BRAID GROUP ACTION ON D!(9,)

TRISHAN MONDAL

ABSTRACT. We construct an action of the braid group on the bounded derived category
of coherent sheaves on hypertoric varieties arising from hyperplane arrangements. Using
wall-crossing equivalences associated to paths in the complexified complement of the
hyperplane arrangement, we show that these equivalences yield a functor from the Deligne
groupoid to the category of triangulated equivalences. This gives rise to a canonical
representation of the fundamental group, which under suitable assumptions recovers the
braid group, acting on D°(9,,).

1. INTRODUCTION

In this paper I shall describe the work I have done during my stay at ANU(Australian
National University) as a FRT scholar. The category of coherent sheafs over a variety (or
scheme) is a central topic in studying algebraic geometry. It has been observed that this
kind of triangulated category arises in representation theory. In symplectic topology one
can define Hyperkéhler quotients. From a given hyperplane arrangement of & hyperplanes
in R™ one can define an action of (C*)” on T*C*, the hyperKéhler quotient of this type
of action gives us hyper-toric varieties. As the name suggest the quotient has a variety
structure. If we define the hypertoric varieties by 9, the category Db(i)ﬁn) makes sense.
Whenever we talk about the derived category of a variety we mean this.

The derived category of 9, is related to the derived category of modules over some
algebra B (as in [1]), arises from a combinatorial setting. Also, the category of B-modules
can be thought of as an analogue of Bernstein-Gelfand-Gelfand’s category O in a combina-
torial context. So, there is a natural connection of representation theory with this category.
Thus categoryfication of braid groups via Db(fmn) can help to study deeper representations
of the braid group.

Generally, if we have a braid group B, acting on DY(X), we can construct some knot
invariants in the following way: suppose b € B), be a braid, if we take it’s closure in S3 we
get a knot b. If we denote T}, to the auto-equivalence related to b then for fixed object F
in D(X) (such as Oy), we can compute Ext pox) (£, Tp(F)) or catgorical traces. These
actually gives some knot-invariant cohomology theories. This is one of the motivations
behind braid group action on such categories.

To give braid group action on Db(zm,,) one needs to define a group homomorphism
®: B, — Auteq(D"(M,))

here, Auteq(D’(901,)) is the group of all derived auto-equivalences between D°(9t,). So,
we need to find some autoequivalences that satisfy the braid group relation. The work in
[2] suggests that if we have Si,--- , S, spherical objects in D’(X), the spherical twists
are auto-equivalences and if the satisfy

dim Ext pyx)(Si, S5) = 1ji—ji=1
1
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for ¢ # j then the corresponding twists T, satisfy the braid relation. There is a core of
9N, which is union of smooth, projective, lagrangian subvarieties of 9, call it X. One
can expect that the structure sheaf of these smooth projective complement can satisfy the
braid relation. But it is not immediate from [2] as Opn are not spherical for higher n. But
this result can be used for some particular cases.

Recall the facts about A,,-surfaces, their resolution are a hypertoric variety, the irreducible
lagrangian subvarieties of this are copies of P'. Here, 0p1 can be thought of a spherical
object in the derived category of the A,,-surface. By [2], we can get a braid group action.

In order to tackle this dificulty we go down to the hyperplane arrangement corresponding
to the hypertoric variety. When we define 9,,, n comes from the character of the torus
action. Suppose 7’ another such character differs from 7 by a discriminantal hper-plane
crossing, we can define a wall-crossing functor

o7 : D*(M,)) — DO (M)
which is an equivalence of triangulated derived categories. It will turn out that this
wall-crossing functor is a Fourier-Mukai transform corresponding to the kernal &7 here
Z =My xon, My, Me comes from the stability of GIT or the hyperKéhler quotient. Be-

fore proceeding towards the framework of the main theorem we would like to remark the
following.

Remark. For the case of A,,-surfaces C2/Z,,11, the minimal resolution C2/Z,, 1 is a
hypertoric variety. It arises from a hyperplane arrangement with m points in R. Clearly,
there are (m + 1) chambers, and let 7; denote the corresponding characters of the torus for
i=1,---,m+1. Moreover, there are m-spherical objects S;, where the index i =1,--- ,m.
There exists a map ; : M,, — M, ;. There is an obvious relation
(I):]]2+1 = wz*TSz

Thus, there is a way to use the wall-crossing functors to construct the braid group action
in this case. We attempted to generalize the observations obtained here, which leads to
the following discussion.

We now recall the construction of the Deligne groupoid associated to a real hyper-
plane arrangement and prove that our assignment of wall-crossing functors to paths is
well-defined. This will allow us to deduce a braid group action on derived categories of
hypertoric varieties.

The Deligne groupoid. Let A be a real hyperplane arrangement in R?, and let C denote the
set of chambers, i.e. the connected components of R% \ | rea H. For chambers C,C" € C
we define:

Definition 1.1. The Deligne groupoid G = I11(A) is the groupoid whose

e objects are the chambers of A,

e morphisms are generated by elementary moves C' — C” whenever C and C’ share a
codimension-one wall, subject to the relations coming from minimal positive paths
in the Salvetti complex of A.

Concretely, a path v in C?\ A¢ with endpoints in real chambers determines a morphism
in G, and two such paths are equivalent if they are homotopic through such paths. The
groupoid G is equivalent to the fundamental groupoid of the complexified complement:

G ~1IL(C\ Ag, C).



BRAID GROUP ACTION ON D®(9,) 3

For each chamber 1 € C, we have the hypertoric variety M, and hence its bounded derived
category Db(Mn). If two chambers 71, n’ are adjacent (separated by a single wall), we have
constructed an equivalence

NG ~ b
o7 D°(My) — D°(My).
These are called wall crossing functors. By composing such equivalences along a path
~v:m — 1 crossing successive walls, we obtain a functor

b ~ b
o, D°(M,) — D°(M,).
The key issue is that a given pair of chambers 7,7’ may be connected by many distinct

paths. We must show that the resulting functor ®, depends only on the homotopy class
of v, i.e. is well-defined in the Deligne groupoid under certain conditions.

Theorem 1.2 (Well-definedness of wall-crossing functors). Let 71,72 be two paths in C?\
Ac connecting the same chambers nn and 1. Then the associated wall-crossing functors

®,,, 0., DY(M,) — DU(M,)
are canonically isomorphic. Equivalently, the assignment
F: G — Cat, n s D°(M,), @,

is a well-defined(under certain conditions) functor from the Deligne groupoid G to the
2-category of triangulated categories and equivalences.

Consequences. It is a theorem of Deligne [3] that if A is a real simplicial arrangement, then
the fundamental group m(C?\ Ac) is isomorphic to an Artin braid group. Combining this
with the previous theorem, we obtain:

Theorem 1.3 (Braid group action on derived categories). Let A be a simplicial real hy-
perplane arrangement with chambers C. For each n € C, let M, be the corresponding
hypertoric variety. Then the braid group

B = 7T1(Cd \ Ac)

acts by equivalences on the derived categories Db(Mn). Ezxplicitly, o loop v based at n
defines an autoequivalence
®.: D°(M,) = D°(M,).
1
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2. REVIEW OF HYPERPLANE ARRANGEMENTS

We begin by recalling basic terminology concerning real hyperplane arrangements, which
will later serve to describe hypertoric varieties. Let A = {H;};c; be a finite collection
of affine hyperplanes in a real vector space V. Such a collection is called a hyperplane
arrangement. If every H; passes through the origin, we call A a central arrangement. For
each index i, the complement V' \ H; consists of two connected components, denoted H f
and H,; . These can be described as

H ={veV:pv) >0}, H ={veV:ypv) <0},
where ¢; : V — R is an affine functional such that H; = ¢; *(0).
Definition 2.1. A (relatively open) face of A is a nonempty subset of V' of the form

F=()H,
i€l
where each o; € {—,0,+} and H) := H;. The tuple o = (0;);¢s is called the sign sequence
of F.

