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§ Problem 1

Problem. The goal of this exercise is to prove that the homotopy groups πn are abelian for n ≥ 2.

(a) Let S be a set equipped with two binary operations ∗ and ◦. Suppose that they have a common
neutral element e ∈ S and satisfy the interchange law

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d).

Show that ∗ = ◦ and that a ∗ b = b ∗ a. This is called the Eckmann-Hilton argument.

(b) Let (X,x0) be a pointed topological space and µ : X×X → X a pointed map such that µ(x0,−) ≃∗
idX ≃∗ µ(−, x0). Show that the group π1(X,x0) is abelian.

(c) Recall that πn(X,x0) is the set of pointed homotopy classes of maps In/∂In → (X,x0). For each
1 ≤ i ≤ n, there is a group operation ∗i on πn(X,x0) induced by concatenating the ith direction:

α ∗i β(s1, . . . , sn) =

{
α(s1, . . . , 2si, . . . , sn) if si ∈ [0, 1/2]

β(s1, . . . , 2si − 1, . . . , sn) if si ∈ [1/2, 1].

If n ≥ 2, show that all these group operations on πn(X,x0) coincide and are abelian.

Solution. Homotopy groups, πn are abelian for n ≥ 2 is proved in the following steps which are solution
to the consequent questions.

(a) Both binary operation ∗ and ◦ has same neutral element. Call it e. Take b = e and c = e to get the
following,

(a ∗ e) ◦ (e ∗ d) = (a ◦ e) ∗ (e ◦ d)
⇒ a ◦ d = a ∗ d

Since a, d are aribitrary element of S the operations ∗ and ◦ are same. Now take, a = e and d = e to get,

(e ∗ b) ◦ (c ∗ e) = (e ◦ c) ∗ (b ◦ e)
⇒ b ◦ c = c ∗ b
⇒ b ∗ c = c ∗ b

Here also b and c are aribitrary elements of S, we can say a ∗ b = b ∗ a for all a, b ∈ S.

(b) We will define an operation ◦ on π1(X,x0). Let, [γ], [η] are two elements of the fundamental group, define
[γ] ◦ [η] = [µ(γ, η)]. Let, ∗ be the common product defined on π1(X,x0), which concatenates two loops
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in X. At the first hand we will show ∗ and ◦ has same neutral (identity) elements. We know [cx0 ], the
homotopy class of the constant map to x0 is identity in π1(X,x0). From the given condition we can say,

[cx0 ] ◦ [γ] = [µ(cx0 , γ)] = [γ] = µ[(γ, cx0)] = [γ] ◦ [cx0 ]

The second and third equality follows from the fact µ(x0,−) ≃∗ idX ≃∗ µ(−, x0). Let, [f ], [g], [h], [k] are
four elements of π1(X,x0),

µ(f ∗ g, h ∗ k) =

{
µ(f(2t), h(2t)) if t ∈ [0, 12 ]

µ(g(2t− 1), k(2t− 1)) if t ∈ [12 , 1]

= µ(f, h) ∗ µ(g, k)

Thus we have ([f ] ∗ [g]) ◦ ([h] ∗ [k]) = ([f ] ◦ [h]) ∗ ([g] ◦ [k]). From the previous part we can say ∗ and ◦
defines same operation on π1(X,x0) and they are abelian and hence π1(X,x0) is abelian.

(c) Notice that, ∗i is a group operation. This can be shown in the same way we have proved concatenation of
loops gives a group operation in Fundamental group. We will begin with showing, ([f ]∗1 [g])∗2 ([h]∗1 [k]) =
([f ] ∗2 [h]) ∗1 ([g] ∗2 [k]) and then we will show that ∗1 and ∗2 has same neutral element. Then by part (a)
we can conclude ∗1 = ∗2 and πn(X,x0) is abelian. The left-hand side is defined to be the homotopy class
of

(f ∗1 g) ∗2 (h ∗1 k) (t1, . . . , tn) =


f (2t1, 2t2, t3 . . . , tn) t1 ≤ 1/2, t2 ≤ 1/2

g (2t1, 2t2 − 1, t3, . . . , tn) t1 ≤ 1/2, t2 ≥ 1/2

h (2t1 − 1, 2t2, t3 . . . , tn) t1 ≥ 1/2, t2 ≤ 1/2

k (2t1 − 1, 2t2 − 1, t3, . . . , tn) t1 ≥ 1/2, t2 ≥ 1/2.

