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Abstract

This article delves into the concept of Poincaré duality in algebraic topology, exploring its foundations and
applications. The article begins by introducing cohomology, discussing its properties, axioms, and the powerful
tool of cup products. It then delves into the topic of orientability and cap products, shedding light on their
role in understanding topological spaces. The centerpiece of the article is Poincaré duality, which establishes
a profound relationship between the homology and cohomology groups of an orientable manifold. The article
presents an overview of Poincaré duality’s theoretical underpinnings and demonstrates its practical applications
in solving problems in algebraic topology.

1. Introduction to Cohomology

We already know homology is a covariant functor from m the category of chain complex to the category of Graded
groups (or, ‘Graded Modules’). Cohomology is nothing but a dual concept of Homology theory. There is a dual
notion of chain complex that is known as Co-chain complex, which is a graded group(graded modules) of degree
+1 (For relevant ideas of chain complex one can look at [Mon23a]). We can construct a covariant functor from the
category co-chain complex to the category of graded groups which is cohomology group of a chain complex in some

manner. If we have a co-chain, C∗ : · · · → Cn−1 δn−1−−−→ Cn
δn−→ Cn+1 → · · · with δnδn−1 = 0, the graded group

H(C∗) = {ker δn/Imδn−1} can be represented as cohomology of some chain complex. Now our task is to form a
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1.1 Universal Coefficient Theorem Trishan Mondal

co-chain complex from a given chain complex, so that we can define a contravariant functor from the category of
chain complex to the category of graded groups.

Let, C be a chain complex of R-modules, we can create a co-chain C∗ from C, by taking Cq = Hom(Cq,M)
(here,M is a R-module) and δq(h) = h ◦ ∂q+1. It can be easily verified that, δqδq−1 = 0. Thus, we have a co-chain
complex C∗. We can define q-th cohomology group of C as, Hq(C;M) = Hq(C

∗). Just like homology, cohomology
also satisfies some axioms. For rest of this article we will consider the cohomology groups defined by the simplicial
and singular chain complexes. We will consider, the cohomology functor defined from the category of ‘pairs of
topological space’ to ‘graded R-modules’ (which basically comes from the singular chain complex of the pairs of
topological space).

� Dimension Axiom: On the category of one point spaces there is a natural equivalence of the constant
functor M with the functor H∗. In other words H0(X) ∼= M and Hq(X) = 0 for a one point space X and
q ≥ 1.

� Homotopy Axiom: If f0, f1 : (X,A)→ (Y,B) are homotopic, then

H∗(f0) = H∗(f1) : H
∗(Y,B)→ H∗(X,A)

� Exactness Axiom: For ant pair (X,A) with the inclusion i : A ↪→ X andj : X ↪→ (X,A), there is an exact
sequence

· · · δ
∗

−→ Hq(X,A)→ Hq(X)→ Hq(A)
δ∗−→ Hq+1(X)

� Excision Axiom: For any pair (X,A), if U is an open sub set such that Ū ⊂ int A, then the excision map
j : (X − U,A− U) ↪→ (X,A) induces an isomorphism in their cohomology groups.

� Additive Axiom: If a topological space X can be written as disjoint union of spaces Xi, i.e. X = ⊔Xi, then
we will have the following isomorphism:

H∗(X)
≃←−

∏
H∗(Xi)

1.1 Universal Coefficient Theorem

We already know hoe homology with coefficient are related by an exact sequence of groups(module) which consists
a tensor product and a Torsion product. For reference one can look at [Mon23b]. Since we are dealing with the
dual of homology functor we have to take dual of tensor product and torsion product in count. We know Hom is
the dual of ⊗ thus we will introduce Ext functor which is dual of Tor and then we will write down the universal
coefficient theorem.

For any chain complex C which is a free resolution of a R-module A, we can define the graded modules
Hom(C;B) = {Hom(Cq, B)}, where B is another R-module. We can define Extq(A,B) = Hq(Hom(C,B)). If we
take R is an PID then any R-module has a free presentation, i.e the following exact sequence where both C0 and
C1 are free modules,

0→ C0 → C1 →M → 0

So, for any other R-module B, Extq(A,B) = 0 for q > 1. It can also be shown that Ext0(A,B) = Hom(A,B). Our
only concern is Ext1(A,B) we will call this just by Ext(A,B). Ext(∗, B) is contravariant functor and Ext(A, ∗) is
a covariant functor. It can be shown that, there is a duality between Tor(∗, B). For homology groups the universal
coefficient says, “If we have a chain complex such that C ∗ B = Tor(C,B) is acyclic, then there is a short exact
sequence,”

0→ Hq(C)⊗B → Hq(C;B)→ Hq−1(C) ∗B → 0

From the above discussion we can predict there will be an exact sequence like, 0→ ExtHq−1, B → Hq(C;B)→
Hom(Hq(C), B)→ 0 for the cohomology groups. The following is the general version of universal coefficient theorem
for cohomology.
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1.2 Kunneth formula for cohomology Trishan Mondal