Definition 2.2. A chamber of A is a relatively open face for which o; # 0 for all i € [I.

Equivalently, the chambers are the connected components of the complement V'\ | J;; H.

The Hyperplane Arrangement Associated to a Hypertoric Variety. Just as projective
toric varieties correspond to rational polytopes, a hypertoric variety €, can be described
by an oriented real hyperplane arrangement.

Let T = (C*)™ be an algebraic torus with Lie algebra t, and let K C T be a subtorus with
Lie algebra ¢ C t. The quotient t/¢ has a dual (t/€)*, and we let a; denote the image of the
i-th standard basis vector e; under the quotient map t — t/¢.

A multiplicative character n : K — C* corresponds to an integral weight n € £;. Choose
a lift (m1,...,mn) of n to £, = Z". Define

(t/Or = (tz/tz) ®z R, (t/€)r = Homp((t/t)r,R).
For 1 < i < n, define affine hyperplanes
i={z e {t/Or: (x,a:) +m =0}

The collection H,, = {Hy1,...,Hy} is called the hyperplane arrangement associated to
7. Different lifts of 7 yield arrangements that differ only by a uniform translation.
Conversely, given affine hyperplanes

H; ={z eR: (z,a;) + n; = 0}



BRAID GROUP ACTION ON D®(9,) 5

for integer vectors a; € Z¢ and integers 7; € Z, one recovers ¢ as the kernel of the map C"* —
C¢ sending e; — a;, with K the corresponding subtorus and 7 the character (t1,...,t,) —
t7171 - tZ".

Remark 2.3. The affinization €, — €y has fibre over the point [0] called the core, which is
a union of compact toric varieties. The quotient torus T/K acts Hamiltonianly on &, with
moment map

pr s by = ()R,

and the moment polytopes of the core components are precisely the closures of the bounded
chambers of H,,.

Ezxample 2.4. Let K= {(¢t,...,t) € (C*)"} as in Example A.1. Then

(t/8)" = {(z1,...,2,) €C": Za: = 0}.

The central arrangement Hg consists of the hyperplanes x; = 0. For regular n, H, is
in general position with one bounded chamber—a simplex corresponding to the moment
polytope of ¢, = T*P(C").

Ezample 2.5. Let K = {(t1,...,tmq1) € (C)™ : [[.#; = 1}. Then (t/£)* is one-
dimensional, and H,, consists of m + 1 points, distinct when 7 is regular. The core of &, is
an A,,-chain of several P!.

Ezample 2.6. Let
K= {(s,st7 1, t,s71) 1 5, € C*} C (C*)L
Then
t={(a,a—b,b,—a) : a,b € C}, (t/O)r = {(z1, 22,3, 24) € R*: 24 = 21429, 9 = x3} = R2.

Choosing n = f1 + f2, which lifts to (1,1,0,0), we obtain the arrangement

Hnjl:xl—i—l:O,
ngtl’g-l-l:o,
Hn’g:l‘QZO,

Hy4:x1+x90 =0.

Hml x2

T

H7/,3

Hr/,?

These four lines in R? form the associated arrangement Hy.
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A Semistability Criterion in Terms of Half-Spaces. Each hyperplane H,,; comes equipped
with a normal vector a;, defining half-spaces

H;i:{$:<xaai>+77i20}, H = {z:(z,a;) +n; <0}.

The semistable locus of the moment map 1 ~*(0)” can be described in terms of intersections
of these half-spaces.

Proposition 2.7. [1] Let (z,w) € p=1(0) and define
R.w= () H,;0 () H:
2;=0 w;=0

Then (z,w) is n-semistable if and only if R, ., # @.

This provides a geometric criterion for semistability using intersections of half-spaces.

3. CIRCUITS AND THE DISCRIMINANTAL ARRANGEMENT

The discriminantal arrangement is a central arrangement in £ encoding how the semistable
locus depends on 7. Its hyperplanes are indexed by special subsets of {1,...,n} called
circuits.

Definition 3.1. For C C {1,...,n}, let ¢¢ = tNspan(e; : : € C). We call C a circuit if
tc # 0 and minimal with this property (hence dim€c = 1).

For each circuit C', define the corresponding discriminantal hyperplane
Po = (k0)g C &

A character 7 is regular if it does not lie on any Pgo. For n ¢ Pc, we define an orientation
of C by partitioning it into subsets

Cy={ieC:(fi,8l) >0},  Cy={ieC:(fi,Bl) <0},
where (], = Zie(j e — Zie(); e; generates (£c)z with (n, 8) > 0.

Proposition 3.2. For reqular n, the moment map satisfies

pH0) =< (z,w) € T*C" : Z Ziw; = Z ziw; for all circuits C

iens i€Cyy

Subtori and Quotients Associated to a Circuit. For a given circuit C, define the one-
dimensional subtorus Ko C K with Lie algebra €¢, and let Ko = K/K¢ with Lie algebra
£c = £/tc. Let Ec = span(e; : i ¢ C) € C*. Then K¢ acts on T*Ec C T*C". The
hypertoric varieties obtained from this reduced action will play a role in understanding
wall-crossing phenomena.

Definition 3.3. A character n of K is called subregular if it lies on exactly one discrimi-
nantal hyperplane Pg.

Lemma 3.4.
(1) The circuits of the action of Ko on T* Ec are precisely {S\C : S is a circuit of K, S #
C}.
(2) Forn € Pc \ Ps, the orientations satisfy (S\ C)% iS,7i \C.
(8) If n € Pc is subregular for K, then it is reqular for K¢.
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A Semistability Criterion in Terms of Circuits. Konno’s theorem gives a combinatorial
criterion for semistability in terms of circuits.

Theorem 3.5 (Konno). [9] Let n € £, be regular. Then
pH0) = {(z,w) € p~H0) : L (2,w) # 0 for all circuits C'},
where
zl(zw) = (z:i€Clywi i€ C))
collects the coordinates corresponding to each circuit.

More generally, for arbitrary n (possibly non-regular):

Theorem 3.6. [9] A point (z,w) € T*C" is n—semistable if and only if xl(z,w) # 0 for
every circuit C with n ¢ Pc.

Corollary 3.7. The semistable locus u~1(0)" depends only on the face of the discriminan-
tal arrangement containing 1.

This concludes the geometric and combinatorial characterization of semistability for hy-
pertoric varieties €.

