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Abstract. We construct algebraic Steenrod operations on E∞ algebras over Fp , providing a unified

framework to understand classical Steenrod operations on cohomology and Dyer–Lashof operations on

homology of iterated loop spaces. As an application, we explicitly compute H∗(QX) and highlight
analogous, well-known results for cohomology, clarifying the algebraic structures underlying these

operations and their interactions in loop space theory.

1. Introduction

One of the central problems in algebraic topology is to determine the stable homotopy groups πs
n(X).

By definition, these are given as the n-th homotopy groups of the suspension spectrum Σ∞X. Equiva-
lently, there is another description: the stable homotopy groups of X can also be realized as the homo-
topy groups of the Quillen replacement QX. To recall the construction, the identity map ΣX → ΣX
adjoints to a natural map X → ΩΣX, which is clearly an inclusion. By iterating this construction, we
obtain inclusions ΩnΣnX ↪→ Ωn+1Σn+1X. Taking the colimit of this sequence defines

QX = colim
n

ΩnΣnX.

Thus one arrives at the identification

πs
n(X) ∼= πn(QX).

The homology H∗(QX;Fp) therefore contains rich information about stable phenomena in homotopy
theory, and in particular, it detects certain stable classes in πn(QX). An additional key observation
is that QX itself has the structure of an infinite loop space, since one has a natural equivalence
QX ≃ ΩQ(ΣX). In modern language, QX is an E∞-space. This means that QX comes equipped
with a multiplication which is commutative and associative up to all higher coherent homotopies.
However, the fact that this multiplication is not strictly commutative gives rise to additional structure
in homology: the so-called homology operations, which are analogous to the Steenrod operations in
cohomology.

Historically, these operations were first introduced by Araki and Kudo [AK56], who defined such
operations for iterated loop spaces ΩnX, that is, for En-spaces, in the case of mod 2 coefficients.
A major difficulty at the time was extending these ideas to mod p coefficients for odd primes. In
his thesis, Browder [Bro58] made significant progress by constructing certain operations for mod p
coefficients and computing the mod p homology of ΩnΣnX. However, Browder’s work was not a direct
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extension of the methods of Araki and Kudo. A decisive breakthrough came with the work of Dyer
and Lashof [?], who introduced a full family of homology operations on iterated loop spaces with mod
p coefficients. These operations are completely analogous to Steenrod operations in cohomology and,
importantly, they satisfy stability properties that make them fundamental to the study of loop spaces
and infinite loop spaces.

In this report we focus on extending the perspective of Dyer–Lashof operations to infinite loop
spaces. Following the algebraic framework developed by J. P. May in [May], we will construct such
operations in a general algebraic setting. The advantage of this framework is that it simultane-
ously recovers the classical Steenrod operations on H∗(X;Fp) and the Dyer–Lashof operations on
H∗(Ω

∞X;Fp). With these tools in hand, we will compute the homology of the free infinite loop
space on a point, namely H∗(QS0;Fp), and then, by applying naturality, extend these computations
to determine H∗(QX;Fp) for general X.

2. Definition of the operations and Properties

2.1. Definition of the operations. For the purpose of this report, we will use Cp = ⟨σ⟩ to denote
the cyclic group of order p, and Fp will denote the field of order p. As usual, Σp denotes the symmetric
group on p elements. Our goal is to define certain homology operations on the homology of E∞-algebras
over Fp.

Before giving the definition of an E∞-algebra over Fp, we need to fix some conventions. Notions such
as EΣn or BΣn (or EG,BG for that matter) can vary depending on context. In some cases, we take
EΣn to be a free Fp[Σn]-resolution of Fp (the trivial module), which is essentially the chain complex
C∗(EΣn;Fp) equipped with a free Σn-action. Correspondingly, BΣn might be interpreted as

C∗(BΣn;Fp) = C∗(EΣn;Fp)⊗Σn
Fp,

while in other contexts it may literally refer to the classifying space or the total space. The intended
meaning should always be clear from the context in which these objects are used.

Aside. there is a close connection between the derived category of chain complexes over Fp and the
p-localized homotopy category of topological spaces. When we write EΣn ⊗ A for a chain complex
A, we actually mean C∗(EΣn) ⊗ A, where the first factor is interpreted in the derived sense. This
convention is standard and makes such constructions meaningful, even though we will not go into the
technical details here.

Now, The chain complex C∗(ECp;Fp) as a Fp[Cp]-free resolution of Fp is

· · · 1−σ−−−→ Fp[Cp]
N−→ Fp[Cp]

T=1−σ−−−−−→ Fp[Cp]
ϵ−→ Fp → 0,

where N = 1 + σ + · · ·+ σp−1 and ϵ is the co-unit map. As a chain complex,

Cn(ECp;Fp) =
⊕
n

Fp{en, · · · , σp−1en}

with differential

d2i+1(σ
je2i+1) = (1− σ)σje2i, d2i(σ

je2i) = N(σj)e2i−1.

Note that

H∗(Cp;Fp) = H∗(BCp;Fp) = H∗(ECp ⊗Cp
Fp)

has Fp-basis {ei}. These terminologies will be used in defining homology operations. With this, we
are ready to construct them.

Definition 2.1. (E∞-algebra over Fp) Let A be a chain complex(or graded differential algebra) over
Fp. Then A is called an E∞-algebra if there are Σn-equivariant chain maps

θn : EΣn ⊗A⊗n −→ A, n ≥ 1,

satisfying:

• Unit: θ1(1⊗ a) = a.
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• Equivariance: θn(σ · e⊗ σ · a) = θn(e⊗ a) for all σ ∈ Σn.
• Homotopy coherence: The θn are compatible with operad composition in EΣ•.

Restricting θn to the generator e0 ∈ EΣn gives a symmetric n-ary multiplication on A, while the
higher simplices encode all higher homotopies.

The above definition encodes the commutativity of the multiplication up to higher coherent homo-
topies. Suppose A is an E∞-algebra over Fp. Then we have a multiplication

θp : EΣp ⊗Ap → A.

(here we abbreviate A⊗p = Ap) Let us define a Cp-equivariant map

θ′ : ECp ⊗Ap j⊗1−−→ EΣp ⊗Ap θp−→ A.

Now, by taking the Cp-coinvariants of the above map, we get

θ : ECp ⊗Cp
Ap → A.

