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1. Introduction.

This study takes a close look at how the Hahn-Banach Extension Theorem and the Riesz Repre-
sentation Theorem are connected. We see that the Hahn-Banach Extension Theorem, especially
when we’re talking about positive linear rules, helps us prove the Riesz Representation Theo-
rem. The Hahn-Banach Extension Theorem is like a tool that lets us stretch certain rules from a
smaller space to a bigger one, without changing the rules themselves. When we focus on positive
rules, this stretching also keeps the positivity intact. Using this stretching idea, we move to the
Riesz Representation Theorem. The Riesz Representation Theorem is about how continuous
linear rules are related to a specific way of pairing things, sort of like multiplication. By cleverly
using the stretched positive rules from the Hahn-Banach Extension Theorem, we put together
a solid proof for the Riesz Representation Theorem.

In a nutshell, this study shows how the Hahn-Banach Extension Theorem, especially when
dealing with positive rules, works hand in hand with the Riesz Representation Theorem. This
partnership reveals deep insights in a really nice way.

2. Some Definitions.

We will always consider V to be a real vector space, a subset K ⊆ V is convex if ∀x, y ∈ K
and t ∈ [0, 1], we have tx+(1− t)y ∈ K. For simplicity we will denote by Lx,y := {tx+(1− t)y |
t ∈ [0, 1]}

Definition 2.1. A point x ∈ K is said to be an internal point of K if for any v ∈ V \ {0},
there exists εv > 0 such that the subset (x− εvv, x+ εvv) := {x+ tεvv | t ∈ [−1, 1]} ⊆ K.

So vaguely speaking an internal point has the property that we can wiggle about any direction
and still remain inside the original subset.

An obvious observation is that if V is a finite-dimensional vector space over R and K is a
convex subset of V then the notion of internal point and interior point are the same, that is
x ∈ K is an internal point if and only if it is an interior point. To see this note that since V
is finite-dimensional we can replace it with Rn for some non-negative integer n. If x ∈ K is an
interior point then it is obviously an internal point, as we can find a ball centered around it
contained in K. Conversely, if it is an internal point then we can find positive numbers εi > 0
such that (x − εiei, x + εiei) ⊆ K for i = 1, . . . , n, where {ei}ni=1 are the standard basis for
Rn. Then we can consider the convex hull of the extreme points x ± εiei, let it be C, as K
is convex this subset is contained in K. Now we can easily pick a suitable ε > 0, such that
Bε(x) ⊆ C ⊆ K.

The result is not true if we assume K is not convex, for example consider the following subset
in R2.

We also have the following observation:

{non-zero linear functionals on V} ←→ {codimension 1 subsapces of V}

Proposition 2.2. If ρ is a linear functional on V, then every linear functional that vanishes on
ker ρ is a scalar multiple of ρ.
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Proof. If ρ0 = 0, then there is nothing to prove. Suppose ρ0 ̸= 0, let V0 = ker ρ0, and let ρ
vanishes on V0, then ρ factors through V/V0. Then we have the following commutative diagram.

V V/V0 R

R

π ρ̄0

ρ
ρ̄

ρ̄◦(ρ̄0)−1

ρ0

where ρ̄ the maps induced by ρ, since ρ0 ̸= 0, we have ρ̄0 is an isomorphism, so the linear map
ρ̄ ◦ (ρ̄0)−1 is well defined. Now as any linear map from R→ R is just a scalar multiplication, we
get that ρ = aρ0 for some scalar a ∈ R. □

Proposition 2.3. If ρ1, . . . , ρn are linear functionals on V and ρ vanishes on ∩ni=1 ker ρi, then
ρ is a linear combination of the ρi’s.

Proof. We will prove by induction, the base case is already true from proposition 2.2. For n = 2,
suppose we have ker ρ1 ∩ ker ρ2 ⊆ ker ρ. Then we restrict our linear functionals on the subspace
ker ρ2. Then note that

ker (ρ|ker ρ2) = ker ρ ∩ ker ρ2

⊇ ker ρ1 ∩ ker ρ2

= ker (ρ1|ker ρ2)