4. CONSTRUCTION OF THE WALL CROSSING FUNCTORS

In this chapter we study wall-crossing phenomena for hypertoric varieties. We fix two
regular characters 7,7’ € € separated by a single discriminantal hyperplane P¢, and we
fix a subregular character 6 € €5 N Pc which lies in the closures of the two chambers
containing 1 and . Equivalently, P is the unique discriminantal hyperplane containing
f. The goal is to compare the corresponding hypertoric varieties and to show that the
change of chamber is realised geometrically by a Mukai flop.

Throughout we follow the notational conventions. Let C' C {1,...,n} denote the unique
circuit corresponding to the wall Po. For any character o and any circuit S with o ¢ Pg

we denote by
S

«

(zyw) = (2 : i €S w; :i€8))
the corresponding coordinate function (as in the earlier chapters). Now we begin with a
description of the inclusion relations among the semistable loci for the three characters

0,m,1'.

Lemma 4.1.

X

B O = {(zw) € 57 (0)g = 25 (2,w) £ 0},

Proof. For every circuit S # C' the hyperplanes Pg do not separate 1 and 6, hence the

associated semistability conditions coincide: :Ug = xg . Thus the only possible difference

between the n- and #-semistable loci is the constraint coming from the circuit C', and the
statement follows from the standard GIT description of semistability (3.6). O

Consequently we have inclusions
pH0)y € (0)g D pH(0),y,
and these induce maps on the GIT quotients. We adopt the following notation.
Definition 4.2. Write /
M, —— My +— M,y
for the morphisms of varieties induced by the inclusions of semistable loci. We call these
maps the partial affinizations.
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These are called partial affinizations because they are compatible with the natural affiniza-
tion morphisms 9, — My and My — My that arise from the inclusions of semistable loci
into p~1(0).

We will show that the morphism v : 9, — 9y contracts a closed subvariety Bg c Mm,
onto a subvariety By C 9y, and that the restriction v : Bg — By is the projectivization
of a rank-|C| vector bundle. Recall that

Ec =span(e; :i ¢ C) C C".
Define

By = ¢g(T*Ec N~ '(0)g),
where g : 171(0)g — My denotes the GIT quotient map.

Proposition 4.3. By is a smooth hypertoric variety.

Proof. Recall from Section 2.6 that there is an action of the quotient torus Ko on T E¢.
The #-semistable locus for this action is precisely T* Ec N u~1(0)g, and since § is a regular
character of K¢, all Kg-orbits in this locus are closed. The resulting hypertoric variety
is the geometric quotient (T*Ec N pu~'(0)y)/Kc, which is smooth by regularity of 8. The
quotient map @y also realizes By as this geometric quotient, since the K-orbits and K¢-
orbits coincide on T*Ec N 1~ 1(0)g. O

Lemma 4.4. For every p € p=(0), N p=1(0),, the orbit K- p is closed in 1=(0)g.

Proof. Let p € u=1(0),Np1(0),y and ¢ € KpNp=1(0)y. By the Hilbert-Mumford criterion
for tori (Richardson [3]), there exists a one-parameter subgroup A € £z such that

tliglo A(t) - p € Kq.
It suffices to show that A = 0. Assume otherwise, and write A = (A1,...,A,). Define
I+:{i2)\i>0}, I_:{i:/\i<0}.

Choose a circuit S such that, oriented by 7, either ST c I, S~ CcI_orS~ CcI,, St cC1I_.
In the first case, or in the second with S = C', we obtain a contradiction because

. S _
tlgrolo T, (A(t)p) = oo.
If S~ C Iy and ST C I with S # C, then instead

which contradicts ¢ € p=1(0)y. Thus A = 0, and hence Kp = Kg. O

Lemma 4.5. The complement B := My \ By is equal to op(1=(0)y N~ (0)y), and the
map v is an isomorphism over By.

Proof. The second claim follows from the first by the previous lemma, since both Bj and
v~1(B§) are geometric quotients (u=1(0), N p~1(0),)/K. If (z,w) € u=1(0)g \ (x~1(0), N
1~ 1(0),y), then either a:g(z,w) =0 or xnc,(z,w) = 0. Orienting C according to 7 in the
first case, or to i’ in the second, we have

lim Beo(t) - (z,w) € T*Ec N M_I(O)g,
t—00

hence @y (2, w) € By. Therefore B C g 1(0), N = 1(0)y).
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Conversely, let p € p=1(0), N p=1(0),y and ¢ € T*Ec N = '(0)g. The K-orbits of both p
and ¢ are closed in ~1(0)g (by the previous lemma and subregularity of #, respectively).
Since Kp NT*E¢ = (), we have @y(p) ¢ By. 0

We now introduce certain linear subspaces that will play a role in describing the con-
traction. Let
Vo = span(e; i € C),
and define;
V= span(e; : i € C"" )dspan(e) 1 i€ C"7), Vg, — span(e; : i € C" T)@span(e) i€ C7 7).
Each of these is a |C|-dimensional linear subspace of 7*C", and we have
_ " n
We equip 7"V with the standard symplectic form
w(es, e;) = w(e), e}/) =0, w(e;, e}/) = 0;j-

Then V/ and Vg/ are complementary Lagrangian subspaces, hence w identifies Vg/ as the
dual of V.

Lemma 4.6.

(T*Ec o V)N 0),={p+v|peT*Ecnu*(0)y, veVi\{0}}.
Proof. If p € T*Ec N pu~(0)g and v € V7 \ {0}, then xg(p +v) = v # 0, and for every
S # C we have xi(p +v) = x5 (p) # 0, hence p + v is 7-semistable.

Conversely, suppose p € T*E¢, v € V2, and p+v € p~1(0),. Then v = xnc(p + ) is
nonzero, so it suffices to prove that p is f-semistable. Assume not: then there exists a
sequence t, € K such that lim,_,~ 6(t,) = oo and

q= lim ¢, -p
n—oo
exists. Let f; be the restriction of the standard character e}/ to K. For each j € C', define
i — fj: .7 € Cn+7
J —fj, j e cn—.
Choose i € C such that lim, o ¢;(t,) "1c;(t,) exists for every j € C. Let u,, = [3g(ci(tn)_1) €
K¢, so that ¢;(un) = ¢;(t,) ! for all j € C.

Since semistability conditions are constant along faces of the discriminantal arrangement
(corollary of 3.6), we may assume without loss that

O+ fi i€t
lo—fi, iecn.
Then
N(tnun) = 0(tnuy,) Ci(tn) = e(tn) 0 (un) Ci(tn)ci(un) = Q(tn),
since @ is trivial on K¢ and ¢;(uy,) = ¢;(t,)~!. Therefore lim,, o0 7(tnun) = oo.

Because p is fixed by K¢, we also have

lim t,u,-p=gq.
n—oo
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Writing z;, w; for the coordinates of v, we obtain

tnlly - U = (cj(tn)cj(un)zj 1§ € CM ci(tn)ej(un)wj 1 j € C'"*)

= (¢j(tn)ci(tn) 12y 1 5 € C"ics(tn)ci(tn) twy 1 j € C17),
which converges as n — oo by our choice of i. Hence lim, oo thu, - (p + v) exists, yet
lim,, o0 7(tpu,) = 0o, contradicting the n-semistability of p + v. O
Proof. By Lemma 4.6,
B = (11 (0)y \ 5 (0))/K = ((T*Ec & V) 0 = (0),) /K.

