertex η ∈ Θ to the object Db(Mη) and each oriented edge α : η → η′ to the
equivalence Φα.

Below we give a conditional proof: we show the conjecture follows from a simple, lo-
cal hypothesis (verification of the 2–cell relations). This reduction isolates exactly the
geometric identities that must be checked.

Lemma 6.6 (Reduction to 2–cell checks). The data {Φα}α∈X1 extends to a functor F :
Π1(X,Θ) → C if and only if for every 2–cell of X (equivalently every codimension–2
face F of the real discriminantal arrangement) and for every vertex η adjacent to F , the
two minimal directed paths Γ1,Γ2 in X1 from η to the opposite vertex satisfy a natural
isomorphism

ΦΓ1
∼= ΦΓ2 .

Proof. The fundamental groupoid Π1(X,Θ) is generated by the directed edges of X1 sub-
ject to the relations given by the boundaries of the 2–cells (because Salvetti’s complex X
is a finite 2–dimensional CW–complex which deformation retracts ΥC). Concretely, each
2–cell provides a relation of the form

γ1 · · · γr = δ1 · · · δs
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in the path groupoid, where the two directed words γ1 · · · γr and δ1 · · · δs describe the two
minimal directed paths around the 2–cell. To define a functor F on the groupoid one
assigns the corresponding equivalence Φγi to each generator γi and then must check that
the compositions of equivalences along the two sides of every 2–cell coincide up to canonical
natural isomorphism. Thus the stated condition is necessary.

Conversely, if the stated equality of composed functors holds for every 2–cell then the
assignment on generators is compatible with all relations and therefore extends (uniquely)
to a functor on the whole fundamental groupoid. This proves the equivalence. □

The lemma reduces the global problem to finite local verifications. We now collect the
verifications that are available and then state the conditional theorem.

Proposition 6.7 (Local verifications in basic cases).

(1) (Circuit of size two — simple flop.) For any codimension–2 face F coming from a
circuit of size two (the simple Mukai flop situation) and any vertex η adjacent to
F , the two minimal directed paths Γ1,Γ2 satisfy ΦΓ1

∼= ΦΓ2.
(2) (Circuits admitting spherical/Pn-functor descriptions.) If the local geometry at the

codimension–2 face F can be described so that each wall-crossing functor involved
is (up to identification) either a spherical twist or a Pn-twist coming from a Pn-
functor, and the known relations among those twists yield the equality of the two
compositions around the 2–cell, then the corresponding local 2–cell equality holds.

Proof. (1) is the standard calculation for simple Mukai flops (see for example the analyses
of kernels arising from fibre products with diagonal and exceptional components). The fibre
product correspondence Z in this case has two irreducible components (one the diagonal,
the other the exceptional product). The Fourier–Mukai kernel OZ thus decomposes—on
test objects supported off the exceptional locus it acts by the geometric identification, while
on objects supported on the exceptional locus it induces the spherical twist about OP1 .
Composing the two wall-crossings around the 2–cell therefore yields identical functors; see
the local kernel computations in Seidel–Thomas and Namikawa for the model calculations.

(2) is an immediate formalisation: when the local functors are expressible in terms of a
small set of autoequivalences (spherical twists,Pn-twists, etc.) whose relations are already
known and produce the required identity, the 2–cell equality follows by substituting those
identities. Many concrete geometries of interest fall into this category. □

We are now ready to state the conditional result which is the practical form of conjecture
6.5.

Theorem 6.8 (Conditional version of Conjecture 6.5). ⋆ Assume that for every codimension–
2 face F of the real discriminantal arrangement and every vertex η adjacent to F , the two
minimal directed paths Γ1,Γ2 from η to the opposite vertex satisfy

ΦΓ1
∼= ΦΓ2

as natural equivalences Db(Mη) → Db(Mη′). Then the assignment sending each vertex

η 7→ Db(Mη) and each edge α 7→ Φα extends uniquely to a functor F : Π1(X,Θ) → C.
Consequently, for each η ∈ Θ this yields a group homomorphism

π1(ΥC, η) −→ Auteq
(
Db(Mη)

)
given by monodromy.
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Proof. Existence. By Lemma 6.6, the hypothesis (the local 2–cell equalities) is exactly the
condition needed to ensure the edge-level assignment respects the relations coming from
the 2–cells of X. The groupoid Π1(X,Θ) is presented by generators (the directed edges
of X1) and relations (the 2–cell boundaries). Thus the given assignment of equivalences
to generators extends to a functor on the presented groupoid because all of the presenting
relations are satisfied on the target side.