The right hand side is the homotopy class of

(f ∗2 h) ∗1 (g ∗2 k) (t1, . . . , tn) =


f (2t1, 2t2, t3 . . . , tn) t1 ≤ 1/2, t2 ≤ 1/2

h (2t1 − 1, 2t2, t3 . . . , tn) t1 ≥ 1/2, t2 ≤ 1/2

g (2t1, 2t2 − 1, t3, . . . , tn) t1 ≤ 1/2, t2 ≥ 1/2

k (2t1 − 1, 2t2 − 1, t3, . . . , tn) t1 ≥ 1/2, t2 ≥ 1/2.

Thus we have shown ([f ] ∗1 [g]) ∗2 ([h] ∗1 [k]) = ([f ] ∗2 [h]) ∗1 ([g] ∗2 [k]). Let, cx0 be the constant map
cx0 : (In, ∂In) → (X,x0). Note that,

f ∗1 cx0 =

{
f(2t1, t2, · · · , tn) t1 ≤ 1

2

cx0 t1 ≥ 1
2

f ∗2 cx0 =

{
f(t1, 2t2, · · · , tn) t2 ≤ 1

2

cx0 t2 ≥ 1
2

We can show, [f ∗1 cx0 ] = [f ] and [f ∗2 cx0 ] = [f ], in the same way we proved constant map is identity
for the fundamental group. Thus both ∗1 and ∗2 has same neutral element. Thus ∗1 and ∗2 are same
operation. In the same way we can prove ∗i and ∗j are same operation for i ̸= j. And hence πn(X,x0) is
abelian. ■
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§ Problem2

Problem. Every closed connected surface is homeomorphic to Σg for some some g ≥ 0 or to Nh for
some h ≥ 1, where Σg (respectively Nh) is obtained from a sphere by attaching g copies of the torus
S1 × S1. (respectively h copies of the real projective plane RP 2). For each of the following surfaces, give
a presentation of the fundamental group and compute its abelianization as a direct sum of groups of the
form Z/nZ (recall that the abelianization of a group G is the abelian group Gab = G/[G,G]).

(a) The genus 2 surfaces Σ2.

(b) The Klein bottle N2.

(c) The remaining closed surfaces Σg and Nh for g, h ≥ 3.

Solution. We will try to derive the presentation of fundamental group for Σg and Ng, as a corollary to
that we will give the presentation of Σ2 and N2. We will start with proving the following lemmas regarding
polygonal presentation of the surfaces Σg and Ng.

Claim— The space Σg has the polygonal presentation given by a 4g−gon, with sides labelled as
a1, b1, a

−1
1 , b−1

1 , . . . , ag, bg, a
−1
g , b−1

g .

Proof. We prove this statement using mathematical induction on the variable g. Initially, we establish the base
case for g = 1 based on the standard definition of the torus. For the induction step, we assume the statement
holds true for some g ≥ 1. Now, let’s consider the pus-out square that generates Σg+1 from Σg, depicted below:

∂D2 T \D2

Σg \D2 Σg+1

When we remove a disk from Σg, and torus T , then adjoin them along their boundary we will get Σg+1.
This process is equivalent to adding an edge to the polygonal representation. Notably, this new edge becomes
identified with the edge added to the polygonal representation of T . As a result, the polygonal presentation of
Σg+1 consists of a 4(g + 1)-gon with sides labeled as follows:

a1, b1, a
−1
1 , b−1

1 , . . . , ag, bg, a
−1
g , b−1

g , a, b, a−1, b−1

Consequently, we can conclude that the statement holds true for all g ≥ 1 by induction.

a1

b1 a−1
1

b−1
1

a2

b−1
g

ag+1 bg+1

b−1
g+1 a−1

g+1

a1

b1 a−1
1

b−1
1

a2
b−1
g+1

a−1
g+1

Gluing Σg with T

to get Σg+1
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Claim— The space Nh has the polygonal presentation given by a 2g−gon, with sides labelled as
a1, a1, . . . , ag, ag.