Let x ∈ Hq(A). Note that ei ⊗ xp is a well-defined element of H∗(ECp ⊗Cp A
p), using [May70, lemma

1.1]. We define

Di(x) = θ∗(ei ⊗ xp).

Furthermore we also define power operations

Definition 2.2. For p = 2 define P s : Hq(A) → Hq+s(A) by

P s(x) =

{
Ds−q(x) s ≥ q

0 otherwise

For odd prime p the map P s : Hq(A) → Hq+2s(p−1)(A) is defined using Di’s and some signs.

P s(x) =

{
(−1)sν(q)D(2s−q)(p−1)(x) 2s ≥ q

0 otherwise

βP s(x) =

{
(−1)sν(q)D(2s−q)(p−1)−1(x) 2s > q

0 otherwise

where, ν(2j + ε) = (−1)j
(
p−1
2 !

)ε
.

We shall discuss the properties of these operations, reasons behind choosing these shifts in the next
subsection.

2.2. Basic properties of the operation. An equivalent way of defining the same operation is to
take the map fx : Fp[−q]x → A(it’s the map representing the homology class x) which sends x to x
in homology. Here, Fp[−q] denotes the chain complex with only Fp in degree q. At the chain level, we
have the map

ECp ⊗Cp Fp[−pq]xp 1⊗fp
x−−−→ ECp ⊗Cp Ap θ−→ A(1)

In homology, we obtain

H∗(BCp)[−pq]⊗ xp → H∗(A),

andDi(x) is the image of ei⊗xp under this map, clearlyDi : Hq(A) → Hpq+i(A). From this description
it is apparent that Dif∗x = f∗Di(x) for all x ∈ Hq(A) and for all i, q. From the definition 2.1 we get
that D0(x) = xp and Di(1) = 0 for i ̸= 0.

Proposition 2.3. Di : Hq(A) → Hpq+i(A) is a homomorphism.
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Proof. Let x, y ∈ Hq(A) be represented by cycles. Define ∆(x, y) = (x+ y)⊗p − x⊗p − y⊗p ∈ Ap. It is
a sum of mixed monomials, permuted freely by Cp. Thus ∆(x, y) = Nc for some monomial c, where
N =

∑
g∈Cp

g = 0 in Fp[Cp]. Note that,

d(ei+1 ⊗ c) = ei ⊗Nc (i odd), d(T p−2ei+1 ⊗ c) = ei ⊗Nc (i even),

so ei ⊗∆(x, y) is a boundary in ECp ⊗Cp
Ap. Applying θ gives

Di(x+ y)−Di(x)−Di(y) = θ∗(ei ⊗∆(x, y)) = 0,

hence Di is additive. □

For p = 2 we have C2 = Σ2, and the classifying space BC2 ≃ RP∞ has homology F2 in every
nonnegative degree. In this case the operations Di are non-trivial for all i ≥ 0. For odd primes p there
are subtleties, which follow from the next lemma.

Lemma 2.4. [RJM70, Proposition III.10.2] Let j : Cp → Σp be the inclusion. Then

j∗ : H∗(Cp;Fp(q)) −→ H∗(Σp;Fp(q))

is trivial unless ∗ is of the form 2k(p − 1) or 2k(p − 1) − 1 for q even and when q is odd the map is
trivial unless ∗ is of the form (2k + 1)(p− 1) or (2k + 1)(p− 1)− 1. Here Fp(q) means the action of
Cp on ECp or the action of Σp on EΣp is twisted by (−1)q signs.

It is worth noting the consequences of the above lemma. Consider the alternate definition of Di(x)
from (1). There we have taken xp. Observe that if we switch two factors of x, we obtain a (−1)q sign
outside. However, since we are working in the coinvariants of Cp, this sign disappears; in effect, it
is Fp(q)-invariant. In the definition of θ′ we could tensor with Fp(q), and the definition of Di would
remain unchanged. This implies that Di is trivial unless i is of the forms specified in the lemma,
depending on degree of x.

So there are two types of possible non trivial operations D(2s−q)(p−1) and D(2s−q)−1 for p-odd. With
this observation we can define algebraic Steenrod operations or power operations and Bockstein reduced
powers.

Definition 2.5. For p = 2 define P s : Hq(A) → Hq+s(A) by

P s(x) =

{
Ds−q(x) s ≥ q

0 otherwise

For odd prime p the map P s : Hq(A) → Hq+2s(p−1)(A) is defined using Di’s and some signs.

P s(x) =

{
(−1)sν(q)D(2s−q)(p−1)(x) 2s ≥ q

0 otherwise

βP s(x) =

{
(−1)sν(q)D(2s−q)(p−1)−1(x) 2s > q

0 otherwise

where, ν(2j + ε) = (−1)j
(
p−1
2 !

)ε
.

Remark 2.6. The lemma 2.4 suggests that one may regard the structure map of the E∞-algebra,
θp : EΣp ⊗ A⊗p → A, as a Cp-equivariant map. In this viewpoint, θ could have been defined directly
as a map from the Cp-coinvariants ECp⊗Cp

A⊗p → A, yielding the same operations P i, βP i as before.

Remark 2.7. Another remark is that there is no apriori relation between P s and βP s by the Bockstein
i.e. In general it’s not true that βP s = β ◦ P s but for some cases we can say it is true.

Definition 2.8. (mod-p reduced E∞ algebra) Using the operadic definitionas in 2.1 one can define

E∞ algebra over Z. An E∞-algebra Fp, A is said to be mod-p reduced if A = Ã⊗ZFp for an E∞-algebra

Ã over Z.
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Proposition 2.9. If A is a mod-p reduced E∞ algebra and β is the Bockstein corresponding to

0 → Fp → Z/p2Z → Fp → 0

Then, β ◦ P s = βP s for any prime p.