▶ Theorem 1.1: (Universal Coefficient Theorem for Cohomology) Let C be a chain complex of R-
modules where R is a PID and B is a R-module such that Ext(C,B) = {Ext(Cq, B)} is acyclic then
there is a short exact sequence,

0→ Ext(Hq−1(C), B)→ Hq(C;B)→ Hom(Hq(C), B)→ 0

For proof one can trace the proof given in [Mon23b] or look at pg.243 pf [Spa95]. The above statement is very
abstract and requires to check the‘acyclic-ness’ of Ext(C,B). Generally, we work with simplicial or singular chain
complex which are free chain complexes thus Ext(C,B) = 0. For free chain complexes we can state the following
corollary which we will use very often,

Corollary. 1. C be a free chain complex of R-modules where R is a PID and B is a R-module then
there is a short exact sequence,

0→ Ext(Hq−1(C), B)→ Hq(C;B)→ Hom(Hq(C), G)→ 0

Next corollary is also important to calculate cohomology groups in different scenario.

Corollary. 2. Let, C be a free chain complex such that Hn and Hn−1, homology groups related to C
are finitely generated, with torsion subgroup Tn ⊂ Hn and Tn−1 ⊂ Hn−1, then H

n(C;R) = (Hn/Tn)⊕ Tn−1

1.2 Kunneth formula for cohomology

We are going to mention a version of “Kunneth formula for cohomology”. We know there is a chain equivalence
between simplicial, singular, CW chain complexes. In algebraic topology we are mostly concern about homology-
cohomology related to these chain complexes. From Elienberg-Zilber theorem we know on the category of ordered
pairs of topological spaces X,Y there is a chain equivalence between ∆(X × Y ) and ∆(X) ⊗ ∆(Y ). This will
give us similar results for CW,simplicial chain complexed. One more thing to note that, [∆(X) ⊗ ∆(Y )]q =
⊕i+j=q∆i(X)⊗∆j(Y ). This equivalence will give an isomorphism between the cohomology groups Hq(X × Y ;R)
and ⊕i+j=qHi(X;R) ⊗ Hj(Y ;R). We can do the same for cohomology groups of CW complexes of simplicial
complexes.

▶ Theorem 1.2: (Kunneth formula (Easy version))If X and Y are topological spaces (CW complex,
simplicial complex) then there is an isomorphism of the cohomology groups,

⊕i+j=qHi(X;R)⊗Hj(Y ;R) ∼= Hq(X × Y ;R)

1.3 Mayer-Vietoris sequence for cohomology

Let A and B are two open sets of a topological space X such that X = A ∪ B. There is an exact sequence of
cohomology groups of A,B,A ∩B,X as following,

· · ·Hn(X;G)→ Hn(A;G)⊕Hn(B;G)→ Hn(A ∩B;G)→ Hn+1(X;G)→ · · ·

We can also make an exact sequence for cohomology groups of a pair.

▶ Theorem 1.3: (Mayer-Vietoris sequence of Cohomology groups) Let,(X,Y ) be a pair of topological
space, with X = A∪B and Y = C ∪D and C ⊂ A,D ⊂ B such that X is the union of interiors of A,B and
Y is the union of the interior C,D there ther is an exact sequence of cohomology groups,

· · ·Hn(X,Y ;G)→ Hn(A,C;G)⊕Hn(B,D;G)→ Hn(A ∩B,C ∩D;G)→ Hn+1(X,Y ;G)→ · · ·
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2. Cup product and Cap product

2.1 Cup product

We will define a product between the elements of the co-chain Ck(X;R) and Cl(X;R) which maps to Ck+l(X;R).
Here R is the ring from where coefficients are coming, in general we take Z,Z2 etc. Let, φ ∈ Ck(X;R) and
ψ ∈ Cl(X;R) then we define cup product, φ ⌣ ψ ∈ Ck+l(X;R) as following,

φ ⌣ ψ(σ) = φ(σ|[v0,··· ,vk])ψ(σ|vk··· ,vk+l
)

Where, σ : ∆k+l → X is the singular simplex. By a routine calculation we can verify the following lemma,

§ Lemma 2.1: δ(φ ⌣ ψ) = δφ ⌣ ψ + (−1)kφ ⌣ δψ where, φ ∈ Ck(X;R).

From the above lemma it is visible that cup product of co-cycles are co-cycles and cup product of co-boundary
are co-boundary. Cup product of a co-boundary and co-cycle is a co-boundary. Thus cup product will induce a
product in cohomology groups which is associative, distributive.