Uniqueness. The groupoid Π1(X,Θ) is generated by the directed edges; once the functor’s
values on those generators are fixed the extension is forced, and any natural isomorphism
of functors is determined by its components on objects. Hence the extension is unique up
to the evident canonical identifications.

Monodromy representations. Fix η ∈ Θ. Restrict the functor F to the automorphism
group π1(ΥC, η) = EndΠ1(X,Θ)(η). The functor F maps each loop (based at η) to an

autoequivalence of Db(Mη), and composition of loops is respected because F is a functor.

This yields the claimed group homomorphism to Auteq(Db(Mη)). This proves the theorem.
□

Remarks on the strength of the hypothesis and strategies for verification.

• The hypothesis of Theorem 6.8 is local and concrete: it requires checking one
natural-isomorphism identity for each codimension–2 face F . This reduces a global
monodromy question to a finite (though possibly large) collection of local ker-
nel/composition identities.
• For many faces F arising from small circuits (size two or three) the local check can
be completed by explicit kernel computations or by reducing to known algebraic
relations among spherical or Pn-twists. Proposition 6.7 records the common cases
where the local checks are already known or directly verifiable.
• A different but powerful strategy is to construct a perverse schober (a categorified
local system) on ΥC whose stalks are the categoriesDb(Mη) and whose wall-crossing
functors are the given Φα. Existence of such a schober would imply automatically
that the local monodromy constraints are satisfied and hence yield the desired
functor F . Recent work on perverse schobers and categorified Picard–Lefschetz
theory makes this a promising route in practice.

Remark 6.9. The preceding argument shows that Conjecture 6.5 is equivalent to a finite list
of local equalities (one per codimension–2 face). Verifying each of those equalities (which
is tractable in the principal geometric cases: simple flops and many small circuits) is
sufficient to produce the functorial representation of the Deligne groupoid and the induced
monodromy action of π1(ΥC) on each derived category Db(Mη).

Remark 6.10 (Conditional Braid group action on derived categories). Let A be a simplicial
real hyperplane arrangement with chambers C. For each η ∈ C, letMη be the corresponding
hypertoric variety. Under the condition (⋆), the braid group

B = π1(Cd \ AC)

acts by equivalences on the derived categories Db(Mη). Explicitly, a loop γ based at η
defines an autoequivalence

Φγ : D
b(Mη)

∼−−→ Db(Mη).
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Appendix A. Basics of Symplectic Topology and Hypertoric Variety

We begin by recalling some background from symplectic geometry and algebraic geom-
etry that plays a central role in the construction of hypertoric varieties. In particular, we
explain the notions of symplectic quotients, hyperkähler quotients, and Geometric Invari-
ant Theory (GIT) quotients, and how these constructions relate in the setting of conical
symplectic resolutions such as hypertoric varieties.

Let (X,ω) be a symplectic manifold, i.e., X is a smooth manifold equipped with a closed
non-degenerate 2-form ω. Suppose a Lie group G acts on X preserving the symplectic
form ω, i.e., the action is Hamiltonian. A moment map for this action is a smooth map

µ : X → g∗

where g is the Lie algebra of G, satisfying

d⟨µ, ξ⟩ = ιξXω

for all ξ ∈ g, where ξX denotes the vector field on X generated by the infinitesimal action
of ξ. Given a moment map µ : X → g∗, and a value α ∈ g∗, the symplectic quotient or
Marsden-Weinstein quotient is defined as

X//αG := µ−1(α)/G

under suitable conditions. Specifically, the quotient is well-behaved (e.g., smooth) when:

• α is a regular value of µ, so that µ−1(α) is a submanifold of X,
• The action of G on µ−1(α) is free and proper,

In this case, X//αG is a smooth symplectic manifold of dimension dimX − 2 dimG, with
the symplectic form induced from ω.

Hyperkähler Quotients. When X is a hyperkähler manifold (i.e., equipped with three
symplectic forms ω1, ω2, ω3 satisfying quaternionic relations), and a compact Lie group G
acts preserving this structure, we can define a hyperkähler moment map:

µH = (µR, µC) : X → g∗ ⊕ g∗C.

The hyperkähler quotient at (α, 0) is defined as

X///αG := µ−1
R (α) ∩ µ−1

C (0)/G.

Again, when the group action is free and proper on the level set, the resulting quotient
inherits a hyperkähler structure.