Proof. [May70, Proposition 2.3. (v)] □

Theorem 2.10. (Cartan formula) If x ∈ Hq(A) and y ∈ Hr(A) then

P s(xy) =
∑

i+j=s

P i(x)P j(y)

βP s+1(xy) =
∑

i+j=s

βP i+1(x)P j(y) + (−1)qP i(x)βP j+1(y)

Before proving the theorem we need to know the Fp[Cp]-coproduct structure of C∗(ECp;Fp). It is
given by Ψ : C∗(ECp;Fp) → C∗(ECp;Fp)⊗ C∗(ECp;Fp) as

Ψ(e2i+1) =
∑

j+k=i

e2j ⊗ e2k+1 +
∑

j+k=i

e2j+1 ⊗ σe2k

Ψ(e2i) =
∑

j+k=i

e2j ⊗ e2k +
∑

j+k=i−1

∑
0≤r<s<p

σre2j+1 ⊗ σse2k+1

when we reduce it to the homology of H∗(Cp;Fp) by treating it as H∗(ECp ⊗Cp
Fp) we get the co-

product as

Ψ(e2i) =
∑

j+k=1

e2j ⊗ e2k; Ψ(e2i+1) =
∑

j+k=2i+1

ej ⊗ ek (2)

Proof. Since A is an E∞ algebra, the multiplication µ : A⊗A → A is compatible with the E∞-structure.
The homotopy coherence coming from the operadic construction gives the following homotopy com-
mutative diagram:

ECp ⊗Ap ⊗Ap ECp ⊗ ECp ⊗Ap ⊗Ap ECp ⊗Ap ⊗ ECp ⊗Ap A⊗A

ECp ⊗ (A⊗A)p ECp ⊗Ap A

Ψ⊗1 1⊗T⊗1 θA
p ⊗θA

p

µ
1⊗U

1⊗µp θA
p

Here, θAp is the E∞ algebra structure map for A, U is the shuffling morphism, and T is the twisting

morphism defined by T (x ⊗ y) = (−1)deg x deg yy ⊗ x. As stated in the theorem, take x ∈ Hq(A) and
y ∈ Hr(A). Then µ∗(x⊗ y) = xy ∈ Hq+r(A). Note that (x⊗ y)p is invariant under the action of both
Cp and Σp, so we can pass to the Cp-coinvariants and then to homology. The bottom row of the above
diagram gives

θA∗ (e(2s−(r+q))(p−1) ⊗ (µ∗(x⊗ y))p) = θA∗ (e(2s−(r+q)(p−1)) ⊗ (xy)p)

= P s(xy).

To obtain the Cartan formula, we trace the other path, which explicitly is

(θA∗ ⊗ θA∗ ) ◦ (1⊗ T ⊗ 1) ◦ (Ψ⊗ 1)(e(2s−(r+q))(p−1) ⊗ xp ⊗ yp).

From the description of Ψ in 2.2 and Lemma 2.4, it follows that

P s(xy) =
∑

i+j=s

P i(x)P j(y).

The proof for βP s is the same, except that the sign arises from the twist map, and βP s are defined
using the odd homology classes of H∗(Cp;Fp). □
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For a chain complex A one can define ΣA to be the shifted chain complex ΣAn = An−1 and
differential are dΣA = −dA. There is an inherited E∞-algebra structure on ΣA coming from A. One
can write ΣA as a part of the cofiber of the map A → Cone(A), thus we have a exact sequence of chain
complexes,

0 → A → Cone(A) → ΣA → 0(∗)
note that Cone(A) is contractible and hence acyclic. Since we are working over field we can tensor
short exact sequences to get a short exact sequences and tensoring with ECp⊗Cp

is an exact functor
(from projectivity) we get the exact sequence

ECp ⊗Cp
Ap → ECp ⊗Cp

(Cone(A))p → ECP ⊗Cp
(ΣA)p

note that ECp ⊗Cp Cone(A)
p
is acyclic thus by universal property of cokernal (similar to the property

of triangulated category) we can say there is a map

ϕ : Σ(ECp ⊗Cp
Ap) → ECp ⊗Cp

ΣAp

For notational purpose we will demote ΣECp ⊗Cp
Ap as Dp(A). Then the map above map is ϕ :

ΣDp(A) → Dp(ΣA). From the equation (∗) one can note there is a canonical isomorphism

Σ : H∗(A) → H∗+1(ΣA)

(version of suspension isomorphism).

Theorem 2.11. (Stability) The following diagram commutes

H∗(A) H∗+1(ΣA)

Hp∗+k(Dp(A)) Hp∗+k+1(ΣDp(A)) Hp∗+k+1(Dp(ΣA))

Σ

Σ ϕ∗

here the vertical maps are given by x 7→ ek ⊗ xp.

Proof. Hence applying the exact functor ECp ⊗Cp
(−)p to the cofibration (∗) yields

Dp(A) −→ ECp ⊗Cp Cone(A)p −→ Dp(ΣA),

and because ECp ⊗Cp
Cone(A)p is acyclic we obtain the canonical isomorphism Dp(ΣA) ∼= ΣDp(A)

and the suspension Σ : H∗+k(Dp(A))
∼=−→ H∗+k+1(Dp(ΣA)).

The vertical maps in the diagram are induced by the natural transformation A → Dp(A), x 7→
ek ⊗ xp. By naturality of connecting homomorphisms (or, equivalently, by functoriality of the long
exact sequence) these suspension isomorphisms are compatible with that map. Equivalently, for a
cycle x ∈ A both routes in the square send [x] to the same class [ek ⊗ (Σx)p] in H∗+k+1(Dp(ΣA)).
Therefore the square commutes. □

Corollary 2.12. Applying θ∗ to the above commutative diagram shows that the power operations
P s, βP s are compatible with the suspension isomorphism Σ.

2.3. Adem Relations. After introducing power operations in an E∞-algebra, the natural question is
what happens when we compose them. One might expect composites like P aP b to give genuinely new
operations. But the E∞ structure carries all the higher homotopies between different multiplications
and symmetries, and these force relations among the composites. The Adem relations are exactly the
reflection of those coherences on cohomology: they tell us how to rewrite a composite of operations in
terms of standard ones.

Remark 2.13. For a general prime p, the Adem relations are what allow us to describe the Steenrod
algebra Ap (algebra generated by P i, βP j) in terms of a concrete basis. If we only took all composites
of the reduced powers P s (and the Bockstein β when p is odd), we would obtain far too many elements.
The Adem relations give systematic rewriting rules which reduce any composite to a linear combination
of admissible monomials. These are products of the form

βϵ1P i1 βϵ2P i2 · · · βϵkP ik ,
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with the admissibility condition

ij ≥ p ij+1 + ϵj+1, for all j.

The set of such admissible monomials forms a basis of Ap as a graded Fp-vector space. Thus the Adem
relations are exactly what makes the Steenrod algebra computable and well-structured.

Before going into the Adem relation we should make some observations. Since we want to describe the
composition of power operations, we are naturally led to consider ECp ⊗ (ECp ⊗Ap)p.

