
Computation of stem-1 and stem-2 And

Revisiting some Tools in Homotopy Theory

Trishan Mondal

Contents

1 Homotopy theory: Towards Stability 2
1.1 Quick Introduction to Homotopy theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Eilenberg-MacLane Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Homotopy Excision Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Freudenthal Suspension Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Hurewicz Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Prespectra and Generalized Homology theory . . . . . . . . . . . . . . . . . . . . . . . . 14
1.8 Spectra and Generalized cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Steenrod operations and Steenrod algebra 17

3 G-Bundles and Classifying Space 21
3.1 Bar Construction for Classifying Space BG . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Milnor’s Join construction of BG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Classifying spaces for Vector Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Framed Cobordism-The Pontryagin Construction 31

5 The first stem: πS1 36

6 The second stem : πS2 39

Bibliography 40

1



1. Homotopy theory: Towards Stability

§1.1 Quick Introduction to Homotopy theory

We will begin with introducing the notion of higher relative Homotopy groups. For this essay we will
use the notion Top to denote the category of topological spaces and will use hTop to denote the
category of topological spaces where the morphisms are continuous maps b/w topological spaces upto
homotopy equivalence. Furthermore we will use the notion Top∗,hTop∗ for the category of based
space and it’s homotopy category respectively.

TheHomotopy group πn : Top∗ → Groups is a functor defined by πn(X,x0) = [(Sn, e), (X,x0)].
Where [(Sn, e), (X,x0)] means the collection of maps from Sn → X so that f(e) = x0 upto ho-
motopy equivalence. Here the group operation [f ]+ [g] is given by homotopy class of [(f ∨ g)◦ c],

here c is the pinching map, pinched the equator to get (Sn, e) ∨ (Sn, e).

� If the space X is path connected the homotopy group is independent of the base point x0.

� For n ≥ 2, homotopy groups are abelian. This follows from Eckmann-Hilton argument [proved
here].

� If p : (X̃, x̃0)→ (X,x0) is a covering then it induces isomorphism on homotopy groups for n ≥ 2.

� Homotopy groups commutes with product.

Relative Homotopy groups

Given two spacesX,Y ∈ Top∗ and a map f : X → Y (must be a based map), we can define homotopy
fiber to be the pullback of the following diagram,

X Y

Ff PY

f

pπ

Here PY is the path space. Since, Y is a based space at a point say y0, PY := {γ : ([0, 1], 0)→ (Y, y0)}.
The map p : PY → Y is given by γ 7→ γ(1). In other words Ff is fiber product of X and PY . We
know the continuous map f can be homotped to a fibration g : E → Y then the fibre of this fibration
is homotopic to Ff . In the pullback diagram the map π is given by the projection (x, γ) 7→ x.

Now if we define Ω(X,x0) := {γ ∈ PX : γ(1) = x0} the loop space of the based space X. For any
map f : X → Y there is a sequence of space as follows

· · ·Ω2X
Ω2f−−→ Ω2Y

−Ωi−−−→ ΩFf
−Ωπ−−−→ ΩX

−Ωf−−−→ ΩY
i−→ Ff

π−→ X
f−→ Y

here i is the natural inclusion γ 7→ (y0, γ). In the above sequence any three consecutive spaces are part

of fibration (upto homotopy). Note – In general given any fibration F ↪→ E
p−→ B

Theorem 1.1. For any space S ∈ Top∗ the above fiber sequence induces the following long exact
sequence,

· · · → [S,ΩFf ]→ [S,ΩX]→ [S,ΩY ]→ [S, Ff ]→ [S,X]→ [S, Y ]
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Now we will define a functor Σ : Top∗ → Top∗ (called reduced suspension functor). If X,Y are two
based space we can define the smash product X ∧ Y = X × Y/(X ∨ Y ). For any space X, we define
ΣX = X ∧ S1. It’s not hard to see as a functor Σ and Ω are adjoint, i.e

[ΣX,A] = [X,ΩA]

for any map f : X → ΣA, f(x) is a loop based at a0, we can define (x, t) 7→ f(x)(t) and this gives
us a map from ΣX → A, similarly any map f : ΣX → A will give us a map x 7→ f(x, t) (here
t varies over S1 to give us the loop). This is the idea to establish the adjoint property. Recall,
ΣSn ≃ Sn+1. So from the definition of homotopy groups and the loop-suspension adjunction it follows
πn(X,x0) ≃ πn−1(Ω(X,x0)).

Consider i to be inclusion of x0 → X. From the desciption of fibre product/homotopy fiber Fi
we get, Fi = {γ ∈ PX : γ(1) = x0} = ΩX. We have also seen πn(X,x0) = πn−1(Ω(X,x0)). This
motivates us to give the definition of relative homotopy groups πn(X,A). Let, i : (A, x0) ↪→ X then
define relative homotopy groups (for n ≥ 1)

πn(X,A) := πn−1(Fi)

From 1.1 we can say there is the following long exact sequence,

· · · [S1,ΩFi] [S1,ΩA] [S1,ΩX] [S1, F i] [S1, A] [S1, X]

· · · π1(ΩFi) π1(ΩA) π1(ΩX) π1(Fi) π1(A) π1(X)

· · · π3(X,A) π2(A) π2(X) π2(X,A) π1(A) π1(X)

≃ ≃ ≃ ≃ ≃ ≃

≃ ≃ ≃ ≃ ≃ ≃

We can summarize the above discussion with the following theorem,

Theorem 1.2. For a pair (X,A) ∈ Top2
∗, we have the following long exact sequence of homotopy

groups

· · · → πn(A)→ πn(X)→ πn(X,A)
∂∗−→ πn−1(A)→ · · ·

Infact for a fibration E → B with fiber F then we have a Long exact sequenceof homotopy groups,

· · · → πn(F )→ πn(E)→ πn(B)
∂∗−→ πn−1(F )→ · · ·

Description of ∂∗ – It’s not hard to see this definition above is equivalent to defining πn(X,A) =
[(In, ∂In, Jn), (X,A, x0)] where Jn = In \ In−1 × {1}. Any map f : (In, ∂In, Jn) → (X,A, x0) goes
to the restriction f |(In−1×{1},∂In−1×{1}) under ∂∗.

Cofiber sequence

For any continuous map f : X → Y we know it can be decomposed as a cofibration and a homotopy
equivalence. Cocide Mf be the mapping cone over Y . Let, j : X → Mf be the inclusion x 7→ (x, 1)
and r : Mf → Y defined by y 7→ y and (x, s) 7→ f(x). Clearly j is a cofibration and r be a homotopy
equivalence. For a based map f : X → Y we define homotopy cofibre Cf to be

Cf = Y ∪f CX = Mf/j(X)

Let π : Cf → Cf/Y be the quotient map. The sequence

X Y Cf ΣX ΣY ΣCf · · ·f i π −Σf −Σi
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is called cofiber sequence. here, −Σf is the map that sends (x ∧ t) to f(x) ∧ (1 − t). For the based
spaces we have a definition of exactness. A sequence (let’s say the above one) is said to be exact if the
composition of two consecutive maps (excactness at Y : look at i ◦ f) has image ∗(based point) iff it’s
pre image is only the based point. The cofiber sequence turns out to be an excact sequence of spaces.
Applying [−, Z] functor we will get a long exact sequence of groups

· · · [ΣCf,Z] [ΣY, Z] [ΣX,Z] [Cf,Z] [Y,Z] [X,Z]

The above sequence is also known as Puppe sequence.

Some Results

� πn(Sn) = Z for n ≥ 1 and πi(Sn) = 0 for i < n.

� For any fibration E → B with fibre being discrete/contractible, πn(E) = πn(B) for all n ≥ 0.

� The ‘Hopf-fibration’ S1 ↪→ S3 → CP 1 ≃ S2 and thus π3(S2) = π3(S3) ≃ Z.

� A triple (X,A,B) is called excisive triad if X = A◦ ∪ B◦. For ordinary homology theory the
inclusion of pairs (A,A ∩B) ↪→ (X,B) induces isomorphism in relative homology groups.

� For homotopy groups it’s not the case. Example X = S2 ∨ S2 and A = X+, B = X− here
A ∩B ≃ S1 ∨ S1.

� (Long exact sequence of triad) If (X,A,B) is a triad such that B ⊆ A ⊆ X then we have
the long exact sequence of relative homotopy groups

· · · → πn(A,B)→ πn(X,B)→ πn(X,A)→ πn−1(A,B)→ · · ·

The above result will follow from chasing the following commutative diagram along red arrow,

πn(B) πn(A) πn(A,B) πn−1(B) πn−1(A)

πn(B) πn(X) πn(X,B) πn−1(B) πn−1(X)

πn(A) πn(X) πn(X,A) πn−1(A) πn−1(X)

πn−1(A,B) πn−1(X,B)

∂∗

i∗

We call a space n-connected if πn(X,x0) ≃ 0 and two space X and Y are weakly equivalent if
πi(X) ≃ πi(Y ) for all i ≥ 0. If f : X → Y is a map between two based spaces so that it induces
isomorphism on every higher homotopy groups we call it an weak equivalence b/w the spaces. eg. The
sphere Sn is (n−1) connected space. Weak equivalence may not be a homotopy equivalence. Consider
X = {1/n, n ∈ N} ∪ {0} and Y is a countable discrete set. Then the natural map f : X → Y is weak
equivalence but not homotopy equivalence. But this can be true if X and Y are CW complexes.

Theorem 1.3. (Whitehead’s Theorem) If f : X → Y is a map between two connected CW
complexes which is weak equivalence we can conclude f is in-fact a homotopy equivalence. More
generally if A ↪→ X is weak equivalence of CW complexes then X deformation retract onto A.
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Whitehead’s theorem doesn’t say if two space X and Y have all homotopy groups same, then they
are homotopic. Example – Let, X = RP 2 and Y = S2 × RP∞. These spaces are connected so
0-th homotopy groups are same. πn(X) ≃ πn(S2) for n ≥ 2 and πn(Y ) = πn(S2) × πn(RP∞) ≃
πn(S2)×πn(S∞) ≃ πn(S2). This is true for n ≥ 2. Here we have used the fact there is a covering from
the sphere to the projective space. Now for g = 1 we can see S2 is simply connected and RP 2 ↪→ RP∞
induces isomorphism on π1. Thus, these space have same homotopy groups. But, the space Y have
non-trivial homology for infinitely many indexes unlike X. So X ̸≃hTop Y .

We also can define n-connectedness of a pair (X,A). A pair is said to be n-connected if πp(X,A)
is trivial for p ≤ n and π0(X) → π0(A) is a surjection. Similarly, we can define n-equivalence of
pairs. The map f : (A,C)→ (X,B) (between connected spaces) is said to be n-equivalence if f induces
isomorphism in relative homotopy groups for indices q < n and surjection for the index q = n. Eg-
For a CW complex X, the inclusion of n-th skeleton Xn ↪→ X is n-equivalence.

CW approximations

Here we list a few CW-approximation theorems we will state without proof. The proofs can be found
at [JPM99, Page 76]

(Cellular Approximation) Any map f : (X,A) → (Y,B) between pair of CW complexes is
homotopic to a cellular map.

(Approximating a space by CW complex) For any space X there is a cellular complex ΓX
and a weak equivalence γ : ΓX → X. Such that given f : X → Y there is a map Γf : ΓX → ΓY
so that the following diagram commutes,

X Y

ΓX ΓY

f

γ

Γf

γ

(Approximating a pair by a pair of CW complex) For any pair of spaces (X,A) and any
CW approximation γ : ΓA −→ A, there is a CW approximation γ : ΓX −→ X such that ΓA
is a subcomplex of ΓX and γ restricts to the given γ on ΓA. If f : (X,A) −→ (Y,B) is a map
of pairs and γ : (ΓY,ΓB) −→ (Y,B) is another such CW approximation of pairs, there is a map
Γf : (ΓX,ΓA) −→ (ΓY,ΓB), unique up to homotopy, such that the following diagram of pairs is
homotopy commutative:

(X,A) (Y,B)

(ΓX,ΓA) (ΓY,ΓB)

f

γ

Γf

γ

If (X,A) is n-connected, then (ΓX,ΓA) can be chosen to have no relative q-cells for q ≤ n.

————————————————————————————————————————————–

- Wherever we are using πn(X) remember it’s for connected space so the choice of base-point do
not matter.

- We can also do CW approximations for any traid.

- All the spaces in the notes are based space unless mentioned otherwise.
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§1.2 Eilenberg-MacLane Spaces

Let G be any group, and n in N. An Eilenberg-MacLane space of type (G,n), is a space X of the
homotopy type of a based CW-complex such that:

πk(X) ∼=

{
G, if k = n

0, otherwise

One denotes such a space by K(G,n). We now want to prove that the spaces K(G,n) exist and are
unique, up to homotopy, for every group G and every integer n ≥ 0. We will only show this statement
when G is an abelian group and when n ≥ 1. The case n = 0 is vacuous : one just takes the group
G endowed with its discrete topology. For n = 1 and the group is not abelian G can be represented
as G = {αi : βj} where αi are generators and βj are relations. Now for each βj one disc should be
attached to ∨αiS1 according to the relation. This is how we can create a space with the homotopy
group as required. Now we will use Homotopy killing lemma to kill the higher homotopy groups by
attaching ≥ 3 cells. We know it don’t affect the fundamental group [Hat02, chapter 1]. Notice that
when n ≥ 2, the group G must be abelian. Notice also that when n ≥ 1, the spaces K(G,n) are
path-connected. More generally, the spaces K(G,n) are (n− 1)-connected.

§ Lemma – Homotopy Killing Lemma. Let X be any CW-complex and n > 0. There exists
a relative CW-complex (X ′, X) with cells in dimension (n + 1) only, such that πn(X

′) = 0, and
πk(X) ≃ πk(X

′) for k < n.

Proof. The proof is not very hard. But this idea will be very helpful. Let the generator of πn(X,x0)
are represented by {fj : Sn → X : j ∈J }. Here J is some index set. Consider the following pushout
diagram ∨

j∈J Sn X

∨
j∈J Dn+1 X ′

∨
fj

i

Note that the map i is n-equivalence. For any generator fj the map i ◦ fj : Sn → X ′ can be extended

to a map f̂j : D
n+1 → X ′ (by the property of pushout). So the map i ◦ fj is null-homotopic. In other

words πn(i) : X → X ′ sends each generator [fj ] to [i ◦ fj ] which is null homotopic. Thus the map
πn(i) is trivial map since it is also surjective πn(X

′) ≃ 0. ■

Existance of Eilenberg-MacLane spaces. We will show k(π, n) exist for n ≥ 2. For that we will con-
sider Moore Spaces. Briefly Moore-space M(G,n) are the space which has integal simplicial homology
≃ G for the index n and trivial for other indices. It’s not hars to show for abelian group G, Moore space
always exist and infact by construction [Hat02, Example 2.40] it is a CW complex. If X = M(π, n)
by the construction it don’t have any cell of dimension ≤ (n− 1) since Xn ↪→ X is n -equivalence we
can say X is (n− 1) connected. By 1.8 we can say H̃n(X) ≃ πn(X) ≃ π (as n ≥ 2). We can construct
a space F1X from X by attaching (n + 2)-cells so that πn+1(F1X) is trivial. Iterate the process and
by taking colimit colimj FjX we will get a space X̃ such that πk(X̃) is trivial for k > n.