GIT Quotients and Stability. Let X be a smooth quasi-projective variety equipped with
an action of a reductive group G, linearized with respect to a G-equivariant ample line
bundle L. Then the GIT quotient is defined by:

X//χG := Proj

⊕
n≥0

H0(X,L⊗n)G

 ,

where χ is a character of G used to twist the linearization. A point x ∈ X is called:

• Semistable if there exists a G-invariant section s ∈ H0(X,L⊗n)G with s(x) ̸= 0,
• Stable if it is semistable and the stabilizer of x in G is finite, and the orbit G · x is
closed in the semistable locus.
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The GIT quotient is the geometric quotient of the stable locus (under suitable conditions),
and the semistable locus maps onto it with possibly nontrivial stabilizers.

Let T be a compact torus and let its complexification TC act algebraically on an affine
variety X with a linearization determined by a character α. In many examples (including
hypertoric varieties), the following result holds (cf. [5], [7]):

Theorem A.1. Let X be a hyperkähler manifold with a Hamiltonian action of a torus
T, and let α ∈ t∗ be a character. Then under suitable assumptions on the linearization,
the GIT quotient X//αTC coincides (as a complex algebraic variety) with the symplectic
quotient µ−1(α)/T.

With this we are ready to define hypertoric varieties and their key properties. Let’s consider
T be the complex torus (C×)n of dimension n and t be it’s Lie algebra. Furthermore assume,
tZ be the weight lattice. Let, K be an algebraic subtorus of T with Lie algebra k ⊂ t. There
is a natural action of K on T ∗Cn coming from the action of T. Consider, T ∗Cn to a
symplectic manifold with natural symplectic form

ω =

n∑
i=1

dwi ∧ dw∗
i

The action of K on T ∗Cn is Hamiltonian with the moment map

µ : T ∗Cn → k∗; µ(x, z)(x1, · · · , xn) =
n∑

i=1

zixiwi

A hypertoric variety is a symplectic quotient of T ∗Cn by K or GIT quotient of µ−1(λ) with
respect to a character η : K→ C×.

Definition A.2. η : K → C× be a multiplicative character and λ ∈ k, the following GIT
quotient

Mη,λ = µ−1(λ)//ηK
is called a hypertoric variety.

By expanding the definition we get,

Mη,λ := Proj

∞⊕
m=0

{
f ∈ O(µ−1(λ)) : f(t−1x) = η(t)mf(x) for all t ∈ K

}
.

As Mη,λ is a symplectic quotient of T ∗Cn by K, its dimension is 2(n − k), where k is
the rank of K. We can describe this construction more geometrically using the locus of
semistable points, as follows. The choice of character η defines a lift of the action of K on
µ−1(λ) to the trivial line bundle µ−1(λ)× C by the equation

t · (p, x) = (t · p, η(t)−1x).

Definition A.3. A point p ∈ µ−1(λ) is η-semistable if the closure of the K-orbit through
(p, 1) in µ−1(λ) × C does not intersect the zero section µ−1(λ) × {0}. A point which is
not η-semistable is said to be η-unstable. We denote the locus of η-semistable points by
µ−1(λ)η.

In other words, p is η-semistable if, whenever {tn}∞n=1 is a sequence of elements of K such
that limn→∞ η(tn) =∞, the sequence {tn · p}∞n=1 does not converge in µ−1(λ). There is a
surjective morphism of varieties

φη : µ−1(λ)η →Mη,λ.
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characterized by the property that, two points p, q ∈ µ−1(λ)η have the same image under
φη if and only if the closures of their K-orbits have nontrivial intersection in µ−1(λ)η (not
just in the larger set µ−1(λ)). Instead of φη(p) we may write [p]η or simply [p] if this causes
no confusion.

Definition A.4. The pair (η, λ) is regular if every K-orbit in µ−1(λ)η is closed.

Thus, if (η, λ) is regular, the fibres of φη are precisely the K-orbits in µ−1(λ), and so Mη,λ

is the geometric quotient µ−1(λ)η/K. In this thesis we will be exclusively concerned with
the case where λ = 0, and we shall write Mη instead of Mη,0. Likewise, we will say that η
is regular if (η, 0) is regular.

Note that the semistable locus µ−1(0)0 for the trivial character is simply µ−1(0). The
associated hypertoric variety

M0 = SpecO(µ−1(0))K

is the affinization of each Mη; the affinization map Mη →M0 is induced by the inclusion
µ−1(0)η ⊂ µ−1(0).

Definition A.5. Let {e1, . . . , en} be the standard basis of t = Cn, and let tZ ⊂ t be the
cocharacter lattice of K. For 1 ≤ i ≤ n, let ai denote the image of ei under the quotient
map t→ t/k. We say that K is unimodular if every linearly independent collection of n−k
elements of {a1, . . . , an} generates the lattice tZ/kZ.