Hk(X;R)×H l(X;R)
⌣−→ Hk+l(X;R)

Let, A ⊂ X be an open set of X, we can define cup product for pairs (X,A) which we will call as relative cup
product. If φ or ψ vanishes on chains in A then so does φ ⌣ ψ. Thus, we have the following relations between
relative cup products,

Hk(X;R)×H l(X,A;R)
⌣−→ Hk+l(X,A;R)

Hk(X,A;R)×H l(X;R)
⌣−→ Hk+l(X,A;R)

Hk(X,A;R)×H l(X,A;R)
⌣−→ Hk+l(X,A;R)

We will state the following two lemma for proof one can look at [Hat00] pg.210.

§ Lemma 2.2: Let, f : X → Y be a continuous function then,

f∗(φ ⌣ ψ) = f∗(φ)⌣ f∗(ψ)

§ Lemma 2.3: The identity α ⌣ β = (−1)klβ ⌣ α holds for all α ∈ Hk(X;R) and β ∈ H l(X;R).

The cup product is very important to constant cohomology rings H∗(X;R) of a space. This also helps us to
understant what kind of isomorphism we can expect between H∗(X;R)⊗H∗(X;R) ∼= H∗(X × Y ;R). It will also
appear in the applications of Poincaré duality.

2.2 Cap product

Poincaré duality gives us a relation between homology and cohomology groups of manifolds (finite dimensional,
R-orientable). For this we need to have some kind of relation between the chain complex Ck and co-chain complex
Cl. For this purpose we will define a cap product ⌢: Ck(X;R)× Cℓ(X;R)→ Ck−ℓ(X;R) as following,

σ ⌢ φ = φ(σ|[v0,··· ,vℓ])σ|[vℓ,··· ,vk]

Where, σ : ∆k → X and φ ∈ Cℓ(X;R). We can easily verify

∂(σ ⌢ φ) = (−1)ℓ(∂σ ⌢ φ− σ ⌢ δφ)

From the above formula we can see that cap product of a cycle and co-cycle is a cycle and product of boundary
and co-cycle is a boundary. We can say this cap product will induce a ‘cap product in homology-cohomology’
groups,

Hk(X;R)×Hℓ(X;R)
⌢−→ Hk−ℓ(X;R)
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If we restrict the cup product Ck(X;R) × Cℓ(X;R) → Ck−ℓ(X;R) on the submodule Ck(A;R) × Cℓ(X;A;R)
it will give us 0 thus there is an induced cap product Ck(X,A;R) × Cℓ(X,A;R) → Ck−ℓ(X;R). We can say that
cap product has the relative forms

Hk(X,A;R)×Hℓ(X;R)
⌢−→ Hk−ℓ(X,A;R)

Hk(X,A;R)×Hℓ(X,A;R)
⌢−→ Hk−ℓ(X,A;R)

Let, f : X → Y be a continuous map we can verify that f∗(α)⌢ φ = f∗(α ⌢ f∗(φ))

3. Orientations of manifold

Manifold of dimension n is topological space embedded in an Euclidean space and each point has a neighborhood
which is homeomorphic to Rn. For example n dimensional sphere Sn can be embedded in Rn+1 and every point in
the sphere has an open set homeomorphic to n -dim open ball (There is an abstract definition of manifold but at
this moment we don’t need that). Since Poincaré duality takes orientations of a manifold in count we have to give
it more importance.

From Mayer-Vietoris sequence we can see that, Hn(Rn,Rn − {x}) ∼= Hn−1(Rn − {x}) where the coefficient of
homology groups are taken in Z. So, Hn(Rn,Rn − {x}) = Z, these infinite cyclic group can be generated by 1 or
−1, so at each point x ∈ Rn we have two choice of generators. An orientation at x is a choice of generator for the
homology groups we have written. One thing to keep in mind that if α is the orientation at x then, r∗(α) = −α
and ρ(α) = α, where r is a reflection and ρ is rotation.

Suppose we already have orientation at x take nay other point y ∈ Rn then take an open ball containing x, y.
We will have Hn(Rn,Rn − {x}) = Hn(Rn,Rn − B) = Hn(Rn,Rn − {y}) by taking the canonical maps we can see
orientation at x determines orientation at every point of Rn. For manifold this is not the case sincce every point has
a nbd. which is homeomorphic to Rn but they may not belong to same Euclidean space at most we can talk about
local orientations. Before going to the definition we will introduce a short notation Hn(M |A) = Hn(M,M −A).

§Definition. 3.1 (Local Orientation) Let, M be a n-dimensional manifold. A R-local orientation of M
at x is choice of generator µx of the infinite cyclic group Hn(M |x;R).

By excision property we can say that, Hn(M |x;R) is same as Hn(Rn|x;R) which is ring R itself. Basically, µx
is a choice of unit of R for each x. We will now give the definition of orientation and an orientable manifold.