Then once again by Proposition 2.2 we get that ρ|ker ρ2 = aρ1|ker ρ2 , and this further gives that
(ρ− aρ1)|ker ρ2 = 0, and hence we get ρ− aρ1 = bρ2 ⇒ ρ = aρ1 + bρ2, which completes the proof
for n = 2. In general suppose the result is true for n− 1 linear functionals, then we for n linear
functionals ρ1, . . . , ρn such that ker ρ ⊇ ∩ni=1 ker ρi. Then restricting all the linear functionals
on ker ρn then by induction hypothesis we get that

(ρ|ker ρn) =
n−1∑
i=1

ai (ρi|ker ρn)⇒

(
ρ−

n−1∑
i=1

aiρi

)
|ker ρn = 0

and hence by proposition 2.2 there exists an ∈ R such that ρ =
∑n

i=1 aiρi, which completes the
proof. □

Definition 2.4. Let V0 be a codimension 1 subspace of V, then the subset x0 + V0 is called a
hyperplane.

A linear functional ρ : V → R naturally gives rise to hyperplanes, we can consider the set
Hρ,k := {x ∈ V | ρ(x) = k} for k ∈ R. This also gives us a notion of closed half spaces, we

define them by H+
ρ,k := {x ∈ V | ρ(x) ≥ k} and H−

ρ,k := {x ∈ V | ρ(x) ≤ k}. As we will later

see these are regarded as the fundamental convex sets, as any closed convex set in Rn is the
intersection of closed half spaces. We define open half spaces by taking the interior of closed
half spaces, that (H+)◦ := {x ∈ V | ρ(x) > k}.

3. Hahn-Banach Separation Theorem.

Theorem 3.1. Let V be a vector space over R and Y, Z are two non-empty, disjoint convex
subsets of V then,

(1) If Y or Z has an internal point then they are separated by a hyper-plane H ⊆ V. Such
that, Y ⊆ H+, Z ⊆ H−.

(2) If Y or Z consists entirely of internal points, it is contained in one of the open-half
spaces determined by H.

(3) If both Y and Z consist entirely of internal points, they are strictly separated by a hy-
perplane H.
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Proof. We will prove the theorem in several parts as follows. Before that let’s assume, Yi is
the set of internal points of Y .
Step 1: When two points y1, y2 are in the set Yi, we can see that any point in the segment Ly1,y2

is an internal point of Y .

Step 2: We asserts Yi consist entirely of internal points of Yi, i.e every point in Yi is an internal
point in Yi. For this let, y ∈ Yi, v ∈ V be a vector, then there exist εv > 0 such that, for
c ∈ (−εv, εv), y + cv ∈ Y (this is because y ids internal point of Y ). Let,0 ≤ t ≤ 1, then

y + tcv = (1− t)y + t(y + cv) ∈ Yi

Thus for a suitably chosen 0 < t < 1, (x− tεvv, x+ tεvv) ⊆ Yi.

Step 3: Now we will show that, “If H separates Yi and Z, it separates Y and Z too”. Let,
H = {x ∈ V : ρ(x) = k} be the plane separates Yi and Z such that Yi ⊆ H+ and Z ⊆ H−. Let,
y ∈ Yi, y1 ∈ Y and for t ∈ (0, 1)

ty1 + (1− t)y ∈ Yi

ρ(ty1 + (1− t)y) ≥ k

=⇒ tρ(y1) + (1− t)ρ(y) ≥ k

taking limit t→ 0 we have ρ(y) ≥ k, which means Y ⊆ H+. So, H separates Y and Z.
Step 4: It is enough to prove, (2). Now assume, Y − Z := {y − z : y ∈ Y and z ∈ Z}. Notice
the following properties,

• Y ∩ Z = ϕ which implies {0} /∈ Y − Z.
• (Y − Z) consists entirely of internal points.
• (Y − Z) is convex.
• (Y − Z) consists entirely of internal points.

Let, C be the family of all convex subsets C of V satisfying, {0} /∈ C, Y − Z ⊆ C, each point
C is an internal points of C. We can construct a partially ordered set C1 ⊆ C2 ⊆ C3 · · · in C
which has upper-bound by the unions. It has an upper bound by Zorn’s lemma, there exist a
maximal element C ∈ C.
Step 5: Consider the set, {au : u ∈ C and a > 0}. It is a convex set that contains Y − Z, also
C is contained in this. By maximality of C, we can say the above set coincides with C. Since
C is convex by the above result we can conclude C ∩ (−C) = ∅. If u, v ∈ C and a > 0, b ≥ 0,
au+bv ∈ C, which means C is a ‘positive cone’. For, w ∈ V\C and b ≥ 0 we can see bw ∈ V\C.