Proposition A.6. [8] Assuming K is unimodular, the following conditions on η are equiv-
alent:

(1) The hypertoric variety Mη is smooth.
(2) η is regular.
(3) The action K on the semistable locus µ−1(0)η is free.

Example A.1. Let
K = {(t, . . . , t) ∈ (C×)n : t ∈ C×}.

Then

µ−1(0) = {(z, w) ∈ T ∗Cn :
n∑

i=1

ziwi = 0}.

A character η : K→ C× is of the form η(t, . . . , t) = tr for some r ∈ Z. For r > 0, we have

µ−1(0)η = {(z, w) ∈ µ−1(0) : z ̸= 0}.
Recall that if V is a finite-dimensional complex vector space with projectivization P(V ),
then the cotangent bundle T ∗P(V ) can be described as

T ∗P(V ) = {(L,X) ∈ P(V )× EndV : X2 = 0, imX ⊂ L}.
Hence, the hypertoric variety Mη = µ−1(0)η/K is isomorphic to T ∗P(Cn), where the orbit
of (z, w) corresponds to the pair (span(z), w⊗ v) under the natural isomorphism EndV =
V ∗ ⊗ V . For r < 0, the semistability condition is instead determined by w ̸= 0, and the
resulting hypertoric variety is identified with T ∗Pn∗.

Example A.2. (Resolution of Am-surfaces). Let

K = {(t1, . . . , tm+1) ∈ (C×)m+1 : t1 · · · tm+1 = 1},
acting on T ∗Cm+1. We then have

µ−1(0) = {(z, w) ∈ T ∗Cm+1 : z1w1 = z2w2 = · · · = zm+1wm+1}.
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The affine hypertoric variety M0 is isomorphic to the type Am-Kleinian singularity,

C2/Zm+1 =
{
(x, y, z) ∈ C3 : xm+1 + yz = 0

}
the GIT quotient map is given by,

µ−1(0)→ C2/Zm+1; (z, w) 7→ (z1w1, z1 · · · zm+1, w1 · · ·wm+1)

For a regular character η, the affinization Mη →M0 is the minimal resolution

˜C2/Zm+1 → C2/Zm+1

In the previous section we have been particularly interested about this hypertoric variety.
As there is a Braid-group action on it by the work in [2].

Appendix B. Fourier-Mukai transforms and Mukai Flops

Let X be a complex variety. We denote by Db(X) the bounded derived category of
coherent sheaves on X.

Definition B.1. Let X and Y be smooth complex varieties, and let

πX : X × Y → X, πY : X × Y → Y

be the projection maps. Suppose P ∈ Db(X × Y ) has support that is proper over both X
and Y . The Fourier–Mukai transform with kernel P is the functor

ΦP : Db(X)→ Db(Y ), ΦP (E
•) = (πY )∗

(
π∗XE

• ⊗ P
)
,

where (πY )∗, π
∗
X , and ⊗ denote the derived pushforward, pullback, and tensor product,

respectively.

Fourier–Mukai transforms appear frequently in algebraic geometry: derived pushforwards,
pullbacks, and the shift functor onDb(X) can all be expressed in this form (see, for example,
[12]). A deep theorem of Orlov [13] states that if X and Y are smooth projective varieties,
then every fully faithful exact functor Db(X) → Db(Y ) is isomorphic to a Fourier–Mukai
transform ΦP for some P ∈ Db(X × Y ), which is uniquely determined up to isomorphism.

Remark B.2. The left and right adjoints of ΦP are again Fourier–Mukai transforms, with
kernels

PR := P∨ ⊗ π∗XωX [dimX], PL := P∨ ⊗ π∗Y ωY [dimY ],

where P∨ is the derived dual of P viewed as a complex on Y × X, and ωX , ωY are the
canonical bundles of X and Y , respectively.

A Mukai flop (also called an elementary transform) is a birational modification that re-
places a projective bundle inside a holomorphic symplectic variety by its dual bundle. More
concretely, letM be a holomorphic symplectic variety of dimension 2m containing a closed
subvariety P ≃ Pm. Suppose there exists a projective birational morphism

ν :M → M̄

which contracts P to a point and is an isomorphism away from P . Denote by N = NP/M

the normal bundle of P in M . Because P is Lagrangian in M , we have an isomorphism
N ∼= T ∗P .
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Fix an (m+1)-dimensional vector space V and identify P ∼= P(V ). By the Euler sequence,
there is a natural embedding of vector bundles

T ∗P(V ) ↪→ V ∗ ⊗ OP(V )(−1),
which induces an embedding of projective bundles

P(T ∗P(V )) ⊂ P(V )× P(V ∗)

whose image is the incidence variety

{(L,H) ∈ P(V )× P(V ∗) | L ⊂ H}.
Here P(V ∗) parameterizes hyperplanes in V .

