Equivariant Stable Homotopy Theory PCMI Experimental Mathematics Lab

Alice Postovskiy, Ea E, Seth Yoo, and Trishan Mondal

Park City Mathematics Institute

Summer 2024

<ロト <四ト <注入 <注下 <注下 <

Equivariant Stable Homotopy Theory

The Non-Equivariant Setting From Spheres to Representation Spheres The Equivariant Setting Computations of $\pi_0(\mathbf{S}^0_G)$

< 口 > < 同 > < 回 > < 回 > < 回 > <

The Non-Equivariant Setting

Definition (Spectrum)

A sequence of based spaces $E := \{E_n\}$ together with a sequence of natural map $\sigma_n : \Sigma E_n \to E_{n+1}$ is called a pre-spectrum.

A pre-spectrum *E* with the adjoint maps $E_n \rightarrow \Omega E_{n+1}$ are homeomorphisms, is called a spectrum.

4 **A** N A **B** N A **B** N

Definition (Spectrum)

A sequence of based spaces $E := \{E_n\}$ together with a sequence of natural map $\sigma_n : \Sigma E_n \to E_{n+1}$ is called a pre-spectrum.

A pre-spectrum *E* with the adjoint maps $E_n \rightarrow \Omega E_{n+1}$ are homeomorphisms, is called a spectrum.

Example (Examples of spectra)

- Suspension spectra: $\Sigma^{\infty} X := \{\Sigma^{i} X\}_{i \ge 0}$
- Sphere spectrum: $\mathbf{S} := \Sigma^{\infty} S^0$

2/16

Theorem (Freudenthal Suspension Theorem)

If X is (n-1)-connected space then $\Sigma : \pi_k(X) \to \pi_{k+1}(\Sigma X)$ is an isomorphism for k < 2n-1 and surjection for k = 2n-1.

3/16

Theorem (Freudenthal Suspension Theorem)

If X is (n-1)-connected space then $\Sigma : \pi_k(X) \to \pi_{k+1}(\Sigma X)$ is an isomorphism for k < 2n-1 and surjection for k = 2n-1.

For a spectrum E we can define the homotopy group

$$\pi_q(E) := \operatorname{colim}_n \left(\cdots \to \pi_{q+n}(E_q) \xrightarrow{\Sigma_n} \pi_{q+n+1}(E_{q+1}) \to \cdots \right)$$

イロト イポト イラト イラト

Stable Homotopy Groups

Definition (Stable homotopy groups)

$$\pi_q^{\mathcal{S}}(X) := \pi_q(\Sigma^\infty X)$$

Alice Postovskiy, Ea E, Seth Yoo, and Trishan Equivariant Stable Homotopy Theory Summer 2024

4/16

Stable Homotopy Groups

Definition (Stable homotopy groups)

$$\pi_q^{\mathcal{S}}(X) := \pi_q(\Sigma^\infty X)$$

Example

- $\pi_0(\mathbf{S}) \simeq \mathbb{Z}$
- (Hopf fibration) $\pi_1(\mathbf{S}) \simeq \mathbb{Z}/2\mathbb{Z}$

Alice Postovskiy, Ea E, Seth Yoo, and Trishan Equivariant Stable Homotopy Theory Summer 2024

イロト イポト イヨト イヨト

Definition (G-Space)

A **G-space** is a topological space *X* with a continuous group action of *G* on *X*.

4 E 5

5/16

< A >

Definition (G-Space)

A **G-space** is a topological space *X* with a continuous group action of *G* on *X*.

A representation of *G* on $V = \mathbb{R}^n$ makes *V* a *G*-space. The one-point compactification then yields an *n*-sphere with a *G*-action, denoted S^V .

Example (C_2 acting on S^2)

Let $V = \mathbb{R}^2$, and send the nonidentity element of C_2 to $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

BA 4 BA

Example (C_2 acting on S^2)

Let $V = \mathbb{R}^2$, and send the nonidentity element of C_2 to $\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$.

We can consider two different " π_1 "s of S^V :

- Maps from S^1 with trivial action into S^V
- **2** Maps from S^W into S^V , where $W = \mathbb{R}$ with nonidentity $\mapsto -1$

Example (C_2 acting on S^2)

Alice Postovskiy, Ea E, Seth Yoo, and Trishan

Equivariant Stable Homotopy Theory

Summer 2024

< 回 > < 三 > < 三 >

The Equivariant Setting: Spectra

Definition (Equivariant spectra [1, Def 2.2])

Given a countably-infinite dimensional *G*-representation \mathcal{U} (a *G*-universe), a *G*-equivariant spectrum is a collection of G-spaces, $\{E_V\}_{V\subseteq\mathcal{U}}$, together with equivariant structure maps $\sigma_V^W: \Sigma^{W-V}E_V \to E_W$, for $V\subseteq W$, and $(W-V)\oplus V = W$, such that

$$E_V \xrightarrow{\widetilde{\sigma}_V^W} \Omega^{W-V} E_W$$

is a homeomorphism.