Let X = T*Ec N p~1(0)g, so that the quotient map X — By is a principal Kc-bundle.

The one-parameter subgroup Ko C K acts trivially on X and by scaling on V7, so (V4 \
{0})/Ke = P(V/}). Then by previous lemma,

By = (X x (VA \ {0}))/K = By xx. P(V¢).

Choose a complement G to K¢ in K, so that K = Ko x G and G = K¢e. Then we can
write equivalently

Bg = Bg XaG P(Vg),
which identifies it as the projectivization of the vector bundle V := By x¢g Vg of rank
|C|. O
Our aim in this section is to show that the diagram

M, = My <— M,y

is a Mukai flop of M, (and symmetrically of 9,/) along the subvarieties B, and Bg/,
respectively. That is, there exists a common blowup

m
m, M,

whose exceptional locus restricts to the natural projections
P(V)+—P(V) x P(V*) — P(V").
Recall that in any Mukai flop diagram
M — My +— M,
the common blowup M is one of the two irreducible components of the fibre product

M X g, M', while the other component corresponds to the fibre product of the projective
bundles along which M and M’ are blown up.

To complete the argument, we will analyze this fibre product in detail and demonstrate
that it indeed decomposes into two components: one being

Bl xp, Bl =P(V) x5, P(V*),
and the other realizing the blowup M.

Define the fibre product
Z = Qﬁn XMy mn/,
and let )
Zy:= By xp, By .
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Since B] =P(V) and Bg/ = P(V*), we may equivalently write
Zo = P(V) X By ]P)(V*),

IC1=1 % PICI=1 gver the base By.

which is a bundle of type P
Definition 4.7. Let Z7 = Z \ Zp, and denote by Z; the closure of Z7 inside Z.
Definition 4.8. Let Z7 = Z \ Zp, and denote by Z; the closure of Z7 inside Z.

Remark 4.9. The partial affinizations v : M, — My and v/ : M,y — My are isomorphisms
away from By. Hence we have an isomorphism diagram

p—) WA ;Y

! %

oM, \ By —— My \ By
and explicitly
Z ={(p+u+vyp+ut+v)y): prutve ,ufl(O)nﬂ/fl(O)n/}.

Lemma 4.10. Let y = [ply € By, where p € p=1(0)g N T*Ec, and let (Zy), denote the
fibre of Zog — By above y. Then (Zy)y N Z1 # 0.

Proof. We can assume that the coordinate vectors e; are independent, so |C| > 2. Pick
distinct indices k,¢ € C, say k € C"" and ¢ € C"; the other cases are similar.

Given u € VZ and v € Vg/, the one-parameter subgroup 57? :C* - Kactson p+u+wv by
Bg(s)-(p—i—u%—v):p—ksu—ks’lv, seC”.
Ifp+u+vep1(0),Nut0),, then
[p+u+v], = [p+su+s v, [p+u+vly =[p+sut+s ).

Now, for t € C*, define u; € VJ by setting z, = ¢ and all other coordinates zero, and

define v; € Vg/ by setting 2z, = 1 and others zero. We claim that p + u; + v, € u=1(0) for
all t.

Indeed, by Proposition 2.24, membership in z#~!(0) means that for each circuit .S, Y icsnt ZiWi =
Y icgn— Ziw;. Since p € p~1(0) satisfies this for all S, and all z;w; = 0 for i € C, the same
holds for p + u; + v¢. Moreover, as p is f-semistable and wus, v; # 0, Theorem 2.32 gives
that p + u, + v € p=1(0), N w=1(0),y. Hence

([p 4+ us + vilys [P+ ue + ve)yy) € Z7.
By the scaling relation above,
([p + ut + vily, [P+ ue +ve)y) = ([p + v + vl [P+ w2 + vi]y).
Taking the limit ¢ — 0, this tends to

(Ip + wrly, [P+ vily) € (Zo)y-
Thus (Zo)y NZy # 0. |

We will now show that Z; gives the simultaneous blowup of 9, and 9,/ constructed
earlier.
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Proposition 4.11. Let

I={(L,H)eP(V)xp,P(V*): LC H},
the incidence divisor inside Zy. Then ZgN Zy = 1.
Proof. [10, proposition 4.16],]9, Lemma for theorem 6.3] O

Proposition 4.12. The projections
o, <z, 7,
are the blowups of M, and M, along Bg and Bgl, respectively.

Proof. We show that 7 : Z; — 9, is the blowup along Bg; the case for 7’ is analogous.
The map 7 is an isomorphism outside By by the remark we made. Let k = rank(K). Since
M, is a symplectic quotient of T*C™ by K, dim9M, = 2(n — k). The variety By is the
symplectic quotient of T* Ex by the rank-(k—1) torus K¢, so dim By = 2(n—|C|—(k—1)) =
2(n — k) — 2|C| + 2. Because By is a PI/~1-bundle over By,

dim B] = dim By + |C| — 1 = 2(n — k) — |C| + 1.

Hence the expected fibre dimension of the blowup is |C| — 2.
For a point L € B =P(V), let y = v(L) € By, so L is a line in the fibre V. By Proposition
, the fibre 771(L) is

7 ML) ={HeP(V)): L H}=P(V,/L) =PI

Thus the exceptional fibres have the correct dimension, and 7 is the blowup of 9, along
By O
0

Theorem 4.13. The diagram
M, <= My L5 M,y
is a Mukai flop of M, along Bg.

Proof. The hypertoric variety 9, carries an algebraic symplectic form, and the codimen-
sion of By in M, is |C|—1, equal to the fibre dimension of B] — By. Hence, by [14, Section
3], the normal bundle of Bg’ in 9, restricts to the cotangent bundle of each projective fibre.

By previous Proposition, Z; — 9, is the blowup of 9, along B], and the exceptional
divisor ZyNZ; is, by second last Proposition 4.11, the incidence variety inside P(V') xP(V*).

The restrictions of the blowup maps 9, LR/ A 9, to this divisor are the projections
onto the two factors, realizing the Mukai flop. O

As a Consequence of this theorem, we can state the following theorem,

Theorem 4.14. Let Z = M, xon, M,y. Then the Fourier—Mukai transform
<I>Z/ : DY(O,) — D°(M,y)  with kernel O

s an equivalence of triangulated categories.
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5. BRAID GROUP ACTION ON DY(C2/Zy;,11)

Since we have constructed the wall-crossing functor as outlined in the Introduction, we can
now obtain a braid group action on the A,,-type surface. In Appendix A, we have shown
that the minimal resolution of this surface is a hypertoric variety.

The goal of this section is to show that the construction via the Deligne groupoid, to be
discussed in the next section, can be related to the Seidel-Thomas braid group action in
this specific case. In this sense, the present work can be viewed as a generalization of their
framework.

The type-A,, Kleinian (or Du Val) singularity can be realized as the quotient C2?/Z,,. 1,
where Z, 11 C SL2(C) acts linearly. Inside C? this variety is described by
C? /L1 = {(z,y,2) € C3 | 2™ 4 92 = 0}.