Another way - There is a beutiful way to construct Eilenberg-MacLane spaces using‘Infinite Symmet-
ric Products’. Given any based topological space X we can construct a monoid SP (X) in the following
way: consider the action of Sn on Xn given by σ.(x1, · · · , xn) = (xσ(1), · · · , xσ(n)). Denote the orbit
space of this action by SPn(X) := Xn/Sn (It can be shown it is functorial construction). Now there
is a natual inclusion of SPn(X) ↪→ SPn+1(X) by [x1, · · · , xn] → [x1, · · · , xn, ∗] where ∗ is the based
point of X. Define

SP (X) := colim
(
· · ·SPn(X) ↪→ SPn+1(X)→ · · ·

)
Note that SPn(X) is a quotient space of Xn thus it have a induced topology on it. We give SP (X) the
colimit topology i.e any subset U ⊆ SP (X) is open iff U ∩ SPn(X) is open for all n. By construction
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we can view SP (X) as a topological space as well as a monoid (the product is the natural one with
identity being (∗, ∗, · · · )). Now for any CW-complex X we can give SP (X) a CW-complex structure,
at first we give CW complex structure to Xn and then it induce a CW structure on SPn(X) and the
colimit topology will help us to get the CW-structure on SP (X). Eg. SP (S2) = CP∞. Note that
we can view CPn as the equivalence class of polynomials f(x) = anx

n + · · · + a0 ∈ C[X] such that
f ≃ g ⇐⇒ f = λg for some complex scaler λ. We can view S2 as extended complex plane. So,

SPn(S2)→ CPn : [a1, · · · , an]→ [(x+ a1)(x+ a2) · · · (x+ an)]

is an bijection and by closed map lemma it is a homeomorphism. Thus taking colimit will give us the
result. Interesting Fact. For any CW-complex X there is a natural map p : SP (X)→ Ω(SP (ΣX))
given by [x1, · · · , xn=1] 7→ (t 7→ [(x1, t), · · · , (xn, t)]). It turns out to be an weak equivalance. Thus we
can conclude,

πn(SP (X)) = [Sn, SP (X)]∗ = [Sn,ΩSP (ΣX)]∗ = [Sn+1, SP (ΣX)] = πn+1(SP (ΣX))

This helps us to define a homology theorey for CW-complexes. Define hn(X, ∗) := πn(SP (X), [∗, ∗, · · · ]).
We can show, h̃n = hn(−, ∗) satisfy three axioms Suspension axiom, Existance of Long exaact sequence
of pairs, Additive axioms. On the category of CW-complexes. If any homology theory staisfy these
three axioms they are equivalent to the ordinary homology theory for CW-complexes. Since we calso
know any ordinary homology theoies are same we can say h̃n is infact equivalent to the Cellular ho-
mology theorey. Thus if we construct M(π, n) (which is a CW -complex) we can say SP (M(π, n)) is
K(π, n). This is another way to see the Existance of Eilenberg MacLane spaces.

Remark- Also SP (X) can be thought as the commuatative version of james reduced product space.
James product gives rise to a very Interesting monoid which have a nice cohomology ring structure and
it also helps to give us EHP sequence [Mon24, section 2]. Now we will show if we restrict the definition
of Eilenberg-MacLane spaces to only the CW-complexes we can prove it’s unique upto homotopy
equivalence. Till now we have worked in the category Top∗ (topological spaces with a base point).
The discussion in section 1, the approximation theorems indicates it is enough if we deal the homotopy
theory in the category of CW-complexes. From now onward we will cosider πn, n ≥ 1 to be a functor
from the category of pointed CW-complexes CW∗ to Groups.

Theorem 1.4. The Eilenberg MacLane spaces K(π, n) are unique upto homotopy equivalence, where
π is abelian and n ≥ 1.

For the proof we propose the following proposition/lemma.

Proposition — 1.4.1 If Y is a space such that πk(Y ) is trivial for k > n and X be a CW-coplex
with a subcomplex Xn+1 ⊆ A. Then Any map f : A→ Y can be extended to a map f̃ : X → Y .

Proof. We can extend the map f cell by cell. Consider X0 = A ∪ en+1 then for the attaching map
φ : Sn → A, f ◦ φ can be extended to a map φ̃ : X0 → Y as it is null-homotopic. It is always the case
for k > n. Soo we can Indeed extend the map to whole X. Note- this is a general idea in obstruction
theory, that if a mapp can be extend to the whole space then it might represent something null-
homotopic in the homotopy groups. Infact the subject obstruction theory is the study of possibilities
od extending a map from a subcomplex to the wholw space.

Proposition — 1.4.2 Let Y = k(π, n) where π is an abelian group and n ≥ 1 and X is a
(n − 1)-connected CW-complex. We have a natural map Φ : [X,Y ]∗ → HomZ(πn(X), π) given
by

Φ : [f ]∗ 7→ πn(f)

is bijection.

7



Proof. As we have done previously, we will work with (n + 1)-th skeleton of X only. Since X is
(n − 1)-conneceted we can assume Xn is wedge of spheres Xn =

∨
J Sn and Xn+1 is given by the

following pushout ∨
j∈J Sn Xn

∨
j∈J Dn+1 Xn+1

∑
φα

i

If [f ]∗ and [g]∗ are two distinct equivalence class in [X,Y ]∗ so that πn(f) = πn(g), i.e [f ◦ h] = [g ◦ h]
for any map h : Sn → X. By surjectivity of πn(i) we can say there is a map h′ : Sn → Xn so that
πn(i)([h

′]) = [h]. In particular πn(f ◦ i)(h′) = πn(g ◦ i)(h′). If we consider the generators of Xn as in
1.8 they will have same image under πn(f ◦ i) = πn(g ◦ i) where h′ represent generators on πn(Xn)
given by the inclusion of the spheres in Xn. Thus [f ◦ i]∗ = [g ◦ i]∗. Let, H : Xn × I → Y be the
homotopy b/w f ◦ i and g ◦ i, it will help us to get a continuous map Ĥ : Xn × I ∪X × ∂I : Y where
Ĥ(X×∂I) = f ∪ g. Now note that (n+1) skeleton of X× I is Xn× I ∪X×∂I. So we can extend the
homotopy to get a homotopy H̃ : X × I → Y b/w f and g. Thus [f ]∗ = [g]∗. It proves Φ is Injective.

Let h : πn(X) → πn(Y ) be a group homomorphism. Let Xn =
∨
j∈J S

n
j . The group πn (Xn) is

generated by the homotopy classes of the inclusions ιj : S
n
j ↪→

∨
j∈J Snj ,

πn (Xn)
πn(i)−−−→ πn(X)

h−→ πn(Y ),

we define fj : Snj → Y as a representative of the image of [ιj ]∗, i.e. : h
(
πn(i)(

(
[ιj ]∗

)
) = [fj ]∗ , for

each j in J . The maps {fj} determine a map fn : Xn → Y where fn ◦ ιj = fj . For each β in J ,
the map i ◦ φβ is nullhomotopic. Hence πn (fn)

(
[φβ ]∗

)
= h

(
πn(i)(

(
[φβ ]∗

)
)
)
= 0. Hence fn ◦ φβ is

nullhomotopic for each β. Therefore fn extends to a map f : X → Y , by the previous proposition.
From h ◦ πn(i) = πn (fn) = πn(f) ◦ πn(i), since i∗ is surjective, we obtain that πn(f) = h, i.e. :
Φ ([f ]∗) = h. Thus the function Φ is surjective. ■

Let X and Y be Eilenberg-MacLane space of type (π, n). This means that there are isomorphisms
θ : πn(X)→ π and ρ : πn(Y )→ π. From the previous theorem, the composite ρ−1◦θ : πn(X)→ πn(Y )
is induced by a unique homotopy class of X → Y which is therefore a weak equivalence. Since X and
Y are CW-complexes, the Whitehead Theorem implies that X and Y are homotopy equivalent.

(end of the theorem)

Result (Milnor). If X is a based CW-complex then ΩX is also a based CW-complex. From here we
can conclude

ΩK(π, n) ≃hTop∗ K(π, n− 1)

not only that we can take adjuction to get ΣK(π, n) ≃hTop∗ K(π, n+ 1).

§1.3 Homotopy Excision Theorem

In the previous section we have seen excision doesn’t hold for homotopy groups (unlike homology/co-
homology groups). Thus it is difficult to compute the higher homotopy groups in this case neither we
have Van-Kampen type of theorem. Homotopy excision theorem is the closest we can get in terms of
excision for homotopy groups.

Theorem 1.5. (Homotopy Excision/Blakers-Massey Theorem) Suppose (X,A,B) is excisive
triad with C = A ∩ B such that (A,C) is n-connected and (B,C) is m-connected then the inclusion
i : (A,C) ↪→ (X,B) induces isomorphism on relative homotopy groups

i∗ : πq(A,C)
≃−→ πq(X,B)

for q < m+ n and it’s surjection on relative homotopy groups for q = m+ n (In other words it is an
m+ n-equivalence)
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Reduction 1 - Enough to prove the statement for the triple (X,A,B) where we get A by attaching
cells of dimension > n to C and we get B by attaching cells of dimension > m and X = A ∪C B.

We can construct a pair (ΓA,ΓC) such that γ : ΓA → A is weak equivalence and ΓC is sub-
complex of ΓA such that γ|ΓC : ΓC → C is also an weak equivalence. We can construct a CW
complex A0 from ΓC by attaching cells so that the space A0 and ΓA have same homotopy groups
for indices > n. We can do this by attaching cells of dimension > n as πi(A) = πi(ΓA) ≃ πi(C)
for i ≤ n. By theorem 1.3, we can say we can say ΓA and A0 are homotopic spaces.

ΓC A0

ΓA

≃hTop

The cells we have attached to ΓC we will attach them to C accordingly (with pre-composing
with γ|ΓC). Since everything we are doing upto weak equivalence it will be enough to deal with
the reduction.

Reduction 2 - Enough to prove the statement for the triple (X,A,B) where we get A by attaching
only one cells of dimension > n to C and we get B by attaching only one cells of dimension > m and
X = A ∪C B.

Assume A and B are constructed by attaching cells as we have described in the first reduction
(we are dealing with CW approximations only but renaming them with the initial characters
only). Consider C ⊂ A′ ⊂ A such that A is obtained from A′ by attaching one cells. Now as
a pair (A,C) has one more cell then (A′, C). Consider X ′ = A′ ∪C B. If excision holds for
(X ′, A′, B) and (X,X ′, B) then from the following commutative diagram (using five lemma) we
get, excision holds for (X,A,B) too.

πk+1(A,A′) πk(A
′, C) πk(A,C) πk(A,A′) πk−1(A

′, C)

πk+1(X,X ′) πk(X
′, B) πk(X,B) πk(X,X ′) πk−1(X

′, B)

(Proof for the reduced case) % I shall do it quickly

§1.4 Freudenthal Suspension Theorem

If f is a based map f : Sk → X the suspension Σf : ΣSk → ΣX given by (x ∧ t) 7→ f(x) ∧ t. As we
have already said suspension (reduced suspension) is a functor from Top∗ to itself. From the above
discussion we see Σ gives us a map πk(X) → πk+1(ΣX). Infact we can view Σ : πk ⇒ πk+1 as a
natural transformation as the following diagram commutes for any f : X → Y

πk(X) πk+1(ΣX)

πk(Y ) πk+1(ΣY )

Σ

f∗ (Σf)∗

Σ

Since we have excision kind of tools for computing homotopy groups we will establish the Freudenthal
suspension theorem it will help us to get idea about stable homotopy theory.

Theorem 1.6. (Freudenthal Suspension Theorem) If X is a (n − 1) conneceted CW complex,
the map Σ : πk(X)→ πk+1(ΣX) is an isomorphism for k ≤ 2n− 2 and surjective for n = 2n− 1.

9



Proof. Let, X be the based space with based point x0 then we can view ΣX as the pushout of the
following diagram,

X × ∂I ∪ {x0} × I X × I

{x0} ΣX

Consider the open cover of X, A = X × (0, 1]/X × {1} ∪ {x0} × (0, 1] and B = X × [0, 1)/X ×
{0} ∪ {x0} × [0, 1). We can see that A and B are open in ΣX, and there are the based homotopy
equivalences A ≃∗ CX,B ≃∗ C ′X,A ∩B ≃∗ X. Where CX and C ′X are reduced cone on X defined
by C ′X = X × [0, 1]/X × {0} ∪ {x0} × [0, 1] and CX = X × [0, 1]/X × {1} ∪ {x0} × [0, 1]. Indeed, the
homotopy,

H : CX × I −→ CX

([x, t], s) 7−→ [x, s+ (1− s)t],

gives a based homotopy equivalence CX ≃∗ x0. With the same argument, we have :

A ≃∗ x0, and B ≃∗ x0 ≃∗ C ′X

Hence, the triad (ΣX;A,B) is excisive. Moreover, A and B are contractible spaces, so (A,X) and
(B,X) are (n − 1)-connected, by the long exact sequence of the pairs, whence we can apply the
excision homotopy Theorem. The inclusion (B,X) ↪→ (ΣX,A) is a (2n − 2)-equivalence, and thus,
the inclusion i : (C ′X,X) ↪→ (ΣX,CX) is a (2n − 2)-equivalence. To end the proof, we need to
know the relation between the inclusion i and the suspension homomorphism Σ. Consider an element
[f ]∗ ∈ πk(X) =

[(
Ik, ∂Ik

)
, (X, ∗)

]
∗. Let us name q : X × I → C ′X ∼= X × I/(X × {0} ∪ {∗} × I) the

quotient map induced by the definition of C ′X as a pushout. Define g to be the composite :

Ik+1 f× id−−−−→ X × I
q−→ C ′X.

It is easy to see that g
(
∂Ik+1

)
⊆ X, and g

(
Jk
)
= {∗}. Indeed, we have g

(
∂Ik × I

)
= [(∗, I)] ⊆ X,

g
(
Ik × {0}

)
= ∗ ∈ X and g

(
Ik × {1}

)
⊆ X. Hence g

(
∂Ik+1

)
⊆ X. It is similar to prove that

g
(
Jk
)
= {∗}. Therefore [g]∗ ∈ πk+1 (C

′X,X). Moreover, it is clear g|Ik×{1} = f . Hence ∂ ([g]∗) = [f ]∗,
where ∂ is the boundary map of the long exact sequence of the pair (C ′X,X). We get : ρ ◦ g = Σf ,
where the map ρ : C ′X → ΣX can be viewed as a quotient map, through the homeomorphism
ΣX ∼= C ′X/(X × {1}). Thus the following diagram commutes :

πk+1(C
′X,X) πk(X)

πk+1(ΣX,CX) πk+1(ΣX)

∂

i∗
ρ

Σ

≃

Here ∂ (from LES of pair (C ′X,X)) and i∗(from the excision theorem) are also isomorphism. Thus Σ
is also an isomorphism for k < 2n− 1 and surjection for k = 2n− 1 as i∗ is a surjection.

Theorem 1.7. Let f : X −→ Y be an (n− 1)-equivalence between (n− 2)-connected spaces, where
n ≥ 2; thus πn−1(f) is an epimorphism. Then the quotient map π : (Mf,X) −→ (Cf, ∗) is a
(2n− 2)-equivalence. In particular, Cf is (n− 1) connected. If X and Y are (n− 1)-connected, then
π : (Mf,X) −→ (Cf, ∗) is a (2n− 1)-equivalence.