Note that there is a Cp-action on ECp⊗Ap, and hence a Cp
p -action on (ECp⊗Ap)p. Consequently,

one can view ECp ⊗ (ECp ⊗ Ap)p as carrying an action of Cp ⋊ Cp
p , where Cp acts on the leftmost

ECp (trivially on the other part), while Cp
p acts diagonally on the rightmost component and trivially

on the leftmost part. Thus there is a natural Cp ⋊ Cp
p -action on this object. The group Cp ⋉ Cp

p is
called the wreath product. It is the p-Sylow subgroup of Σp2 . From the E∞-algebra structure one
then obtains the following Cp ≀ Cp-homotopy commutative diagram:

(2)

ECp ≀ Cp ⊗Ap2

EΣp2 ⊗Ap2

A

ECp ⊗ (ECp ⊗Ap)p ECp ⊗Ap

j⊗1

1⊗U

θp2

1⊗θp
p

θp

Here ECp ≀Cp is modeled as ECp ⊗ECp
p , where Cp acts only on the leftmost component and trivially

on the other, while Cp
p acts diagonally on the rightmost component and trivially on the left. The map

U denotes the shuffling map with respect to this description. Furthermore, j comes from the inclusion
Cp ≀ Cp ⊆ Σp2

In the above diagram the θp2 map is Σp2 equivariant, taking co-invariant we get a map

ξ : EΣp2 ⊗Σp2
Ap2

→ A

also, we have the following homotopy commutative diagram (as a E∞ algebra),

(3)

ECp ≀ Cp ⊗Cp≀Cp Ap2

EΣp2 ⊗Σp2
Ap2

A

ECp ⊗Cp
(ECp ⊗Ap)p ECp ⊗Cp

Ap

j⊗1

1⊗U

ξ

1⊗θp

θ

If x ∈ H∗(A), then

DaDb(x) = (−1)sgn θ∗
(
1⊗ θp

)
∗

(
1⊗ U

)
∗

(
ea ⊗ epb ⊗ xp2)

,

which corresponds to the bottom part of the above diagram after passing to homology, the sign comes
from shuffling morphism U . The top part of the diagram yields the Adem relations for a suitable
choice of a, b. It can be stated as the following theorem:

Theorem 2.14. (Adem Relations) The power operations P a, βP a satisfy the following relations:

(1) If p = 2 and a > 2b,

P aP b =
∑
i

(2i− a, a− b− i− 1)P a+b−iP i.
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(2) If p > 2 and a > pb,

P aP b =
∑
i

(−1)a+i(pi− a, a− (p− 1)b− i− 1)P a+b−iP i,

and

βP aP b =
∑
i

(−1)a+i(pi− a, a− (p− 1)b− i− 1)βP a+b−iP i.

(3) If p > 2 and a ≥ pb,

P aβP b =
∑
i

(−1)a+i(pi− a, a− (p− 1)b− i)βP a+b−iP i

−
∑
i

(−1)a+i(pi− a− 1, a− (p− 1)b− i)P a+b−iβP i

βP aβP b = −
∑
i

(−1)a+i(pi− a− 1, a− (p− 1)b− i )βP a+b−iβP i.

here, (a, b) =
(
a+b
b

)
.

Apparently, the Adem relation is not symmetric. However we can reduce it to proving some symmet-
rical relation.

Proposition 2.15. For x ∈ Hq(A), the following relations implies Adem relation for P aP b(x)

(i) For p = 2,∑
j

(b− j, 2j − b− q)P a+b−jP j(x) =
∑
i

(a− q − i, 2i− a)P a+b−iP i(x)

(ii) For p odd, ∑
j

(−1)b+j(b− j, pj − b−mq)P a+b−jP j(x)

=
∑
i

(−1)a+i(a−mq − i, pi− a)P a+b−iP i(x)

Proof. (i) Suppose first that p = 2. Choose an integer t > 0 with 2t > b and set

q = b− 2t + 1.

For this choice of q, Lucas’ theorem shows that all binomial coefficients (b− j, 2j− b− q) vanish except
when j = b. Thus the left–hand side of (i) reduces to

P aP b(x).

On the other hand, with the same q, the only nonzero terms on the right–hand side of (i) are precisely
those indexed by i which appear in the classical Adem relation. Moreover, the coefficients (a − q −
i, 2i− a) agree with the Adem coefficients. Hence (i) becomes

P aP b(x) =
∑
i

(a− q − i, 2i− a)P a+b−iP i(x),

which is exactly the Adem relation for P aP b.

(ii) The odd prime case is entirely similar. Let m = p−1
2 , take t > 0 with pt > b, and put q = b−pt+1.

Then all the coefficients (b− j, pj− b−mq) vanish unless j = b, so the left–hand side of (ii) reduces to
P aP b(x). The right–hand side of (ii), after applying Lucas’ theorem, produces exactly the admissible
indices i with coefficients (a−mq−i, pi−a) and signs (−1)a+i; these are precisely the Adem coefficients.
Thus (ii) is the Adem relation in this case.

Finally, since the choice of q = b − pt + 1 was arbitrary in t, one can vary t and use a standard
argument ([May70, Lemma 4.3]) to conclude that the same identity holds for arbitrary q. Therefore
the assumed identities (i) and (ii) indeed imply the Adem relations. □
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Remark 2.16. We can get the similar implications involving compositions of βPs and the proof is
exactly similar. We omit those for simplicity reasons.

To prove the relations in 2.15, it is necessary to analyze the map

i : Cp × Cp −→ Cp ≀ Cp

on homology. Concretely, i acts as the identity on the first component, while the second component
maps diagonally into Cp

p . The relevance of this map will become clear by the end of the subsection.
First we will determine the map i∗ in cohomology then dualize to get the map in homology. In order
to understand the cohomology H ∗ (Cp ≀Cp;Fp) we use the Lyndon-Hochschild-Serre spectral sequence.