§Definition. 3.2 (Orientation of a manifold M) An orientation of an n-dimensional manifold is a
function x 7→ µx which satisfy local consistancy property i.e. around every point x ∈ M there is an open
neighborhood Bx (homeomorphic to Rn) such that, all local orientation µy for y ∈ Bx is image of one
generator µBx

of Hn(M |B;R) under the natural maps Hn(M |B)→ Hn(M |y).

• If there exist an orientation of a manifold M we call them R-orientable manifolds.

Every connected manifold is orientable with coefficients in Z/2Z. Now we will show that every manifold M has
a two sheeted covering M̃ which is orientable.

Two-sheeted oriented covering of a manifold M

We can start with a 2-manifold RP 2 which has S2 as two sheeted covering or Klein bottle has two sheeted
covering T2. To construct such two sheeted covering we will work with homology groups with coefficient in Z. Since
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Z has two unit ±1. So we can guess what we are going to construct. Take,

M̃ := {µx : x ∈M,µxis orientation of Mat x}

We will give M̃ a topological structure. For a given open ball B ⊂ V (Rn) ⊂ M of finite radius and a gen-
erator µB ∈ Hn(M |B), let UµB

be the set of all µx such that µB maps to µx by the natural map. The set,

{UµB
: B is locally Euclidean neighborhoods of different points in M} forms a basis for M̃ . The projection map

M̃ →M is the covering space.

Let, µx be a point in M̃ , it must have a canonical local orientation µ̃x ∈ Hn(M̃ |µx) corresponding to µx under
the isomorphisms Hn(M̃ |µx) ∼= Hn(UµB

|µx) ∼= Hn(X|x). Where, the first isomorphism comes from excision and
second isomorphism follows from the definition of UµB

. || We can now easily verify the following theorem,

▶ Theorem 3.1: Let M be a connected manifold. It is orientable iff M̃ has two connected components.
For surfaces or 2-manifolds we can say, M is orientable if M is simply connected or π1(M) do not have any
subgroup of index 2.

We can create a larger manifoldMR which is infinite-sheeted covering space ofM . Instead of
generators we will choose an element αx ∈ Hn(M |x;R). MZ will consist αx where, x is varying
over M . We can give topology to it in the same way we did for MR.

A continuous map M → MR of the form x → αx is called a section (see redline in the
picture). An R-orientation is a section µ such that µ(x) is generator of Hn(M |x;R).

The structure ofMR is easy to describe. From universal coefficient theorem for homology we
can say, Hn(M |x;R) = Hn(M |x)⊗R. So each r ∈ R determines a covering space Mr consisting
of the points ±µx ⊗ r. If r ̸= −r, Mr is two sheeted orientable covering of M otherwise Mr is
just a single copy of M .

§Definition. 3.3 (Fundamental Class) An element of Hn(M ;R) whose image in
Hn(M |x;R) is generator for all x is called a fundamental class for M coefficients in
R.

The following theorem will show us that for a closed orientable manifold, fundamental class
always exist. We can also see if fundamental class µ of a closed manifold exist then there is an
orientation x→ µx. Where µx is the image of µ under the natural map.

▶ Theorem 3.2: Let M be a connected n-manifold. Then,

(a) If M is R-orientable, the map Hn(M ;R)→ Hn(M |x;R) is an isomorphism.

(b) If M is not R-orientable then the map Hn(M ;R) → Hn(M |x;R) is injective with
image {r ∈ R : 2r = 0} for x ∈M .

(c) Hi(M ;R) = 0 for i > n.

Proof. Before going to the proof of the theorem we will use a lemma that will help us proving the theorem.

§ Lemma 3.1: Let M be a manifold of dimension n and A ⊂M be a compact subset. Then :

1. If x→ αx is a section of the covering space MR →M , then there is a unique αA ∈ Hn(M |A;R) such
that it’s image in Hn(M |x;R) is αx for all x.

2. Hi(M |A;R) = 0 for i > n.

Once we have proved the lemma, the theorem will be easier to prove.

Proof for (a) and (b). Let, ΓR be the sets of the sections of the covering space MR → M . The sum of two
section is a section and scaler multiplication of a section is section. So, ΓR is a R-module. There is a homomorphism
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Hn(M ;R) → ΓR that sends a class α to the section x 7→ αx, where αx is the image of α in Hn(M |x;R) under
the natural isomorphism. By part (1) of the lemma we can say this homomorphism is an isomorphism. If M is
connected then each section can be uniquely determined by it’s value at one point of the manifold.By the structure
of MR we can conclude (a) and(b).