Proof. We are writing Cf for the unreduced cofiber Mf/X. We have the excisive triad(Cf ;A,B),
where

A = Y ∪ (X × [0, 2/3]) and B = (X × [1/3, 1])/(X × {1}).

Thus C ≡ A ∩B = X × [1/3, 2/3]. It is easy to check that π is homotopic to a composite

(Mf,X)
≃≃ (A,C) −→ (Cf,B)

≃−→ (Cf, ∗),
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the first and last arrows of which are homotopy equivalences of pairs. The hypothesis on f and the
long exact sequence of the pair (Mf,X) imply that (Mf,X) and therefore also (A,C) are (n − 1)-
connected. In view of the connecting isomorphism ∂ : πq+1(CX,X) −→ πq(X) and the evident
homotopy equivalence of pairs (B,C) ≃ (CX,X), (B,C) is also (n−1)-connected, and it is n-connected
if X is (n− 1)-connected. The homotopy excision theorem gives the conclusions.

§1.5 Hurewicz Theorem

There is a special relation between the homotopy groups of a space and the ordinary homology groups
of that space with integral coefficients. Infact we can naturally produce a map h : πn(X)→ Hn(X,x0)
(here we are dealing with the based space X). We know the relative homology groups of (Sn, e)
with integral coefficients is isomorphic to Z. We can assume in to be the generator of Hn(Sn, e).
Then h([f ]) = Hn(f)(in) is a well defined map from homotopy group to relative homology group as
homology groups are homotopy invariant. It turns out to be a homomorphism b/w the groups and we
call it Hurewicz homomorphism. If [f ] and [g] are two class of maps in πn(X) then [f ]+ [g] = [f ∨g ◦ c]
where c is the pinching map. From the following commutative diagram

H̃n(Sn) H̃n(Sn ∨ Sn) H̃n(X)

H̃n(Sn)⊕ H̃n(Sn)

H̃n(c)

∆

H̃n(f∨g)

≃
H̃n(f)+H̃n(g)

we get Hn(f ∨ g ◦ c)(in) = Hn(f ∨ g)◦Hn(c) = Hn(f)(in)+Hn(g)(in). Thus h([f ]+ [g]) = h(f)+h(g)
and hence it is a group homomorphism. The homomorphism can be viewed as a natural functor
h : πn ⇒ H̃n for n ≥ 0 and furthermore it’s compatible with the suspension homomorphism i.e. the
following diagram commutes,

πn(X) H̃n(X)

πn+1(ΣX) πn+1(ΣX)

h

Σ Σ

h

Remark- The Hurewicz homomorphism can be defined for any ordinary homology theories. Ordi-
nary homology theories satisfy Eilenberg-steenrod axioms [JPM99, page 95]. Any ordinary homology
theories are equivalent. We will work with cellular homology for the rest part.

§ Lemma – Consider the wedge of n-spheres Xn =
∨
j∈J Sn where J is any index set, inj be the

inclusion of j-th index sphere in the wedge. Then π1(X
1) is free group generated by

{
i1j
}

and for

n ≥ 2, πn(X
n) is free abelian group generated by

{
inj
}
.

Proof. The n = 1 case follows from the Seifert Van Kampen theorem. Let us prove now the case n ≥ 2.
Let J be a finite set. Regard

∨
j∈J Sn as the n-skeleton of the product

∏
j∈J Sn, where again the

n-sphere Sn is endowed with its usual CW-decomposition, and
∏
j∈J Sn has the CW-decomposition

induced by the finite product of CW-complexes. Since
∏
j∈J Sn has cells only in dimensions a multiple

of n, the pair
(∏

j∈J Sn,
∨
j∈J Sn

)
is (2n− 1) connected. The long exact sequence of this pair gives

the isomorphism :

πn

∨
j∈J

Sn

 ∼= πn

∏
j∈J

Sn

 ∼=⊕
j∈J

πn (S
n)

induced by the inclusions
{
ιnj
}
j∈J

. The result follows. Let now J be any index set, let ΘJ :⊕
j∈J πn (S

n)→ πn

(∨
j∈J

)
be the homomorphism induced by the inclusions

{
ιnj
}
j∈J

. Just as the

11



case n = 1, one can reduce J to the case where it is finite to establish that ΘJ is an isomorphism. ■

From the above lemma we conclude Hurewicz homomorphism h : πn(X
n)→ H̃n(X

n) is isomorphism
for Xn, n ≥ 2 and it is the abelianization homomorphism for n = 1. Infact for any (n− 1) connected
space the Hurewicz homomorphism is an isomorphism (n > 1). This is the statement of Hurewicz
isomorphism theorem.

Theorem 1.8. Let X be a (n − 1)-connected based space, where n ≥ 1 then the Hurewicz isomor-
phism,

h : πn(X)→ H̃n(X)

is the abelianization homomorphism if n = 1 and is an isomorphism if n > 1.

Proof. (We will deal with n ≥ 2 at first) The weak equivalence induce isomorphism in the relative
homology groups. By the CW approximation we can assume X to be weak equivalent to the CW com-
plex ΓX. It is enough to work with ΓX, it is also (n− 1) connected. By the whitehead approximation
theorem we can assume ΓX is homotopic to a CW complex X ′ that do not have any cells of dimension
k (here 1 ≤ k ≤ (n − 1)) and have one 0-cell. Call this space FX. Since we are working with based
spaces (i.e. FX is bases space) the n-th skeleton of FX is achived by the following pushout,∨

j∈Jn
Sn−1 FX0

∨
j∈Jn

Dn FXn

g

(Here FXk means k-th skeleton of FX) Thus FXn is nothing but wedge of spheres i.e FXn =∨
j∈Jn

Sn. The (n + 1)-the skeleton will also be constructed by similar kind of pushout. Note that,

cone over
∨
j∈Jn+1

Sn is homeomorphic to wedge of disks and thus FXn+1 is actually the mapping

cone(reduced) over f . Where f :
∨
j∈Jn+1

Sn → FXn is the attaching map. The following diagram
shall describe it clearly,

∨
j∈Jn+1

Sn FXn

C
(∨

j∈Jn+1
Sn
) ∨

j∈Jn+1
Dn+1 FXn+1 Cf

f

≃hTop* ≃hTop*

As we know FXn+1 ↪→ FX is n-equivalence it will induce isomorphism if n-th homotopy, i.e. πn(FXn+1) =
πn(FX) also from cellular homology theory [Hat02, page 137] we know this inclusion will induce iso-
morphism on n-th reduced homology i.e. H̃n(FXn+1) ≃ H̃n(FX). Thus it is enough to prove the
‘Hurewicz isomorphism’ for FXn+1. Let us call the space

∨
j∈Jn+1

Sn := T . Thus we have a long

exact sequence of homology groups [Löh, page 128],

· · · → H̃n(T )→ H̃n(FXn)→ H̃n(Cf)→ H̃n−1(T )→ · · ·

Since T is wedge of n-spheres H̃n−1(T ) is trivial. In the following commutative diagram the bottom
row is exact

πn(T ) πn(FXn) πn(FXn+1) 0

H̃n(T ) H̃n(FXn) H̃n(FXn+1︸ ︷︷ ︸
Cf

) 0

h h h
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Since T and FXn are (n − 1) connected space and f is (n − 1)-equivalence, by 1.7 we must have
(Mf, T ) → (Cf, ∗) is (2n − 1)-equivalence, so it induces isomorphism on πn. Now using the LES for
homotopy groups we get

· · · πn(T ) πn(Mf) πn(Mf, T ) · · ·

πn(T ) πn(FXn) πn(Cf)

≃ ≃

the top row will also be exact. By the previous lemma 1st and seconf Hurewicz homomorphism are
isomorphism so we have proved the Hurewicz isomorphism for FXn+1 ≃ Cf .

n = 1 case. % Shall Do it later

■

§1.6 Stability

Let X be a (n − 1) -connected space. We get the sequence following homotopy groups (by applying
suspension) consecutively,

πk(X)
Σ−→ πk+1(ΣX)

Σ−→ · · ·πk+r(ΣrX)
Σ−→ · · ·

Inductively we can show ΣrX is (n+ r− 1)-connected. Thus for larger r the homotopy groups finally
gets stabilized. We can define stable homotopy groups as follows,

Definition 1.1. Let X be a (n − 1)-connected space. Let, k ≥ 0 and the k-th stable homotopy
group of X is the colimit of πk+r(Σ

rX),

πSk (X) := colim
r

πk+r(Σ
rX)

If k < n− 1 we must have,
πSk (X) = πk+n(Σ

nX)

It is one of the interesting problem in algebraic topology to compute πsk(S0). It arises in computation
of different geometric things such as parallelizable structures on Sn for n ≥ 5. In general the groups
πk+n(Sn) are called stable if n > k + 1 and unstable if n ≤ k + 1.

Theorem 1.9. The stable homotopy groups of sphere are finite. If we define πSk (S0) =: πSk , this is
finite.

Proof. The proof is technical but we will use a theorem by J.P.Serre, called Serre finiteness [Mon24,
Page 12]. This asserts the higher homotopy groups of Sn are finite except for the index = n and the
case n = 2k and index is 4k − 1. If k ̸= 1 it’s not hard to see that πSk is finite. For k = 1 we have a
very nice result that,

πS1 ≃ Z/2Z

which is finite. We will prove that π4(S3) ≃ Z/2Z and using Freudenthal suspension theorem succes-
sively we will get,

π4(S3) = π5(S4) = π6(S5) · · · = πn+1(Sn)

taking colimit will give us πS1 = Z/2Z and thus the proof is complete. ■
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§1.7 Prespectra and Generalized Homology theory

Motivation - From the discussion of Eilenberg-MacLane spaces we know for any based CW-complexes
X we have the following sequence of morphism tn

πq+n(X ∧K(π, n)) πq+n+1(X ∧K(π, n+ 1))

πq+n+1(Σ(X ∧K(π, n))) πq+n+1(X ∧ ΣK(π, n))

tn

Σ

id∧Σ
≃

≃

by Freudenthal suspension theorem for larger n this tn become an isomorphism thus the directed
system got stabilized. Now if we define,

Ẽq(X) := colimn

(
· · · → πq+n(X ∧K(π, n))

tn−→ πq+n+1(X ∧K(π, n+ 1))→ · · ·
)

It will be not hard to see that Ẽq defines a ordinary homology theory with coefficients in π from the
category of homotopic based CW-complexes. We can generalize this idea by defining something called
pre-spectrum.

Definition 1.2. (Prespectrum) A sequence of based spaces E := {En} together with a sequence
of natural map σn : ΣEn → En+1 is called prespectra and for any two prespectra E and E′ with a
sequence of map {fn : En → E′n} such that the following diagram commutes,

ΣEn ΣE′n

En+1 E′n+1

Σfn

σn σ′
n

fn+1

Taking motivation from the Eilenberg-MacLane case, if we are given a prespectrum with n-th space
being (n − 1) connected we can always define a sequence of functors Ẽq from the category of based
CW complexes to the category of abelian groups by defining,

Ẽq(X) := colim
n

πn+q(X ∧ En)

The following theorem will conclude that it is a reduced generalized homology theory on the category
of CW∗

Theorem 1.10. Let {En} be a prespectrum such that En is (n− 1)-connected and of the homotopy
type of a CW complex. We can define

Ẽq(X) := colim
n

πn+q(X ∧ En)

where the colimit is taken over the directed system
{
πq+n(X ∧ En)

tn−→ πn+q+1(X ∧ En+1)
}
is a gen-

eralized reduced homology theory on based CW complexes.

Proof. Due to the choice of the prespectrum we can say for n >> q we must have the Freudenthal
suspension isomorphism and thus tn will be an isomorphism. So, the colimit is well defined so is Ẽq.
Functoriality is very easy to check and it is certainly a homotopy preserving functor. We will prove
the axioms one by one.

AX1 Exactness. We know X ∧En have a CW structure adopted from X ×En the later space don’t
have any cell od dimension < n. Thus X ∧ En is (n− 1) conneceted. For a subcomplex A of X
we have A∧En is also a subspace of X ∧En which is also (n− 1) connected. Now by 1.7 we can
say (X ∧En, A∧Xn)→ (X ∧En/A∧En, ∗) ≃ (X/A∧En, ∗) by (2n− 1)-equivalence. If we take
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n to be large enough then we have πn+q+(X ∧En, A∧Xn) ≃ πn+q(X/A∧En). After taking the

colimit combining with the LES for homotopy groups we get the following exact sequence of Ẽq,

Ẽq(A)→ Ẽq(X)→ Ẽq(X/A)

AX2 Suspension. Note that for n >> q we have the following isomorphism: πn+q(X ∧ En)
Σ−→

πn+q+1(Σ(X ∧ En)) ≃ πn+q+1(ΣX ∧ En). By taking colimit we have Ẽn(X) ≃ Ẽn+1(ΣX).

AX3 Additive prop. For this we will define weak product spaces. For the based spaces Xi, define∏
wXi be the subspace of the product

∏
Xi whose points have all but finite co-ordinates are

based points. Now note that the homotopy groups of
∏
wXi are colimit of the homotopy groups

of finite products (as colimit commutes with homotopy groups). Thus we have

πm(
∏
w

Xi) =
⊕

πm(Xi)

Result. If Xi are CW complex haing only one 0-cell and no cell of dimension < n then the
(2n− 1) skeleton of ∨Xi matches with (2n− 1) skeleton of

∏
wXi. Thus for large enough n we

must have
πn+q((∨Xi) ∧ En) = πq+n(∨(Xi ∧ En)) ≃

⊕
πq+n(Xi ∧ En)

now by taking colimit we get the Additive property of Ẽq.

For S0 we don’t know if Ẽq(S0) satisfy the dimension axiom. Thus this homology theory is not ordinary
Homology theory. ■

Remark– Recall that S = {Sn} is the sphere prespectrum and the generalized homology group
with this prespectrum is nothing but the stable homotopy gropus of X. Certainly from the first few
computations of πSk we can say the corresponding homology theory is not an ordinary homology theory.
Getting a homology structure helps us to compute the stable homotopy groups of wedge products and
having a long exact sequence will also help us to compute the stable homotopy for quotients. The
based CW complexes are made of wedge of spheres and some additional quotient structures. In order
to know about stable homotopy groups of a CW complex it is very important to know the stable
homotopy groups of spheres. In general these are very difficult to compute. Upto the range k ≤ 19
the calculation are somewhat easy but for the upper indices it’s extremely difficult to compute and
certainly unknown for higher values of k. As we have seen in 1.9 the stable homotopy groups are
torsion Z-modules thus it became much more difficult to carry out the computations.

§1.8 Spectra and Generalized cohomology

For this case also we have a similar type of motivation. If X is a CW complex, we can show Ẽq(X) =
[X, k(π, q)] define a cohomology theory with coefficients in π (here π is an abelian group and [X,Y ]
is the usual notation of maps from X to Y upto homotpy equivalence). In order to show this we will
take the axiomatic approach. Recall the cohomology theories on CW complexes are a sequence of
homotopic contravariant functors satisfying Suspension axiom, Additive axiom, and LES of pairs. If
in addition these theories satisfy the dimension axiom it will be called ordinary cohomology theory.
Any Ordinary cohomology theories are equivant. The functor we defined above is clearly a homotopic
contravariant functor which satisfy the cohomology aximos. It’s not hard to see Ẽq(S0) satisfy the
dimension axiom. As before we will generalize this idea. Now we will talk about the functor [−, Z] on
the category of based CW complex and here Z is any based sapce.

