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Functional Spaces

TRISHAN MONDAL

§ Stone-Weierstrass Theorem

This theorem will help us to find a set of functions which
are dense on C'(K) (continuous functions defined on K)with
respect to sup-norm metric. Our main goal is to develope
concrete theory of Fourier series, the above theorem is very
useful in the following context.

Let’s define .% : L]0, 1] — ¢°°(Z) which sends a function f
to f ={cn(f)}. It can be shown that,

7] = 11,
17 (Do < 711

Thus .% is a bounded linear map. With the help of Stone
Weierstrass we can show this map is Isomorphism. During
the proof the following facts will be used

e convolution f* g always takes the best property among
f and g.
COROLLARY. If f is a Lebesgue integrable function
on R and g € C.(R), then f x g is continuous.

e If . is a bump function then for f € C.(R),
| f*@e—fll; = 0ase—0.

e The above result can be proved for a function in L'[0, 1].

One more thing was proved in the class

F(f*xg)=F()F(9)

¢ Definition.Let & C CF is said to be algebra if for all
fog€ A, f+g,fg cf alsolie in &.

e Definition..«# said to be seperates points of E if for
1 # x9 there is a function f € &7 such that f(z1) #

f(x2).

e Definition.For each = € F, if there exist g € & such
that g(z) # 0, then we say &/ vansihes at no point of
E.

e Theorem(Stone - Weierstrass) Let o be an algebra of
C(K) (The set of complex valued continuous functions
defined on compact set K). Let o/ seperates points of
K and it vansihes at no point of K, then .« is dense in
C(K).

e Theorem(Weierstrass approximation) Let f € C[0, 1],
then for every ¢ > 0 there is a polynomial p such that

1f =Pl <e

§ Arzela-Ascoli Theorem

e Definition.(Equicontinuos) A family of functions & is
siad to be ‘equicontinuous’, for every ¢ > 0 there exist
and § > 0 such that, |f(z) — f(y)| < e for [z —y| < ¢
and f € o.

e Every Member of equi-continuous family is uniformly
continuous.

e If X is a compact metric space, F : X x X — Z
is a continuous function. Then the family & =
{fy(x) = F(z,y) : y € X} is an equicontinuous family.

e Let X C R™ be an open convex set, <7 be the family of
differentiable functions X — R"™, such that ||Df(z)| <
M. This family is equicontinuous.

e Theorem(Arzela Ascoli) Let X be a compact metric
space and C'(X) be the set of continuous functions on
X, then Z C C(X) is compact iff Z is compact and
equicontinuous.

§ Fourier series

History. In order to solve the heat equation, 2% = 82—3 he

made the substitution u(z,t) = g(x)h(t) and u(z,0) = P +
> ap cosnx+> by, sinnz. From here he thought if any com-
plex function f can be approximated with f ~ > a,e =27,

A We know L2[0,1] € L0, 1], but for any I C R it’s not
true. Neither L?(I) nor L'(I) is contained in each other. As
an example note the function f(z) = 2~z on [0,1] is in L
but not in L2 Similarly, f(z) = % for x > 11is in L? but
not in L.
e L2[0,1] is a Hilbert space. With the inner product
(f,g) = fol fgdz. This inner-product will give us a

norm, with respect to which L?[0, 1] is complete (Riesz-
Fischer Theorem?).

e Definition.Let, S = {po,%1,---} be the collection of
functions in L?[0,1] such that (¢,,,,) = 0 and if
[nl| = 1 then the set S is ‘orthonormal’ set. Eg.

{62‘”2”}.
e Theorem(Theorem on best approximation). Let, S =

{©0,"** ,Pm,- -} be an orthogonal set. Let, {s,} and
{tn} are sequence of functions defined as following,

sn(7) =D crpr(), ta(z) =D brpn(z)
k=0 k=0



where ¢ = (f, k), then |f —sp| < [[f =t and
equality holds if by = ¢; for k=0,--- ,n.

Definition.(Fourier Coefficient) Let {eg.--- ,en, -} be
a set of orthogonal set on Hilbert space H. If z € H,
x =Y (x,en)e, where (z,e,) is Fourier Coefficient.

Theorem. Let S = {eg, - ,en, -} be an orthonormal
set for L2[0,1] (or any Hilbert space H). If f € L2[0,1]
such that, f(z) = > cppn(x). Then, > 7, |c,| con-
verges and satisfy,

len? < 17117 (Bassel’s Inequality)
And equality holds if and only if we have
lim [f—s,l =0
n—oo
where s, is defined in previous theorem(Parseval’s
formula)

As a consequence of the above theorem we can say the
Fourier Coefficients converges to 0 as n — oc.

COROLLARY. If f is any Lebesgue integrable func-
tion we must have

2m
nlgi;o ; f(z)e =0

Theorem.