For (c) take, A =M to get the desired result. ■

Corollary. If M is a closed connected manifold, the torsion group of Hn−1(M ;Z) is trivial if it is
orientable Z2 if it is non-orientable

Corollary. If M is a connected non-compact manifold, then Hi(M ;R) = 0 for i ≥ n.
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4. Poincaré duality

4.1 Motivation

Poincaré duality is a fundamental concept in algebraic topology that establishes a profound relationship between the
homology and cohomology groups of a manifold. It provides a powerful tool for studying the topological properties
of spaces. Let M be an n-dimensional orientable manifold. The concept of Poincaré duality asserts that the kth
homology group Hk(M) is isomorphic to the (n− k)th cohomology group Hn−k(M) for all 0 ≤ k ≤ n. This duality
can be thought of as pairing the k-dimensional holes in M with the (n − k)-dimensional geometric structures.
Mathematically, Poincaré duality is expressed as the isomorphism:

Hk(M) ∼= Hn−k(M)

This deep relationship allows us to infer geometric information about a manifold by studying its dual cohomology
groups. Poincaré duality has numerous applications, including the study of characteristic classes, intersection theory,
and the classification of manifolds. In the following sections, we will explore the formal aspects and implications of
Poincaré duality in greater detail.

For many manifolds there is a very nice geometric proof of Poincaré duality using the notion of dual cell
structures. The germ of this idea can be traced back to the five regular Platonic solids: the tetrahedron, cube,
octahedron, dodecahedron, and icosahedron. Each of these polyhedra has a dual polyhedron whose vertices are the
center points of the faces of the given polyhedron. Thus the dual of the cube is the octahedron, and vice versa.
Similarly, the dodecahedron and icosahedron are dual to each other, and the tetrahedron is its own dual.

One can regard each of these polyhedra as defining a cell structure C on S2 with a dual cell structure C∗

determined by the dual polyhedron. Each vertex of C lies in a dual 2-cell of C∗, each edge of C crosses a dual
edge of C∗, and each 2-cell of C contains a dual vertex of C∗. The following figure shows the case of the cube and
octahedron.

There is no need to restrict to regular polyhedra here, and we can generalize further by replacing S2 by any
surface. A portion of a more-or-less random pair of dual cell structures is shown in the second figure. On the torus,
if we lift a dual pair of cell structures to the universal cover R2, we get a dual pair of periodic tilings of the plane,
as in the next three figures.

Given a pair of dual cell structures C and C∗ on a closed surface M , the pairing of cells with dual cells gives
identifications of cellular chain groups C=

0 C2, C
∗
1 = C1, and C

∗
2 = C0. If we use Z coefficients these identifications

are not quite canonical since there is an ambiguity of sign for each cell, the choice of a generator for the corresponding
Z summand of the cellular chain complex. We can avoid this ambiguity by considering the simpler situation of
Z2 coefficients, where the identifications Ci = C∗

2−i are completely canonical. The key observation now is that
under these identifications, the cellular boundary map ∂ : Ci → Ci−1 becomes the cellular coboundary map
δ : C∗

2−i → C∗
2−i+1 since ∂ assigns to a cell the sum of the cells which are faces of it, while δ assigns to a cell the

sum of the cells of which it is a face. Thus, Hi (C;Z2) ≈ H2−i (C ;Z2), and hence Hi (M ;Z2) ≈ H2−i (M ;Z2) since
C and C∗ are cell structures on the same surface M .

4.2 Cohomology with compact support

For a topological space X, the compact sets K ⊂ X form a directed set under inclusion, since union of two sets is
compact. Fix a R-module M . To each K we associate a cohomology groups Hi(X|K;M), where i is fixed. For
each inclusion K ↪→ L, there is a group homomorphism

Hi(X|K;M)→ Hi(X|L;M)

8
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We have a directed system so we can get direct limit of the system. Thus, we can define

Hi
c(X;G) = lim

→
Hi(X|k;M)

which is known as cohomology with compact support. Each element of the above direct limit is represented by a
co-cycle and it will be zero if and only if it is a co-boundary of a co-cycle in Ci−1(X|L;M). Also, if X is a compact
set, the dirct limit mentioned above has upper bound at X so by Zorn’s lemma we can say Hi

c(X;M) = Hi(X;M).

4.3 Duality of non-compact manifold

In this section we will give a duality map between Hi
c to Hn−i. If we get a fundamental class [M ] for an oriented

n-manifold, then we can define a homomorphism DM : Hk
c (M ;R) → Hn−k(M ;R) which maps α 7→ [M ] ⌢ α. To

establish Poincaré duality we have to prove this homomorphism is an isomorphism. Let, K ↪→ L ↪→ M , where K
and L are compact sets of X.

If i is the inclusion map of K in L, then i∗ maps µL 7→ µK uniquely. Now vary K over the compact sets
of M , it will induce a duality homomorphism (limiting) DM as we have defined previously. We will prove this
homomorphism is an isomorphism. Before going to the proof we will prove a lemma.