1. HOMOTOPY. If the maps f and g from X to Y are homotopic then the maps f∗ ≃ f∗ : [Y,Z]→
[X,Z].
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2. ADDITIVE. If X is wedge of spaces X =
∨

Xi then we must have,

[X,Z] =
∏

[Xi, Z]

3. EXACTNESS. If A is a sub-complex of X then the inclusion A ↪→ X is a cofibration thus the
cofiber of this map will be X/A. Now using Puppe sequence 1.1 we will get the following exact
sequence

[X/A,Z]→ [A,Z]→ [X,Z]

In order to get a cohomology theorey out of these representable functors we need to satisfy the sus-
pension axiom, which in general do not hold thats why we will consider a special type of prespectra
so that suspension axiom gets satisfied.

Definition 1.3. (Ω-prespectrum) The sequence of spaces {Tn} together with a weak homotopy
equivalances τn : Tn → ΩTn+1 is called Ω-prespectrum.

For such spectra if we define Ẽq(X) := [X,Tq] for q ≥ 0 then naturally we have

Ẽq(X) = [X,Tq]
t∗n−→
≃

[X,ΩTn+1] ≃ [ΣX,Tn+1] = Ẽq+1(ΣX)

Theorem 1.11. Let, {Tn} be a Ω-prespectrum. Define

Ẽq(X) :=

{
[X,Tq] if q ≥ 0

[X,Ω−qT0] if q < 0

Then the functors Ẽq define a reduced cohomology theory on based CW complexes.

Now we will define the Brown functors and state the Brown representability theorem.

Definition 1.4. (Brown functor) A functor h : hCWop
∗ → sets is said to be a Brown functor if it

sastisfy the following axioms,

AX1 Wedge axiom. If Xi are based CW complexes then h(
∨
Xi) =

∏
h(Xi).

AX2 Mayer-Vietoris axiom. If A and B are subcomplex of X such that intirerior of them covers
X then we have the following commuatative diagram

A ∩B A h(X) h(A)

B X h(B) h(A ∩B)

ℓA

ℓB ℓA,X

ℓ∗A,X

ℓ∗B,X ℓ∗A

ℓB,X ℓ∗B

h

with the property: whenever x ∈ h(A) and y ∈ h(B)ℓ∗A(x) = ℓ∗B(y) and there is z ∈ h(X) so that
x = ℓ∗A,X(z) and y = ℓ∗B,X(z).

Example - It’s not hard to see for any space Z the representable functor [−, Z] is a Brown functor.
The brown representability theorem states converse of this and the proof is quite technical. So we will
ommit that. The proof can be found in [Edg, page 468].

Theorem 1.12. (Brown representability Theorem.) Every Brown functors are representable
i.e. there exist a CW complex K and an element u ∈ h(K) so that Tu : [−,K] ⇒ h(−) is a natural
transformation with a map f : X → Y maps to f∗(u) which is an isomorphism [Edg]
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2. Steenrod operations and Steenrod algebra

Let k be a generalized cohomology theory on the category of CW complexes. Then cohomology
operation of type (n, n + m,π,G) is a natual transformation ϕ : kn(−, π) → kn+m(−, G). By the
Brown representability theorem we can represent kn by some based topological space Z. The following
lemma will ensure that the cohomology operation are in one one correspondence with the elements of
kn+m(Z;G). In this section we will deal with ordinary cohomology theory. If G and π are abelian
groups the cohomology kq(−;π) is represented by [−,K(π, n)] and the other one is representted by
[−,K(G,n+m)] then the cohomology operations of type (n.n+m,π,G) are in one one correspondence
with [K(π, n),K(G,n+m)]. If m = 0 this is nothing but Hom(π,G).

§ Lemma – Yonneda. There is a correspondence between the natural transformations Φk ⇒ k′ where
k, k′ are contravariant functor and k is represented by [−, Z] with the elements of k′(Z).

Proof. We want to show for every Φ : k → k′ there is an element ϕ. Define ϕ := Φ(1) here 1 is the
identity of k(Z) = [Z,Z], thus ϕ ∈ k′(Z). If ϕ ∈ k′(Z), we define Φ : k → k′ by ϕ(X) : k(X)→ k′(X)
is given by ϕ 7→ f∗ϕ. ■

We will construct an important cohomology operation called steenrod operation. For that we need a
proper description of K(Z2, 1). We have already dicussed that as a CW-complex K(Z2, 1) is unique
upto homotopy equivalance. Note that RP∞ is colim(RPn ↪→ RPn+1). We know homotopy groups
commutes with the colimit so, πk(RP∞) = πk(S∞) is trivial for k ≥ 2. For k = 1, it’s Z2. Thus RP∞
is K(Z2, 1) upto homotopy equivalence. We will give S∞ a celluler structure. For every dimension i
we have two cell di and Tdi. The action of homology boundary ∂ is given by ∂di = di−1 +(−1)iTdi−1
(here we can use T as an operator satisfying the properties T∂ = ∂T and TT = 1). We can compute
the cellular homology whcih turns out to be trivial for i ≥ 1.

From the above cellular structure of S∞ we can give RP∞ a cell structure which is basicale obtained
by identifying di with Tdi for all i. And thus the boundary operator is 0 when i is odd and it’s 2di−1
when i is even so the homology is nothing but Z2 for i odd and trivial for i even. Applying universal
coefficient theorem we can say the cohomology of K(Z2, 1) is Z2 for every index i. The cohomology
ring of the Eilenberg-MacLane space will be Z2[α] where α is generator of H1.

Now we will describe some technical definitions for the acyclic carrier theorem. LetW be the chain
complex of S∞ (as we have described above), it’s a Z2 free acyclic chain complex with two generators.

Define, r :W →W⊗W by r(dj) =
∑
j(−1)j(i−j)dj⊗T jdi−j and r(Tdj) = T (rdj). It’s not hard to see

r is a chain map with the usual boundary ∂. Note that if h is a diagonal map of Z2 , r is h-equivarient,
i.e. r(gw) = h(g)r(w). There fore r induces a chain map s : W/T → W/T ⊗W/T which is a map
for the chain complexe of RP∞. This s is called diagonal approximation of RP∞. Let π,G be groups
(not necessarily abelian) and let Z[π] denote the group ring of π. K be a π-free chain complex with a
Z[π] basis B of homgeneous elements called cells. For a, b ∈ B, [a : b] denote coefficient of b in ∂a. Let
G acts on a chain complex L and let h be a homomorphism π → G.

Definition 2.1. An h-equivariant carrier C from K to L is a function from B to the subcomplexes
of L such that:

(i) If [a : b] ̸= 0 then Cb ⊂ Ca.

(ii) for x ∈ π and a ∈ B, h(x)Ca ⊂ Ca.

The carrier is siad to be acyclic if the subcomplex Ca is acyclic for every cell a ∈ B. The h-chain map
f : K → L is said to be carried by C if fa ∈ Ca for all a ∈ B.

Theorem 2.1. Let C be an acyclic carrier from K to L. Let K ′ be a subcomplex of K which is a
Z[π]-free complex on a subset of B. Let f : K ′ → L be an h-equivariant chain map carried by C. Then
f extends over all of K to an h-equivariant chain map carried by C. Moreover the extension is unique
up to an h-equivariant chain homotopy carried by C.
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Outline of Proof.Outline of Proof.Outline of Proof.Outline of Proof.Outline of Proof.Outline of Proof.Outline of Proof.Outline of Proof.Outline of Proof.Outline of Proof.Outline of Proof.Outline of Proof.Outline of Proof.Outline of Proof.Outline of Proof.Outline of Proof.Outline of Proof. The proof proceeds by induction on the dimension, suppose that f has been
extended over all of Kq and consider a (q+1)-cell τ ∈ B. Then ∂τ =

∑
aiσi where ai = [τ, σi] ∈ Z(π).

Thus f(∂τ) =
∑

f (aiσi) =
∑

h (ai) f (σi), which is in Cτ by properties (1) and (2). Since f is a chain
map, f(∂τ) is a cycle, but then, since eτ is acyclic, there must exist x in Cσ such that ∂x = f(∂τ).
Choose any such x, and put f(τ) = x. This is the essential step in the construction, f is extended
over K9+1 by requiring it to be h-invariant. Uniqueness is proved by applying the construction to the
complex K × I and its subcomplex K ′ × I ∪K × 1.

Cup-i products

Now let K = C∗(X) be the chain complex of a simplicial complex X andW is as before, we can define
an action of Z2 on W ⊗K by T (w⊗ k) = (Tw)⊗ k and on K ⊗K by T (x⊗ y) = (−1)deg x deg yy ⊗ x.
If σ is a generator of K = C(X), we can identify C∗(σ × σ) = C∗(σ) ⊗ C∗(σ) and the later one is
subcomplex of K ⊗K. Let, C be a carrier from W ⊗K to K ⊗K defined as follows:

C : di ⊗ σ 7→ C∗(σ × σ)

It’s not hard to see the above carrier is acyclic and h-equivariant where h is the identity map b/w Z2.
Consider the map φ0 : d0⊗K → K ⊗K (which is the diagonal map) by 2.1 we can extend this to the
complex φ :W ⊗K → K ⊗K. With the above setup we define ‘cup-i product’

Cp(X)× Cq(X)→ Cp+q−i(X)

by the formula u ⌣i v(c) = (u ⊗ v)(φ(di ⊗ c)), where c ∈ Cp+q−i(X). If δ is the couboundary and ∂
is boundary we can say,

δ(u ⌣i v)(c) = u ⌣i v(∂c)

By definition ∂(di ⊗ c) = ∂di ⊗ c+ (−1)idi ⊗ ∂c. So,

(u⊗ v)φ(di ⊗ ∂c) = (−1)i(u⊗ v)φ(∂(di ⊗ c))− (−1)i(u⊗ v)φ(∂di ⊗ c)

= (−1)iδ(u⊗ v)φ(di ⊗ c)− (−1)i(u⊗ v)φ(di−1 ⊗ c)− (u⊗ v)φ(Tdi−1 ⊗ c)

By doind further calculations we will get

δ(u ⌣i v) = (−1)iδu ⌣i v + (−1)i+pu ⌣i δv − (−1)iu ⌣i−1 v − (−1)pqu ⌣i−1 v

Thus the product will induce a natural product in cohomology as product of couboundary goes to
couboundary and product of cocycle goes to cocycle. This is the first step towards constructing
steenrod operations.

Steenrod squaring operation

We will deal with cohomology with coefficients in it Z2, on that case Sqi : H
p(X;Z2)→ H2p−i(X;Z2)

is a homomorphism given by u 7→ u ⌣i u. If f : X → Y is a continuous map then it induce a map
f∗ : Hp(Y ;Z2)→ Hp(X;Z2). We will have the following diagram commutes,

Hp(Y ;Z2) Hp(X;Z2)

H2p−i(Y ;Z2) H2p−i(X;Z2)

f∗

Sqi Sqi

f∗

This is because Sqi(f
∗(u))(c) = f∗(u)⊗f∗(u)φ1(di⊗c) = (u⊗u)(f⊗f)φ1(di⊗c) (here φ1 is the chain

map for the chain complex ofX and φ is forX) and the other one f∗(Sqi(u))(c) = (u×u)φ(1⊗f)(di⊗c).
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Note that the chain maps φ(1⊗f) and (f⊗f)φ1 are both carried by the carrier C′ : di⊗σ → C(fσ×fσ)
so they are equivariantly homotopic. Thus the diagram commutes, furthermore the same process can
be applied to prove Sqi is independent of choice of φ.

We define a Steenrod operations by Sqi = Sqp−i for 0 ≤ i ≤ p and Sqi is understood to be the zero
outside this range.

We know for any pair (X,A) there is an exect sequence of cochian complexes

0→ C∗(X,A)→ C∗(X)→ C∗(A)→ 0

now call the first map q which is injective, if u ∈ Cp(X,A) and v ∈ Cq(X,A) we define u ⌣i v to be
the element which is the unique inverse image of qu ⌣i qv under the map q. This is well defined. So
can define the i-cup product for pairs. Now if we anssume δ∗ be the map Hq(A) → Hq+1(X,A) be
the map that we get from the exact sequence of cochian complex (i.e. LES of pairs). It can be shown
easily Sqi commutes with the morphism δ∗. As a corollary to it we can say Sqi commutes with the
suspension (just by working with the pair (Ci,X) where i is the inclusion of A in X). In other words
the following diagram commutes,

Hp(X) Hp+1(ΣX)

Hp+i(X) Hp+i+1(ΣX)

Σ

Sqi Sqi

Σ

The cohomology operations that commutes with the suspension functor is known as stable cohomology
operations. Thus the above cohomology operation is a stable cohomology operation.

Properties of the squaring operations

1. For n ≥ 0 the operations are stable cohomology operation Sqn : Hq(X;Z2)→ Hq+n(X;Z2).

2. The homomorphism Sq0 is identity.

3. For x ∈ Hp(X;Z2) or deg x = p we have, Sqi(x) = 0 for p > i.

4. Sqn(x) = x2 for deg x ∈ n.

5. Cartan formula: Sqi(xy) =
∑
j Sq

jxSqi−jy.

Here the product ab actually means the cup product and since the cochian complex/direct sum coho-
mology group comes with a natural grading the degree makes sense. First four properties follow from
our previous discussion however for the Cartan formula requires some more technical discussion.

With the notation same as previous we can contruct a φK⊗L for the complex K⊗L, from the following
diagram. In other words composition of the maps in black arrow is φK⊗L.

W ⊗ (K ⊗ L) W ⊗W ⊗ (K ⊗ L) (W ⊗K)⊗ (W ⊗ L)

(K ⊗ L)⊗ (K ⊗ L) K ⊗K ⊗ L⊗ L

r⊗1

φK⊗L

η

φK⊗φL

η

Here, η is nothing but the permutaion isomorphism. If we asssume deg x = p,deg y = q and n = p+q−i
we must have,

Sqi(x ⌣ y)(a⊗ b) = (x⊗ y)⊗ (x⊗ y)φK⊗L(dn ⊗ a⊗ b)

= (x⊗ x)⊗ (y ⊗ y)
∑

φK(dj ⊗ a)φL(dn−j ⊗ b)

=
∑

(x ⌣j x)(a)⊗ (y ⌣n−j y)(b)
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for all a, b. Thus Sqi(xy) =
∑
j Sq

jxSqi−jy. We wil summarize the above discussion in the following
theorem,

Theorem 2.2. For n ≥ 0, there are stable cohomology operations

Sqn : Hq (X;Z2) −→ Hq+n (X;Z2) ,

called the Steenrod operations. They satisfy the following properties.

(i) Sq0 is the identity operation.

(ii) Sqn(x) = x2 if n = deg x and Sqn(x) = 0 if n > deg x.

(iii) The Cartan formula holds:

Sqn(xy) =
∑
i+j=n

Sqi(x)Sqj(y).