Proof. The proof is essentially same as above and by the same arguments as above and the fact that N1 ≃ RP 2

has the polygonal presentation given by a 2−gon with sides labelled as a1, a1. ■
Using the polygonal presentation in Lemma 2.1, we get Σg is also a result of the following pushout,

S1
∨2g
i=1 S1

D2 Σg

φ

where φ induces the word a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g , if a1, b1, . . . , ag, bg are the generators of the fundamental

group π1(
∨2g
i=1 S1). Hence, using the result of Problem 8 of Assignment 1 (attaching of cells), we get

π1(Σg) ≃ π1

(
2g∨
i=1

S1
)/

N ≃ ⟨a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]⟩

Let’s consider the commutator [x, y] = xyx−1y−1, where N represents the normal subgroup of π1(
∨2g
i=1)S1

generated by the elements {[a1, b1], . . . , [ag, bg]}. When we take the abelianization, we obtain π1(Σg)
ab ≃ Z2g,

because all commutators become trivial in an abelian group.
Part(a) In particular, for g = 2, we have:

π1(Σ2) ≃
〈
a1, b1, a2, b2 | a1b1a−1

1 b−1
1 a2b2a

−1
2 b−1

2

〉
=⇒ π1(Σ2)

ab ≃ Z4

Utilizing the polygonal representation as outlined in Lemma ??.2, we can deduce that Nh also takes the form
of the following pushout:

S1
∨h
i=1 S1

D2 Nh

ψ

Here, ψ induces the word a21 · · · a2h, provided that a1, . . . , ah represent the generators of the fundamental group

π1(
∨h
i=1 S1). Consequently, by leveraging the outcome of Problem 8 from Assignment 1 (pertaining to cell

attachments), we obtain,

π1(Nh) ≃ π1

(
h∨
i=1

S1
)/

M ≃
〈
a1, . . . , ah | a21 · · · a2h

〉
where M is the normal subgroup of π1(

∨h
i=1 S1) generated by {a21 · · · a2h}. Taking the abelianization, we get

π1(Nh)
ab ≃ Zh/ ⟨2(a1 + · · ·+ ah) = 0⟩.

Part(b) For h = 2 we get
π1(N2) ≃

〈
a1, a2 | a21a22

〉
=
〈
a, b | aba−1b

〉
where the last equality is obtained by putting a = a1, b = a1a2. Taking the abelianization we get,

π1(N2)
ab ≃

〈
a, b | b2 = 1, ab = ba

〉
≃ Z× Z/2Z
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§ Problem 3

Problem. Describe upto isomorphism all path connected 2-sheeted covering spaces of:

(a) the Möbius strip µ

(b) the torus S1 × S1

(c) the figure eight S1 ∨ S1.

Solution.

(a) Consider the action of Z on X = R× [−1, 1], defined by n · (x, y) 7→ (x+ n, (−1)ny). This is well-defined
action of Z on X. This action is properly discontinuous. For every point (x, y) after action of g ∈ Z on it,
x co-ordinate is translated |g| distance, so the action is not free. Now take an open ball centered at (x, y)
of 1

2 radius, call it U . Note that, U ∪ g.U = ∅. So the action is properly discontinuous. The projection
map π : X → X/Z is a covering map. Since, X is simply connected π1(X/Z) = Z. We will show this
orbit-space is actually a Mobius strip.

[0, 1]× [−1, 1]

µ

Note that, for any point (x, y), action of −⌊x⌋ on (x, y) will give us, (x− ⌊x⌋, (−1)⌊x⌋y), which lies in the
rectangle [0, 1] × [−1, 1]. Thus we can treat [0, 1] × [−1, 1] as fundamental domain of the above action.
Note that, action of 1 on (0, y) will move it to (1,−y). So, (0, y) and (1,−y) will lie in same orbit in X/Z.
Action of Z on the fundamental domain will give us Mobius step µ as the orbit space. So, X/Z and µ are
homeomorphic. Thus, we get π1(M) = π1(X/Z) = Z.