Theorem 2.17. (Lyndon-Hochschild-Serre) The E2-page of the cohomology spectral sequence associ-
ated to the fibration

Xp → ECp ×Cp
Xp → BCp

degenerates. [RJM70, Theorem IV.1.7]

In the above theorem taking X = BCp
P will give us the cohomology of H∗(Cp ≀Cp). Note that Ei,j

2 =
Hi(Cp;H

j(BCp
p )). If H∗(Cp) has Fp-basis {ti} we can say, as a Fp[Cp]-module H∗(Cp)

p = H∗(BCp
p )

is direct sum of free trivial modules generated by t⊗p
i . Thus

H∗(Cp ≀ Cp) = H∗(Cp)⊗ Fp

{
t⊗p
i

}
⊕B

the generators of B are not fixed by the cyclic action.
Now there is a topological description of the map i∗. Consider the composite map

d : BCp ×BCp
1×∆−−−→ BCp ×BCp

p → ECp ×Cp BCp
p

evidently i∗ is the map d∗, the induced map in cohomology from d. It’s worth noting that d∗(B) = 0.
Presumably we are taking ti to be the dual of ei. We only need to check the d∗(ti ⊗ tpj ).

To compute d∗ how does the operations P k acts on H∗(Cp). Since, any co-chain complex is an E∞
algebra thus one can construct the actions in the same way we did. For the moment we will use the
cohomology ring structure to get the P k(ti). The cohomology ring

H∗(Cp) = Fp[x]⊗ Λ(y),deg x = 2,deg y = 1

thus t2i = xi and t2i+1 = yxi. The total power operations P (x) =
∑

P i(x) + βP i(x) is a ring
homomorphism from H∗(Cp) to itself. Using this note that

P k(xn) =

(
n

k

)
xn+(p−1)k, P k(y) = 0

This falls under the reduced case and thus by 2.9 we get β ◦ P a = βP a, here β(y) = x. We can say,

(4) P k(t2i) = (i− k, k)t2i+2(p−1)k, βP
k(t2i+1) = (i− k, k)t2i+2(p−1)k

Now, if x ∈ Hpr−i(Cp), the following evaluation

d∗(t0 ⊗ tpr)(ei ⊗ x) = (−1)irDi(er)(x)

this is because of the commutativity of the diagram 3, here the sign comes from shuffling. So what we
can say is,

d∗(t0 ⊗ tpr) =
∑

(−1)iti ⊗Di(er)

The map d∗ is a H∗(Cp)-module map (it’s a trivial observation). So, d∗(ti ⊗ tpr) can be determined by
taking the product ti ⌣ tj , in cohomology ring. Putting the results in subsection 1.2 about vanishing
of Di and the cohomology ring structure of H ∗ (Cp) we conclude that

if p = 2, d∗(tj ⊗ tpr) =
∑
k

tj+r−k ⊗ P k(er)
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and

if p > 2, d∗(tj ⊗ tpr) =ν(−r)−1
∑
k

(−1)ktj+(r−2k)(p−1) ⊗ P k(er)

− δ(j + 1)v(−q)−1
∑
k

(−1)ktj+(q−2k)(p−1)−1 ⊗ βP k(y).

Here, δ(j) = j (mod 2) Now we propose the following lemma,

Lemma 2.18. The map i∗ = d∗ in homology satisfy the following properties

(a) if p = 2, d∗(er ⊗ es) =
∑
k

er+2k−s ⊗ P k
∗ (es)

2; and

(b) if p > 2, d∗(er ⊗ es) =
∑
k

(−1)kν(s)er+(2pk−s)(p−1) ⊗ P k
∗ (es)

p

− δ(r)
∑
k

(−1)kv(s− 1)er+p+(2pk−s)(p−1) ⊗ P k
∗ β(es)

p

Here P k
∗ , βP

k
∗ are dual to the power operations it basically lowers the degree by 2k(p − 1) for odd p

and it lowers the degree by k for p = 2.

Proof. From the previous discussion we can write,

d∗(er ⊗ es) =
∑
q

er+s−pq ⊗ Eqr(er)
p

here Eqr(er) ∈ Hq(Cp). Let y ∈ Hq(Cp). Using the Kronecker pairing ⟨·, ·⟩, we have

⟨tr+s−pq ⊗ yp, d∗(er ⊗ es)⟩ = (−1)(r+s−q+m)q⟨y,Eqr(es)⟩ (∗)

Since, ⟨P k(y), es⟩ = ⟨y, P k
∗ (es)⟩, the previous discussion implies that if p = 2, then

⟨d∗(tr+s−2q ⊗ y2), er ⊗ es⟩ = ⟨tr ⊗ P s−q(y), er ⊗ es⟩ = ⟨y, P s−q
∗ (es)⟩

Thus Eqr(es) = P s−q
∗ (es) if p = 2 and, with k = s− q, this implies (a).

Now for odd prime p, by previous discussion, d s
r+s−pq

(
tr+s−pq ⊗ yp

)
has a summand involving tr

only if q = s − 2k(p − 1) − ε, k ≥ 0 and ε = 0 or 1, hence Eq
r (er) = 0 for other values of q. For

q = s− 2k(p− 1),

⟨d∗
(
tr+2pk−s(p−1) ⊗ yp

)
, er ⊗ yp⟩ = ν(−q)−1(−1)k+rq⟨y, t kps(er)⟩.

By (∗) and above equation, Eq
r (er) = (−1)k+mq ν(−q)−1P k

∗ (er) if q = s− 2k(p− 1). Since a

(−1)mq ν(−q)−1 = ν(q) = ν(s)

this yields the first sum of (b). Observe next that ⟨βy, x⟩ = (−1)q+1⟨y, βx⟩ by the chain and cochain
definitions of the Bockstein and the sign convention δ(t) = (−1)deg t·deg 1td used in defining C∗(X).
Combining this with similar computations as above we get the other part involving β∗P

s. □

Now that we have the lemma using equation 4 we can explicitly write the map i∗, d∗ which can be
given by the following proposition.

Proposition 2.19. The map i∗ : H∗(Cp × Cp) −→ H∗(Cp ≀ Cp) is given by the following formulas
(with sums taken over the integers).

(1) If p = 2,

i∗(er ⊗ es) =
∑
k

(k, s− 2k) e r+2k−s ⊗ e2s−k ;
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(2) If p > 2,

i∗(er ⊗ es) =
∑
k

(−1)k ν(s) (k, [s/2]− pk) e r+(2pk−s)(p−1) ⊗ eps−2k(p−1)

− δ(r) δ(s− 1)
∑
k

(−1)k ν(s− 1) (k, [(s− 1)/2]− pk) e r+p+(2pk−s)(p−1) ⊗ eps−2k(p−1)−1.