EN 4 EN

The Equivariant Setting: Spectra

Definition (Equivariant spectra [1, Def 2.2])

Given a countably-infinite dimensional *G*-representation \mathcal{U} (a *G*-universe), a *G*-equivariant spectrum is a collection of G-spaces, $\{E_V\}_{V\subseteq\mathcal{U}}$, together with equivariant structure maps $\sigma_V^W: \Sigma^{W-V}E_V \to E_W$, for $V \subseteq W$, and $(W - V) \oplus V = W$, such that

$$E_V \xrightarrow{\widetilde{\sigma}_V^W} \Omega^{W-V} E_W$$

is a homeomorphism.

Example (Suspension spectra)

If X is a G-space, $\Sigma_G^{\infty} X$ is the equivariant spectrum induced by the collection $\{\Sigma^V X\}_{V \in \mathcal{U}}$ with $\sigma_V^W : \Sigma^{W-V} \Sigma^V X \xrightarrow{\cong} \Sigma^W X$.

The Equivariant Setting: Equivariant Freudenthal

- Theorem (Equivariant Freudenthal Suspension Theorem [2, Thm 2.2.16])
- If X and Y are G-spaces, then there exists a G-representation W such that for any other representation V, the suspension map

$$[\Sigma^W X, \Sigma^W Y]^G \xrightarrow{\Sigma^V} [\Sigma^{V \oplus W} X, \Sigma^{V \oplus W} Y]^G$$

is an isomorphism.

E N 4 E N

Stable Equivariant Homotopy Groups

Definition (Stable equivariant homotopy groups [4, Sec. 3]) Let *E* be a *G*-spectrum and $V \subset U$ a finite dimensional *G*-representation. Then *E*'s *W*-th stable equivariant homotopy group is

$$\pi_V^G(E) := \pi_0^G(\Omega^V E) := \operatorname{colim}_{W \subset \mathcal{U}}[S^W, \Omega^V E_W]^G$$

Example ([4, Sec. 3])

If $\mathcal{U} = \bigoplus_{n=0}^{\infty} \rho_G$ for ρ_G the regular representation of *G*, and *X* is a *G*-space, then

$$\pi_n^G(X) \cong \operatorname{colim}_{\to m}[S^{(m+n)\rho_G}, \Sigma^{m\rho_G}X]^G$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Sphere Spectrum

Example ([4, Sec. 3])

If $\mathcal{U} = \bigoplus_{n=0}^{\infty} \rho_G$ for ρ_G the regular representation of *G*, and *X* is a *G*-space, then

$$\pi_n^G(X) \cong \operatorname{colim}_{\to m}[S^{(m+n)\rho_G}, \Sigma^{m\rho_G}X]^G$$

Example (\mathbf{S}_{G}^{0})

$$V_n := \oplus_{i=0}^n \rho_G \subset \mathcal{U}.$$

 \mathbf{S}_{G}^{0} is the suspension spectrum of S^{0} , given by the collection

$$\{\Sigma^{V_n}S^0\}_{n\in\mathbb{N}}$$
 with $\sigma_n: \Sigma^{\rho_G}\Sigma^{V_n}S^0 \xrightarrow{\cong} \Sigma^{V_{n+1}}S^0$.

11/16

4 D K 4 B K 4 B K 4 B K

Computations of $\pi_0^G(\mathbf{S}_G^0)$

Theorem ([2, Thm 2.2.17])

 $\pi_0^G(\mathbf{S}_G^0) \cong A(G).$

Definition ([2, Def 1.2.12])

The *Burnside ring* is (as an abelian group)

 $A(G) := \mathbb{Z} \{ \text{subgroups } H \subset G \text{ up to conjugation} \}.$

12/16

Computations of $\pi_0^G(\mathbf{S}_G^0)$

Let $G = \mathbb{Z}/n\mathbb{Z}$.

 $A(G) := \mathbb{Z} \{ \text{subgroups } H \subset G \text{ up to conjugation} \}.$

Let $\sigma(n)$ be the number of divisors of *n*.

$$\pi_0^G(\mathbf{S}_G^0) \cong A(G) \cong \mathbb{Z}^{\sigma(n)}.$$

э

13/16

Computations of $\pi_0^G(\mathbf{S}_G^0)$

Let $G = S_3$.

 $A(G) := \mathbb{Z} \{ \text{subgroups } H \subset G \text{ up to conjugation} \}.$

Elements of S_3 :	Shape	Order	Number	
	(1)	1	1	
	(12)	2	3	
	(123)	3	2	
	π		' ∉ A(G) ≅ ℤ'	4.
	(-G)			

э

References I

- [1] A. M. Bohmann. Basic Notions of Equivariant Stable Homotopy Theory. 2010.
- [2] B. Guillou. Class Notes: Equivariant Homotopy and Cohomology, Math 751. 2020.
- [3] J. May, R. Piacenza, and M. Cole. Equivariant Homotopy and Cohomology Theory. Regional conference series in mathematics. American Mathematical Society, 1996.

15/16

[4] S. Schwede. Lecture notes on equivariant stable homotopy theory. 2023.

Thank You !!

Alice Postovskiy, Ea E, Seth Yoo, and Trishan Equivariant Stable Homotopy Theory

イロト イヨト イヨト イヨト

æ