§ Lemma 4.1: If manifoldM is union of two open sets U and V , then there is a diagram of Mayer-Vietoris
commutative upto sign;

· · · Hk
c (U ∩ V ) Hk

c (U)⊕Hk
c (V ) Hk

c (U ∪ V ) Hk+1(U ∩ V ) · · ·

· · · Hn−k(U ∩ V ) Hn−k(U)⊕Hn−k(V ) Hn−k(U ∪ V ) Hn−k−1(U ∩ V ) · · ·

DU∩V DU⊕−DV DU∪V DU∩V

Proof. We will use direct limit argument to prove this. Consider, K ⊂ U and L ⊂ V are compact sets. This
sets give rise to the following diagram of Mayer-Vietoris sequences,

· · · Hk(M |K ∩ L) Hk(M |K)⊕Hk(M |L) Hk(M |K ∪ L) · · ·

Hk(U ∩ V |K ∩ L) Hk(U |K)⊕Hk(V |L)

· · · Hn−k(U ∩ V ) Hn−k(U)⊕Hn−k(V ) Hn−k(M) · · ·

∼=

µK∩L⌢

∼=

µK⌢⊕−µL⌢

µK∪L⌢

Where, the two isomorphisms comes from excision argument. If we can show this diagram commutes, by taking
direct limit in the first row we can conclude the proof. It is easy to check commutativity in the first two squares.
We will prove commutativity of the following square

Hk(M |K ∪ L) Hk+1(M |K ∩ L) HK+1(U ∩ V |K ∩ L)

Hn−k(M) Hn−k−1(U ∩ V )∂

δ

µK∪L⌢ µK∩L⌢

∼=

(4.3)

Let, A = M −K and B = ML. The map δ is co-boundary map in the Mayer-Vietoris sequence obtained from
short exact sequence of cochain complexes,

0→ C∗(M,A+B)→ C∗(M,A)⊕ C∗(M,B)→ C∗(M,A ∩B)→ 0

9
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The co-chain complex C∗(M,A + B) consists the co-chains that vanishes either on A and B. Let, φ be a
co-cycle representing an element of cohomology class of C∗(M,A+B). Since φ vanishes on A and B we can write
φ = φA − φB , where φA ∈ C∗(M,A) and φB ∈ C∗(M,B). As δφ = 0 we can say δφA = δφB , so we can use δφA
as representative of φ.

Figure 1: cycles in different part of covers of M

Similarly, for the chain complex we can
represent an element of Hi(M) by a cycle
{z} such that it is sum of two chains zU , zV ,
where zU ∈ C∗(U) and zV ∈ C∗(V ) and
then, ∂{z} = {zU}.

M has a cover U −L,U ∩V, V −L. Now
µK∪L inHn(M |K∩L) can be represented by
a chain α = αU−L+αU∩V +αV−K . Clearly
αU−L and αV−K is zero in Hn(M |K ∩ L).
So, αU∩V represent µK∩L.

Similarly, αU−L + αU∩V represents µK .
Look at the diagram 4.3. If we take φ ∈
Hk(M |K ∪ L) is represented by δφA in
HK+1, taking cup product with µK∩L we
will get an element αU∪V ⌢ δφA ∈ Hn−k−1(U ∩V ), we have to show {∂(α ⌢ φ)} = {αU∩V ⌢ δφA}. We will begin
with splitting α,

α ⌢ φ = (αU−L ⌢ φ) + (αU∩V ⌢ φ+ αV−K ⌢ φ)

{∂(αU−L ⌢ φ)} is an element of Hn−k−1(M), we will compare this with {∂αU∩V ⌢ φA}.

∂(αU−L ⌢ φ) = (−1)k(∂αU−L ⌢ φ−−αU−L ⌢ δφ)

= (−1)k(∂αU−L ⌢ (φA − φB))
= (−1)k∂αU−L ⌢ φA

The last equality is true since, φB is zero on chains in B =M − L. Notice that, ∂(αU−L + αU∩V ) is equivalent
to ∂µK , it is a chain in U − L and φA vanishes in A = M − K. So, ∂(αU−L + αU∩V ) ⌢ φA = 0, which means
∂(αU−L ⌢ φ) = (−1)k+1(∂αU∩V ⌢ φA). Thus, commutativity is established. ■

▶ Theorem 4.1: (Isomorphism of Duality map) The homomorphism DM : Hk
c (M ;R) → Hn−k(M ;R) is

an isomorphism.

Proof. (A) I f the manifold M is union of two open set U, V , from the lemma 4.3 we can say DM is an
isomorphism given DU , DV , DU∩V are isomorphism.

(B) If M = ∪Ui, where Ui are open sets and U1 ⊂ U2 · · · , we can consider DUi maps. DUi is the duality
map from Hk

c (Ui) to Hn−k(Ui). From the excision property Hk
c (Ui) can be regarded as limit of Hk(M |K) where K

is the compact sets vary over Ui. Since, there are more compact sets in Ui+1 than Ui, we can get a homomorphism
from Hk

c (Ui)→ Hk
c (Ui+1). This gives us a direct system. If DUi

are isomorphism so is DM by exactness of direct
limit and lemma 4.3.

In the following steps we will show that the duality map DM is isomorphism.