Now from the diagram 3, passing er ⊗ eps ⊗xp2

we get (−1)deg x smDrDs(x) from the bottom part. We
know conjugation gives same map in homology thus j∗i∗ = j∗i∗γ∗ which gives

j∗i∗(er ⊗ es) = (−1)rs+mqj∗i∗(es ⊗ er)

here we have taken deg x = q. Thus,

ξ∗(j ⊗ 1)∗
(
θ∗(er ⊗ es)⊗ xp2)

= (−1)rs+mq ξ∗(j ⊗ 1)∗
(
θ∗(es ⊗ er)⊗ xp2)

.

equating this with the bottom part od the diagram 3 we get the relations mentioned in proposition
2.15. With this we have proved the Adem relation.

3. The Dyer-Lashof Operation and The Dyer-Lashof Algebra

If X is an E∞ -space then the chain complex C∗(X;Fp) is an E∞ algebra over Fp. Thus can can
construct some homology operations Qi : H∗(X) → H∗(X). For this report we will consider infinite
loop spaces only. However, one can similarly define homology operations on H∗(C∞X), where C∞
represents the operad corresponding to E∞-algebra structure. We shall define Infinite loop-space as
follows

Definition 3.1. (Infinite Loop Space) Suppose X = {Xi : i ≥ 0} is sequence of based-spaces so that
Xi = ΩXi+1, we call it an infinite loop sequence. The map between two such sequence X,Y is given
by sequence of base point-preserving map

gi : Xi → Yi

such that gi = Ωgi+1. For an infinite loop sequence X, we call X0 to be the infinite loop space.

For an infinite loop space X we define, H∗(X) := H∗(X0). Evidently C∗(X0) has a symmetric multi-
plication coming from the infinite loop space structure. The E∞ algebra C∗(X0;Fp) is reduced which
means the power operation βP s is actually β ◦ P s. So following the algebraic construction of power
operations we can propose the following theorem.

Theorem 3.2. Given an infinite loop space X, from the discussion in section 2 we get natural homo-
morphisms Qi : H∗(X) → H∗(X) of degree 2i(p− 1) for odd p and of degree i for p = 2 satisfying the
following properties:

(1) Q0(1) = 1 and Qi(1) = 0 for i > 0. Here, 1 ∈ H0(X) is the identity element.
(2) Qi(x) = 0 if 2i < deg x (for p odd), i < deg x(for p = 2).
(3) Qi(x) = xp for 2ideg x (odd p), i = deg x (even p)
(4) Stability. Qi commutes with the connecting morphism in homology. In other words it com-

mutes with the suspension isomorphism H∗(ΩX) → H∗+1(X). [2.11]
(5) Cartan formula. If x ∈ Hq(X) and y ∈ Hr(X) then

Qs(xy) =
∑

i+j=s

Qi(x)Qj(y)
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(6) Adem relation.[2.14]

If p = 2 and a > 2b, QaQb =
∑
i

(2i− a, a− b− i− 1)Qa+b−iQi,

If p > 2 and a > pb, QaQb =
∑
i

(−1)a+i(pi− a, a− (p− 1)b− i− 1)Qa+b−iQi,

QaβQb =
∑
i

(−1)a+i(pi− a, a− (p− 1)b− i)βQa+b−iQi

−
∑
i

(−1)a+i(pi− a− 1, a− (p− 1)b− i)Qa+b−iβQi.

Here βQ = β ◦Q and β is the Bockstein corresponding to the short exact sequence 2.9.

Now consider the free associative algebra F , generated by {Qs : s ≥ 0} if p = 2 or by {Qs, βQr : s ≥ 0, r > 0}
for p > 2.

Analogous to the case of steenrod algebra we want to develop the notion of unstable modules and
algebra over Dyer-Lashof algebra. The following definitions determine the appropriate “admissible
monomials”

Definition 3.3. (i) p = 2: Consider sequences I = (s1, . . . , sk) such that sj ≥ 0. Define the degree,
length, and excess of I by

d(I) =

k∑
j=1

sj , ℓ(I) = k, and e(I) = sk −
k−1∑
j=1

sj = s1 −
k∑

j=2

sj .

The sequence I determines the homology operation

QI = Qs1 · · ·Qsk .

It is said to be admissible if

2sj ≥ sj−1, for 2 ≤ j ≤ k.

(ii) p > 2: Consider sequences

I = (ϵ1, s1, . . . , ϵk, sk)

such that ϵj = 0 or 1 and sj ≥ ϵj . Define the degree, length, and excess of I by

d(I) =

k∑
j=1

[2sj(p− 1)− ϵj ], ℓ(I) = k,

e(I) = 2sk − ϵ1 −
k∑

j=2

[2sj − ϵj ] = 2s1 − ϵ1 −
k∑

j=2

[2sj(p− 1)− ϵj ].

The sequence I determines the homology operation

QI = βϵ1Qs1 · · ·βϵkQsk .

It is said to be admissible if

psj − ϵj ≥ sj−1, for 2 ≤ j ≤ k.

Now, for q ≥ 0 we define, J(q) to be the two-sided ideal of F generated by the Adem relations (and if
p > 2 it is generated by the Adem relations 2.14 subject to β2 = 0) and

{
QI : e(I) < q

}
. Define, R(q)

to be the quotient algebra F/J(q). Let, R = R(0); we call it the Dyer-Lashof Algebra.

Remark 3.4. The ideal J(q) coincides with the subset k(q) of F that contains elements which annihilate
every homology class of degree ≥ q of any infinite loop space (or E∞-spaces). Thus the algebra R(q)
determines the algebra on homology operations that acts on homology classes of degree ≥ q.
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It’s obvious that
{
QI : I is admissible and e(I) ≥ q

}
is generators of R(q). We will prove the following

result in the preceding section which will help us to construct basis of R(q) as Fp algebra.

Theorem 3.5. Let us define ιq to be the fundamental class of Sq for q > 0, and for q = 0, let ι0
be the generator of the component of H0(S0) that does not contain the base point. There is a natural
inclusion

Hq(Sq) −→ Hq(QSq),

and under this inclusion, the set

{QI(ιq) | I is admissible and e(I) ≥ q}

forms a linearly independent subset of H∗(QSq).