Step 6: Let, u, v ∈ V \C then, au+ bv ∈ V \C for a, b ≥ 0. If we suppose u+ v ∈ C and r ≥ 0,
we have,

2rv ∈ V \ C
2rv = r(u+ v) + r(u− v)

r(u− v) /∈ C

Now define C1 = {x+ r(u− v) : x ∈ C, r ≥ 0} = C + r(u− v), here, C ⊆ C1. By maximality
of C, we can say C = C1. So, 2u = (u+ v) + (u− v) ∈ C1 = C i.e. u ∈ C.

Step 7: Let’s define H0 = V \ (C ∪ −C). We will prove this is a hyperplane. We can easily
verify if,v, u ∈ H0 then, au ∈ H0, au+ bv ∈ H0 so H0 is a vector space.

Now we will prove H0 has codimension 1.In order two do that we will show any two vectors
in V/H0 lie in the same equivalence class. Let,u, v ∈ V/H0 and u ∈ C and v ∈ −C and consider
the following two sets,

S0 = {s ∈ [0, 1] : u+ s(v − u) ∈ C}
S1 = {s ∈ [0, 1] : u+ s(v − v) ∈ −C}
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Since C (or −C) contains entirely of internal points S0, S1 are open sets (we will get an open
interval on the direction of the vector u − v totally contained in C(−C respectively)). [0, 1]
is connected so we cannot write [0, 1] = S0 ∪ S1. Choose s ∈ [0, 1] \ (S0 ∪ S1), it will give us
u+ s(u− v) /∈ C ∪ (−C). This means codimH0 = 1.

Step 8: ρ be a non-linear functional on V whose nullspace is H0, ρ(C) is convex and does not
contain 0. WLOG, ρ(C) ⊆ (0,∞) and hence ρ(x) > 0 for x ∈ C. Now, Y −Z ⊆ C which means
ρ(y)− ρ(z) > 0 where, y ∈ Y and z ∈ Z.

Y,Z are disjoint non-empty convex sets. Y consists entirely of internal points, there exists ρ,
a linear functional on V such that, ρ(y) − ρ(z) > 0. Now take k = inf {ρ(x) : y ∈ Y }, we will
have ρ(y) ≥ k ≥ ρ(z) which implies H = {x ∈ V : ρ(x) = k}. We can conclude Y ∈ H+ and
Z ∈ H−. We have to show strict containment for Y . In order to do that let,ρ(y0) = k and
choose v /∈ H0. Thus,there is εv > 0 such that,

ρ(y0 ± εvV ) ≥ k

⇒ ±εvρ(v) ≥ 0

⇒ ±ρ(v) ≥ 0

This means, ρ(y) > k for all y ∈ Y . □

Corollary 3.2. Every closed convex set K ⊂ Rn can be written as the intersection of closed-half
spaces.

Proof. Let, x ∈ Rn \K, consider Bx be an open ball around x contained in Rn \K (this always
exists as K is closed set). By Hahn-Banach separation theorem there is a hyperplane, Hx

separates Bx and K. So,

K ⊆
⋂

x∈Rn\K

H+
x

If there is a y ∈
⋂

x∈Rn\K H+
x \K, then we can get an open ball B′

y (whose diameter is lesser

Figure 1. Figure depicting the separation of the closed convex set K and balls
centered around a point

than before) lies totally out-side K. Again we will get a hyperplane H′
y strictly separates By

and K. But H′
y is already contained in the intersection of closed hyperplanes. So y lies another

side of the intersection of hyperplanes. This leads us to a contradiction. □

4. Hahn-Banach Extension Theorem.

Let K be a compact convex set in Rn, x ∈ ∂K, let Hx separates x and K, then Hx is said to
be a supporting hyperplane for K at x.
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Definition 4.1. Let V be a real vector space, a map p : V → R is said to be sublinear (or a
sublinear functional) if p(x+ y) ≤ p(x) + p(y) and p(ax) = ap(x), a ≥ 0.

Let K be a compact convex set. We now define the support function by h(K, ·) : Rn →
R, u 7→ sup{⟨x, u⟩ | x ∈ K}. Similar to the correspondence between linear functionals and
codimension 1 subspaces, we also have a correspondence between compact convex sets in Rn

and sublinear functionals on Rn.