Step 1: M = Rn and B ⊂ Rn an closed ball. Take an increasing sequence of closed balls and take the direct limit
limHk(Rn|B) to get, Hk

c (Rn). Consider the cap product Hn(Rn|B)×Hk(Rn|B)→ Hn−k(Rn), the products
are non-trivial for k = n. Let, α,φ be the generators of Hn(Rn|B) and Hn(Rn|B) respectivel, such that φ
takes value 1 on α, so φ ⌢ α represents a generator of H0(Rn).

Step 2: Now we will show DM is an isomorphism for arbitrary open sets M ⊂ Rn. Consider, M = ∪i∈ΛUi, Λ is a
countable set, Ui are open, convex sets. Take,

Vi = ∪j<iUj

10
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Now, Vi and Ui ∩ Vi are union of i− 1 bounded sets. We can use induction. Assume, DVi , DUi∩Vi are
isomorphism we will show that, DUi∪Vi

= DVi
is isomorphism. Using part (A), we can say, DUi∩Vi

is
isomorphism. Since, M is increasing union of Vi. Using part (B) we get, DM is an isomorphism.

Step 3: If M is a fniite or countably infniite union of open sets Ui homeomorphic to Rn , the theorem now follows by
the argument in Step 2, with each appearance of the words ‘bounded convex open set’ replaced by ‘open set
in Rn ’. Thus the proof is fnished for closed manifolds, as well as for all the noncompact manifolds one ever
encounters in actual practice.

Step 4: To handle a completely general noncompact manifold M we use a Zorn’s Lemma argument. Consider the
collection of open sets U ⊂ M for which the duality maps DU are isomorphisms. This collection is partially
ordered by inclusion, and the union of every totally ordered subcollection is again in the collection by the
argument in (B), which did not really use the hypothesis that the collection {Ui} was indexed by the positive
integers.

Zorn’s Lemma then implies that there exists a maximal open set U for which the theorem holds. If U ̸=M ,
choose a point x ∈M \ U and an open neighborhood V of x homeomorphic to Rn. The theorem holds for V
and U ∩ V by (1) and (2), and it holds for U by assumption, so by (A) it holds for U ∪ V , contradicting the
maximality of U . ■

5. Generalization Of Duality

▶ Theorem 5.1: (Poincaré-Lefschetz-Alexender Duality) Let, M be an orientable n-manifold with funda-
mental class [M ], L ↪→ K be the compact subsets of M , then the following homomorphism induces isomor-
phism between the homology-cohomology groups

∗⌢ [M ] : Hk
c (K,L;G)→ Hn−k(M − L,M −K,G)

We can prove this theorem by tracing the same steps we dis while proving poincare duality. As a corollary of
this theorem we can state poincare duality and all the following dualities.

Corollary. If A is a compact subset of Rn then

H̃k(Rn −A;G) ∼= Hn−k−1
c (A;G)

Proof. From the above duality theorem with the compact sets ∅ ⊂ A ⊂ Rn, we can say,

Hn−k−1
c (A, ∅;G) ∼= Hk+1(Rn,Rn −A;G)

∼= H̃k(Rn −A;G) (This follows from the Mayer-Vietoris sequence)

■

Corollary. (Alexender Duality) If A is a closed subspace of Sn then,

H̃k(Sn −A;G) ∼= H̃n−k−1
c (A;G)

Proof. We can do the same proof as the previous one, expect for the case n = k + 1. In that case we have the
following commutative diagram

H0(Sn) H0
c (A) H̃0

c (A) 0

· · · Hn(Sn) Hn(Sn,Sn −A) H̃n−1(Sn −A) 0

∼= ∼=

■

11
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6. Applications

▶ Application 6.1: (Poincaré Theorem) There is a 3-manifold which has same homology group as S3 but
not simply connected.

Proof. Let, P be a regular icosahedron (It has 30, triangular shaped faces and 12 vertices). The group of
rotational symmetries (upto sign) is denoted by SP . We can assume P is circumscribed by a sphere S2. So,
SP ⊆ SO(3). There is a natural group homomorphism ϕ : S3 → SO(3) ∼= S3/{±1}. Inverse image of SP in ϕ will
be a subgroup S′

P such that S′
P /{±1} = SP . Here, S′

P is basically the symmetry group of P , where we consider
counter clock wise rotation and clockwise rotation differently. The dual of P is dodecahedron P ∗. We know the
dual polyhedra also have same symmetry group S′

P∗ = S′
P . We know a cube can be inscribed in P ∗, thus the

generators i, j, k ∈ S3 are in S′
P . It can be easily seen that [S′

P , S
′
P ] = S′

P .

Now consider the action of S′
P on S3. We can easily see this action is ‘properly discontinuous and free action’.