To get, 2-sheeted covering of µ, by classification of covering space we need to look at 2-index subgroup
of Z. Only 2Z is the unique subgroup of Z having index 2. It’s enough to look at the same action of Z
on X by restricting to the subgroup 2Z. In this case, we have 2n · (x, y) = (x + 2n, y). For the action
2Z ↷ X, consider the fundamental domain [−1, 1] × [−1, 1]. In this case (−1, y) and (1, y) lie in same
orbit of X/2Z. Thus the orbit space is a cylinder C. Hence, C → µ is the 2-sheeted covering of Mobius
strip.

(b) Let, T = S1 × S1 We know, π1(T ) = Z × Z. In order to get a 2-sheeted covering of T , We need to find
2-index subgroups of Z × Z. From the ‘Ring theory course’ we know, 2-index subgroups of Z × Z are in
one-one correspondence with the images of the linear transformation Ta,b,c,d : (x, y) 7→ (ax+ by, cx+ dy)
with ad − bc = 2. In other words 2-index subgroups of Z × Z is the image of Ta,b,c,d with ad − bc = 2.
Upto ‘Rational canonnical forms’ it can be shown there is only three such subgroups. One is 2Z × Z,
Z × 2Z and {(x, y)|x+ y = 0 (mod 2)}. Corresponding to each such subgroup H (mentioned above) we
must have, a two sheeted covering of S1 × S1 by classification of covering spaces.

(c) We know fundamental group of X = S ∨ S is Z ∗ Z. In order to find the 2-sheeted covering, we need
to check 2-index subgroups of Z ∗ Z. Let, a and b are the generators of Z ∗ Z. Consider the following
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homomorphisms,

A :Z ∗ Z → Z/2Z
a 7→ 1, b 7→ 0

B :Z ∗ Z → Z/2Z
a 7→ 0, b 7→ 1

AB :Z ∗ Z → Z/2Z
a 7→ 1, b 7→ 1

Each of the homomorphisms are surjective and kernal of these maps are index-2 subgroup of Z∗Z. Notice
that, these are the only index 2 subgroups of Z ∗ Z. We can write them down explicitly by,

kerA =
〈
a2, b, aba−1

〉
, kerB =

〈
b2, a, bab−1

〉
, kerAB =

〈
a2, ab, b2

〉
Let, p : X̃ → X be the universal cover of X. There is an action of π1(X) ↷ X̃ such that, the orbit space
of this action is X. Now by restricting this action to the subgroups kerA, kerB, kerAB, we will get three
different 2 -sheeted covering-spaces upto isomorphism.

§ Problem 4

Problem. Let φ : R2 → R2 be the linear transformation φ(x, y) = (2x, y/2). This generates an action of
Z on X = R2 \ {0}. Show that this action is a covering space action and compute π1(X/Z). Show that
the orbit space is not Hausdorff and describe how it is a union of four subsapces homeomorphic to S1×R,
coming from the complementary components of the x-axis and the y-axis.

Solution.

� In order to show the given action Z ↷ R2 \ {0} is a covering space action, we will show this action is
properly discontinuous. Let, (x, y) ∈ R2 \ {0}, U(x,y) be the open ball centered at (x, y) and of radius,√
x2+y2

4 . Note that, d((x, y), φ(x, y)) =
√
x2 + y2/4 and d((x, y), φn(x, y)) >

√
x2 + y2/4, for n ∈ N. It’s

not hard to see, d((x, y), φn(x, y)) >

√
x2+y2

4 . Similarly, d((x, y), φ−1(x, y)) =
√
x2/4 + y2 >

√
x2+y2

4 and

d((x, y), φ−n(x, y)) >
√
x2/4 + y2 >

√
x2+y2

4 . Which means,

U(x,y) ∩ φn(U(x,y)) = ∅, where n ∈ Z

Thus the action is properly discontinuous, hence it is a covering space action.

� Consider the points (1, 0) and (0, 1) in R2 \ {0}. It is not possible to get, φn(1, 0) = (0, 1) for any n ∈ Z.
Thus this two point will lie in two different orbits. Hence, [(0, 1)] and [(1, 0)] are two different points
in X/Z. Any open set U1 and U2 in X/Z must have lift Ũ1 and Ũ2 which are open sets in X, contains
(1, 0) and (0, 1) respectively. There must exist n ∈ N such that,

(
1, 1

2n

)
∈ Ũ1,

(
1
2n , 1

)
∈ Ũ2. Note that,

φn(1/2n, 1) = (1, 1/2n). So, [(1, 1/2n)] = [(1/2n, 1)] ∈ U1 ∩ U2. Thus we can’t separate, [(1, 0)], [(0, 1)] by
two open sets in X/Z. Hence the space is not Hausdorff.