Thus we can state the following theorem,

Theorem 3.6. (Basis of R) The basis of R(q) as an Fp algebra is given by

{QI | I is admissible and e(I) ≥ q}

One of the main advantages of having a canonical admissible-monomial basis of the Dyer–Lashof
algebra R is that it allows us to treat the homology of any infinite loop space X as an R-module in a
completely combinatorial way. Since the set

{QI | I is admissible, e(I) ≥ 0}

forms a basis of R, it is enough to specify the action of these basis elements on H∗(X). The action
of any other element of R is then determined automatically by linearity and the Adem relations.
Consequently, to understand the R-module(as well as algebra) structure of H∗(X), it suffices to know
how the basis operations act on homology classes. Furthermore, the Dyer–Lashof algebraR is naturally
a graded algebra over Fp. The grading is given by the homological degree shift of the operations: for
p = 2, |Qs| = s, and for odd p, |Qs| = 2s(p − 1) and |βQs| = 2s(p − 1) − 1. This grading is additive
on monomials, so for an admissible monomial Qs1Qs2 · · ·Qsk (possibly with Bocksteins for odd p), its
degree is

|Qs1Qs2 · · ·Qsk | = |Qs1 |+ |Qs2 |+ · · ·+ |Qsk |.

If X is an infinite loop space, then its homology H∗(X;Fp) is naturally a graded Fp-module. The
action of R respects the grading: if x ∈ Hq(X) and QI is an admissible monomial of degree |QI |, then

QI(x) ∈ Hq+|QI |(X).

Thus, knowing the action of the basis elements ofR on homogeneous classes inH∗(X) completely deter-
mines a graded R-module structure on H∗(X). This graded structure is fundamental for computations
in stable homotopy theory and for understanding the interplay between the algebra of Dyer–Lashof
operations and the homology of infinite loop spaces.

Note that R(q) is the quotient of the algebra R and elements of R(q) annihilates the homology
classes with degree < q. Sometimes all of the above properties are summarized by saying that H∗(X)
has the structure of an allowable R-module. In the preceding section we explore these structures for
the space QX.

Remark 3.7. The Dyer–Lashof algebra R possesses a Hopf algebra structure analogous to that of the
algebra Ap. Specifically, R is a graded connected Hopf algebra over Fp, and its dual, denoted R∗,
inherits a structure of an Ap-algebra. This duality is a manifestation of the Nishida relations [Nis72],
which establish a commutative diagram involving the Milnor co-action and the Q-structure on the
homology of infinite loop spaces. We wouldn’t discuss these in this report.
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4. Computation of H∗(QX) and it’s R-module structure

As we defined in the introduction, QX is the colimit of ΩnΣnX under the inclusion of it in
Ωn+1Σn+1X. We write,

QX = colim
n

ΩnΣnX.

Aside. There is an alternative description of QX, for that we need to work in stable homotopy
category Ho(Sp). For any spectra (sequential-spectra) E there is a Ω-spectra QE which is the fibrant
replacement of E. For a topological space X, QX is the 0-th level of Q(Σ∞X). From here it’s easy to
see that stable homotopy group πs

n(X) is actually [S,Q(Σ∞X)]Ho(Sp) by the properties of Ω-spectrum

πn(QX) = πn(Q(Σ∞X)0) = πs
n(X)

There is a map η : X → ΩnΣnX which is adjoint to the identity map from ΣnX to itself. This helps
us to get a map η : X → QX(with abuse of notation we stick to this). The following map

ΣnX
Σnη−−−→ ΣnΩnΣnX

ε−→ ΣnX

is identity. Where ε is the evaluation map. Thus, H∗(X) sits naturally inside H∗(QX). It is therefore
natural to expect that H∗(QX) should be some kind of free algebraic construction on H∗(X). Later in
this report we will motivate why one can expect this and how it leads to the identification of H∗(QX)

with the free Dyer–Lashof algebra on H̃∗(X).

We begin with the computation of QS0.

Theorem 4.1. The homology H∗(QS0;Fp) is the algebra generated by QI(ι0) where, I is admissible
and excess e(I) ≥ 0. Here ι0 is the generator of the component of S0 other than the base point i.e.

H∗(QS0;Fp) = Fp

{
QI : I is admissible and e(I) ≥ 0

}
We prove this theorem by induction. For the base case we start the induction at H∗(QSn) some large
n where the answer is trivial in the range we care about. Then we step down dimension. So the base
case is covered by following lemma,

Lemma 4.2. For every n ≥ 1 the space QSn = colimk→∞ ΩkSn+k is (n − 1)-connected. Hence

H̃i(QSn;Fp) = 0 for all i ≤ n− 1.

Proof. For each k ≥ 0 the sphere Sn+k is (n + k − 1)-connected, so πj(S
n+k) = 0 for j ≤ n + k − 1.

Thus

πi(Ω
kSn+k) ∼= πi+k(S

n+k) = 0 for i ≤ n− 1,

i.e. each ΩkSn+k is (n − 1)-connected. Homotopy groups commute with the directed colimit, hence
πi(QSn) = lim−→k

πi(Ω
kSn+k) = 0 for i ≤ n− 1. The vanishing of reduced homology in degrees ≤ n− 1

follows by Hurewicz theorem. □

Induction step is assuming H∗(QSn;Fp) = Fp

{
QI : I is admissible and e(I) ≥ n− 1

}
we show the

desired result is true for H∗(QSn−1;Fp). For this we use the homology Serre spectral sequence (mod-
p) associated to the following path-loop fibration,

(5)

ΩQ(ΣSn−1) PQ(ΣSn−1) Q(Sn−1) ∗

Q(ΣSn−1) Q(Sn)

The total space of this fibration is contractible and so, the Serre spectral sequence converges to 0.
The E2-page of the spectral sequence is

E2
p,q = Hp(QSn;Hq(QSn−1))
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the only way E2
∗,0 disappears if it is being killed by the differential or transgressed to the base. The

transgression is basically the connecting morphism

τ : dqq : Hq−1(Q(Sn−1)) → Hq(QSn)
since, the Dyer-Lashof operations are stable [2.11], they commutes with transgression. We use the
dual version of Borel’s transgression theorem to complete the induction step.

Remark 4.3 (Transgression of the fundamental class). Consider the fibration

Fn = Q(Sn−1) −→ PQ(Sn) −→ Bn = Q(Sn),
where the total space PQ(Sn) is contractible. Let ιn ∈ Hn(Bn) and ιn−1 ∈ Hn−1(Fn) denote the
fundamental classes of the base and the fiber, respectively.