(Riesz-Fischer Theorem). Let, S = {®o, *,®m, "}
be an orthonormal set of L2[0,1]. Let, {cx} be a given
sequence of complex numbers such that > |ck|2 con-
verges. Then there is a function f € L2[0,1] with (i)

cx = {pr, f) and (i) 3 fexl” = || Il

Definition.Let S be an orthogonal set of the Hilbert
space H, then it will be called an orthogonal Basis if
Span(S) is a dense subset of H, i.e. Span(S) = H.

Two basis of H must have same cardinality.

Theorem. Let, f be a l-periodic function in C*(R),
then n-th Fourier coefficients satisfy

lim sup ’nkcn(f)’ < 0o
n—oo

Smoothness of f implies f = {c,(f)} decay.

Let, f be a 1-periodic function satisfying Lipschitz or
order « then,

lim sup [n%e,(f)] < o0
n—oo

For a differentiable function f, we have
cn(f) = 2mnic,(f)
Dirichlet’s Kernel. Dy (X) = % . Zngjv p2mi ka

Note that ¢, (f * g) = cn(f)en(g)-

N

f*Dy=sn= Z cn(f)emike

k=—N

On the interval [0,1), Dy can be explicitly written as

sin 27 N+% x .

DN(CL'): 2sgn7rz ) lf.’E#O
1 .

(N+§) ifx=0

It can be shown that the L' norm of Dy is bigger than
O(log N). Dy satisty every property for being a ‘bump
function’ except for the condition of being positive ev-
erywhere.

Fejer Kernel. Cesaro sum of Dirichlet kernals,

Faa)= S Di(a)
k=0

sin? (rnx

which is equal to — = m) for z # 0 and equal to n for

2 = 0. It can be shown easily F,,(z) is bump function.

Theorem. If f € R(«) on [0,1] then, a € R(f) on [0, 1]
and

/ fda+ / adf = f(1)a(1) — a(0) £(0)
0 0

Theorem. (Bonnet) Let g € C[0,1], f is increasing on
[0,1]. Then 3z € [0, 1] such that,

1

[ f@ateyds = 0" | Y g+ 1) | ot

0
§ If f > 0 there exist xo € [0, 1] such that,
1

/O ' fle)g(e) dr = F(10) | ota)is

Zo
Riemann Lebesgue lemma. Assume f € L(I). Then,

for each 8 we have

lim [ f(¢)sin(at 4+ B)dt =0
I

a— 00
If f € L(—00,00), we have

lim wf(t)ﬂdt:/mwdt
0

a—oo | o

Theorem. Jordan. If g is of bounded variation on [0, 4],
then

2 [° in at
lim 2 /O g(t)Smta dt = g(0")

Theorem. Dini. Assume g(0™) exists and suppose that
for § > 0 the Lebesgue integral

3 +
t —
[fa=s),
0 t
exists. Then we have,

2 [° in at
lim % / g(t)SH;a dt = g(0™)
0

a—oo T




e Integral representation. Assume that f € L[, —n], if
Sp, is the partial sum generated by f, say

sn(z) = % + Z (ay, cos kx + by sin kx)
k=1

Then we have the integral representation

Theorem(Riemann Localization) Assume f € L0, 27]
and suppose f hs period 27w. Then the fourier series
generated by f will converge if and only for some ¢ the
following limit exists:

* fla+0)+ f(z—08)sin(n+ §)t
/ : ;

2
lim — dt

n—oo T

In which case the value of this limit is the sum of the
Fourier series.

¢ Conditions for convergence.

- Jordan test. If f is B.V on the compact interval
[x — 0, x+ 0], then the limit s(z) exist and then the
Fourier series generated by f converges to s(z).
where s(z) is,

o S@ )+ f@ =)
t—0+ 2

=g(t)

- Dini's test. If the limit s(x) exists and if the
Lebesgue integral exist for § < m,

/ﬂmﬂ—amdt
0 t

then the Fourier series generated by f converges
to s(x).

e Let f be a Lebesgue integrable function on [0, 27| and
have period 2w. The following term has an Integral
representation

so(x)+ -+ sp_1(x)

on(z) =

Integral representation:

1 [T fle4t)+ fle—1t)
on(x) = %/0 2 Fy(t)

Theorem (Fejer Theorem.) Assume that f € L]0, 27]
with period 27 and suppose the following limit exits

o) — tim FE DS =D

t—0t 2

Then the fourier series generated by f is Cesaro
summable and we have

nh_}rr;o on(x) = s(x)

The above converge is uniform if f is continuous.

Consequences of Fejer Theorem: f is a continuous
2m-periodic function. Let, {s,} denote the sequence of
partial sums, then we have

— lims,, = f on [0, 27].

27 a? oo
= LTI @) de = S 4+ 3007 (0 + b2)

— The fourier series can be integrated term by term.

Theorem(Lebesgue Differentiation theorem) If f is a
Lebesgue integrable function on R, then for all most all

Tz € R, N
r+Tr

f(z) = lim f(t)dt

r—0 T

Definition. The point € R is Lebesgue point of f if,

x4+
nmi/"|ﬂw—ﬂMﬁ:o

r—r
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