The origin is the unique singular point. As originally shown by Du Val [11], the minimal
resolution

C2/Zms1 — C?/Zpiq
has exceptional fibre a chain
CituCyuU---UCy,
of smooth rational curves C; = P! with intersection pattern given by the Dynkin diagram
of type A,,. Let E; = O¢,. Then by Theorem [2], the spherical twists T, give a faithful

action of the braid group on D°(C2/Zy,.1). Reacll that, C2/Z,, 1 can be constructed as
a hypertoric variety 9, , where

K:{(tla 7tm+1) :tl"'tm—l—l:l}

and 7 is any regular character.
We fix the regular character

n=fit+2fa+-+(m+1)fimp

The chamber of parameters containing 7 is bounded by the hyperplanes P; ;41 for 1 <14 <
m. For each 4, let §; € P, ;11 be a subregular character lying on the boundary of that
chamber. The corresponding subvarieties are

By, = {[z,w]y | wi = zi41 = 0},
which are projective lines P! with homogeneous coordinates [z;, w;11]. These subvarieties
Bgi coincide with the curves C; in the exceptional fibre, and the partial affinization
M, — My,
contracts C; to a point.
Fix k € {1,...,m} and let 7/ be the reflection of n across the wall Py ;1. We then have
0) = {(zw) € THC™ | 21wy = - = Zmsiwmin ),

and the open subsets

w7 0), = {(z,w) € w1 (0) | (21,w;) # 0 for i < 5},

B 0)y = {(52w) € uH(0) | (syn, wn) £ 0, (31, w5) # 0 for i < G, (i, 1) # (K, b+ 1)}
Define

@:u1(0), — p~1(0),, by interchanging zj <> zki1, Wk > Wei1.
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Although ¢ is not K-invariant, it descends to a morphism
oMy — My
because for t = (t1,...,tmt+1) € K we have
B(t - (2,w)) = ok (t) G(zw),

where oy, is the automorphism of K interchanging ¢, and t;,1. Hence ¢ sends each K-
orbit to a K-orbit, so it descends to an isomorphism ¢. An inverse is defined analogously,
yielding the commutative diagram

M, —— M,y

This transformation is a Mukai flop between hypertoric varieties. In this case, the relevant
circuit has two elements, making the flop simple (cf. [8, §6.6(2)]). The fibre product

Z = f)ﬁn Xm% f)ﬁn/

has two irreducible components, Zp and Z;. Under the identification 9,, = 9M,, via ¢, the
component Z; becomes the diagonal copy of 9, and Zo becomes By x By .

Let

@y - D*(m,) — Db(fmn’)
denote the Fourier—-Mukai transform with kernel &'z, as defined in the last section. One
can observe that

/
‘I)Z = gp* @) TEk, where Ek = ﬁng.

Hence <I>Z, is an equivalence, giving another proof that the derived categories Db(i)ﬁn) and
Db(ﬂﬁn/) are equivalent across this Mukai flop.

Remark 5.1. In the hypertoric description of C2/Z,, 1 the curves C; are the projective lines
B". For a wall-crossing (a simple Mukai flop) across the wall Py ;11 the Fourier-Mukai
transform with kernel & associated to the corresponding fibre product can be identified
(up to the obvious isomorphism of varieties) with the composition of the spherical twist
Tg, and the geometric identification ¢* (end of this section). Thus the wall-crossing
autoequivalences coming from these flops are exactly the braid-group generators realized
by the Seidel-Thomas spherical twists.

6. THE REPRESENTATION OF DELIGNE GROUPOID G

Let Sp,+1 denote the symmetric group on {1,...,m+ 1}, generated by the simple transpo-
sitions s; = (i ¢+ 1) for 1 < i < m. The Artin braid group By, is generated by elements
o; with the usual braid relations; the natural surjection Bp,+1 — Sp41 sends o; — s;. Its
kernel is the pure braid group PBp,11.

In the hypertoric picture, one considers the braid hyperplane arrangement in C™*1:

A= U Hy  Hy={...¢00) €C 2= 1),
1<i<j<m-+1
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and its complement A¢ = C™*!\ Ac. The pure braid group is naturally isomorphic to
m1(A°). Write

€ = spanc(f1,- -, fmi1)/ spanc()  fi)

for the ambient parameter space of discriminantal hyperplanes, and let

m+1

Pij:{Z)\rfree*i)\i:)\j}
r=1
be the collection of complexified discriminantal hyperplanes. Denote by

Te:=t\|JP;

i7#]
the complement of these hyperplanes.
Lemma 6.1. The linear projection
m+1
7 Cmtl e (L1, ey Timp1) = szfz,
i=1

restricts to a trivial C—bundle w : A° — Y¢, and in particular w is a homotopy equivalence.
Hence 71(A°) 2 m1(Y¢) and PBpy1 = m(Ye).

Proof. The kernel of 7 is the 1-dimensional diagonal subspace {(¢,...,t) | t € C}. The
fibres are affine lines parallel to this diagonal. For y € T¢ any two preimages differ by a
common diagonal translation, so 7~!(y) = C. Choosing a linear complement (for example,
the hyperplane ), z; = 0) splits 7, hence the map is a trivial line bundle. A trivial C-
bundle is homotopy equivalent to its base, so 7 induces an isomorphism on fundamental
groups. O

Consequently PB,,11 appears naturally as m;(Y¢) in the hypertoric setup. We will
observe that the Seidel-Thomas braid action (coming from spherical twists attached to an
Ay, chain) restricts to PBy,+1, and one can view this as emerging from the topology just
described. IN this section we will show that the wall-crossing Fourier—Mukai transforms
CIJZI (defined for arcs between adjacent chambers) should satisfy the relations coming from
the fundamental group of Y¢, giving an action of 71 (T¢) and more generally of the Deligne
groupoid on the collection of derived categories.

Fix a set © of integral characters by choosing, for every chamber Y of the real discrimi-
nantal arrangement, an integral character ny € Y N€;; write 9M,, for the hypertoric variety
attached to a character 7. By variation of GIT the isomorphism class of 9,, depends only
on the chamber.

Definition 6.2. The Deligne groupoid G := II;(Y¢,©) is the full subcategory of the
fundamental groupoid of Y¢ with objects the chosen basepoints O.

Salvetti [4] constructs a CW-complex X C Y¢ which is a deformation retract. The 1-
skeleton X7 is a directed graph with vertices Xg = © and a pair of opposite directed edges
between 7,7’ exactly when the chambers containing them are adjacent. The 2—cells of X
correspond to codimension—2 faces F' of the real discriminantal arrangement: for a vertex
1 adjacent to F' there is an “opposite” vertex and two minimal directed paths I'y,T's from
7 to that opposite vertex; the boundary of the corresponding 2—cell is I'y U T's.
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For each directed edge (arc) n — 1’ in X there is a Fourier-Mukai functor
@7 : D*(M,,) — DO(M,),

constructed from the natural correspondence (the fibre product over the partial affiniza-
tion). These functors are equivalences in the simple Mukai flop cases and play the role of
generators attached to oriented edges of the Salvetti graph.

Lemma 6.3. For every arc n — 7' in X the functor @Zl 18 an equivalence and its inverse
is (up to natural isomorphism) the functor @Z, obtained by reversing the arc.

Proof. This follows from the standard theory of derived equivalences for flops: the kernel
Oz on the fibre product Z induces an equivalence and reversing the correspondence gives
the inverse kernel. O

The Salvetti 2—cells provide the relations that the edge-functors must satisfy to extend to
a functor II;(X,0) — C where C denotes the groupoid whose objects are the categories
Db(i)ﬁn) and whose morphisms are equivalences up to natural isomorphism.