� Consider the first quandrant Q = {(x, y) : x, y > 0}. It consists of hyperbola xy = c for all c > 0. If
(x, y) belong to the hyperbola, all points φn(x, y) will also lie in the hyper bola. So basically we are
acting Z on this hyperbola. So the hyperbola will be a circle in the orbit space. Thus we can write,
Q/Z ≃ S1 × R>0 ≃ S1 × R. Other three quadrant will be S1 × R similarly. Hence X/Z is union of four
cylinder.
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� Calculation of fundamental group: Let, Y = X/Z. From the covering p : X → X/Z we have the
following exact sequence of groups, into the exact sequence:

1 → π1(X)
π(p)−−→ π1(Y ) → π1(Y )/π1(p)(π1(X))︸ ︷︷ ︸

≃Z

→ 1

Thus the above SES splits. Thus π1(Y ) = π1(X)⋉ π1(Y )/π1(p)(π1(X)) which is isomorphic to Z ⋉ Z. If
we can show the fundamental group of Y is abelian, we will have π1(Y ) = Z ⊕ Z. It will be enough to
check the generators of two copies of Z to commute. Let, γ be a loop around 0 in R2, based at (x0, y0)
and α be a path connecting (x0, y0) to (2x0, y0/2) (this should be homotopic to the line joining them).
The images [p ◦ γ] and [p ◦ α] will be loop in Y and they will generate two different copies of Z shown as
above. Let, h : X × I → X be the homotopy between id and φ defined as follows,

h((x, y), t) = (1− t)(x, y) + tφ(x, y) = (1− t)(x, y) + t(2x, y/2)

[Note that (x, y) and (2x, y/2) lies in the smae quandrant so the line joining them is also in R2 \ {0}]. Let
us define a map,

F : I × I
γ×id−−−→ X × I

h−→ X

This is a homotopy from γ to φ(γ) (but this is important to note). Loot at the following things,

F (0, t) = h(γ(0), t) = (x0, y0)(1− t) + t(2x0, y0/2) ≃ α

F (s, 1) = h(γ(s), 1) = φ(γ(s)) ≃ γ

F (s, 0) = h(γ(s), 0) = γ(s)

F (1, t) = h(γ(1), t) = (x0, y0)(1− t) + t(2x0, y0/2) ≃ α

Thus by square law we can say, [α ∗ γ] = [γ ∗ α]. In other words we can say,

p[α ∗ γ] = p[γ ∗ α]
[p(α)] · [p(γ)] = [p(γ)] · [p(α)]

Thus the commutators commute. Hence, π1(Y ) is abelian and hence π1(Y ) ≃ Z⊕ Z. ■

§ Problem 5

Problem. Given a universal cover p : X̃ → X of a topological space we have two left actions of π1(X,x0)
on the fiber p−1(x0), namely (the left action defined by) the monodromy action and the restriction of the
deck transformation action to the fiber. Are these two actions the same for S1 ∨ S1 or S1 × S1? do the
two actions always agree if π1(X,x0) is abelian?

Solution. . Description of Left action defined by Monodromy action. We know the elements of π1(X,x0)
are path homotopy classes of closed paths γ : [0, 1] → X based at x0 (i.e. γ(0) = γ(1) = x0). Given y ∈ p−1(x0)
and a path γ based at x0, we find a unique lift γ̃ of γ such that γ̃(0) = y. The Monodromy action (it is a right
action) π1(X,x0) is defined by,

y • [γ] = γ̃(1)

The well defineness, transitivity were proved in class. From here we will define a left action as following,

[γ] ∗ y = y • [γ]−1.