The homology transgression
τ : Hn(Bn) −→ Hn−1(Fn)

sends ιn to ιn−1.

Reason: By definition, transgression in homology is the boundary map in the long exact sequence of
the pair (E,F ) = (PQ(Sn), Fn):

· · · −→ Hn(PQ(Sn)) −→ Hn(PQ(Sn), Fn)
∂−→ Hn−1(Fn) −→ · · ·

Since PQ(Sn) is contractible, Hn(PQ(Sn)) = 0, and the boundary map ∂ is an isomorphism. The
relative homology Hn(PQ(Sn), Fn) can be identified with Hn(Bn), and under this identification the
boundary map sends the base fundamental class ιn to the fiber fundamental class ιn−1.

Intuitively, The fiber sits inside the total space, and the fundamental class of the base “lifts” to a
relative class in (PQ(Sn), Fn). The boundary of this relative class is exactly the fundamental class of
the fiber. Hence,

τ(ιn) = ιn−1.

Theorem 4.4. (Borel Transgression Theorem) Suppose (Er, dr) be an associative, commutative
algebra homology spectral sequence over Fp such that E∞ is trivial and E2

∗,0 is an exterior algebra of

finite type. Then each generator of E2
∗,0 transgressive and E2

0,∗ is the polynomial algebra generated by

the transgressions of the generators of E2
∗,0.

Using the theorem we make the following observation:

Proposition 4.5. Let X be an E∞-space (or infinite loop space), and let {Er} be the mod-p homology
spectral sequence of the fibration

ΩX −→ PX −→ X.

Suppose x ∈ E2
2n,0 is a transgressive class and y ∈ E2

0,2n−1 is a class such that τ(x) = y in E2n.
Then:

τ(xp) = Qn(y) ∈ E2np,

τ(xp−1 ⊗ y) = βQn(y) ∈ E2n(p−1),

where β is the homology Bockstein homomorphism associated with the exact sequence 2.9.

Proof. By the Borel transgression theorem for E∞-spaces (here the differentials are derivations), trans-
gression commutes with Dyer-Lashof operations. Let x ∈ E2

2n,0 be transgressive with τ(x) = y ∈
E2

0,2n−1. Then:

τ(xp) = Qn(τ(x)) = Qn(y),

τ(xp−1 ⊗ y) = βQn(τ(x)) = βQn(y),

where β is the homology Bockstein, the later relation comes from the Cartan formula involving Qi, βQj

[2.10]. The degrees match the spectral sequence: xp ∈ E2
2np,0 and xp−1 ⊗ y ∈ E2

2n(p−1),2n−1, so the

formula is consistent. This proposition can be depicted by the following picture. □
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2n 2n(p− 1) 2np

2n− 1

2np− 2

2np− 1

y

x

βQn(y)

xp−1y

Qn(y)

xp

The purpose of the proposition is to show that elements like ιpnιn−1 are transgressive and transgression
of these can be expressed as QI(ιn−1). This makes sure all the possible products are covered by these
admissible Dyer-lashof operations.

Proof. of the theorem 4.1. We only need to complete the induction step. First of all note that ιn is
transgressed to ιn−1 (upto sign) as remarked 4.3. Thus by Borel’s theorem we can say E2

0,∗ is generated

by τ(QI(ιn)) with admissible I and e(I) ≥ n which is QI(ιn−1). Now we observe the following

- If I is admissible and e(I) < n− 1 then QI(ιn−1) = 0 and
- If I is admissible with e(I) = n− 1 then there is J with e(J) > n− 1 such that

QJ(ιn−1) = QI(ιn−1)
pk

SinceQJ(ιn−1) are transgressive so isQ
I(ιn−1). The Borel’s theorem suggests that

{
QI(ιn−1) : e(I) ≥ n

}
generates the polynomial part of H∗(QSn−1) and

{
QI(ιn−1) : e(I) = n− 1

}
generates the exterior-

algebra part. By Borel’s theorem these are all the generators. So as an Fp-algebra,

H∗(QSn−1) = Fp[Q
I(ιn−1) : e(I) ≥ n− 1]

This completes the proof. □

For a general connected space X, we attempt to apply a similar reasoning. For every reduced
homology class x, one can show that H∗(QX) contains the algebra Fp[Q

I(x) : e(I) ≥ 0]. Hence, the

R-algebra R(H̃∗(X)) is contained in H∗(QX). In fact, they coincide. We now explain why this is the
case.

Suppose X is (n− 1)-connected. By a stability argument, one can show that

η∗ : H∗(X) → H∗(QX)

is an isomorphism in degrees < 2n. Establishing the result for ΣnX in degrees < 2n then implies
the statement for X in degrees < n. Thus, the proof proceeds by induction. Assuming the statement
holds for Q(ΣX), we then prove it for Q(X). The argument follows the same outline as in the proof
of 4.1, using the fibration

QX ∗

Q(ΣX)

Theorem 4.6. [FRC76] H∗(QX;Fp) is isomorphic to the free commutative associative graded algebra

generated by QI , I is admissible and e(I) ≥ 0 on a vector basis of H̃∗(X;Fp) ⊂ H∗(QX;Fp).
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5. Consequences and Conclusion

We conclude the report by highlighting some consequences of the results discussed in Section 4.

Consequence 1. [Seg74] From a version of Barratt, Priddy, Quillen theorem we know

QS0 ≃ BΣ+
∞ × Z

here, BΣ+
∞ is the Quillen plus construction which preseves homology. Thus one can determine H∗(BΣ∞;Fp)

from the information of H∗(QS0;Fp).

Remark 5.1. We can adopt the proof of [4.1] to the homology of QS0 over a field of characteristics 0.
Over there the admissible relations generated the symmetric algebra over ι0. In particular the result
4.6 for field of characteristics 0 (Q for example) is given by

H∗(QX;Q) = Sym(H̃∗(X;Q))

Consequence 2. Again a version of Barratt, Priddy, Quillen suggests that

QX ≃

∐
n≥0

EΣn ×Σn Xn

+

= (BΣX)+

The above remark [5.1] suggests that

H∗(BΣX) = Sym(H̃∗(X;Q))

Remark 5.2. Finally, we note that results analogous to 4.1 and 4.6 can be established for any E∞-space,
though certain subtleties arise in doing so. These subtleties are addressed in the proofs of [FRC76,
Theorems 4.1 and 4.2].
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