Proposition 6.4 (Reduction to codimension—2 faces). To prove that the assignment send-

ing an arcn —n' to @Z/ extends to a functor 111(X,0) — C it suffices to check, for each
codimension—2 face F' of the discriminantal arrangement and for each vertex n adjacent to
F| that the two minimal directed paths I'1, Ty from n to the opposite vertex give naturally
isomorphic compositions

&r, = or,.

Proof. This follows from the combinatorial description of X and the fact that the 2—cells
generate the relations in the fundamental groupoid. If all 2—cell relations hold at the level

of functors, then all higher relations follow since X is a 2-dimensional deformation retract
of T¢. O

Conjecture 6.5. There exists a (unique) functor
F:1,(X,0) — Cat

sending each vertex 1 € © to the object Db(i)ﬁn) and each oriented edge a: 7 — 7’ to the
equivalence ®,.

Below we give a conditional proof: we show the conjecture follows from a simple, lo-
cal hypothesis (verification of the 2—cell relations). This reduction isolates exactly the
geometric identities that must be checked.

Lemma 6.6 (Reduction to 2—cell checks). The data {®n}acx, extends to a functor F :
I1,(X,0) — C if and only if for every 2-cell of X (equivalently every codimension—2
face F' of the real discriminantal arrangement) and for every vertexr n adjacent to F', the
two minimal directed paths I'1,T2 in X1 from n to the opposite vertex satisfy a natural
1somorphism

Op, = O,

Proof. The fundamental groupoid II; (X, ©) is generated by the directed edges of X; sub-
ject to the relations given by the boundaries of the 2—cells (because Salvetti’s complex X
is a finite 2-dimensional CW—complex which deformation retracts T¢). Concretely, each
2—cell provides a relation of the form

71""77':61"'53
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in the path groupoid, where the two directed words 1 - - -, and 6y - - - 65 describe the two
minimal directed paths around the 2—cell. To define a functor F on the groupoid one
assigns the corresponding equivalence ®., to each generator v; and then must check that
the compositions of equivalences along the two sides of every 2—cell coincide up to canonical
natural isomorphism. Thus the stated condition is necessary.

Conversely, if the stated equality of composed functors holds for every 2—cell then the
assignment on generators is compatible with all relations and therefore extends (uniquely)
to a functor on the whole fundamental groupoid. This proves the equivalence. O

The lemma reduces the global problem to finite local verifications. We now collect the
verifications that are available and then state the conditional theorem.

Proposition 6.7 (Local verifications in basic cases).

(1) (Circuit of size two — simple flop.) For any codimension—2 face F' coming from a
circuit of size two (the simple Mukai flop situation) and any vertex n adjacent to
F, the two minimal directed paths I't,I'y satisfy ®r, = Pr,.

(2) (Circuits admitting spherical/P"-functor descriptions.) If the local geometry at the
codimension—2 face F' can be described so that each wall-crossing functor involved
is (up to identification) either a spherical twist or a P"-twist coming from a P"-
functor, and the known relations among those twists yield the equality of the two
compositions around the 2—cell, then the corresponding local 2—cell equality holds.

Proof. (1) is the standard calculation for simple Mukai flops (see for example the analyses
of kernels arising from fibre products with diagonal and exceptional components). The fibre
product correspondence Z in this case has two irreducible components (one the diagonal,
the other the exceptional product). The Fourier-Mukai kernel &, thus decomposes—on
test objects supported off the exceptional locus it acts by the geometric identification, while
on objects supported on the exceptional locus it induces the spherical twist about Op:.
Composing the two wall-crossings around the 2—cell therefore yields identical functors; see
the local kernel computations in Seidel-Thomas and Namikawa for the model calculations.

(2) is an immediate formalisation: when the local functors are expressible in terms of a
small set of autoequivalences (spherical twists,P"-twists, etc.) whose relations are already
known and produce the required identity, the 2—cell equality follows by substituting those
identities. Many concrete geometries of interest fall into this category. [l

We are now ready to state the conditional result which is the practical form of conjecture
6.5.

Theorem 6.8 (Conditional version of Conjecture 6.5). * Assume that for every codimension—
2 face F' of the real discriminantal arrangement and every vertex n adjacent to F', the two
minimal directed paths I'1, s from n to the opposite vertex satisfy

&p, = o,

as natural equivalences D*(IM,) — D°(IM,,). Then the assignment sending each vertex
n — DP(OM,) and each edge o — P, extends uniquely to a functor F : II;(X,0) — C.
Consequently, for each n € © this yields a group homomorphism

m1(Ye,n) — Auteq (Db(fmn))

given by monodromy.



18 TRISHAN MONDAL

Proof. Ezistence. By Lemma 6.6, the hypothesis (the local 2—cell equalities) is exactly the
condition needed to ensure the edge-level assignment respects the relations coming from
the 2—cells of X. The groupoid II; (X, ©) is presented by generators (the directed edges
of X;) and relations (the 2—cell boundaries). Thus the given assignment of equivalences
to generators extends to a functor on the presented groupoid because all of the presenting
relations are satisfied on the target side.

Uniqueness. The groupoid I1; (X, ©) is generated by the directed edges; once the functor’s
values on those generators are fixed the extension is forced, and any natural isomorphism
of functors is determined by its components on objects. Hence the extension is unique up
to the evident canonical identifications.

Monodromy representations. Fix n € ©. Restrict the functor F to the automorphism
group 71(Yc,n) = Endp, (x,e)(n). The functor F maps each loop (based at 1) to an
autoequivalence of Db(i)ﬁn), and composition of loops is respected because F is a functor.

This yields the claimed group homomorphism to Auteq(D?(9,)). This proves the theorem.
O

Remarks on the strength of the hypothesis and strategies for verification.

e The hypothesis of Theorem 6.8 is local and concrete: it requires checking one
natural-isomorphism identity for each codimension—2 face F. This reduces a global
monodromy question to a finite (though possibly large) collection of local ker-
nel/composition identities.

e For many faces F' arising from small circuits (size two or three) the local check can
be completed by explicit kernel computations or by reducing to known algebraic
relations among spherical or P"*-twists. Proposition 6.7 records the common cases
where the local checks are already known or directly verifiable.

e A different but powerful strategy is to construct a perverse schober (a categorified
local system) on Y ¢ whose stalks are the categories Db(imn) and whose wall-crossing
functors are the given ®,. Existence of such a schober would imply automatically
that the local monodromy constraints are satisfied and hence yield the desired
functor F. Recent work on perverse schobers and categorified Picard—Lefschetz
theory makes this a promising route in practice.

Remark 6.9. The preceding argument shows that Conjecture 6.5 is equivalent to a finite list
of local equalities (one per codimension—2 face). Verifying each of those equalities (which
is tractable in the principal geometric cases: simple flops and many small circuits) is
sufficient to produce the functorial representation of the Deligne groupoid and the induced
monodromy action of 71(Y¢) on each derived category D°(9,)).