The orbit space corresponding to this action is Σ = S3/S′
P . We can see, π : S3 → Σ is the covering space and

the fundamental group of Σ is thus π1(Σ) = S′
P , which is non-trivial. Since, π is covering map we can say Σ

is path-connected and hence, H0(Σ;Z) = Z, from dimension axioms of cohomology and Poincare duality we get,
H3(Σ;Z) = H0(Σ;Z) = Z. By ‘Hurewicz theorem’ we know, H1(Σ;Z) = π1(Σ)/[π1(Σ), π1(Σ)] = 0. By universal
coefficient theorem H1(Σ,Z) = 0, by duality H2(Σ;Z) = 0.

1Remark : This also proves that ‘ any connected 3-manifold with same homology groups as S3 is not homeomorphic to
S3’. Later ‘simply connected’ condition was added to create the famous ’Poincaré conjecture’, which says
every closed, smooth, simply-connected 3-manifold having homology group as S3 is homeomorphic to S3.

▶ Application 6.2: A closed manifold of odd dimension has Euler characteristic zero. i.e. for a closed
n = (2m+ 1)-manifold M ,

χ(M) = 0

Proof. For an orientable manifold, consider the cohomology groups with coefficient in Z. By Poincaré duality,
Hn−k(M ;Z) = Hk(M ;Z). Thus, rank Hn−k(M ;Z) =rank Hk(M ;Z) by universal coefficient theorem we have, rank
Hk(M ;Z) is equal to rank Hk(M ;Z).

For non-orientable manifold we can not use the coefficient in Z. We will consider co-homology groups with
coefficient in Z2. Since, Z2 is a field we can treat cohomology groups as vector spaces and the universal coefficient
theorem gives us,

Hq(M ;Z2) = Ext(Hq−1(M);Z2)⊕Hom(Hq(M);Z2)

From structure theorem of abelian groups, we know every group has a free part and a torsion part. The Ext
functor commutes with direct sum for (finitely generated cases). Free part of Hq will give us direct sums of Z2

in place of Z in Hq. Free part of Hq−1 will be vanished by Ext. The torsion parts can be explicitly written as
Zm for suitable m. It can easily be seen that, Hom(Zm,Z2) = Z2 and Ext(Zm,Z2) = Z2 for even m. Now by
universal coefficient theorem for Hq we can see that dim Hq(M ;Z2) = dim Hq(M ;Z2) and we can carry out the
same computation as for the orientable case. ■

6.1 Duality of cup and cap product

If α ∈ Ck+ℓ(X;R), φ ∈ Ck(X;R), ψ ∈ C(X;R), we have ψ(α ⌢ φ) = (φ ⌣ ψ)(α). We will define a bilinear
oparator, ⟨−,−⟩ : Ci × Ci → R evaluating a co-chain on a chain complex. We can verify the following,

⟨α ⌢ φ,ψ⟩ = ⟨α,φ ⌣ ψ⟩

For an R-orientable n-manifold M consider the cup pairing

Hk(M ;R)×Hn−k(M ;R)→ R

which maps (φ,ψ) 7→ ⟨[M ], φ ⌣ ψ⟩ = (φ ⌣ ψ)([M ]). Where, [M ] is the fundamental class of M .
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§Definition. 6.1 (Non-singular bilinear pairing) A bilinear pairing A × B → R is said to be non-
singular bilinear pairing if A→ Hom(B,R) and B → Hom(A,R) are isomorphism.

§ Lemma 6.1: (Cup pairing is non-singular) The cup product pairing is non-singular for closed R-orientable
manifolds when R is a field, or when R = Z and torsion in H∗(M ;Z) is factored out.

Proof. From universal coefficient theorem and Poincaré duality we have,

Hn−k(M ;R)
h−→ Hom(Hn−k(M ;R), R)

D∗

−−→ Hom(Hk(M ;R), R)

h comes from the universal coefficient theorem and D∗ is the dual map of D we defined for poincare duality. If
R is a field or torsion is factored out then the Ext part in the original exact sequence will be 0 and thus h will be
an isomorphism. Let’s define hψ : Hk → R be the homomorphism that maps φ 7→ ⟨[M ]⌢ φ,ψ⟩. From the above
exact sequence we have D∗ ◦h : ψ 7→ hψ, which is isomorphism because of the isomorphism of D. Thus cup product
pairing is non-singular. ■

Corollary. If M is a closed connected orientable n-manifold,then for each element α ∈ Hk(M ;R = Z)
generating an infinite cyclic summand, there exist an element β ∈ Hn−k(M ;R) such that α ⌣ β is a generator of
Hn(M ;R). With coefficient in field it is true for any α ̸= 0.

Proof. Let, α generate a copy of Z, this means there is a homomorphism φ : H(M ;Z) → Z, with φ(α) = ±1.
By non singularity of cup pairing we can say φ can be represented by ⟨[M ], α ⌣ β⟩, for some β ∈ Hn−k. Clearly,
α ⌣ β is a generator of Hn. ■
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