Blowing up M along P produces a projective morphism M̃ → M with exceptional divi-
sor E = P(N). We identify E with the incidence variety described above. Mukai [14]

showed that there exists another variety M ′ and a birational morphism M̃ →M ′ with the
same exceptional divisor E, such that the restriction of this morphism to E is the second
projection

E ⊂ P(V )× P(V ∗) −→ P(V ∗).

This gives a birational morphism
ν ′ :M ′ → M̄

contracting the image P(V ∗) of E to a point. Altogether, we obtain a commutative diagram

M̃ M ′

M M̄

π ν′

ν

Definition B.3. The diagram above is called the Mukai flop of M along P .

The construction generalizes to families. SupposeM is a holomorphic symplectic variety
of dimension 2m, containing an m-dimensional subvariety P ⊂M and a proper birational
morphism ν : M → M̄ whose exceptional locus is P . Assume the image Y = ν(P ) is a
smooth subvariety of M̄ and that ν|P : P → Y realizes P as the projectivization P(V ) of a
rank-(codim P + 1) vector bundle V → Y . It follows (see [16, Section 3]) that the normal
bundle NP/M is isomorphic to the relative cotangent bundle of ν. Performing Mukai flops
fibrewise yields a commutative diagram of birational morphisms as above, in which M ′

contains the dual projective bundle P(V ∗)→ Y .

Let Z =M ×M̄ M ′ and set

Z0 = P(V )×Y P(V ∗) ⊂ Z.
The maps in the previous diagram induce isomorphisms

M̃ \ E ∼= M \ P (V ) ∼= M ′ \ P(V ∗),

so that the morphism i : M̃ → Z identifies M̃ \ E with Z \ Z0. If Z1 denotes the closure

of Z \ Z0 in Z, then i identifies E with Z0 ∩ Z1, and M̃ with Z1. Hence the fibre product
Z has two components:

Z0 = P(V )×Y P(V ∗), Z1 = M̃,

intersecting along

Z0 ∩ Z1 = {(L,H) ∈ P(V )×Y P(V ∗) | L ⊂ H}.
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In Chapter 4 we will see that if η and η′ are regular characters of a torus K separated by
a single wall in the discriminantal arrangement, then the corresponding hypertoric varieties
Mη and Mη′ are related by a Mukai flop. The intermediate variety Mθ, for a subregular
character θ lying on the separating wall, plays the role of M in the construction.

The same notion of Mukai flop applies when M and M ′ are smooth and projective but not
necessarily symplectic (see [12]). In that setting one explicitly requires that NP/M be the
relative cotangent bundle of ν, since it need not hold automatically.

IfM andM ′ are smooth and projective varieties related by a Mukai flop, the fibre product
Z =M ×M̄ M ′ induces an equivalence between their derived categories:

Theorem B.4 ([15], [16]). LetM and M ′ be smooth projective varieties related by a Mukai
flop, and let Z =M ×M̄ M ′ as above. Then the Fourier–Mukai transform

ΦZ : Db(M) −→ Db(M ′), ΦZ(E
•) = (πM ′)∗

(
π∗ME

• ⊗ OZ

)
is an equivalence of triangulated categories.

Although hypertoric varieties are generally not projective over SpecC, the conclusion of
this theorem continues to hold in the symplectic setting. Namikawa’s argument in [15,
Section 4] shows that ΦZ is fully faithful even without projectivity.

Since M and M ′ are birational and both have trivial canonical bundles (as they are holo-
morphic symplectic), the left and right adjoints of ΦZ coincide. Viewing O∨

Z as a sheaf on
M ′×M , these adjoints correspond to the Fourier–Mukai transform with kernel O∨

Z [dimM ].
By [17, Theorem 3.3], a fully faithful functor with identical left and right adjoints is an
equivalence. Hence we obtain:

Theorem B.5. Let M and M ′ be holomorphic symplectic varieties related by a Mukai
flop, and let Z = M ×M̄ M ′ be the corresponding fibre product. Then the Fourier–Mukai
transform

ΦZ : Db(M)→ Db(M ′)

with kernel OZ is an equivalence of triangulated categories.
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