Remark 6.10 (Conditional Braid group action on derived categories). Let A be a simplicial
real hyperplane arrangement with chambers C. For each n € C, let M,, be the corresponding
hypertoric variety. Under the condition (x), the braid group

B =m(C%\ Ac)

acts by equivalences on the derived categories Db(Mn). Explicitly, a loop v based at n
defines an autoequivalence

®.: D°(M,) = D°(M,).
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APPENDIX A. BASICS OF SYMPLECTIC TOPOLOGY AND HYPERTORIC VARIETY
We begin by recalling some background from symplectic geometry and algebraic geom-
etry that plays a central role in the construction of hypertoric varieties. In particular, we
explain the notions of symplectic quotients, hyperkahler quotients, and Geometric Invari-

ant Theory (GIT) quotients, and how these constructions relate in the setting of conical
symplectic resolutions such as hypertoric varieties.

Let (X,w) be a symplectic manifold, i.e., X is a smooth manifold equipped with a closed

non-degenerate 2-form w. Suppose a Lie group G acts on X preserving the symplectic

form w, i.e., the action is Hamiltonian. A moment map for this action is a smooth map
w:X —g°

where g is the Lie algebra of G, satisfying

d<,u7 §> = lexW

for all £ € g, where £x denotes the vector field on X generated by the infinitesimal action
of £. Given a moment map p : X — g*, and a value o € g*, the symplectic quotient or
Marsden-Weinstein quotient is defined as

X/faG = p~H(a) /G

under suitable conditions. Specifically, the quotient is well-behaved (e.g., smooth) when:

e « is a regular value of p, so that p~!(a) is a submanifold of X,
e The action of G on u~!(a) is free and proper,

In this case, X//,G is a smooth symplectic manifold of dimension dim X — 2dim G, with
the symplectic form induced from w.

Hyperkahler Quotients. When X is a hyperkéhler manifold (i.e., equipped with three
symplectic forms wy, ws,ws satisfying quaternionic relations), and a compact Lie group G
acts preserving this structure, we can define a hyperkdhler moment map:

pi = (pr, pe) : X — g" @ ge.
The hyperkéhler quotient at (a,0) is defined as

X/l)aG = pg'(a) N g (0)/G.

Again, when the group action is free and proper on the level set, the resulting quotient
inherits a hyperkahler structure.

GIT Quotients and Stability. Let X be a smooth quasi-projective variety equipped with
an action of a reductive group G, linearized with respect to a G-equivariant ample line
bundle £. Then the GIT quotient is defined by:

X//G = Proj | @ H(X, L5 |,
n>0
where x is a character of G used to twist the linearization. A point x € X is called:

e Semistable if there exists a G-invariant section s € H(X, L") with s(x) # 0,
e Stable if it is semistable and the stabilizer of x in G is finite, and the orbit G - x is
closed in the semistable locus.
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The GIT quotient is the geometric quotient of the stable locus (under suitable conditions),
and the semistable locus maps onto it with possibly nontrivial stabilizers.

Let T be a compact torus and let its complexification T¢ act algebraically on an affine
variety X with a linearization determined by a character o. In many examples (including
hypertoric varieties), the following result holds (cf. [5], [7]):

Theorem A.1. Let X be a hyperkdahler manifold with a Hamiltonian action of a torus
T, and let o € t* be a character. Then under suitable assumptions on the linearization,
the GIT quotient X//,Tc coincides (as a complex algebraic variety) with the symplectic
quotient pu~'(a)/T.

With this we are ready to define hypertoric varieties and their key properties. Let’s consider
T be the complex torus (C*)™ of dimension n and t be it’s Lie algebra. Furthermore assume,
tz, be the weight lattice. Let, K be an algebraic subtorus of T with Lie algebra ¢ C t. There
is a natural action of K on T*C"™ coming from the action of T. Consider, T*C™ to a
symplectic manifold with natural symplectic form

n
w= Z dw; N dw]
i=1
The action of K on T*C"™ is Hamiltonian with the moment map

n
w:TC" — €5 p(x, 2) (g, ,xn) = szlwz
i=1

A hypertoric variety is a symplectic quotient of T*C" by K or GIT quotient of z~!(\) with
respect to a character n : K — C*.

Definition A.2. n: K — C* be a multiplicative character and A\ € £, the following GIT
quotient

M, = pt N/ K
is called a hypertoric variety.

By expanding the definition we get,

[e.e]
My = Proj @ {f € O(u™'(N)) : f(t'z) = n(t)™ f (=) for all t € K} .
m=0
As M, \ is a symplectic quotient of T*C"™ by K, its dimension is 2(n — k), where k is
the rank of K. We can describe this construction more geometrically using the locus of
semistable points, as follows. The choice of character n defines a lift of the action of K on
= 1()\) to the trivial line bundle p~*(\) x C by the equation

t-(p,x) = (t-p,n(t) " x).

Definition A.3. A point p € u=1()\) is n-semistable if the closure of the K-orbit through
(p,1) in p~1(A\) x C does not intersect the zero section p~*(\) x {0}. A point which is
not n-semistable is said to be n-unstable. We denote the locus of n-semistable points by

P A
In other words, p is n-semistable if, whenever {t,}°° ; is a sequence of elements of K such

that lim,—,o0 1(t,) = 00, the sequence {t, - p}>°; does not converge in u~1()\). There is a
surjective morphism of varieties

on )T = My,



BRAID GROUP ACTION ON D®(9,) 21
characterized by the property that, two points p,q € u~!(\)7 have the same image under
¢y if and only if the closures of their K-orbits have nontrivial intersection in p=(\)7 (not

just in the larger set u~1()\)). Instead of ¢, (p) we may write [p],, or simply [p] if this causes
no confusion.

Definition A.4. The pair (n,\) is regular if every K-orbit in x~1(\)7 is closed.

Thus, if (1, A) is regular, the fibres of ¢, are precisely the K-orbits in p~1()\), and so M\
is the geometric quotient ~'(\)"/K. In this thesis we will be exclusively concerned with
the case where A = 0, and we shall write 90, instead of 9M,, 9. Likewise, we will say that n
is regular if (n,0) is regular.

Note that the semistable locus p=1(0)° for the trivial character is simply p~%(0). The
associated hypertoric variety

My = Spec O(u~"(0))*
is the affinization of each 9,; the affinization map MM, — My is induced by the inclusion
pH(0)" € pmH(0).

Definition A.5. Let {e1,...,e,} be the standard basis of t = C", and let tz C t be the
cocharacter lattice of K. For 1 <1 < n, let a; denote the image of e; under the quotient
map t — t/¢. We say that K is unimodular if every linearly independent collection of n — k
elements of {ai,...,a,} generates the lattice tz/¢z.

Proposition A.6. [8] Assuming K is unimodular, the following conditions on n are equiv-
alent:

(1) The hypertoric variety M, is smooth.
(2) n is regular.
(3) The action K on the semistable locus p~*(0)" is free.

Example A.1. Let
K={(t...,t) e (C)":te C*}.
Then

n

pH0) = {(z,w) € T*C" : Zziwi = 0}.
i=1
A character n: K — C* is of the form n(t,...,t) =t" for some r € Z. For r > 0, we have
pH0) = {(z,w) € p0) : z # 0}.
Recall that if V' is a finite-dimensional complex vector space with projectivization P(V),
then the cotangent bundle 7*P(V') can be described as

T*P(V) = {(L,X) € P(V) x EndV : X?> =0,im X C L}.