Adam Relation. The steenrod opertaions satisfy the following relation, (for i < 2j)

SqiSqj =
∑
k

(
j − k − i

j − 2k

)
Sqi+j−kSqk

Consider O(n, k) be the set of stable cohomology operations Hn(−;Z2) → Hk(−;Z2). In the first
paragarph we have discussed O(n, k) ←→ [K(Z2, n),K(Z2, k)]. Now take the Eilenberg-MacLane
prespectrum HZ2 = {K(Z2, i)}. Recall we can talk about the cohomology of a spectra by,

Hk(HZ2) = lim
←

(
· · ·Hk+n(K(Z2, n))

Σ−1

−−−→ Hk+n−1(K(Z− 2, n− 1))→ · · ·
)

Explicitly we can write doen the inverse images∏
n

Hn+k(K(Z2, n))/
{
relation of Σ−1 and the elements of the groups

}
Interms of cohomology opertaions this tis nothing but the set of stable cohomology operations of degree
k with the coefficient ring being Z2. The algebra A generated by the stable cohomology operations is
called Steenrod algebra. The algebra A is a graded algebra with the Ak being the stable cohomology
operations of degree k. From the above discussion we conclude,

A =
⊕
k

Hk(HZ2)

There is a natural A-module structure of H∗(X) for any topological space X. It can be proved that,

Theorem 2.3. The algebra A is isomorphic to an Z2 algebra Z2[Sq0, Sq1, · · · ]/{Adam opertaions}
Example For RP∞ we know H∗(RP∞;Z2) = Z2[u] where deg u = 1. Now,

Sq(u) = Sq0(u) + · · · = u+ u2

Thus Sq(un) =
∑n
i=0

(
n
i

)
un+i. Notice that, Sqi(un) =

(
n
i

)
un+i modulo 2. This computation deter-

mines the action of A on the cohomology ring.

The dual of steenrod algebra is A∗ = Hom(A,Z2). If we consider SqIr := Sq2
r−1

Sq2
r−2 · · ·Sq1, it can

be shown SqIr admits an basis for the algebra A. It aslo can be shown that A∗ admits an coalgebra
structure with generators ξr(dual of Sq

Ir ). The coproduct µ : A∗ → A∗ ⊗A∗ is given by

ξr 7→
∑
i+j=r

ξ2
j

i ⊗ ξj

.

Theorem 2.4. (Milnor.) The dual steenrod algebra is isomorphic to the following polynomials ring,

A∗ ≃ Z2[ξr : deg ξr = 2r − 1]
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3. G-Bundles and Classifying Space

Vector bundles are the core of study topology. Given a topological group G we can define G-bundles
over G-sets. This are the generalization of the Vector bundles. Given a topological G set on which G
acts by isomorphism we can define a G-bundle over it. There id a notion of isomorphism of G-bundles.
We want to study PG(X) the space of all G-bundles over X upto isomorphism. The functor ρG(−) is
a Broqn functor so by the representability we can represent the functor by some [−, BG]. This BG is
called Classifying space over G. For which ever G we can tallk about the G-bundles, classifying space
must exist for that G. And since the trivial bundle always exist we can talk about the classifying
space. We will restrict the further study of G-bundles over vector bundles.

Definition 3.1. (G-bundles/Fibre bundles) Let G be a topological space group acts on a space
E (on the left). A surjection π : E → B is said to be a G- bundle, B has a collection of open sets
{Uα} such that there is a collection of G-equivariant homeomorphisms φα : π−1(Uα) → Uα × G and
the following diagram commutes

π−1(Uα) Uα ×G

Uα

φα

π
p1

where p1 is projection on the first coordinate.

Construction of G-Bundle : If M is a topological space with open cover U = {Uα} with given
cocycle values {gαβ : Uα ∩ Uβ → G} we can construct a G-bundle as follows: Let, T =

∐
Uα∈U Uα ×G

any point in T can be represented by (α, x, f) that means it’s element of Uα × F . Now consider a
equivalence relation on T , for any x ∈ Uα ∩ Uβ , (β, x, f) ∼ (α, x, gαβ(x)(f)). Let, E = T/ ∼ be the
quotient space. The natural projection π : E → M given by [(α, x, f)] 7→ x. The local trivializations
are given by φα : π−1(Uα)→ Uα×G, maps [(α, x, f)] 7→ (x, j) and also the following diagram commutes

π−1(Uα) Uα ×G

Uα

φα

π
p1

Every G-bundle can be constructed in this way. The morphism of G bundle is a pair of maps. e.g Let
π : E → B and π′ : E′ :→ B′ are two bundles, the morphism between π and π′ is a pair of maps (f, g)
such that the following map commutes

E′ E

B′ B

f

π
′ π

g

and f : π′−1(x)→ π−1(g(x)) is a group homomorphism G→ G.

Definition 3.2. (Isomorphism Of G-bundles) Two G bundles are said to be isomorphic if there is
aG bundle morphism (f, g) such that both f is homeomorphism and g restrict to fibers are isomorphism
of G.

If π : E → B is a G-bundle, for any continuous map f : X → B we can define pullback of bundle to
be the pullback of the following diagram in the category of topological spaces,

f∗E E

X B

f

π∗
⌟

π

g
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It can be checked very easily that isomorphism of G-bundles is a equivalence relation in the category
of G-bundles over a space X. Thus we can define PG(X) to be the isomorphism class of G-bundles
over X. We can show the functor

PG(−) : CW→ Sets

is a brown functor and thus can be representative by a CW complex as [−, BG]. This BG is called clas-
sifying space of G. Before proving that PG(−) is a Brown functor we will show an explicit construction
of classifying space.

§3.1 Bar Construction for Classifying Space BG

We will begin with simplicial category. Let, ∆ denote the category with objects are finite totally
orderd sets. We can represent the objets as [n] = {0, · · · , n}. Now the morphisms are (non-strictly)
order-preserving functions between these sets. Simplicial sets are the functors

X : ∆op → Sets

We denoteX([n]) asXn. Now simplicial sets also form a category in which objects are the simplicial sets
and the morphisms are simplicial morphism i.e the natural transformations between those simplicial
sets. We define this category by sSet. The simplex category ∆ is generated by two particularly
important families of morphisms (maps), whose images under a given simplicial set functor are called
face maps and degeneracy maps of that simplicial set.

The face maps of a simplicial setX are the images in that simplicial set of the morphisms δn,0, . . . , δn,n :
[n− 1]→ [n], where δn,i is the only (order-preserving) injection [n− 1]→ [n] that ”misses” i. Let us
denote these face maps by dn,0, . . . , dn,n respectively, so that dn,i is a map Xn → Xn−1. If the first
index is clear, we write di instead of dn,i.

The degeneracy maps of the simplicial set X are the images in that simplicial set of the morphisms
σn,0, . . . , σn,n : [n + 1] → [n], where σn,i is the only (order-preserving) surjection [n + 1] → [n] that
“hits” i twice. Let us denote these degeneracy maps by sn,0, . . . , sn,n respectively, so that sn,i is a
map Xn → Xn+1. If the first index is clear, we write si instead of sn,i. The defined maps satisfy the
following simplicial identities:

1. didj = dj−1di if i < j. (This is short for dn−1,idn,j = dn−1,j−1dn,i if o ≤ i < j ≤ n.)

2. disj = sj−1di if i < j.

3. disj = id if i = j or i = j + 1.

4. disj = sjdi−1 if i > j + 1.

5. sisj = sj+1si if i ≤ j.

Conversely, given a sequence of sets Xn together with maps dn,i : Xn → Xn−1 and sn,i : Xn →
Xn+1 that satisfy the simplicial identities, there is a unique simplicial set X that has these face and
degeneracy maps. So the identities provide an alternative way to define simplicial sets.

Given a category C we can get a simplicial set out of it. Define NC be the simplicial set so that,
(NC )k is the collections of {A0, · · · , Ak} ⊂ Obj(C ) such that there is a morphism between Ai → Ai+1.
The face maps and the degeneracy maps are the natural one. This simplicial set is called Nerve of
the category.

There is a natural functor |•| : sSet → CW which is called geometric realization of the simplicial
set. Let, K denote the category whose objects are the faces of K and whose morphisms are inclusions.
Next choose a total order on the vertex set of K and define a functor F from K to the category of
topological spaces as follows. For any face X in K of dimension n, let F (X) = ∆n be the standard
n-simplex. The order on the vertex set then specifies a unique bijection between the elements of X
and vertices of ∆n, ordered in the usual way e0 < e1 < . . . < en. If Y ⊆ X is a face of dimension
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m < n, then this bijection specifies a unique m-dimensional face of ∆n. Define F (Y ) → F (X) to
be the unique affine linear embedding of ∆m as that distinguished face of ∆n, such that the map on
vertices is order-preserving. We can then define the geometric realization |K| as the colimit of the
functor F . More specifically |K| is the quotient space of the disjoint union∐

n

Kn ×∆n

by the equivalence relation that identifies a point y ∈ Km × ∆m with its image under the map
Km ×∆m → Kn ×∆n, for every inclusion Y (∈ Km) ⊆ X(∈ Kn) (here, m < n).

For the category C we call |NC | =: BC the classifying space of the category C . With this description
now we can talk about the classifying space of a group G.

Let, G be a topological group. Now consider a category G which has only one objcet and the morphisms
are given by elements of group G. For this category we get a classifying space BG, which matches
with the classifying space in our context. To see this we need to explicit description of NG,BG and
the corresponding principal G-bundle. It’s not hard to see (NG)n = Gn. Let En(G) = Gn+1 and
pn : Gn+1 −→ Gn be the projection on the first n coordinates. The faces and degeneracies are defined
on (NG)n+1 by

di (g1, . . . , gn+1) =

{
(g2, . . . , gn+1) if i = 0
(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1) if 1 ≤ i ≤ n

and
si (g1, . . . , gn+1) = (g1, . . . , gi−1, e, gi, . . . , gn+1) if 0 ≤ i ≤ n

and dn (g1, . . . , gn) = (g1, . . . , gn−1). The faces and degeneracies on En(G) are defined in the same
way, except that the last coordinate gn+1. This helps us to create a simplicial set E∗(G) and the maps
{pn} helps us to get a map of simplicial sets p∗ : E∗(G) → NG. If we let G act from the right on
En(G) by multiplication on the last coordinate,

(g1, . . . , gn, gn+1) g = (g1, . . . , gn, gn+1g)

then E∗(G) is a simplicial G-space. That is, the action of G commutes with the face and degeneracy
maps. We may view (NG)n as the orbit space En(G)/G. We define

EG = |E∗(G)| , and p = |p∗| : EG −→ BG

Then EG inherits a free right action by G, and BG is the orbit space EG/G. By the description
of geometric realization, we know that the space EG is the union of the images EGn (these are the
skeleta of dimension ≤ n) of the spaces

∐
m≤nG

m+1× ∆m, and

EGn − EGn−1 = (Gn −W )×G× (∆n − ∂∆n)

where W ⊂ Gn is the space consisting of those points at least one of whose coordinates is the identity
element e. Similarly, we have subspaces BGn such that

(BG)n − (BG)n−1 = (Gn −W )× (∆n − ∂∆n)

The map p restricts to the projection between these subspaces. Intuitively, it looks as if p should be
a bundle with fiber G, and this is indeed the case if the identity element of G is a nondegenerate
basepoint. This condition is enough to ensure local triviality as we glue together over the filtration
{(BG)n}. It is less intuitive, but true, that the space EG is contractible.

Aside. There was a obvious chose of category for a group G where the objects are the elements of
the group and for every pair of element we have a morphism (multiplication by an element). If we
call that category to be Ḡ then the classifying objcet BḠ, G naturally acts on it. It can be shown
BḠ/G ≃ BG but the problem with BḠ → BG is that it’s not localy trivial. So, this category is not
the optimal choice for the classifying space of the group. [Mil67, section 3]
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§3.2 Milnor’s Join construction of BG

The join A1 ◦ · · · ◦An of n topological spaces A1, · · · , An can be defined as follows. A point of the join
is specified by

(1) n real numbers t1, · · · , tn satisfying ti ≥ 0, t1 + · · ·+ tn = 1, and

(2) a point aiϵAi for each i such that ti ̸= 0. Such a point in A1 ◦ · · · ◦An will be denoted by the
symbol t1a1 ⊕ · · · ⊕ tnan, where the element ai may be chosen arbitrarily or omitted whenever
the corresponding ti vanishes.

By the strong topology in A1 ◦ · · · ◦ An we mean the strongest topology such that the coordinate
functions

ti : A1 ◦ · · · ◦An → [0, 1] and ai : t
−1
i (0, 1]→ Ai

are continuous. Thus a sub-basis for the open sets is given by the sets of the following two types (1)
the set of all t1a1⊕ · · ·⊕ tnan such that α < ti < β, (2) the set of all t1a1⊕ · · ·⊕ tnan such that ti ̸= 0
and aiϵU , where U is an arbitrary open subset of Ai.

Now we will prove some result about connectivity of the join. It’s important to look at the homology
group of a Join A ◦B in terms of homology of A and B.

Consider the triad(A ◦ B, Ā, B̄) where Ā is the set of points ta ⊕ (1 − t)b with t ≥ 1
2 , and B̄ is

the set of ta ⊕ (1 − t)b with t ≤ 1
2 . It is easily verified that this is a proper triad, so that its reduced

Mayer-Vietoris sequence

· · · ← H̃r(A ◦B)
ϕ←− H̃r(Ā)⊕ H̃r(B̄)

ψ← H̃r(Ā ∩ B̄)← H̃r+1(A ◦B)
ϕ←− · · ·

is defined and exact. Identify the spaces A,B, and A × B with the subsets of A ◦ B consisting of all
ta ⊕ (1 − t)b with t = 1, t = 0, and t = 1

2 respectively. Then A is a deformation retract of Ā, B is a
deformation retract of B̄, and A×B = Ā∩ B̄. Since the inclusion maps A→ A◦B and B → A◦B are
homotopic to constants, it follows that the homomorphism ϕ is always trivial. Thus the above exact
sequence reduces to the following.

0← H̃r(A)⊕ H̃r(B)
ψ′

← H̃r(A×B)← H̃r+1(A ◦B)← 0

Now from the above SES we can conclude,if A is (m−1)-connected, B is (n−1) conneeted then A◦B
is (m+ n)-connected. (Here we will use Künneth formula and universal coefficient theorem).

Construction of EG: If G is a topological group then we define EG := G ◦ G · · · , the infinite join.
There is a natual G action on G. We define BG = EG/G, thus EG → BG is a principal G-bundle.
By the previous discussion we can see EG is weakly contractible [Mil56, section 3].

The following theorem will prove that the above constructions are the construction of classifying
space in other word the G-bundle EG→ BG is universal in the of category G-bundle.

Theorem 3.1. A principal G-bundle EG→ BG is universal if EG is weakly contractible.

Proof. Let EG → BG be a principal G bundle with EG weakly contractible. Let π : E → X be
a principal G bundle over a CW complex X. Suppose we have built a map fk : Xk → BG which
pulls back EG to Ek := π−1

(
Xk
)
, where Xk denotes the k-skeleton. Let D be a (k + 1)-cell of X.

The restriction of E to D is trivial because D is weakly contractible, and any trivialization defines a
section over ∂D. This section defines a lift of ∂D → Xk → BG to ∂D → EG, and since EG is weakly
contractible, this lift extends over D. This defines an extension of fk over D by projecting to BG,
and by construction the pullback of this map over D agrees with the trivialization of E over D. So by
induction we get a map from X to BG pulling back EG to E. An isomorphism of two bundles E0, E1

over X defines an E bundle over X × I; a map of X ×{0, 1} to BG pulling back EG to the Ei can be
extended over X × I cell by cell as above. This proves that any principal G bundle EG → BG with
EG weakly contractible is universal. ■
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Classifying G-bundles

Our aim is to prove the correspondence between PG(X) and [X,BG]. Here the map, Φ : [X,BG] →
PG(X) is given by, f 7→ f∗BG, in other words a map X → BG goes to the pullback bundle under the
map Φ.