{compact convex sets in Rn} 1:1←→ {sublinear functionals on Rn}

Theorem 4.2. If f : Rn → R is sublinear, then there is an unique compact convex
K ⊆ Rn such that f = h(K, .)

Theorem 4.3. (Hahn-Banach Extension Theorem). If p is a sublinear functional on a
real vector space V, and ρ0 is a linear functional on a subspace V0 of V, and ρ0(y) ≤ p(y),for
all y ∈ V0. Then there is a linear functional ρ on V such that ρ(x) ≤ p(x), for all x ∈ V and
ρ(y) = ρ0(y), for all y ∈ V0.

Proof. We can consider R× V as a real vector space. And we define the epigraph of p by

Ṽ := {(r, x) ∈ R× V | p(x) < r}

We will show that Ṽ is non-empty convex and consists entirely of internal points. The non-

emptiness and convexity are not difficult to see. We still need to show that Ṽ consists only of
internal points. Let {eα}α∈J be a basis of V, then the vectors (1,0) and {(0, eα)}α∈J forms a

basis of R× V. We will show that finding ε > 0 for each basis element suffices to show that Ṽ

consists only of internal points. Let v = (x, r) ∈ Ṽ , for a basis element (0, eα), we want to find
εα such that that p(x± εαeα) < r. Its enough to find εα > 0 such that

p(x) + εαp(eα) < r and p(x) + εαp(−eα) < r

If p(±eα) = 0, then the inequality is obviously true, otherwise we can take

εα = min

{∣∣∣∣r − p(x)

p(eα)

∣∣∣∣ , ∣∣∣∣r − p(x)

p(−eα)

∣∣∣∣}
On the other hand for the basis element (1,0) can choose ε = 1

2(r − p(x)), then we obviously
have

p(x) < r + ε and p(x) < r − ε

Thus if we denote by {ξβ}β∈I to be the above basis for R×V, then we have shown that there exists

εβ > 0 such that (v − εβξβ, v + εβξβ) ⊆ Ṽ . Now lets pick a vector w ∈ Ṽ , let w =
∑n

i=1 aiεβi
.

Then consider the convex hull of the points {v ± εβi
ξβi
} let it be S ⊆ Ṽ , since Ṽ is convex.

Then we can find ε > 0, such that (v − εw, v + εw) ⊆ S, which shows that Ṽ consists only of
internal points.

Note that the graph of ρ0, W = {(ρ0(y), y) | y ∈ V0} is a linear subspace of R × V, and we

further have Ṽ ∩W = ∅. To see this note that if (r, x) ∈ Ṽ ∩W then we have p(x) < r = ρ0(x)
for some x ∈ V0, contradiction!

The Hahn-Banach Separation theorem then says that there exists a linear function σ :

R× V→ R and k ∈ R such that σ(ṽ) > k ≥ σ(w) for all ṽ ∈ Ṽ and w ∈ W . Now we will show
that σ vanishes on W . If w ∈ W then aw ∈ W , then σ(aw) ≤ k for all a ∈ R, but then as σ is
a linear functional we get that aσ(w) ≤ k for all a ∈ R. But then σ(w) = 0 as otherwise we can
always find a large enough (small enough) a, which won’t obey the inequality. This basically

tells us that we can choose the scalar k to be 0, and thus σ(ṽ) > 0 for all ṽ ∈ Ṽ .

Note that (1, 0) ∈ Ṽ , we can choose appropriate scaling of σ to get 1 = σ((1, 0)) > 0, then
let us define ρ(x) := σ((0, x)). We claim that ρ extends ρ0 and also satisfies the inequality
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ρ(x) ≤ p(x). These are easily verified, let x ∈ V

σ(r, x) = σ(r(1, 0)) + σ(0, x)

= r − ρ(x)

then for all r ∈ R such that (r, x) ∈ Ṽ we have σ(r, x) > 0 and thus r > ρ(x), but then we get

ρ(x) ≤ inf{r ∈ R | (r, x) ∈ Ṽ }
= inf{r ∈ R | r > p(x)}
= p(x)

and when y ∈ V0 we get 0 = σ((ρ0(y), y)) = ρ0(y) − ρ(y) and thus we get ρ0(y) = ρ(y) for all
y ∈ V0, which completes the proof of the theorem. □

5. Hahn-Banach Extension theorem for positive functionals

Let V be a vector-space over R then a liner functional, ρ is said to be positive linear functional
if, ρ(v) ≥ 0 for all 0 ⪯ v, where ⪯ is partial order on V.