The following will help us to show, this is a well defined group action,

([γ] · [δ]) ∗ y = y • ([γ] · [δ])−1 = y • ([δ]−1 · [γ]−1) = (y • [δ]−1) • [γ]−1 = ([δ] ∗ y) • [γ]−1 = [γ] ∗ ([δ] ∗ y)
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� Since, p : X̃ → X is universal covering, the deck transformation group Deck(p) ≃ π1(X,x0). Thus we can
identify each elment of the deck group with f[γ], where [γ] ∈ π1(X,x0). The action Deck(p) ↷ X̃ is a left
action. If g ∈ Deck(p) we will denote the action as g ◦ x, where x ∈ p−1(x0).

� Let, [γ] ∈ π1(X,x0), there exist unique deck transformation f[γ] such that, f[γ](y) = y • [γ] (where

y ∈ p−1(x0) is base point in X̃). So, we can see

f[γ] ◦ y = f[γ](y) = y • [γ]

� If for any [γ] ∈ π1(X,x0), [γ] ∗ y = f[γ] ◦ y (here again y ∈ X̃ is based point), we must have

y • [γ]−1 = y • [γ]

Which means [γ]2 ∈ Stabπ1(X,x0)(p
−1(x0)) = π1(p)(π1(X̃, y)) = {e}, where e is identity in the fundamental

group. Thus [γ]2 = e.

If the given left actions are equal on the fibre, the group π1(X,x0) must have all elements of order 2. We know,
π1(S1 ∨ S1) = Z ∗ Z, and π1(S1 × S1) = Z × Z, both the group has an element whose order is not 2. Thus the
actions can’t be same on the fibre. Even for abelian case it is not true, we can look at the fundamental group
of S1 × S1 for example.
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§ Problem 6

Problem. Construct a simply-connected covering space of the subspace X of R3 given by attaching a
diameter to a sphere (you are allowed to describe the space pictorially, but justify your answer). Compute
the fundamental group X.

Solution. Consider the space X̃, which is union of countably many spheres and lines as shown in the
following figure. Let, Sn be the sphere (2-dim) of radius 1 centered at (0, 0, 3n), for n ∈ Z and let, Ln be the
line segment {(0, 0, t) : t ∈ [3n+ 1, 3n+ 2]}. We can write X̃ explicitly as,

X̃ =
⋃
n∈Z

(Sn ∪ Ln)

Now we will define an action of Z on X̃, as n.(x, y, z) 7→ (x, y, z + 3n). For every point (x, y, z) ∈ X̃ take an
open ball, B of radius 1

2 centered at that point with U = X̃ ∩ B being the open set in X̃. After this action
this point will move to a point which is at-least 3 distance apart. Which means U ∩ n.U = ∅, thus this action
Z ↷ X̃ is properly discontinuous.

S0 S1 S2S−1S−2

S0 X̃/Z

Quotient

(Fundamental domain of the action)

Figure 1: Description of X̃

As in the above picture, we have aligned X̃ along X-axis. Now we claim S0 ∪ L0 is the fundamental domain
of this action. Any point in X̃ must lie in a sphere Sn or in a line Lm, by acting −n or −m respectively to this
point we will get a point in S0 or L0 respectively. Thus, S0 ∪ L0 is fundamental domain of this action. Note
that, 1.(0, 0,−1) = (0, 0, 2), which means end point of L0 and one pole of S0 are identified in the orbit space
X̃/Z (as shown in the above figure with red mark). So, the orbit space X̃/Z is exactly the space,

X :=
{
A sphere S2 along with the diameter joining noth-pole and south-pole

}
From the above discussion we can conclude that, π : X̃ → X̃/Z ≃ X is a covering space. We are yet to show X̃ is
simply connected. It is enough to prove the finite collection X̃k :=

⋃
n∈[−k,k](Sn∪Ln) is simplicity connected,

i.e. π1(X̃k) = {0}. Now by taking colim X̃k, we will get X̃ and thus π1(X̃) = {0}. By inductive argument it
boils down to proving S0 ∪L0 ∪ S1 is simply connected. Take the open covers U = S0 ∪ {(0, 0, t) : t ∈ [1, 1 + ϵ)}
and V = S1 ∪

{
(0, 0, t) : t ∈ (1 + ϵ

2 , 2]
}
. Note that, U ∩ V is an open interval

{
(0, 0, t) : t ∈ (1 + ϵ

2 , 1 + ϵ)
}
,

which is simply connected. Also, both U and V has deformation retract onto the 2-sphere S2, which have trivial
fundamental group. By SVK we can say the above space is simply connected. Hence, X̃ is simply connected and
π : X̃ → X̃/Z ≃ X is the universal covering. By the classification of covering space, we can say, π1(X) = Z.
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§ Problem 7

Problem. he Borsuk-Ulam theorem states that if f : Sn → Rn is continuous, then there exists x ∈ Sn such
that f(x) = f(−x). Prove the Borsuk-Ulam theorem for n = 1, 2.