The map is well defined. If two maps f0 and f1 from X to BG are homotopic then we need to
show that the pullback bundles are also isomorphic. Consider the following diagram,

f∗0 (EG)× I H∗(EG) EG

X × I X × I BG

H̃

⌟

Id H

Here, H is the homotopy between f0 and f1, and H∗(EG) → X × I is a G-bundle and hence it is a
fibration. Hnece, the map f∗0 (EG) × I → X × I lifts to a mpa H̃ : f∗0 (EG) × I → H∗(EG) so that
the above diagram commutes. Rstricting the diagram to f∗0 ×{1} we get isomorphism of f∗0 (EG) and
f∗1 (EG) from the following diagram,

f∗0 (EG) f∗1EG

X × {1} X × {1}

H̃

Id

From the bar contruction of BG and EG we have seen EG has a CW structure that comes from the
geometric realization. We eill prove the result in the setting where the action of G on the total space
E is cellular. That is, there is a CW- decomposition of the space E which, in an appropriate sense, is
respected by the group action. In order to make the notion of cellular action precise, we need to define
the notion of an equivariant CW- complex, or a G- CW- complex. The idea is the following. Recall
that a CW- complex is a space that is made up out of disks of various dimensions whose interiors
are disjoint. In particular it can be built up skeleton by skeleton, and the (k + 1)-skeleton Xk+1 is
constructed out of the kth skeleton Xk by attaching (k+ 1)- dimensional disks via “attaching maps”,
Sk → Xk. A “G- CW- complex” is one that has a group action so that the orbits of the points on the
interior of a cell are uniform in the sense that each point in a cell Dk has the same isotropy subgroup,
say H, and the orbit of a cell itself is of the form G/H ×Dk. This leads to the following definition.

Definition 3.3. A G-CW- complex is a space with G-action X which is topologically the direct limit
of G - invariant subspaces

{
X(k)

}
called the equivariant skeleta,

X(0) ⊂ X(1) ⊂ · · · ⊂ X(k−1) ⊂ X(k) ⊂ · · ·X

where for each k ≥ 0 there is a countable collection of k dimensional disks, subgroups of G, and maps
of boundary spheres{

Dk
j , Hj < G,ϕj : ∂D

k
j ×G/Hj = Sk−1j ×G/Hj → X(k−1) j ∈ Ik

}
so that

(1) Each ”attaching map” ϕj : S
k−1
j ×G/Hj → X(k−1) is G-equivariant, and

(2)

X(k) = Xk−1)
⋃

ϕjj∈Ij

(
Dk
j ×G/Hj

)
This notation means that each ” disk orbit ” Dk

j ×G/Hj is attached to X(k−1) via the map ϕj

: Sk−1j ×G/Hj → X(k−1).
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Remark. Observe that in a G-CW complex X with a free G action, all disk orbits are of the form Dk
G,since all isotropy subgroups are trivial. In our case, by the bar construction G has a free action on
EG. In fact for any principal G-bundle, the total space has a free action on X.

Surjectivity of Φ. Let, π : P → X be a principal G-bundle where X is a CW-complex, thus we can
give P a G-Cw complex structure. Now we will try to construct a G-equivariant map h : P → EG
that maps each orbit y.G homeomorphically onto its image, h(y)G. We will construct this skeleta
by skeleta. So, if we have a G-equivariant map hk−1 : P k−1 → EG we will try to extend it to P k.
Since, the action of G is free on P , we can consider the disk orbit of G-CW complex is in the form of
Dk
j ×G, now the map hk−1 extends to Dk

j ×{e} iif the composite of the following attaching maps are
nullhomotopic

Sk−1j × {e} ↪→ Sk−1j × {G} ϕj−→ P k−1
hk−1

−−−→ EG

Since EG is contractible, it’s always true, call the extended map hk,j . This extended map can be
equivariantly extend to an equivariant map hkj : Dk

j → EG. By construction hkj maps the orbit of

each point x ∈ Dk
j equivariantly to the orbit of hk,j(x) in EG. Since both orbits are isomorphic to G

(because the action of G on both P and EG are free), this map is a homeomorphism on orbits. Taking
collection of these maps will help us to get a map hk : P k → EG with the desired properties. So we
can conclude that we can get a map h : P → EG with the desired properties. Thus we may conclude
we have a G- equivariant map h : P → EG that is a homeomorphism on the orbits. Hence it induces
a map on the orbit space f : P/G = X → EG/G = B making the following diagram commute,

P EG

X BG

h

π

f

Since h induces a homeomorphism on each orbit, the maps h and f determine a morphism of principal
G- bundles which induces an equivariant isomorphism on each fiber. This implies that h induces an
isomorphism of principal bundles to the pull- back,

P f∗EG EG

X X BG

≃

h

π
⌟

Id f

And so, Φ is surjective.

Injectivity of Φ. We now prove Φ is injective. To do this, assume f0 : X → BG and f1 : X → BG
are maps so that there is an isomorphism

Φ : f∗0 (EG)
∼=−→ f∗1 (EG)

We need to prove that f0 and f1 are homotopic maps. Now by the cellular approximation theorem
we can find cellular maps homotopic to f0 and f1 respectively. We therefore assume without loss of
generality that f0 and f1 are cellular. This, together with the assumption that EG is a G-CW complex,
gives the pull back bundles f∗0 (EG) and f∗1 (EG) the structure of G-CW complexes. Define a principal
G - bundle E → X × I by

E = f∗0 (EG)× [0, 1/2] ∪Φ f∗1 (EG)× [1/2, 1]

where v ∈ f∗0 (E)×{1/2} is identified with Φ(v) ∈ f∗1 (E)×{1/2} . E also has the structure of a G-CW
complex. Now by the same kind of inductive argument that was used in the surjectivity argument
above, we can find an equivariant map H : E → EG that induces a homeomorphism on each orbit,
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and that extends the obvious maps f∗0 (EG)×{0} → EG and f∗1 (EG)×{1} → EG. The induced map
on orbit spaces

F : E/G = X × I → EG/G = BG

is a homotopy between f0 and f1.

§3.3 Classifying spaces for Vector Bundles

Now we will focus on the discussion of vector bundles only as it gives us more structure, and out of
two vector bundles, we can construct a few vector bundles, which is very natural. Mostly we will focus
on the Real Vector Bundles. For the sake of completeness, we recall that vector bundles of rank n
are a fiber bundle with fibers that are real vector spaces of dimension n. So we can easily talk about
morphisms and the pullback of vector bundles.

Let’s define VectnR(B) to be the isomorphism class of rank n vector bundles over B. So,

VectnR : Topop → Sets

is a contravariant functor on Top. Recall the construction of G-bundles using the cocycle condition.
For a vector bundle over π : E → X, we have a collection of open sets U = {Uα} such that there is a
homeomorphism φα : Uα × Rn → π−1(Uα). Then we have a natural homeomorphism

φ−1α ◦ φβ : (Uα ∩ Uβ)× Rn → (Uα ∩ Uβ)× Rn

and here φ−1α ◦φβ(x, v) = (x, gαβ(x)v) so gαβ(x) are elements of GLn(R). In other words, the structure
of the vector bundle is completely given by the cocycles gαβ : (Uα ∩ Uβ) → GLn(R). So we expect a
natural relation between the vector bundles and principal GLn(R) bundles.

For a given rank n vector bundle ξ : E → B, we will get a cover Uξ of B, which contains the open sets

over which the vector bundle is trivial. Now, define P
(b)
ξ =

{
ordered basis of ξ−1(b)

}
for all b ∈ B.

Now we define Pξ to be the quotient of ⊔b∈BP (b)
ξ given by the local trivialization of ξ. Note that

P
(b)
ξ = L(Rn, ξ−1(b)) (linear maps). So there is a natural GLn(R) action on Pξ. It is easy to see that

this action is free and simply transitive on fibers. One therefore has a principal action of GLn(R) on
P (ξ). The bundle P (ξ) is called the principalization of ξ.

On the other hand, given the principalization P (ξ), we can recover the total space E(ξ) using the
defining linear action of GLn(R) on Rn:

E(ξ) := P (ξ)×GLn(R) R
n

These two constructions are inverses: the theories of rank n vector bundles and principal GLn(R)-
bundles are equivalent. In other words,

VectnR(X) ≃ PGLn(R)(X)

We will use these equivalences alternatively. Again, by 1.12 we can represent the functor VectnR(−) by
[−, BGLn(R)]. For the case of vector bundles, we have a more explicit description of the classifying
space BGLn(R). An n-frame in Rk is a linearly independent set with cardinality n. Let Vn(Rk) be
the set of all n-frames in Rk. There is a natural inclusion of Vn(Rk) ↪→ Vn(Rk+1). Taking the colimit
with respect to the inclusion gives us a space Vn(R∞). This is called the Stiefel manifold (this space
can be given a manifold structure: we will shortly discuss this).

Theorem 3.2. The Stiefel manifold Vn(R∞) is contractible.

Proof. First, we define orthonormal n-frames to be the n-frames with the elements being mutually
orthogonal with unit length. We can define V O

n (Rk) to be the set of all n-orthonormal frames. There
is a deformation retract of Vn(Rk) onto V O

n (Rk). [The proof of this goes as follows: Given an n-frame
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{u1, · · · , un}, we get a corresponding orthogonal n-frame {v1, · · · , vn} just by using the Gram-Schmidt

process. Now recall vi = ui −
∑i−1
r=1

⟨vr,ui⟩
⟨vr,vr⟩vr, the corresponding orthonormal n-frame is {vi/∥vi∥}.

We can now define vi(t) = ui − t(
∑i−1
r=1

⟨vr,ui⟩
⟨vr,vr⟩vr). So there is a natural homotopy F : GLn(R)× I →

GLn(R) given by

t 7→
(

vi(t)

(1− t) + t∥vi∥

)n
i=1

This gives us the deformation retract of Vn(Rk)→ V O
n (Rk)]

So it’s enough to work with the homotopy group of V O
n (Rk). Let ek be the vector (0, 0, · · · , 0, 1) ∈ Rk.

We then have the fibration over the sphere Sk−1:

V O
n−1(Rk−1)→ V O

n (Rk)→ Sk−1

where the first morphism sends (v1, · · · , vn−1) to (v1, · · · , vn−1, en) and the second one sends (v1, · · · , vn−1, vn)
to vn. From the long exact sequence of homotopy groups associated with this fibration, we get:

πi(V
O
n (Rk)) = πi(V

O
n−1(Rk−1)) = ... = πi(V

O
1 (Rk−n+1)) = πi(S

k−n)

These homotopy groups are zero if πi(S
n−p) = 0, which is the case for i ≤ n− p− 1, so that V O

n (Rk)
is indeed (k − n − 1)-connected and so is Vn(Rk). Thus we can conclude that Vn(R∞) is weakly
contractible. Soon we will see that Vn(R∞) has a CW structure, so we conclude that Vn(R∞) is
contractible. ■

Given a n-frame in Vn(Rk) we can look into their span. It gives a n-dimensional subspace of Rk.
We call collection of n-dimensional subspace, Grassmanian and denote it as Grn(Rk). It admits a
manifold [structure]. Now note that GLn(R) has a natrural right action on Vn(Rk) and the orbit space
of this action can be easily identified with Grn(Rk). Now taking colimit wil give us Vn(R∞)/GLn(R) =
Grn(R∞). Thus we have a principal GLn(R) bundle

γ∞n : Vn(R∞)→ Grn(R∞)

since the total space is contractible we can say Grn(R∞) is the classifying space BGLn(R).

Instead of n-frames, if we had chosen orthonormal n-frames, the Stiefel manifold should be replaced
by V O

n (R∞). In that case, we must have a right action of O(n) on V O
n (Rk), and the orbit space can

again be identified with the Grassmannian Grn(Rk). Thus, Grn(Rk) also represents the classifying
space BO(n). This suggests that we can think of vector bundles as O(n)-principal bundles when there
is an inner product structure on the vector spaces involved in a vector bundle. Therefore, we often
(mostly for real vector bundles) treat them as O(n)-bundles.

Direct sum of Vector bundles

Given two vector bundle p1 : E1 → B to p2 : E2 → B we can define a vector bundle over B where the
total space is

E1 ⊕ E2 = {(v1, v2) ∈ E1 × E2 : p1(v1) = p2(v2)}

Tensor product of vector bundles

Let ξ and η be two vector bundles over same base space B then we can define tensor product bundle
ξ⊗ η. Let E(ξ), E(η) be the total space of the vector bundles, and {Ui ⊂ B}i∈I be an open cover with
respect to which both vector bundles locally trivialize (this always exists: pick a local trivialization
of either bundle and form the joint refinement of the respective open covers by intersection of their
patches). Let {

(g1)ij : Ui ∩ Uj → GL (n1)
}

and
{
(g2)ij : Ui ∩ Uj → GL (n2)

}
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be the transition functions of these two bundles with respect to this cover. For i, j ∈ I write

(g1)ij ⊗ (g2)ij : Ui ∩ Uj → GL (n1 · n2)

be the pointwise tensor product of vector spaces of these transition functions Then the tensor product
bundle E(ξ)⊗E(η) is the one glued from this tensor product of the transition functions (by the similar
construction we did for G-bundles):

E(ξ)⊗ E(η) :=

((∐
i

Ui

)
× (Rn1·n2)

)
/

({
(g1)ij ⊗ (g2)ij

}
i,j∈I

)

Hom-bundle

Similarly we can define Hom(ξ, η) whose fiber at b ∈ B is Hom(ξ−1(b), η−1(b)).

Inner product

An inner product on a vector bundle ξ : E(ξ)→ B is a map ⟨·, ·⟩ : E(ξ)⊕ E(ξ)→ R that restricts to
a positive definite symmetric bilinear form on each fiber.

Theorem 3.3. An inner product exists on a vector bundle ξ : E(ξ)→ B if B is paracompact.

The definition of paracompactness we are using is that a space X is paracompact if it is Hausdorff
and every open cover has a partition of unity subordinate to it. This means there exists a collection
of maps φβ : X → [0, 1], where the support of each φβ (the closure of the set where φβ is nonzero)
is contained in some open set of the cover, and such that

∑
β φβ = 1, with only finitely many of the

φβ ’s nonzero near each point of X. Constructing such functions is straightforward when X is compact
Hausdorff (follows from Uryshon lemma). This is waht we call partition of unity. Locally, we know the
vector bundle is trivial, and in each trivialization, we can easily define an inner product. By using a
partition of unity, we can then glue these local inner products together to obtain a global inner product
on the total space.

We know that a vector subspace is always a direct summand by taking its orthogonal complement. We
will now demonstrate that a corresponding result holds for vector bundles over a paracompact base. A
vector subbundle of a vector bundle ξ : E(ξ)→ B is naturally defined as a subspace F ⊂ E(ξ), where
F intersects each fiber of E(ξ) in a vector subspace, and the restriction ξ|F : F → B is also a vector
bundle. We denote the orthogonal complement as ξ|⊥F .

Theorem 3.4. If E(ξ)→ B is a vector bundle over a paracompact base B, and F ⊂ E(ξ) is a vector
subbundle, then there exists a vector subbundle F⊥ ⊂ E(ξ) such that F ⊕ F⊥ ∼= E(ξ).