Definition 5.1. Let, V be a real vector space C ⊂ V is said to be cone of V if for any two
u, v ∈ C and a, b ≥ 0, au+ vb ∈ C.

Whenever we are given a cone C of a vector space V we can give partial (⪯) order to V in the
following way. Let, x, y ∈ V be two vector spaces we will write xy if y−x ∈ C. It can be proven
easily that ⪯ is a partial order on V. We can say something more general. There is ono-one
correspondence between the partial orders on V and cones C in V.

{partial orders on V} ←→ {cones in V}
Positive cone C in V can span V. As an example, we can take the vector space of all continuous
functions from [0, 1] to R, which is typically denoted as C [0, 1]. Now consider P[0, 1] be the
subset of C [0, 1] containing all the positive continuous functions from [0, 1] to R. Any f ∈ C [0, 1]
can be written as,

f = max {f, 0} − (−min {0, f})
where both max {f, 0} and −min {0, f}) are elements of P[0, 1]. Now we are ready to state

the Hahn-Banach extension theorem for positive functionals.

Theorem 5.2. (Hahn-Banach extension for positive functionals) Let, C be positive cone
on V which spans V. Let, V0 be a subspace of V, such that V0 ∩ C spans V0. Let, p : V → R
be the sub-linear functional such that, 0 ⪯ v1 ⪯ v2 will give us p(v1) ≤ p(v2). If ρ0 is a positive
linear functional on V0 such that ρ0(y) ≤ p(y) for all y ∈ V0.

Then, there exists a positive linear functional ρ : V→ R and ρ0(y) = ρ(y) for all y ∈ V0 and
ρ(x) ≤ p(x).

6. Riesz Representation Theorem

It was shown by Jordan-Hahn that a linear functional ρ can be written as a linear com-
bination of two positive functionals ρ+, ρ−. It is sufficient to study positive linear functionals.
Now we will see how we can represent any positive linear function over the vector space C [0, 1],
which is stated below.

Theorem 6.1. (Riesz Representation theorem) Let, ρ : C [0, 1] → R be a positive linear
functional. There exists a unique right continuous increasing function gρ : [0, 1] → R with
limt→0+ gρ(t) = 0 such that,

ρ(f) =

∫ 1

0
f dgρ

for any f ∈ C [0, 1]. Furthermore, ∥ρ∥ = sup {|ρ(f)| : ∥f∥∞ ≤ 1} is equal to gρ(1).
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Proof. Let, M [0, 1] be the set of all bounded functions defined on the interval [0, 1]. It can be
shown that C [0, 1] is contained in M [0, 1] and it is a positive cone. Since it is given ρ is a positive
linear functional, by theorem 5.2 we can extend it to a positive linear functional ρ̃ : M [0, 1]→ R.
Let us define

gρ(t) = ρ̃
(
χ[0,t]

)
Note that gρ(t) is increasing as ρ̃ is positive linear functional. Also it’s not hard to see
limt→0+ gρ(t) = 0 = gρ(0). The right continuity of this function will follow from the conti-
nuity of the functional which can be seen from the following proposition.

Proposition 6.2. Let ρ : C [0, 1] → R be a linear functional. Then ρ is positive if and only if,
ρ is continuous and ρ(1) = sup {|ρ(f)| : ∥f∥∞ ≤ 1}

Proof of the proposition. If ρ is positive functional, |f | ≤ ∥f∥∞ implies |ρ(f)| ≤ ρ(1) so after
taking sup over such functions we must have, ∥ρ∥ ≤ ρ(1) and we also know ρ(1) ≤ ∥ρ∥. Thus
we have ρ(1) = ∥ρ∥. Continuity follows easily from here.

Conversely, if ρ is continuous and ρ(1) is the norm of the functional (WLOG ∥ρ∥ = 1), then for
f ≥ 0 let ρ(f) = a. Take s > 0 (small enough), 1− sf ≤ 1 which means ∥1− sf∥ ≤ 1.

1− sa ≤ |1− sa| = |ρ(1− sf)|
≤ ∥1− sf∥∞∥ρ∥ ≤ 1

This means a ≥ 0. So the functional is positive. □