Hence, the hypertoric variety 9, = 1 ~1(0)7/K is isomorphic to T*P(C™), where the orbit
of (z,w) corresponds to the pair (span(z),w ® v) under the natural isomorphism End V' =
V*® V. For r < 0, the semistability condition is instead determined by w # 0, and the
resulting hypertoric variety is identified with T*P"*.

Example A.2. (Resolution of A,,-surfaces). Let
K= {(tl, cestmyl) € (Cx)m—H 1t = 1},
acting on T*C™*!. We then have

,u_l(O) ={(z,w) € T*C™ ! zjwy = 20wy = -+ - = Zm+1 W1 }-
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The affine hypertoric variety 9 is isomorphic to the type A,,-Kleinian singularity,
C?/Zmsr = {(2,y,2) € C* 1 2™ 4+ yz =0}

the GIT quotient map is given by,

pH0) = C2 /L1 (2,w) = (21W1, 21+ 1, WL Wiy 1)

For a regular character 7, the affinization 91, — 9y is the minimal resolution

CQ/Zm+1 — (C2/Zm+1

In the previous section we have been particularly interested about this hypertoric variety.
As there is a Braid-group action on it by the work in [2].

APPENDIX B. FOURIER-MUKAI TRANSFORMS AND MUKAI FLOPS

Let X be a complex variety. We denote by D?(X) the bounded derived category of
coherent sheaves on X.

Definition B.1. Let X and Y be smooth complex varieties, and let
mx : X XY = X| Ty : X XY =Y

be the projection maps. Suppose P € D?(X x Y') has support that is proper over both X
and Y. The Fourier—Mukai transform with kernel P is the functor

p:DV(X) = DY),  @p(E®) = (ny)(nxE*® P),

where (7y)«, 7%, and ® denote the derived pushforward, pullback, and tensor product,
respectively.

Fourier—Mukai transforms appear frequently in algebraic geometry: derived pushforwards,
pullbacks, and the shift functor on D?(X) can all be expressed in this form (see, for example,
[12]). A deep theorem of Orlov [13] states that if X and Y are smooth projective varieties,
then every fully faithful exact functor D®(X) — Db(Y)) is isomorphic to a Fourier-Mukai
transform ®p for some P € D(X x Y'), which is uniquely determined up to isomorphism.

Remark B.2. The left and right adjoints of ®p are again Fourier—Mukai transforms, with
kernels

Pr = Pv®7r}k<wX[dimX], Pr = PV®7T§</(,UY[diHIY],

where PV is the derived dual of P viewed as a complex on Y x X, and wx, wy are the
canonical bundles of X and Y, respectively.

A Mukai flop (also called an elementary transform) is a birational modification that re-
places a projective bundle inside a holomorphic symplectic variety by its dual bundle. More
concretely, let M be a holomorphic symplectic variety of dimension 2m containing a closed
subvariety P ~ P™. Suppose there exists a projective birational morphism

v:M— M

which contracts P to a point and is an isomorphism away from P. Denote by N = Np/y,
the normal bundle of P in M. Because P is Lagrangian in M, we have an isomorphism
N=ZT*P.
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Fix an (m+ 1)-dimensional vector space V' and identify P = P(V'). By the Euler sequence,
there is a natural embedding of vector bundles

T*P(V) = V*® Opyy(—-1),
which induces an embedding of projective bundles

P(T*P(V)) Cc P(V) x P(V*)
whose image is the incidence variety

{(L,H) e P(V)xP(V*)| L C H}.

Here P(V*) parameterizes hyperplanes in V.

Blowing up M along P produces a projective morphism M — M with exceptional divi-
sor E = P(N). We identify E with the incidence variety described above. Mukai [14]

showed that there exists another variety M’ and a birational morphism M — M’ with the
same exceptional divisor F, such that the restriction of this morphism to E is the second
projection
ECPV)xP(V*) — P(V").
This gives a birational morphism
VM — M
contracting the image P(V*) of F to a point. Altogether, we obtain a commutative diagram

M —— M

[

M —— M
Definition B.3. The diagram above is called the Mukai flop of M along P.

The construction generalizes to families. Suppose M is a holomorphic symplectic variety
of dimension 2m, containing an m-dimensional subvariety P C M and a proper birational
morphism v : M — M whose exceptional locus is P. Assume the image Y = v(P) is a
smooth subvariety of M and that v|p : P — Y realizes P as the projectivization P(V) of a
rank-(codim P + 1) vector bundle V' — Y. It follows (see [16, Section 3]) that the normal
bundle Np/y is isomorphic to the relative cotangent bundle of v. Performing Mukai flops
fibrewise yields a commutative diagram of birational morphisms as above, in which M’
contains the dual projective bundle P(V*) — Y.

Let Z = M xy; M’ and set
Zy=P(V)xy P(V*) C Z.
The maps in the previous diagram induce isomorphisms
M\E = M\P(V) = M \B(V"),

so that the morphism i : M — Z identifies M \ E with Z \ Zy. If Z; denotes the closure

of Z\ Zp in Z, then i identifies E with Zy N Z1, and M with Z;. Hence the fibre product
Z has two components:

Zo=P(V) xy P(V*),  Z =M,
intersecting along

ZoNZy ={(L,H) € P(V) xy P(V*) | L C H}.
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In Chapter 4 we will see that if 7 and 7" are regular characters of a torus K separated by
a single wall in the discriminantal arrangement, then the corresponding hypertoric varieties
M,, and M, are related by a Mukai flop. The intermediate variety Mpy, for a subregular
character 6 lying on the separating wall, plays the role of M in the construction.

The same notion of Mukai flop applies when M and M’ are smooth and projective but not
necessarily symplectic (see [12]). In that setting one explicitly requires that Np,y, be the
relative cotangent bundle of v, since it need not hold automatically.

If M and M’ are smooth and projective varieties related by a Mukai flop, the fibre product
Z = M X ; M" induces an equivalence between their derived categories:

Theorem B.4 ([15], [16]). Let M and M’ be smooth projective varieties related by a Mukai
flop, and let Z = M x ; M' as above. Then the Fourier—Mukai transform

®y: DY(M) — D°(M"), Dy (E*) = (ma)s (T E® @ O7)
is an equivalence of triangulated categories.

Although hypertoric varieties are generally not projective over SpecC, the conclusion of
this theorem continues to hold in the symplectic setting. Namikawa’s argument in [15,
Section 4] shows that ® is fully faithful even without projectivity.

Since M and M’ are birational and both have trivial canonical bundles (as they are holo-
morphic symplectic), the left and right adjoints of @ coincide. Viewing &) as a sheaf on
M' x M, these adjoints correspond to the Fourier-Mukai transform with kernel &) [dim M].
By [17, Theorem 3.3], a fully faithful functor with identical left and right adjoints is an
equivalence. Hence we obtain:

Theorem B.5. Let M and M’ be holomorphic symplectic varieties related by a Mukai
flop, and let Z = M x j; M’ be the corresponding fibre product. Then the Fourier—Mukai
transform

®,: D"(M) — Db(M')

with kernel Oy is an equivalence of triangulated categories.
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