For a compact base space B, we can construct a map E(ξ) → RN that acts as a linear injection on
each fiber. This construction allows us to embed E as a direct summand in the trivial bundle B×RN .
As a result, we have the following theorem:

Theorem 3.5. For every vector bundle E(ξ) → B over a compact Hausdorff space B, there exists
another vector bundle E(η)→ B such that ξ ⊕ η is isomorphic to the trivial bundle.

For each point x ∈ B, there exists an open neighborhood Ux over which E(ξ) is trivial. By Urysohn’s
Lemma, we can find a function φx : B → [0, 1] that is nonzero at x and has its support contained in
Ux. As x varies, the sets φ−1x (0, 1] form an open cover of B. By compactness, we can select a finite
subcover. Let the corresponding neighborhoods and functions be relabeled Ui and φi.

Now define maps gi : E(ξ) → Rn by gi(v) = φi(p(v)) (πihi(v)), where p is the projection E(ξ) → B
and πihi is the composition of a local trivialization hi : p

−1(Ui)→ Ui×Rn with the projection πi onto
Rn. Each map gi is a linear injection on fibers over φ−1i (0, 1]. If we take the various gi’s and assemble
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them as coordinates of a map g : E(ξ) → RN , where RN is the product of copies of Rn, then g is a
linear injection on each fiber.

The map g forms the second coordinate of a map f : E(ξ) → B × RN , with the first coordinate
being p. The image of f is a subbundle of B × RN , since projecting onto the ithRn factor gives the
second coordinate of a local trivialization over φ−1i (0, 1]. Thus, E(ξ) is isomorphic to a subbundle of
B × RN , and by the preceding proposition, there exists a complementary subbundle E(η) such that
E(ξ)⊕ E(η) ∼= B × RN . ■

Remark:In the proof of the above theorem, we relied heavily on the compactness condition. Without
compactness, this result does not necessarily hold. Specifically, for the bundle γ∞1 , we will see that
there is no vector bundle over BO(1) that can be added to γ∞1 to make the sum a trivial bundle.

From now on, we will denote a vector bundle ξ : E → B simply by ξ. We will denote γ∞n as the
tautological bundle and ε will mean a line bundle over a specified topological space.

Example: Consider the tangent bundle and normal bundle over the inclusion S2 ↪→ R3. Here, the
tangent bundle τS2 is not trivial (by the Hairy Ball Theorem), while the normal bundle is trivial,
νS2/R3 = S2 × R. Note that the direct sum of these two bundles forms a trivial bundle over S2. In
other words, τS2 ⊕ νS2/R3 ≃ S2 × R3. This is true for Sn as well. We refer to this type of bundle as a
stable vector bundle—after taking the direct sum with a trivial bundle, it becomes trivial.

Example (Tangent bundle of RPn): We know there is a quotient map π : Sn → RPn and so we have
a map dπ : τSn → τRPn . By analyzing this map we can note that τRPn is quotient of τSn with the
identification: (x, v) ∼ (−x,−v).

For RPn, we have a tautological rank 1 vector bundle, namely γ1 : O(−1)→ RPn. The fiber over
[x] ∈ RPn is the line Lx passing through x and the origin in Rn+1.

30



4. Framed Cobordism-The Pontryagin Construction

We know for any manifold M and N of same dimension, if we have a compactly supported map
f : M → N then it induces a map in compactly supported cohomology

f ! : Hn
c (N)→ Hn

c (M)

since the compactly supported top-degree cohomology are isomorphic to R, f ! is actually a linear
map fromR to R. Thus image of this map is determined by f !(1). Interestingly it will turns out to
be an integer. We call that integer, the degree of the map f . However, if we have a map which is
not compactly supported we can’t guarantee this. If the manifolds were closed and oriented then by
Poincaré duality we can say their top cohomology is also isomorphic to R and similar idea will help
us do define the degree of a map. The Pontryagin construction helps us to talk about the degree of
maps f : M → Sn for any compact boundaryless manifold. In the following definiton we will assume
∂M = ∂N = ∂N ′ = ∅.
Definition 4.1. A manifold N is cobordant to N ′ within M if the subset N × [0, ε)∪N ′ × (1− ε, 1]
of M × [0, 1] canbe extended to a compact manifold X ⊂M × [0, 1] so that

∂X = N × {0} ∪N ′ × {1}

and X does not intersect ∂(M × [0, 1]) except for ∂X.

If two sub-manifold N,N ′ of M are cobordant we will denote N ∼c N ′. It’s not hard to see it is an
equivalence relation (the transitivity is shown in the following diagram)

Recall that framing of a submanifold N ⊂M is a smooth function ν : N → ((TxN)⊥TxM )m−n such that
ν(x) =

(
ν1(x), · · · , νm−n(x)

)
is a basis of the orthogonal component of TxN inside TxM , here m− n

is codimension of N in M . The pair (N, ν) is called framed submanifold. Two framed submanifold
(N, ν) and (N ′, ν′) are said to be framed cobordant if therse exist a cobordism X ⊂M × [0, 1] between
N and N ′ and a framing u of X such that (as shown in the picture)

ui(x, t) = (νi(x), 0) for (x, t) ∈ N × [0, ε)

ui(x, t) = (ν′i(x), 0) for (x, t) ∈ N × (1− ε, 1]

It is also an equivalence relation.
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Now we will introduce some terminology. Let M be a manifold of dimension n and Πpfr(M) be the
set of compact submanifolds of M with codimension p upto framed-cobordism. [M,Sp] is the set of all
smooth maps from M → Sp upto smooth homotopy equivalence. There is a very beautiful connection
(in-fact one-one correspondence) b/w these two sets. The next few theorems will help us to get the
correspondence.

Let f : M → Sp be a smooth map. By Sard’s theorem we get a regular value y ∈ Sp. f−1(y) is a co-
dimension p submanifold of M . We will construct the framing of it in the following way: If x ∈ f−1(y)
then ker dfx = Tx(f

−1(y)) and it is surjective. Choose a positively oriented basis of TySp call it
w = (w1, · · · , wp). By surejectivity of dfx we can choose ν(x) = (ν1(x), · · · , νp(x)) ∈ (Tx(f

−1y)⊥)
so that νi(x) maps to wi. This gives us a framing of f−1(y). In other words (f−1y, ν) is a framed
submanifold of M , we denote µ = f∗w. We call it Pontryagin submanifold associated to the map f .

Theorem 4.1. If ν and ν′ are positively oriented basis of TySp and Ty′Sp respectively. Then the two
framed submanifold (f−1y, f∗ν) and (f−1y′, f∗ν′) are frame cobordant.

Before going to the proof of the theorem we will prove the following lemmas.

§ Lemma – 1. If ν and ν′ are positively oriented basis of TySp. The framed submanifold (f−1y, f∗ν)
and (f−1y, f∗ν′) are framed cobordant.

Proof. We know GLp(R) has two connected components (as a topological group) and thus GL(TySp)
has two connected components as a topological group. Here, the conponents are determined by positve
or negative determinant. Since µ and µ′ are positively oriented they lie in same component. Let gamma
be the path between them. This gives rise to the required cobordism of f−1y × [0, 1].

§ Lemma – 2. If y is a regular value of f , and z is sufficiently close to y, then f−1z is framed cobordant
to f−1y. (Since we have seen from the previous lemma upto cobordism framed f−1y is unique)

Proof. If we consider C to be the set of critical points of f , f(C) must be closed set of Sp and thus
it’s compact. So there must exist ε-neighborhood of y contains only regular values. Choose z from
this ε-neighborhood. Consider one parameter family (of rotations) rt : Sp → Sp so that r0 is identity,
r1 is the rotation takes y to z and

(i) rt is identity for t ∈ [0, ϵ) and r1 for t ∈ (1− ϵ, 1].

(ii) each rt(z) lies on the great circle from y to z, and hence is a regular value of f .

with the help of it we can construct a homotopy F : M × I → Sp by (x, t) 7→ rt ◦ f(x). Not hard to
see z is regular value of F also F−1(z) ⊂M × I is a framed manifold and providing a cobordism b/w
f−1(z) and f−1(y).

§ Lemma – 3. If f and g are smoothly homotopic with y being the regular value for both then f−1(y)
and g−1(y) are framed cobordant.

Proof. Consider a homotopy F : M × I → Y so that F (x, t) = f(x) for t ∈ [0, ε) and F (x, t) = g(x)
for t ∈ (1− ε, 1]. Now we can coose a regular value of F , call it z so that y is close enough to z. Thus
using lemma 2 we can conclude f−1(y) and g−1(y) are framed cobordant.

Proof of the theorem 4.1. Given any two point y and y′ we can assume the frame comes from the
basis ν (by lemma 1) which is positively oriented. Consider rt be the rotation so that r0(y) = y and
r1(y

′) = y. Consider the homotopy F : M × I → Sp given by (x, t) 7→ rt(f(x)). By the lemma 3 we
can say f−1(y) and f−1(r−11 (y)) are framed cobordant i.e. f−1(y) and f−1(y′) are framed cobordant.
■

With the help of this lemma we can represent a Pontryagin submanifold associated to the map
f : M → Sp uniquely upto cobordism. We will represent this class of submanifolds as Cobf ∈ Πpfr(M).
Now we will prove any framed compact submanifold of M is a Pontryagin manifold.
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Theorem 4.2. (Product theorem.) If N is a compact frmasubmanifold of M of codimension p.
There is a neighborhood of N in M that is diffeomorphic to N × Rp. The diffeomorphism can be
choosed so that x ∈ N represent (x, 0) ∈ N × Rp and the normal frame ν(x) is basis of Rp.

Proof. At first, we will prove it for M = Rn+p (here n is dimension of N). Consider the map g :
N×Rp →M defined by (x, t1, · · · , tp) 7→ x+ν1(x)t1+· · ·+νp(x)tp. Note that dg(x,0,0,..,0) is invertible.
Hence g maps an open neighborhood of (x, 0) to an open set around x ∈M diffeomorphically. Let, Bε
be the open ball around 0 of radius ε. We will prove g is one-one on the entire neighborhood N ×Bε
for some small ε. If not then for every ε > 0 we get (xε, tε), (x

′
ε, t
′
ε) ∈ N ×Bε such that,

g(xε, tε) = g(x′ε, t
′
ε)

Since N is compact xε → x as ε → 0 and tε → 0 similarly x′ε → 0 and t′ε → 0 as ε → 0 but it
leads to a contradiction xε = x′ε. Thus there is some ε for which f is one-one on N × Bε, this is the
neighborhood of N in M which is isomorphic to N × Rp is the obvious way. Thus the statement is
true for M = Rn+p.

For general manifold M we can give it a Riemann manifold structure in the most obvious way
(we will define the inner product locally and then patch the local inner products by partition of
unity). So we can talk about geodesic and their length on the manifold M . The idea is similar
consider, the map g : N × Rp → M given by, (x, t) 7→ the end point of the geodesic from x on the
direction (t1ν

1(x)+· · ·+tpν
p(x))/

∥∥t1ν1(x) + · · ·+ tpν
p(x)

∥∥ of length ∥∥t1ν1(x) + · · ·+ tpν
p(x)

∥∥ (which
is unique). The rest of the part is exactly same as the above. ■

Theorem 4.3. Any compact framed submanifold N ⊂M is a Pontryagin submanifold.

Proof. By the previous theorem we know there is a open subset V of N with a diffeomorphism
ϕ : V → N ×R such that ϕ(N) = N × {0}. Now consider the projection π : N ×Rp → Rp. Note that
0 is a regular value of π ◦ ϕ. Now we know there is an obvious diffeomorphism of Rp → Sp \ {N}. So
consider r be the map given by the composition of following maps:

V N × Rp Rp Sp − {N} Sp
ϕ

≃ π ≃
t

Here t : Rp → Sp \ {N} is the diffeomorphism that sends 0 to S(south pole) and ∞ to N(north pole).
We can extend the map r to f : M → Sn by mapping

f(x) =

{
r(x) if x ∈ V

{N} if x ∈ V c

Note that f is a smooth function and S ∈ Sp is the regular value of f . Now note that,

f−1(S) = r−1(S) = ϕ−1 ◦ π−1 ◦ t−1(S) = ϕ−1 ◦ π−1(0) = ϕ−1(N × {0}) = N

so we are done. ■

Theorem 4.4. Two maps f, g : M → Sp are smoothly homotopic if and only if the Pontryagin
manifold associated to f and g are framed cobordant.

Proof. One direction is clear by lemma 3. For other direction let, f−1y and g−1y are framed cobordant
with given framed cobordism X ∈ M × [0, 1]. By the previous theorem we can represent X as a
Pontryagin submanifold associated to F by a map F : M × [0, 1]→ Sp. Note that F−10 (y) = f−1y and
F−11 (y) = g−1y. By the following lemma we can say F0 ∼htop f and F1 ∼htop g so f ∼htop g. ■

§ Lemma – 4. If f−1y and g−1y are framed cobordant, f and g are homotopic.

Proof. It will be convenient to set N = f−1(y). The hypothesis that f∗ν = g∗ν means that dfx = dgx
for all x ∈ N . First suppose that f actually coincides with g throughout an entire neighborhood V of
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N . Let h : Sp − y → Rp be stereographic projection. Then the homotopy

F (x, t) = f(x) for x ∈ V

F (x, t) = h−1[t · h(f(x)) + (1− t) · h(g(x))] for x ∈M −N

proves that f is smoothly homotopic to g. Thus is suffices to deform f so that it coincides with g in
some small neighborhood of N , being careful not to map any new points into y during the deformation.
Choose a product representation

N ×Rp → V ⊂M

for a neighborhood V of N , where V is small enough so that f(V ) and g(V ) do not contain the
antipode ȳ of y. Identifying V with N ×Rp and identifying Sp − ȳ with Rp, we obtain corresponding
mappings

F,G : N × Rp → Rp

with
F−1(0) = G−1(0) = N × 0

and with
dF(x,0) = dG(x,0) = ( projection to Rp)

for all xεN . We will first find a constant c so that

F (x, u) · u > 0, G(x, u) · u > 0

for xεN and 0 < ∥u∥ < c. That is, the points F (x, u) and G(x, u) belong to the same open half-space
in Rp. So the homotopy

(1− t)F (x, u) + tG(x, u)

between F and G will not map any new points into 0 , at least for ∥u∥ < c. By Taylor’s theorem

∥F (x, u)− u∥ ≤ c1∥u∥2, for ∥u∥ ≤ 1

Hence,
|(F (x, u)− u) · u| ≤ c1 | ∥u∥3

and
F (x, u) · u ≥ ∥u∥2 − c1∥u∥3 > 0

for 0 < ∥u∥ < Min
(
c−11 , 1

)
, with a similar inequality for G. To avoid moving distant points we select

a smooth map λ : Rp → R with

λ(u) = 1 for ∥u∥ ≤ c/2
λ(u) = 0 for ∥u∥ ≥ c

Now the homotopy
Ft(x, u) = [1− λ(u)t]F (x, u) + λ(u)tG(x, u)

deforms F = F0 into a mapping F1 that (1) coincides with G in the region ∥u∥ < c/2, (2) coincides
with F for ∥u∥ ≥ c, and (3) has no new zeros. Making a corresponding deformation of the original
mapping f , this clearly completes the proof of Lemma 4. ■

With the help of theorem 4.1,4.3,4.4 we can conclude Πpfr(M) = [M, Sp] as a set (infact the later can
be given a group structure discussed below). This is called cohomotopy group.