Solution. For n = 1 if there exists a map f : S1 → R1 such that, f(x) ̸= f(−x) for all x ∈ S1. Consider

the map g(x) = f(x)−f(−x)
|f(x)−f(−x)| . It is clearly a continuous map g : S1 → S0 = {−1, 1}. If for some x, g(x) is +1

then for −x it takes the value −1. We know continuous map preserves connectedness. S1 is connected but S0
is not. So, g(S1) has to lie in one of the connected components, but it is not possible by the above observation.
So, there must exist a point x ∈ S1 such that, f(x) = f(−x).

S2 S1

RP 2 RP 1 = S1

p2 p1

g

ḡ

g̃

Again for contradiction let’s assume there is a continuous map f : S2 → R2

such that, f(x) ̸= f(−x) for all x ∈ S2. Consider, g(x) = f(x)−f(−x)
∥f(x)−f(−x)∥ . This

is by definition a continuous map from S2 → S1. Let, pi : Si → RP i be the
quotient maps that takes a piar of antipodal points to ta point. We know these
maps are covering map (done in class). Note that, g(x) = −g(−x), i.e. it takes
a pair of antipodal point to a pair of antipodal point. So it will induce a map
ḡ : RP 2 → RP 1.

We know, π1(RP 2) is Z/2Z and π1(RP 1) = Z. The induced homomorphism
g̃∗ : π(RP 2) → π1(RP 1) must be a trivial homomorphism as the fundamental group of RP 2 is finite. Thus
can extend the map ḡ to a map g̃ : RP 2 → S1 such that the red triangle in the above diagram commutes i.e.
p1 ◦ g̃ = ḡ. From the commutativity of the square we can say p−1

1 ◦ ḡ ◦p2(s) can take values either g(s) or g(−s).
Which means, g̃ ◦ p2(s) = g̃ ◦ p2(−s) can take two one of the values g(s) or g(−s). In either case we can get a
t (it is s or −s) such that, g̃ ◦ p2(t) = g(t). By the fundamental theorem of covering space theory we can say
g̃ ◦ p2 = g for all t ∈ S2. But it is not possible as g(t) = −g(−t) and g̃ ◦ p2(t) = g̃ ◦ p2(−t). So there is a point
x ∈ S2 such that, f(x) = f(−x). ■
————————————————————————————————————————————————
Remark: We can prove the ‘Borsuk-Ulam theorem’ for higher n in the same way. But in order to showing
the extension g̃ exist, we need to deal with ‘Hurewicz isomorphism’ and cohomology ring of RP 2 with the
coefficients in Z/2Z.

§ Problem 8

Problem. Prove that there is a double covering of the Klein bottle by the torus. Take the definition of
the Klein bottle as [0, 1] × [0, 1]/ ∼ where ∼ is the equivalence relation generated by (x, 0) ∼ (x, 1) and
(0, 1− y) ∼ (1, y).

Solution. For the simplicity of notation, let’s call K be the Klein bottle and T be the one-holed torus. We
know from Problem 2, π1(K) =

〈
a, b : aba−1b = 1

〉
. Now consider the action of homeomorphisms φ1, φ2 on

R2 defined as, (x, y) 7→ (x+ 1, y) and (x, y) 7→ (−x, y + 1) respectively. Let,G be the group generated by these
homomorphisms under composition. Note that, φ2 ◦ φ1 = φ−1

1 ◦ φ2. So, G =
〈
φ1, φ2 : φ2 ◦ φ1 = φ−1

1 ◦ φ2

〉
is

the group generated by the homomorphisms. It is not hard to notice that, G = π1(K). We are basically looking
at the action of G↷ R2. Note that,