Let m be the dimension of M . We can give Πpfr(M) a group structure for certain p’s. If N and N ′ are
two submanifold of M of codimension p, then their transversal intersection is also a submanifold of
codimension 2p. We want the transversal intersection to be empty (so that we can give disjoint union
a group operation). In other-words ∼ N +dimN ′ < dimM thus we have m− p+m− p ≤ m− 1 and
thus p ≥ 1

2m+ 1. Now the operation ⊔ : Πpfr(M)× Πpfr(M) → Πpfr(M) gives a product structure on

34



Πpfr(M) in-fact it is an Abelian group. The identity element of this group is the class [∅] consisting
of all closed submanifolds which are boundaries of some manifold. For any manifold (M,ν) with it’s
framing we can consider (M,−ν) (the opposite framing), if we denote the former by M and the later
by [−M ]. One can check [M ] + [−M ] = [∅]. Now we can define a product

⊗ : Πpfr(M)×Πqfr(M)→ Πp+q(M)

Which is given by transversal intersection. IfN,N ′ are submanifold of codimension p and q respectively
we can perturb N so that N and N ′ intersect transversally. For transversal intersection N ∩N ′ is a
submanifold of codimension p+ q (details can be found in Guillemin and Pollack, ch1). Thus we can
define a graded ring

Π∗fr(M) =
⊕

p≥ 1
2m+1

Πpfr(M)

Hopf’s Theorem and πn(Sn) or πS
0

If M is oriented connected and boundaryless manifold of dimension m. A framed submanifold of
codimension m is given by f−1(p), f∗ν for some smooth map f : M → Sm. Now this f−1 is nothing
but finite set of points with the subspace topology is the discrete topology. The f∗ν will have some
orientation for f−1p = {q1, · · · , qr}. We associate +1 is f∗(ν)(qi) have same orientation as ν otherwise
we will associate −1. We denote this by sgn(qi). It’s not difficult to see that the framed cobordism
class of 0-dimensional submanifold of M is uniquely determined by

∑
sgn(qi). Now the sum∑

i

sgn(qi) = deg(f)

so we can conclude the following theorem

Theorem 4.5. Hopf’s theorem If M is a connected, oriented and boundaryless manifold of dimen-
sion n two maps M → Sn are homotopic iff their degree is same.

Given any integer n ∈ Z we can construct a map f : Sm → Sm which have degree n. Using Hopf’s
theorem we can say πn(Sn) = [Sn,Sn] = Z.

Remark. The above theorem is not true for un-oriented manifolds. But if we look at degree mod 2.
Then the above theorem is still true. We sometime use the fact Πkfr(Rn+k) = πn+k(Sk) to compute

the higher homotopy groups of sphere. Now we define Πfrn (Rn+k) := Πkfr(Rn+k), in other-words

it’s the framed cobordism class of n dimensional smooth submanifolds of Rn+k. The framing of a
manifold M ⊂ RN exist if the normal bundle of M is trivial, so We can treat M as a submanifold
of RN+1, here the normal bundle is also trivial and isomorphic ro NRN (M) ⊕ ε. So if f is framing
of M ⊂ RN there is a natural framing of M ⊂ RN+1 by the natural inclusion of vectors in f(x) in
side RN−dimM+1 and the last vector being (0, 0, · · · , 1); call it f ⊕ ε. So, there is a natural inclusion
ι : Πfrn (Rn+k) ↪→ Πfrn (Rn+k+1) by [(M,f)] 7→ [(M,f ⊕ ϵ)] and we can show the following diagram
commutes:

Πfrn (Rn+k) Πfrn (Rn+k+1)

πn+k(Sk) πn+k+1(Sk+1)

ι

Thom map Thom map

−∧1

We can take colimit and it will give us :

colim
k

Πfrn (Rn+k) ≃ πSk

If we define Ωfrn to be the set of all smooth n-dim manifold quotiented by the equivalance relation
induced from framed cobordism. Note that any n-smooth manifold M must lie inside some Rn+k′ so
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from the embedding we get a framing of the manifold M , and so, M ∈ Πfrn (Rn+k′) for the choice of
k′. And thus we can say

Ωfrn = colim
k

Πfrn (Rn+k) ≃ πSn

With the help of the theories developed above, we will compute sable homotopy group of spheres
for a few indices.

5. The first stem: πS
1

We begin with the Hopf fibration η : S3 → S2 with the homotopy fiber S1. From the Puppe sequence,
we deduce that πn(S2) ≃ πn(S3) for n ≥ 3, and hence π3(S2) ≃ π3(S3). The generator of this group is
the homotopy class of η. On the other hand, from [1.6], we know that πn+1(Sn) stabilizes for n ≥ 3.
To calculate πS1 , it suffices to compute π4(S3). The Freudenthal suspension theorem tells us that the
map Σ : π3(S2) → π4(S3) is surjective. Thus, π4(S3) must be generated by [Ση]. Our goal in this
section is to analyze Ση and its relation to determining πS1 .

Here, we use the identification of Πfrn (Rn+k) with πn+k(Sk). There exists a framed 1-manifold in S3
(or R3) corresponding to the Hopf map η. From the Thom-Pontryagin construction, we know that this
manifold can be described as the inverse image of a regular value. Thus, it must be S1, as the fiber of
η is S1 for any chosen point in S2. From the following commutative diagram, we can choose a regular
value of Ση such that (Ση)−1(p) = (η × Id)−1(p). This inverse image should be homeomorphic to S1:

S3 × S1 S2 × S1

S4 S3

η×Id

Ση

Therefore, the Pontryagin manifold in Πfr1 (R4) corresponding to [Ση] is a circle embedded in R4. To
describe the homotopy class Ση, we need to consider the framing of this Pontryagin manifold. From the
commutative diagram [4], it suffices to determine the framing of the Pontryagin manifold corresponding
to η.

The following diagram illustrates two types of framings of a circle. The first type represents 0 in Πfr1 (S3)
since it can be extended to a framing of a disk. However, the second type of framing corresponds to a
non-zero element in Πfr1 (S3) (recall that Πfr1 (S3) ≃ Z).

Figure 1: Possible framings of S1 ↪→ R3

We will provide a proof, inspired by [Pon59], showing that the Pontryagin manifold corresponding to
Ση is associated with the second type of framing.

Let, (M,ν) be a framed 1-manifold(compact) in R4. Thus by classification of 1 manifolds M is disjoint
union of S1 (upto framed cobordism). Let, ν(x) is positively oriented (orientation cominng from
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the tanget bundle) ∀x ∈ M . Note that ν(x) = (ν1(x), · · · , ν3(x)) is a positively oriented basis of
Nx(M ⊂ R4). Define ν′(x) be the element of normal-space Nx(M ⊂ R4), we get after Gram-Schmidt
orthonormalization of ν(x). The deformation retract in [theorem 3.2] will help us to give us a framed
cobordism between (N, ν) and (N, ν′). Without loss of generality we may assume (M,ν) is a 1-manifold
in R4 with ν(x) is positively oriented orthonormal basis of the normal space. For every x ∈M there is
a unique vector τ(x) in TxM so that (τ(x), ν(x)) is an element of SO(4) (with respect to the standard
basis). We can define a map

hM,ν : M → SO(4)

given by x 7→ (τ(x), ν(x)); clearly this is a continuous map. Let, [M ] be the fundamental class of M

and then hM,ν
∗ ([M ]) ∈ H1(SO(4);Z) is an element of Z/2Z ∗∗, We define residue class of (M,ν) by

Res(M,ν) = hM,ν
∗ ([M ]) + no of components in M (mod 2).

The above definition of residue is given for the standard orientation on R4; this is independent of
orientation on R4, if (τ(x), ν(x)) is not positively oriented we can take (−τ(x), ν(x)) to be positively
oriented basis (i.e determinant w.r.t basis is +1). But (τ(x), ν(x)) 7→ (−τ(x), ν(x)) is homeomorphism

so the image of fundamental class under hM,ν
∗ doesn’t change upto sign. So residue is independent of

orientation on R4.

Proposition — 5.0.3 If two framed manifold (M0, ν0) and (M1, ν1) are framed cobordent then

Res(M0, ν0) = Res(M1, ν1)

In order to prove the above proposition, we recall some results from Morse theory and low dimensional
topology. Let, f : M → R be a smooth function; a point p is said to be critical if ∇f(p) = 0 also it
is said to be degenerate if ∇f(p) = 0 = detHf (p) (here Hf (p) is Hessian). A function is said to be
Morse function if it do not have any degenerate critical function. The following are important results
from Morse theory [Mil69] we will be using here:

- If f : M → R is a smooth function from a compact manifold, it can be approximated arbitrarily
by a Morse function.

- Any smooth function around a non-degenerate critical point can be written as f = −(x2
1 + · · ·+

x2
k) + (x2

k+1 + · · ·+ x2
n) with respect to a coordinate chart around p in M . Here n = dimM and

k is the number of negative eigenvalues of Hessian.

In low dimension topology we heavily use Handle body decomposition. A n-dimensional k-handle is
the manifold Dk×Dn−k. By attaching a k-handle we mean attaching Dk×Dn−k along ∂Dk×Dn−k.

Theorem 5.1. (Handlebody decomposition from Morse function) Let, f : M → R be a morse fnction
and [a, b] ⊂ R be an interval where we have only one critical point. Then, The manifold f−1(−∞, b]
can be achived by attaching k-handle to f−1(−∞, a]. Where k is the index at the critical point.

The proof can be found in [Mil69].
—————————————————————————————————————————————

∗∗ This is because the fundamental group of topological groups are abelian and since SO(4) is path-
conneceted, by Hurewicz Theorem the homology group should be isomorphic to π1(SO(4)), the CW
-decomposition of SO(4) will give us that it’s 2-skeleta is SO(3) ≃ RP 3, so H1(SO(4);Z) ≃ Z/2Z.
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Figure 2: Example of Handlebody decomposition of a morse function
.

Proof of the proposition. Let, M be the framed cobordism of the manifoldsM0,M1, M ⊂ R4×[0, 1].
There is a smooth projection map π : M → [0, 1] by restricting the natural projection R4 × [0, 1] to
[0, 1]. By the Morse approximation let, π be morse function. Let, there is no critical value of π on
[0, ε] then π−1(0) = M0 and π−1(ε) = Mε are diffeomorphic, so Res(M0, ν) = Res(Mε, νε) here, νε is
the framing induced from the framing of M . Let, Mt = π−1(t) and νt is the framing induced from M ,
for regular value t. The residue value can chanage only if we pass through a critical point.

Let c be a critical value of π, we know for morse function critical values are isolated, so we get a
neighborhood [c − δ, c + δ] so that it has only one critical value c. Let, M− = π−1[0, c − δ] and
M+ = π−1[0, c+ δ], If we show the residue are same for Mc−δ and Mc+δ we are done.

By the Handlebody decomposition theorem we can say M+ can be achived by attaching a k-handle
to M−. If we aattach a 0-handle, in that case We are adding a adittional component C to Mc−δ to
get Mc+δ. The component C encloses a framed disk, we can treat it like a trivially framed disk in R2

thus Res(C, νC) = 0. So Res(Mc−δ, νc−δ) = Res(Mc+δ, νc+δ).

If we attach a 2-handle to M− then also, Mc+δ can be achived by adding a component C that encloses
a framed disk to Mc−δ or by attaching S1 ⊂ D2 to Mc−δ. The former case is similar to the 0-handle
attaching. The later case is also similar as Mc+δ is a framed circle that encloses a framed disk.

We are left with the case when we attach 1-handle to M− to get M+. Let, π(m) = c, there is a
co-ordinate chart around m where π looks like x2

1 − x2
2 and the co-ordinate of m is (0, 0). This is a

cross, the component of Mc containing this cross must be a ‘figure eight’ space; call it L. For small δ
and c+ δ > t > c; the part of Mt near L is made of one circle C0 and for c− δ < t < c; the part of Mt

near L is made of two circle C1, C2. Let the induced framing of C0, C1, C2 be ν0, · · · , ν2 respectively.
Our aim is to show

hC0,ν0
∗ ([C0]) + 1 = hC1,ν1

∗ ([C1]) + hC2,ν2
∗ ([C2]) (mod 2)

38



The above picture shows us the framing on C0, C1, C2 (locally). For the framing we have used the
local description of π’s. For (I), it’s locally given by x2

1 − x2
2 = c′ > 0, which is a hyperbola and the

framing comes from ∇π; similarly we got the framing on C1, C2. So, we can use the decomposition of
C0 in to C1, C2 and K where the framing on K is the standered framing of circle in R2, thus

hC0,ν0
∗ ([C0]) + hK,νK∗ ([K]) = hC1,ν1

∗ ([C1]) + hC2,ν2
∗ ([C2]) (mod 2)

which completes the proof.

Let, we have a continuous map g : M → SO(3) (here we are considering M to be a framed manifold
with the framing ν). This gives another framing on M ; With respect to sstanderd co-ordinate if we
can write; g(x) = (gij(x)) then the new framing on M can be given by

x 7→ (
∑
j

gij(x)ν
j(x))3i=1

we denote it by g(ν) and call this a twist of the framing ν. Let, S1 ⊂ R4 be the circle with the framing
comes from R2 (call the canonical framing xi); then for any continuous map g : S1 → SO(3) we have a
framing of S1. If two such loops are homotopic, then we can use the homotopy to construct a framed
cobordism between corresponding framed circles. Thus we can define a map a follows:

J3 : [S1, SO(3)]→ Πfr1 (S4)

Indeed we can carry out the same work for S1 ⊂ Rn+1 and define Jn : [S1, SO(n)] → Πfr1 (Sn+1).

Note that J2 is isomorphism. From the commutativity of [4] we can say ι : Πfr1 (S3) → Πfr1 (Sn+1) is
surjective as Σn−2 is. There is a inclussion of i : SO(2) ↪→ SO(n) given by A 7→ diag[A, In−2]. Thus
the following diagram commutes.

π1(SO(2)) Πfr1 (S3)

π1(SO(n)) Πfr1 (Sn+1)

J2

i∗ ι

Jn

Here J2 is isomorphism thus Jn is surjective. We know π1(SO(n)) ≃ Z/2Z, thus it has a generator.
Let, the class of f : S1 → SO(n) be the generator, then (S1, f(ξ)) is a framed 1-manifold of Sn+1. Now
we claim that Res(S1, f(ξ)) = 1 and so it’s a nontivial element in the cobordism class (when n = 3),
so Jn is an isomorphism. Note that,

hS1,f(ξ)(x) =

(
1 0
0 f(x)

)
hS1,ξ(x)

Now note that the map diag[1, f ] : S1 → SO(n + 1) gives us the map same with f∗ : H1(S1) →
H1(SO(3)) in homology. If we have two maps α, β : S1 → SO(3) then (αβ)∗ = α∗+β∗ ([Hat02];chapter
1). Thus

Res(S1, f(ξ)) = h
S1,f(ξ)
∗ ([S1]) + 1 = f∗([S1]) + hS1,ξ

∗ ([S1]) + 1 = f∗([S1] = 1)

The last equality is because of Hurewicz isomorphism. Thus Πfr1 (S4) ≃ Z/2Z. From the correspon-
dence with homotopy group we can conclude [Ση] is non-zero element in π3(S4) and it has order 2.
Thus

π3(S4) ≃ Z/2Z ≃ πS1

6. The second stem : πS
2
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