φ2 ◦ φ1 ◦ φ2(x, y) = (x− 1, y + 2)

= φ−1
1 ◦ φ2

2(x, y)

φ1 ◦ φ2 ◦ φ1 = (−x, y + 1)

= φ2

So any element in the group G can be written as φm1 ◦ φn2 for some m,n ∈ Z. Generators of the group are
distance preserving homeomorphisms. So and element of the group is distance preserving homeomorphism. For

10



any point (x, y) ∈ R2 take an open disk centred at that point with diameter d < 1. Call this disk D(x,y), we will
show, g(D(x,y)) ∩ h(D(x,y)) = ∅. Which means the group action is properly discontinuous. Let, g is an element
in G then g = φm1 ◦ φn2 . So, g.D(x,y) = {((−1)n + u+m, v + n) : (u, v) ∈ D(x,y)}. If there is a point (x′, y′) the
intersection of D(x,y) and g.D(x,y) then distance between (x′, y′) and ((−1)nx′ +m, y′ + n) is < d.√

(((−1)n − 1)x′ +m)2 + n2 ≤ d < 1

since n is an integer we must have n = 0 and then m2 ≤ d < 1 which means m = 0 i.e g = e. If g is not identity
then g(D(x,y)) ∩ (D(x,y)) = ∅. We can see that φ1(x, y), φ2(x, y) are at-least 1-unit distance apart from (x, y).
By the similar calculation as above, for any two distinct element g, h ∈ G we can say that g(x, y) and h(x, y)
are at-least 1-unit apart from each other.

If (x, y) lies in R2, by applying the homeomorphism φm1 for some appropriate integer m to (x, y), we can convert
it to a point (a, y) where a ∈ [0, 1) (this is like taking fractinal part). Then by applying the homeomorphism
φn2 for some appropriate integer v to (a, y), we get the point ((−1)na, b) where b ∈ [0, 1]. If v is even, we get a
point lying in [0, 1]2 lying in the same equivalence class as (x, y) in R2/G. Otherwise another application of g
gives us such a point lying in [0, 1)2. Moreover no two points in [0, 1]2 lie in the same equivalence class of R2/G.
So R2/G can be identified with the space [0, 1]2 with the quotient topology induced as it is the fundamental
domain for the action.

Consider the unit square S = [0, 1] × [0, 1] We can see that any orbit of the given action has a representative
on S. If we look at the point interior of the square, they are representative of themself. This is because any
g ∈ G must take a point atleast 1-distance apart from itself by translation. We will look on the boundary of
the square where, the points of the form (0, y) are representative with (1, y) (by φ1) and the points of the form
(x, 1) representative with (1− x, 0) (by φ1 ◦ φ−1

2 ). We can also see all four vertex belong to same orbit. (0, y)
and (x, 1) can’t be representative to eachother if 0 < x, y < 1 this is clearly because the distance in y-coordinate
is greater than 0 but less than 1. Similarly we can show (0, y),(1, y) can’t be representative with (x, 0) and
(x, 1) in any means. From the given identification we can see the orbit space R2/G is Klein bottle K.

Now we will show G = π1(K) contains a copy of Z ⊕ Z and it’s index as a subgroup of G = π1(K) is 2.
Recall the representation of the group,(where φ2 = a, φ1 = b)

G = π1(K) =
〈
a, b : aba−1b = 1

〉
Take the subgroup H generated by, a2, b. Notice that,

a2b = a(ab)

= ab−1a

= ab−1a−1a2

= (aba−1)−1a2

= b2a

So, H ∼= Z ⊕ Z and index of this group is 2 as we are quotienting out G with
〈
a2, b

〉
. Now we will restrict

the action G↷ R2 to H any element of H must look like h = φn ◦ φ2m, where m,n ∈ Z. Any point (x, y) will
go to h.(x, y) = (x+ n, y + 2m) by the action of h ∈ H. In this case we can notice the fundamental domain is
[0, 1] × [−1, 1]. The identification hold here is, (x, 1) ∼ (x,−1) and (0, y) ∼ (1, y). So the orbit-space R2/H is
torus T . By the classification theorem of covering spaces, we can say, there is a 2-sheeted covering p : T → K.
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